4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
49 GDB_SIGNAL_UNKNOWN
= 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table
[] = {
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
227 static int gdb_signal_table
[] = {
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig
)
241 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
242 if (gdb_signal_table
[i
] == sig
)
244 return GDB_SIGNAL_UNKNOWN
;
248 static int gdb_signal_to_target (int sig
)
250 if (sig
< ARRAY_SIZE (gdb_signal_table
))
251 return gdb_signal_table
[sig
];
258 typedef struct GDBRegisterState
{
264 struct GDBRegisterState
*next
;
275 typedef struct GDBState
{
276 CPUState
*c_cpu
; /* current CPU for step/continue ops */
277 CPUState
*g_cpu
; /* current CPU for other ops */
278 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
279 enum RSState state
; /* parsing state */
280 char line_buf
[MAX_PACKET_LENGTH
];
283 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
286 #ifdef CONFIG_USER_ONLY
290 CharDriverState
*chr
;
291 CharDriverState
*mon_chr
;
295 /* By default use no IRQs and no timers while single stepping so as to
296 * make single stepping like an ICE HW step.
298 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
300 static GDBState
*gdbserver_state
;
302 /* This is an ugly hack to cope with both new and old gdb.
303 If gdb sends qXfer:features:read then assume we're talking to a newish
304 gdb that understands target descriptions. */
305 static int gdb_has_xml
;
307 #ifdef CONFIG_USER_ONLY
308 /* XXX: This is not thread safe. Do we care? */
309 static int gdbserver_fd
= -1;
311 static int get_char(GDBState
*s
)
317 ret
= recv(s
->fd
, &ch
, 1, 0);
319 if (errno
== ECONNRESET
)
321 if (errno
!= EINTR
&& errno
!= EAGAIN
)
323 } else if (ret
== 0) {
335 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
343 /* If gdb is connected when the first semihosting syscall occurs then use
344 remote gdb syscalls. Otherwise use native file IO. */
345 int use_gdb_syscalls(void)
347 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
348 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
351 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
354 /* Resume execution. */
355 static inline void gdb_continue(GDBState
*s
)
357 #ifdef CONFIG_USER_ONLY
358 s
->running_state
= 1;
364 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
366 #ifdef CONFIG_USER_ONLY
370 ret
= send(s
->fd
, buf
, len
, 0);
372 if (errno
!= EINTR
&& errno
!= EAGAIN
)
380 qemu_chr_write(s
->chr
, buf
, len
);
384 static inline int fromhex(int v
)
386 if (v
>= '0' && v
<= '9')
388 else if (v
>= 'A' && v
<= 'F')
390 else if (v
>= 'a' && v
<= 'f')
396 static inline int tohex(int v
)
404 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
409 for(i
= 0; i
< len
; i
++) {
411 *q
++ = tohex(c
>> 4);
412 *q
++ = tohex(c
& 0xf);
417 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
421 for(i
= 0; i
< len
; i
++) {
422 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
427 /* return -1 if error, 0 if OK */
428 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
439 for(i
= 0; i
< len
; i
++) {
443 *(p
++) = tohex((csum
>> 4) & 0xf);
444 *(p
++) = tohex((csum
) & 0xf);
446 s
->last_packet_len
= p
- s
->last_packet
;
447 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
449 #ifdef CONFIG_USER_ONLY
462 /* return -1 if error, 0 if OK */
463 static int put_packet(GDBState
*s
, const char *buf
)
466 printf("reply='%s'\n", buf
);
469 return put_packet_binary(s
, buf
, strlen(buf
));
472 /* The GDB remote protocol transfers values in target byte order. This means
473 we can use the raw memory access routines to access the value buffer.
474 Conveniently, these also handle the case where the buffer is mis-aligned.
476 #define GET_REG8(val) do { \
477 stb_p(mem_buf, val); \
480 #define GET_REG16(val) do { \
481 stw_p(mem_buf, val); \
484 #define GET_REG32(val) do { \
485 stl_p(mem_buf, val); \
488 #define GET_REG64(val) do { \
489 stq_p(mem_buf, val); \
493 #if TARGET_LONG_BITS == 64
494 #define GET_REGL(val) GET_REG64(val)
495 #define ldtul_p(addr) ldq_p(addr)
497 #define GET_REGL(val) GET_REG32(val)
498 #define ldtul_p(addr) ldl_p(addr)
501 #if defined(TARGET_I386)
504 static const int gpr_map
[16] = {
505 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
506 8, 9, 10, 11, 12, 13, 14, 15
509 #define gpr_map gpr_map32
511 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 #define IDX_IP_REG CPU_NB_REGS
516 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
517 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
518 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
519 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
520 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
522 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
524 if (n
< CPU_NB_REGS
) {
525 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
526 GET_REG64(env
->regs
[gpr_map
[n
]]);
527 } else if (n
< CPU_NB_REGS32
) {
528 GET_REG32(env
->regs
[gpr_map32
[n
]]);
530 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
531 #ifdef USE_X86LDOUBLE
532 /* FIXME: byteswap float values - after fixing fpregs layout. */
533 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
535 memset(mem_buf
, 0, 10);
538 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
540 if (n
< CPU_NB_REGS32
||
541 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
542 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
543 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
549 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
554 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
556 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
557 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
558 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
559 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
560 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
561 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
563 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
564 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
565 (env
->fpstt
& 0x7) << 11);
566 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
567 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
568 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
569 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
570 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
571 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
573 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
579 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
581 uint16_t selector
= ldl_p(mem_buf
);
583 if (selector
!= env
->segs
[sreg
].selector
) {
584 #if defined(CONFIG_USER_ONLY)
585 cpu_x86_load_seg(env
, sreg
, selector
);
587 unsigned int limit
, flags
;
590 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
591 base
= selector
<< 4;
595 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
598 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
604 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
608 if (n
< CPU_NB_REGS
) {
609 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
610 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
611 return sizeof(target_ulong
);
612 } else if (n
< CPU_NB_REGS32
) {
614 env
->regs
[n
] &= ~0xffffffffUL
;
615 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
618 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
619 #ifdef USE_X86LDOUBLE
620 /* FIXME: byteswap float values - after fixing fpregs layout. */
621 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
624 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
626 if (n
< CPU_NB_REGS32
||
627 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
628 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
629 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
635 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
636 env
->eip
= ldq_p(mem_buf
);
639 env
->eip
&= ~0xffffffffUL
;
640 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
644 env
->eflags
= ldl_p(mem_buf
);
647 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
648 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
649 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
650 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
651 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
652 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
654 case IDX_FP_REGS
+ 8:
655 env
->fpuc
= ldl_p(mem_buf
);
657 case IDX_FP_REGS
+ 9:
658 tmp
= ldl_p(mem_buf
);
659 env
->fpstt
= (tmp
>> 11) & 7;
660 env
->fpus
= tmp
& ~0x3800;
662 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
663 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
664 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
665 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
666 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
667 case IDX_FP_REGS
+ 15: /* fop */ return 4;
670 env
->mxcsr
= ldl_p(mem_buf
);
674 /* Unrecognised register. */
678 #elif defined (TARGET_PPC)
680 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
681 expects whatever the target description contains. Due to a
682 historical mishap the FP registers appear in between core integer
683 regs and PC, MSR, CR, and so forth. We hack round this by giving the
684 FP regs zero size when talking to a newer gdb. */
685 #define NUM_CORE_REGS 71
686 #if defined (TARGET_PPC64)
687 #define GDB_CORE_XML "power64-core.xml"
689 #define GDB_CORE_XML "power-core.xml"
692 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
696 GET_REGL(env
->gpr
[n
]);
701 stfq_p(mem_buf
, env
->fpr
[n
-32]);
705 case 64: GET_REGL(env
->nip
);
706 case 65: GET_REGL(env
->msr
);
711 for (i
= 0; i
< 8; i
++)
712 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
715 case 67: GET_REGL(env
->lr
);
716 case 68: GET_REGL(env
->ctr
);
717 case 69: GET_REGL(env
->xer
);
722 GET_REG32(0); /* fpscr */
729 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
733 env
->gpr
[n
] = ldtul_p(mem_buf
);
734 return sizeof(target_ulong
);
739 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
744 env
->nip
= ldtul_p(mem_buf
);
745 return sizeof(target_ulong
);
747 ppc_store_msr(env
, ldtul_p(mem_buf
));
748 return sizeof(target_ulong
);
751 uint32_t cr
= ldl_p(mem_buf
);
753 for (i
= 0; i
< 8; i
++)
754 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
758 env
->lr
= ldtul_p(mem_buf
);
759 return sizeof(target_ulong
);
761 env
->ctr
= ldtul_p(mem_buf
);
762 return sizeof(target_ulong
);
764 env
->xer
= ldtul_p(mem_buf
);
765 return sizeof(target_ulong
);
776 #elif defined (TARGET_SPARC)
778 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
779 #define NUM_CORE_REGS 86
781 #define NUM_CORE_REGS 72
785 #define GET_REGA(val) GET_REG32(val)
787 #define GET_REGA(val) GET_REGL(val)
790 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
794 GET_REGA(env
->gregs
[n
]);
797 /* register window */
798 GET_REGA(env
->regwptr
[n
- 8]);
800 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
803 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
805 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
807 case 64: GET_REGA(env
->y
);
808 case 65: GET_REGA(cpu_get_psr(env
));
809 case 66: GET_REGA(env
->wim
);
810 case 67: GET_REGA(env
->tbr
);
811 case 68: GET_REGA(env
->pc
);
812 case 69: GET_REGA(env
->npc
);
813 case 70: GET_REGA(env
->fsr
);
814 case 71: GET_REGA(0); /* csr */
815 default: GET_REGA(0);
820 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
823 /* f32-f62 (double width, even numbers only) */
826 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
827 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
831 case 80: GET_REGL(env
->pc
);
832 case 81: GET_REGL(env
->npc
);
833 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
834 ((env
->asi
& 0xff) << 24) |
835 ((env
->pstate
& 0xfff) << 8) |
837 case 83: GET_REGL(env
->fsr
);
838 case 84: GET_REGL(env
->fprs
);
839 case 85: GET_REGL(env
->y
);
845 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
847 #if defined(TARGET_ABI32)
850 tmp
= ldl_p(mem_buf
);
854 tmp
= ldtul_p(mem_buf
);
861 /* register window */
862 env
->regwptr
[n
- 8] = tmp
;
864 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
867 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
869 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
871 case 64: env
->y
= tmp
; break;
872 case 65: cpu_put_psr(env
, tmp
); break;
873 case 66: env
->wim
= tmp
; break;
874 case 67: env
->tbr
= tmp
; break;
875 case 68: env
->pc
= tmp
; break;
876 case 69: env
->npc
= tmp
; break;
877 case 70: env
->fsr
= tmp
; break;
885 env
->fpr
[n
] = ldfl_p(mem_buf
);
888 /* f32-f62 (double width, even numbers only) */
889 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
890 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
893 case 80: env
->pc
= tmp
; break;
894 case 81: env
->npc
= tmp
; break;
896 cpu_put_ccr(env
, tmp
>> 32);
897 env
->asi
= (tmp
>> 24) & 0xff;
898 env
->pstate
= (tmp
>> 8) & 0xfff;
899 cpu_put_cwp64(env
, tmp
& 0xff);
901 case 83: env
->fsr
= tmp
; break;
902 case 84: env
->fprs
= tmp
; break;
903 case 85: env
->y
= tmp
; break;
910 #elif defined (TARGET_ARM)
912 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
913 whatever the target description contains. Due to a historical mishap
914 the FPA registers appear in between core integer regs and the CPSR.
915 We hack round this by giving the FPA regs zero size when talking to a
917 #define NUM_CORE_REGS 26
918 #define GDB_CORE_XML "arm-core.xml"
920 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
923 /* Core integer register. */
924 GET_REG32(env
->regs
[n
]);
930 memset(mem_buf
, 0, 12);
935 /* FPA status register. */
941 GET_REG32(cpsr_read(env
));
943 /* Unknown register. */
947 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
951 tmp
= ldl_p(mem_buf
);
953 /* Mask out low bit of PC to workaround gdb bugs. This will probably
954 cause problems if we ever implement the Jazelle DBX extensions. */
959 /* Core integer register. */
963 if (n
< 24) { /* 16-23 */
964 /* FPA registers (ignored). */
971 /* FPA status register (ignored). */
977 cpsr_write (env
, tmp
, 0xffffffff);
980 /* Unknown register. */
984 #elif defined (TARGET_M68K)
986 #define NUM_CORE_REGS 18
988 #define GDB_CORE_XML "cf-core.xml"
990 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
994 GET_REG32(env
->dregs
[n
]);
997 GET_REG32(env
->aregs
[n
- 8]);
1000 case 16: GET_REG32(env
->sr
);
1001 case 17: GET_REG32(env
->pc
);
1004 /* FP registers not included here because they vary between
1005 ColdFire and m68k. Use XML bits for these. */
1009 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1013 tmp
= ldl_p(mem_buf
);
1017 env
->dregs
[n
] = tmp
;
1018 } else if (n
< 16) {
1020 env
->aregs
[n
- 8] = tmp
;
1023 case 16: env
->sr
= tmp
; break;
1024 case 17: env
->pc
= tmp
; break;
1030 #elif defined (TARGET_MIPS)
1032 #define NUM_CORE_REGS 73
1034 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1037 GET_REGL(env
->active_tc
.gpr
[n
]);
1039 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1040 if (n
>= 38 && n
< 70) {
1041 if (env
->CP0_Status
& (1 << CP0St_FR
))
1042 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1044 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1047 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1048 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1052 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1053 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1054 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1055 case 35: GET_REGL(env
->CP0_BadVAddr
);
1056 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1057 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1058 case 72: GET_REGL(0); /* fp */
1059 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1061 if (n
>= 73 && n
<= 88) {
1062 /* 16 embedded regs. */
1069 /* convert MIPS rounding mode in FCR31 to IEEE library */
1070 static unsigned int ieee_rm
[] =
1072 float_round_nearest_even
,
1073 float_round_to_zero
,
1077 #define RESTORE_ROUNDING_MODE \
1078 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1080 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1084 tmp
= ldtul_p(mem_buf
);
1087 env
->active_tc
.gpr
[n
] = tmp
;
1088 return sizeof(target_ulong
);
1090 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1091 && n
>= 38 && n
< 73) {
1093 if (env
->CP0_Status
& (1 << CP0St_FR
))
1094 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1096 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1100 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1101 /* set rounding mode */
1102 RESTORE_ROUNDING_MODE
;
1103 #ifndef CONFIG_SOFTFLOAT
1104 /* no floating point exception for native float */
1105 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1108 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1110 return sizeof(target_ulong
);
1113 case 32: env
->CP0_Status
= tmp
; break;
1114 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1115 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1116 case 35: env
->CP0_BadVAddr
= tmp
; break;
1117 case 36: env
->CP0_Cause
= tmp
; break;
1119 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1121 env
->hflags
|= MIPS_HFLAG_M16
;
1123 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1126 case 72: /* fp, ignored */ break;
1130 /* Other registers are readonly. Ignore writes. */
1134 return sizeof(target_ulong
);
1136 #elif defined (TARGET_SH4)
1138 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1139 /* FIXME: We should use XML for this. */
1141 #define NUM_CORE_REGS 59
1143 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1146 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1147 GET_REGL(env
->gregs
[n
+ 16]);
1149 GET_REGL(env
->gregs
[n
]);
1151 } else if (n
< 16) {
1152 GET_REGL(env
->gregs
[n
]);
1153 } else if (n
>= 25 && n
< 41) {
1154 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1155 } else if (n
>= 43 && n
< 51) {
1156 GET_REGL(env
->gregs
[n
- 43]);
1157 } else if (n
>= 51 && n
< 59) {
1158 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1161 case 16: GET_REGL(env
->pc
);
1162 case 17: GET_REGL(env
->pr
);
1163 case 18: GET_REGL(env
->gbr
);
1164 case 19: GET_REGL(env
->vbr
);
1165 case 20: GET_REGL(env
->mach
);
1166 case 21: GET_REGL(env
->macl
);
1167 case 22: GET_REGL(env
->sr
);
1168 case 23: GET_REGL(env
->fpul
);
1169 case 24: GET_REGL(env
->fpscr
);
1170 case 41: GET_REGL(env
->ssr
);
1171 case 42: GET_REGL(env
->spc
);
1177 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1181 tmp
= ldl_p(mem_buf
);
1184 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1185 env
->gregs
[n
+ 16] = tmp
;
1187 env
->gregs
[n
] = tmp
;
1190 } else if (n
< 16) {
1191 env
->gregs
[n
] = tmp
;
1193 } else if (n
>= 25 && n
< 41) {
1194 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1196 } else if (n
>= 43 && n
< 51) {
1197 env
->gregs
[n
- 43] = tmp
;
1199 } else if (n
>= 51 && n
< 59) {
1200 env
->gregs
[n
- (51 - 16)] = tmp
;
1204 case 16: env
->pc
= tmp
; break;
1205 case 17: env
->pr
= tmp
; break;
1206 case 18: env
->gbr
= tmp
; break;
1207 case 19: env
->vbr
= tmp
; break;
1208 case 20: env
->mach
= tmp
; break;
1209 case 21: env
->macl
= tmp
; break;
1210 case 22: env
->sr
= tmp
; break;
1211 case 23: env
->fpul
= tmp
; break;
1212 case 24: env
->fpscr
= tmp
; break;
1213 case 41: env
->ssr
= tmp
; break;
1214 case 42: env
->spc
= tmp
; break;
1220 #elif defined (TARGET_MICROBLAZE)
1222 #define NUM_CORE_REGS (32 + 5)
1224 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1227 GET_REG32(env
->regs
[n
]);
1229 GET_REG32(env
->sregs
[n
- 32]);
1234 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1238 if (n
> NUM_CORE_REGS
)
1241 tmp
= ldl_p(mem_buf
);
1246 env
->sregs
[n
- 32] = tmp
;
1250 #elif defined (TARGET_CRIS)
1252 #define NUM_CORE_REGS 49
1255 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1258 GET_REG32(env
->regs
[n
]);
1268 GET_REG8(env
->pregs
[n
- 16]);
1271 GET_REG8(env
->pregs
[n
- 16]);
1275 GET_REG16(env
->pregs
[n
- 16]);
1279 GET_REG32(env
->pregs
[n
- 16]);
1287 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1291 if (env
->pregs
[PR_VR
] < 32)
1292 return read_register_crisv10(env
, mem_buf
, n
);
1294 srs
= env
->pregs
[PR_SRS
];
1296 GET_REG32(env
->regs
[n
]);
1299 if (n
>= 21 && n
< 32) {
1300 GET_REG32(env
->pregs
[n
- 16]);
1302 if (n
>= 33 && n
< 49) {
1303 GET_REG32(env
->sregs
[srs
][n
- 33]);
1306 case 16: GET_REG8(env
->pregs
[0]);
1307 case 17: GET_REG8(env
->pregs
[1]);
1308 case 18: GET_REG32(env
->pregs
[2]);
1309 case 19: GET_REG8(srs
);
1310 case 20: GET_REG16(env
->pregs
[4]);
1311 case 32: GET_REG32(env
->pc
);
1317 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1324 tmp
= ldl_p(mem_buf
);
1330 if (n
>= 21 && n
< 32) {
1331 env
->pregs
[n
- 16] = tmp
;
1334 /* FIXME: Should support function regs be writable? */
1338 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1341 case 32: env
->pc
= tmp
; break;
1346 #elif defined (TARGET_ALPHA)
1348 #define NUM_CORE_REGS 67
1350 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1360 d
.d
= env
->fir
[n
- 32];
1364 val
= cpu_alpha_load_fpcr(env
);
1374 /* 31 really is the zero register; 65 is unassigned in the
1375 gdb protocol, but is still required to occupy 8 bytes. */
1384 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1386 target_ulong tmp
= ldtul_p(mem_buf
);
1395 env
->fir
[n
- 32] = d
.d
;
1398 cpu_alpha_store_fpcr(env
, tmp
);
1408 /* 31 really is the zero register; 65 is unassigned in the
1409 gdb protocol, but is still required to occupy 8 bytes. */
1416 #elif defined (TARGET_S390X)
1418 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1420 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1423 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1424 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1425 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1426 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1427 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1428 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1429 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1430 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1433 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1434 case S390_CC_REGNUM
: GET_REG32(env
->cc
); break;
1440 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1445 tmpl
= ldtul_p(mem_buf
);
1446 tmp32
= ldl_p(mem_buf
);
1449 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1450 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1451 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1452 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1453 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1454 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1455 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1456 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1459 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1460 case S390_CC_REGNUM
: env
->cc
= tmp32
; r
=4; break;
1467 #define NUM_CORE_REGS 0
1469 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1474 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1481 static int num_g_regs
= NUM_CORE_REGS
;
1484 /* Encode data using the encoding for 'x' packets. */
1485 static int memtox(char *buf
, const char *mem
, int len
)
1493 case '#': case '$': case '*': case '}':
1505 static const char *get_feature_xml(const char *p
, const char **newp
)
1507 extern const char *const xml_builtin
[][2];
1511 static char target_xml
[1024];
1514 while (p
[len
] && p
[len
] != ':')
1519 if (strncmp(p
, "target.xml", len
) == 0) {
1520 /* Generate the XML description for this CPU. */
1521 if (!target_xml
[0]) {
1522 GDBRegisterState
*r
;
1524 snprintf(target_xml
, sizeof(target_xml
),
1525 "<?xml version=\"1.0\"?>"
1526 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1528 "<xi:include href=\"%s\"/>",
1531 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1532 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1533 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1534 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1536 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1540 for (i
= 0; ; i
++) {
1541 name
= xml_builtin
[i
][0];
1542 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1545 return name
? xml_builtin
[i
][1] : NULL
;
1549 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1551 GDBRegisterState
*r
;
1553 if (reg
< NUM_CORE_REGS
)
1554 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1556 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1557 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1558 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1564 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1566 GDBRegisterState
*r
;
1568 if (reg
< NUM_CORE_REGS
)
1569 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1571 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1572 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1573 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1579 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1580 specifies the first register number and these registers are included in
1581 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1582 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1585 void gdb_register_coprocessor(CPUState
* env
,
1586 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1587 int num_regs
, const char *xml
, int g_pos
)
1589 GDBRegisterState
*s
;
1590 GDBRegisterState
**p
;
1591 static int last_reg
= NUM_CORE_REGS
;
1593 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1594 s
->base_reg
= last_reg
;
1595 s
->num_regs
= num_regs
;
1596 s
->get_reg
= get_reg
;
1597 s
->set_reg
= set_reg
;
1601 /* Check for duplicates. */
1602 if (strcmp((*p
)->xml
, xml
) == 0)
1606 /* Add to end of list. */
1607 last_reg
+= num_regs
;
1610 if (g_pos
!= s
->base_reg
) {
1611 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1612 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1614 num_g_regs
= last_reg
;
1619 #ifndef CONFIG_USER_ONLY
1620 static const int xlat_gdb_type
[] = {
1621 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1622 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1623 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1627 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1633 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1636 case GDB_BREAKPOINT_SW
:
1637 case GDB_BREAKPOINT_HW
:
1638 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1639 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1644 #ifndef CONFIG_USER_ONLY
1645 case GDB_WATCHPOINT_WRITE
:
1646 case GDB_WATCHPOINT_READ
:
1647 case GDB_WATCHPOINT_ACCESS
:
1648 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1649 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1661 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1667 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1670 case GDB_BREAKPOINT_SW
:
1671 case GDB_BREAKPOINT_HW
:
1672 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1673 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1678 #ifndef CONFIG_USER_ONLY
1679 case GDB_WATCHPOINT_WRITE
:
1680 case GDB_WATCHPOINT_READ
:
1681 case GDB_WATCHPOINT_ACCESS
:
1682 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1683 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1694 static void gdb_breakpoint_remove_all(void)
1698 if (kvm_enabled()) {
1699 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1703 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1704 cpu_breakpoint_remove_all(env
, BP_GDB
);
1705 #ifndef CONFIG_USER_ONLY
1706 cpu_watchpoint_remove_all(env
, BP_GDB
);
1711 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1713 #if defined(TARGET_I386)
1714 cpu_synchronize_state(s
->c_cpu
);
1716 #elif defined (TARGET_PPC)
1718 #elif defined (TARGET_SPARC)
1720 s
->c_cpu
->npc
= pc
+ 4;
1721 #elif defined (TARGET_ARM)
1722 s
->c_cpu
->regs
[15] = pc
;
1723 #elif defined (TARGET_SH4)
1725 #elif defined (TARGET_MIPS)
1726 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1728 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1730 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1732 #elif defined (TARGET_MICROBLAZE)
1733 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1734 #elif defined (TARGET_CRIS)
1736 #elif defined (TARGET_ALPHA)
1738 #elif defined (TARGET_S390X)
1739 cpu_synchronize_state(s
->c_cpu
);
1740 s
->c_cpu
->psw
.addr
= pc
;
1744 static inline int gdb_id(CPUState
*env
)
1746 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1747 return env
->host_tid
;
1749 return env
->cpu_index
+ 1;
1753 static CPUState
*find_cpu(uint32_t thread_id
)
1757 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1758 if (gdb_id(env
) == thread_id
) {
1766 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1771 int ch
, reg_size
, type
, res
;
1772 char buf
[MAX_PACKET_LENGTH
];
1773 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1775 target_ulong addr
, len
;
1778 printf("command='%s'\n", line_buf
);
1784 /* TODO: Make this return the correct value for user-mode. */
1785 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1788 /* Remove all the breakpoints when this query is issued,
1789 * because gdb is doing and initial connect and the state
1790 * should be cleaned up.
1792 gdb_breakpoint_remove_all();
1796 addr
= strtoull(p
, (char **)&p
, 16);
1797 gdb_set_cpu_pc(s
, addr
);
1803 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1804 if (s
->signal
== -1)
1809 if (strncmp(p
, "Cont", 4) == 0) {
1810 int res_signal
, res_thread
;
1814 put_packet(s
, "vCont;c;C;s;S");
1829 if (action
== 'C' || action
== 'S') {
1830 signal
= strtoul(p
, (char **)&p
, 16);
1831 } else if (action
!= 'c' && action
!= 's') {
1837 thread
= strtoull(p
+1, (char **)&p
, 16);
1839 action
= tolower(action
);
1840 if (res
== 0 || (res
== 'c' && action
== 's')) {
1842 res_signal
= signal
;
1843 res_thread
= thread
;
1847 if (res_thread
!= -1 && res_thread
!= 0) {
1848 env
= find_cpu(res_thread
);
1850 put_packet(s
, "E22");
1856 cpu_single_step(s
->c_cpu
, sstep_flags
);
1858 s
->signal
= res_signal
;
1864 goto unknown_command
;
1867 /* Kill the target */
1868 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1872 gdb_breakpoint_remove_all();
1873 gdb_syscall_mode
= GDB_SYS_DISABLED
;
1875 put_packet(s
, "OK");
1879 addr
= strtoull(p
, (char **)&p
, 16);
1880 gdb_set_cpu_pc(s
, addr
);
1882 cpu_single_step(s
->c_cpu
, sstep_flags
);
1890 ret
= strtoull(p
, (char **)&p
, 16);
1893 err
= strtoull(p
, (char **)&p
, 16);
1900 if (gdb_current_syscall_cb
)
1901 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1903 put_packet(s
, "T02");
1910 cpu_synchronize_state(s
->g_cpu
);
1912 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1913 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1916 memtohex(buf
, mem_buf
, len
);
1920 cpu_synchronize_state(s
->g_cpu
);
1921 registers
= mem_buf
;
1922 len
= strlen(p
) / 2;
1923 hextomem((uint8_t *)registers
, p
, len
);
1924 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1925 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1927 registers
+= reg_size
;
1929 put_packet(s
, "OK");
1932 addr
= strtoull(p
, (char **)&p
, 16);
1935 len
= strtoull(p
, NULL
, 16);
1936 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1937 put_packet (s
, "E14");
1939 memtohex(buf
, mem_buf
, len
);
1944 addr
= strtoull(p
, (char **)&p
, 16);
1947 len
= strtoull(p
, (char **)&p
, 16);
1950 hextomem(mem_buf
, p
, len
);
1951 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1952 put_packet(s
, "E14");
1954 put_packet(s
, "OK");
1957 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1958 This works, but can be very slow. Anything new enough to
1959 understand XML also knows how to use this properly. */
1961 goto unknown_command
;
1962 addr
= strtoull(p
, (char **)&p
, 16);
1963 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1965 memtohex(buf
, mem_buf
, reg_size
);
1968 put_packet(s
, "E14");
1973 goto unknown_command
;
1974 addr
= strtoull(p
, (char **)&p
, 16);
1977 reg_size
= strlen(p
) / 2;
1978 hextomem(mem_buf
, p
, reg_size
);
1979 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1980 put_packet(s
, "OK");
1984 type
= strtoul(p
, (char **)&p
, 16);
1987 addr
= strtoull(p
, (char **)&p
, 16);
1990 len
= strtoull(p
, (char **)&p
, 16);
1992 res
= gdb_breakpoint_insert(addr
, len
, type
);
1994 res
= gdb_breakpoint_remove(addr
, len
, type
);
1996 put_packet(s
, "OK");
1997 else if (res
== -ENOSYS
)
2000 put_packet(s
, "E22");
2004 thread
= strtoull(p
, (char **)&p
, 16);
2005 if (thread
== -1 || thread
== 0) {
2006 put_packet(s
, "OK");
2009 env
= find_cpu(thread
);
2011 put_packet(s
, "E22");
2017 put_packet(s
, "OK");
2021 put_packet(s
, "OK");
2024 put_packet(s
, "E22");
2029 thread
= strtoull(p
, (char **)&p
, 16);
2030 env
= find_cpu(thread
);
2033 put_packet(s
, "OK");
2035 put_packet(s
, "E22");
2040 /* parse any 'q' packets here */
2041 if (!strcmp(p
,"qemu.sstepbits")) {
2042 /* Query Breakpoint bit definitions */
2043 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2049 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2050 /* Display or change the sstep_flags */
2053 /* Display current setting */
2054 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2059 type
= strtoul(p
, (char **)&p
, 16);
2061 put_packet(s
, "OK");
2063 } else if (strcmp(p
,"C") == 0) {
2064 /* "Current thread" remains vague in the spec, so always return
2065 * the first CPU (gdb returns the first thread). */
2066 put_packet(s
, "QC1");
2068 } else if (strcmp(p
,"fThreadInfo") == 0) {
2069 s
->query_cpu
= first_cpu
;
2070 goto report_cpuinfo
;
2071 } else if (strcmp(p
,"sThreadInfo") == 0) {
2074 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2076 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2080 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2081 thread
= strtoull(p
+16, (char **)&p
, 16);
2082 env
= find_cpu(thread
);
2084 cpu_synchronize_state(env
);
2085 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2086 "CPU#%d [%s]", env
->cpu_index
,
2087 env
->halted
? "halted " : "running");
2088 memtohex(buf
, mem_buf
, len
);
2093 #ifdef CONFIG_USER_ONLY
2094 else if (strncmp(p
, "Offsets", 7) == 0) {
2095 TaskState
*ts
= s
->c_cpu
->opaque
;
2097 snprintf(buf
, sizeof(buf
),
2098 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2099 ";Bss=" TARGET_ABI_FMT_lx
,
2100 ts
->info
->code_offset
,
2101 ts
->info
->data_offset
,
2102 ts
->info
->data_offset
);
2106 #else /* !CONFIG_USER_ONLY */
2107 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2108 int len
= strlen(p
+ 5);
2110 if ((len
% 2) != 0) {
2111 put_packet(s
, "E01");
2114 hextomem(mem_buf
, p
+ 5, len
);
2117 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
2118 put_packet(s
, "OK");
2121 #endif /* !CONFIG_USER_ONLY */
2122 if (strncmp(p
, "Supported", 9) == 0) {
2123 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2125 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2131 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2133 target_ulong total_len
;
2137 xml
= get_feature_xml(p
, &p
);
2139 snprintf(buf
, sizeof(buf
), "E00");
2146 addr
= strtoul(p
, (char **)&p
, 16);
2149 len
= strtoul(p
, (char **)&p
, 16);
2151 total_len
= strlen(xml
);
2152 if (addr
> total_len
) {
2153 snprintf(buf
, sizeof(buf
), "E00");
2157 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2158 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2159 if (len
< total_len
- addr
) {
2161 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2164 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2166 put_packet_binary(s
, buf
, len
+ 1);
2170 /* Unrecognised 'q' command. */
2171 goto unknown_command
;
2175 /* put empty packet */
2183 void gdb_set_stop_cpu(CPUState
*env
)
2185 gdbserver_state
->c_cpu
= env
;
2186 gdbserver_state
->g_cpu
= env
;
2189 #ifndef CONFIG_USER_ONLY
2190 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
2192 GDBState
*s
= gdbserver_state
;
2193 CPUState
*env
= s
->c_cpu
;
2198 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
2199 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
)
2202 /* disable single step if it was enable */
2203 cpu_single_step(env
, 0);
2205 if (reason
== EXCP_DEBUG
) {
2206 if (env
->watchpoint_hit
) {
2207 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2218 snprintf(buf
, sizeof(buf
),
2219 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2220 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2221 env
->watchpoint_hit
->vaddr
);
2223 env
->watchpoint_hit
= NULL
;
2227 ret
= GDB_SIGNAL_TRAP
;
2229 ret
= GDB_SIGNAL_INT
;
2231 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2236 /* Send a gdb syscall request.
2237 This accepts limited printf-style format specifiers, specifically:
2238 %x - target_ulong argument printed in hex.
2239 %lx - 64-bit argument printed in hex.
2240 %s - string pointer (target_ulong) and length (int) pair. */
2241 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2250 s
= gdbserver_state
;
2253 gdb_current_syscall_cb
= cb
;
2254 s
->state
= RS_SYSCALL
;
2255 #ifndef CONFIG_USER_ONLY
2256 vm_stop(EXCP_DEBUG
);
2267 addr
= va_arg(va
, target_ulong
);
2268 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2271 if (*(fmt
++) != 'x')
2273 i64
= va_arg(va
, uint64_t);
2274 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2277 addr
= va_arg(va
, target_ulong
);
2278 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2279 addr
, va_arg(va
, int));
2283 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2294 #ifdef CONFIG_USER_ONLY
2295 gdb_handlesig(s
->c_cpu
, 0);
2301 static void gdb_read_byte(GDBState
*s
, int ch
)
2306 #ifndef CONFIG_USER_ONLY
2307 if (s
->last_packet_len
) {
2308 /* Waiting for a response to the last packet. If we see the start
2309 of a new command then abandon the previous response. */
2312 printf("Got NACK, retransmitting\n");
2314 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2318 printf("Got ACK\n");
2320 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2322 if (ch
== '+' || ch
== '$')
2323 s
->last_packet_len
= 0;
2328 /* when the CPU is running, we cannot do anything except stop
2329 it when receiving a char */
2330 vm_stop(EXCP_INTERRUPT
);
2337 s
->line_buf_index
= 0;
2338 s
->state
= RS_GETLINE
;
2343 s
->state
= RS_CHKSUM1
;
2344 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2347 s
->line_buf
[s
->line_buf_index
++] = ch
;
2351 s
->line_buf
[s
->line_buf_index
] = '\0';
2352 s
->line_csum
= fromhex(ch
) << 4;
2353 s
->state
= RS_CHKSUM2
;
2356 s
->line_csum
|= fromhex(ch
);
2358 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2359 csum
+= s
->line_buf
[i
];
2361 if (s
->line_csum
!= (csum
& 0xff)) {
2363 put_buffer(s
, &reply
, 1);
2367 put_buffer(s
, &reply
, 1);
2368 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2377 /* Tell the remote gdb that the process has exited. */
2378 void gdb_exit(CPUState
*env
, int code
)
2383 s
= gdbserver_state
;
2387 #ifdef CONFIG_USER_ONLY
2388 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2393 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2397 #ifdef CONFIG_USER_ONLY
2403 s
= gdbserver_state
;
2405 if (gdbserver_fd
< 0 || s
->fd
< 0)
2412 gdb_handlesig (CPUState
*env
, int sig
)
2418 s
= gdbserver_state
;
2419 if (gdbserver_fd
< 0 || s
->fd
< 0)
2422 /* disable single step if it was enabled */
2423 cpu_single_step(env
, 0);
2428 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2431 /* put_packet() might have detected that the peer terminated the
2438 s
->running_state
= 0;
2439 while (s
->running_state
== 0) {
2440 n
= read (s
->fd
, buf
, 256);
2445 for (i
= 0; i
< n
; i
++)
2446 gdb_read_byte (s
, buf
[i
]);
2448 else if (n
== 0 || errno
!= EAGAIN
)
2450 /* XXX: Connection closed. Should probably wait for annother
2451 connection before continuing. */
2460 /* Tell the remote gdb that the process has exited due to SIG. */
2461 void gdb_signalled(CPUState
*env
, int sig
)
2466 s
= gdbserver_state
;
2467 if (gdbserver_fd
< 0 || s
->fd
< 0)
2470 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2474 static void gdb_accept(void)
2477 struct sockaddr_in sockaddr
;
2482 len
= sizeof(sockaddr
);
2483 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2484 if (fd
< 0 && errno
!= EINTR
) {
2487 } else if (fd
>= 0) {
2489 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2495 /* set short latency */
2497 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2499 s
= qemu_mallocz(sizeof(GDBState
));
2500 s
->c_cpu
= first_cpu
;
2501 s
->g_cpu
= first_cpu
;
2505 gdbserver_state
= s
;
2507 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2510 static int gdbserver_open(int port
)
2512 struct sockaddr_in sockaddr
;
2515 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2521 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2524 /* allow fast reuse */
2526 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2528 sockaddr
.sin_family
= AF_INET
;
2529 sockaddr
.sin_port
= htons(port
);
2530 sockaddr
.sin_addr
.s_addr
= 0;
2531 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2536 ret
= listen(fd
, 0);
2544 int gdbserver_start(int port
)
2546 gdbserver_fd
= gdbserver_open(port
);
2547 if (gdbserver_fd
< 0)
2549 /* accept connections */
2554 /* Disable gdb stub for child processes. */
2555 void gdbserver_fork(CPUState
*env
)
2557 GDBState
*s
= gdbserver_state
;
2558 if (gdbserver_fd
< 0 || s
->fd
< 0)
2562 cpu_breakpoint_remove_all(env
, BP_GDB
);
2563 cpu_watchpoint_remove_all(env
, BP_GDB
);
2566 static int gdb_chr_can_receive(void *opaque
)
2568 /* We can handle an arbitrarily large amount of data.
2569 Pick the maximum packet size, which is as good as anything. */
2570 return MAX_PACKET_LENGTH
;
2573 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2577 for (i
= 0; i
< size
; i
++) {
2578 gdb_read_byte(gdbserver_state
, buf
[i
]);
2582 static void gdb_chr_event(void *opaque
, int event
)
2585 case CHR_EVENT_OPENED
:
2586 vm_stop(EXCP_INTERRUPT
);
2594 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2596 char buf
[MAX_PACKET_LENGTH
];
2599 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2600 len
= (MAX_PACKET_LENGTH
/2) - 1;
2601 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2605 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2607 const char *p
= (const char *)buf
;
2610 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2612 if (len
<= max_sz
) {
2613 gdb_monitor_output(gdbserver_state
, p
, len
);
2616 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2624 static void gdb_sigterm_handler(int signal
)
2627 vm_stop(EXCP_INTERRUPT
);
2631 int gdbserver_start(const char *device
)
2634 char gdbstub_device_name
[128];
2635 CharDriverState
*chr
= NULL
;
2636 CharDriverState
*mon_chr
;
2640 if (strcmp(device
, "none") != 0) {
2641 if (strstart(device
, "tcp:", NULL
)) {
2642 /* enforce required TCP attributes */
2643 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2644 "%s,nowait,nodelay,server", device
);
2645 device
= gdbstub_device_name
;
2648 else if (strcmp(device
, "stdio") == 0) {
2649 struct sigaction act
;
2651 memset(&act
, 0, sizeof(act
));
2652 act
.sa_handler
= gdb_sigterm_handler
;
2653 sigaction(SIGINT
, &act
, NULL
);
2656 chr
= qemu_chr_open("gdb", device
, NULL
);
2660 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2661 gdb_chr_event
, NULL
);
2664 s
= gdbserver_state
;
2666 s
= qemu_mallocz(sizeof(GDBState
));
2667 gdbserver_state
= s
;
2669 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2671 /* Initialize a monitor terminal for gdb */
2672 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2673 mon_chr
->chr_write
= gdb_monitor_write
;
2674 monitor_init(mon_chr
, 0);
2677 qemu_chr_close(s
->chr
);
2678 mon_chr
= s
->mon_chr
;
2679 memset(s
, 0, sizeof(GDBState
));
2681 s
->c_cpu
= first_cpu
;
2682 s
->g_cpu
= first_cpu
;
2684 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2685 s
->mon_chr
= mon_chr
;