s390x/kvm: fix run_on_cpu sigp conversions
[qemu.git] / hw / acpi / nvdimm.c
blob602ec54485b1e3f6f9dcaa652eb9ece0f34ecffb
1 /*
2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
36 static int nvdimm_plugged_device_list(Object *obj, void *opaque)
38 GSList **list = opaque;
40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41 DeviceState *dev = DEVICE(obj);
43 if (dev->realized) { /* only realized NVDIMMs matter */
44 *list = g_slist_append(*list, DEVICE(obj));
48 object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
49 return 0;
53 * inquire plugged NVDIMM devices and link them into the list which is
54 * returned to the caller.
56 * Note: it is the caller's responsibility to free the list to avoid
57 * memory leak.
59 static GSList *nvdimm_get_plugged_device_list(void)
61 GSList *list = NULL;
63 object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
64 &list);
65 return list;
68 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
69 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
70 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
71 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
74 * define Byte Addressable Persistent Memory (PM) Region according to
75 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
77 static const uint8_t nvdimm_nfit_spa_uuid[] =
78 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
79 0x18, 0xb7, 0x8c, 0xdb);
82 * NVDIMM Firmware Interface Table
83 * @signature: "NFIT"
85 * It provides information that allows OSPM to enumerate NVDIMM present in
86 * the platform and associate system physical address ranges created by the
87 * NVDIMMs.
89 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
91 struct NvdimmNfitHeader {
92 ACPI_TABLE_HEADER_DEF
93 uint32_t reserved;
94 } QEMU_PACKED;
95 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
98 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
99 * Interface Table (NFIT).
103 * System Physical Address Range Structure
105 * It describes the system physical address ranges occupied by NVDIMMs and
106 * the types of the regions.
108 struct NvdimmNfitSpa {
109 uint16_t type;
110 uint16_t length;
111 uint16_t spa_index;
112 uint16_t flags;
113 uint32_t reserved;
114 uint32_t proximity_domain;
115 uint8_t type_guid[16];
116 uint64_t spa_base;
117 uint64_t spa_length;
118 uint64_t mem_attr;
119 } QEMU_PACKED;
120 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
123 * Memory Device to System Physical Address Range Mapping Structure
125 * It enables identifying each NVDIMM region and the corresponding SPA
126 * describing the memory interleave
128 struct NvdimmNfitMemDev {
129 uint16_t type;
130 uint16_t length;
131 uint32_t nfit_handle;
132 uint16_t phys_id;
133 uint16_t region_id;
134 uint16_t spa_index;
135 uint16_t dcr_index;
136 uint64_t region_len;
137 uint64_t region_offset;
138 uint64_t region_dpa;
139 uint16_t interleave_index;
140 uint16_t interleave_ways;
141 uint16_t flags;
142 uint16_t reserved;
143 } QEMU_PACKED;
144 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
147 * NVDIMM Control Region Structure
149 * It describes the NVDIMM and if applicable, Block Control Window.
151 struct NvdimmNfitControlRegion {
152 uint16_t type;
153 uint16_t length;
154 uint16_t dcr_index;
155 uint16_t vendor_id;
156 uint16_t device_id;
157 uint16_t revision_id;
158 uint16_t sub_vendor_id;
159 uint16_t sub_device_id;
160 uint16_t sub_revision_id;
161 uint8_t reserved[6];
162 uint32_t serial_number;
163 uint16_t fic;
164 uint16_t num_bcw;
165 uint64_t bcw_size;
166 uint64_t cmd_offset;
167 uint64_t cmd_size;
168 uint64_t status_offset;
169 uint64_t status_size;
170 uint16_t flags;
171 uint8_t reserved2[6];
172 } QEMU_PACKED;
173 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
176 * Module serial number is a unique number for each device. We use the
177 * slot id of NVDIMM device to generate this number so that each device
178 * associates with a different number.
180 * 0x123456 is a magic number we arbitrarily chose.
182 static uint32_t nvdimm_slot_to_sn(int slot)
184 return 0x123456 + slot;
188 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
189 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
190 * by ACPI device _ADR method.
192 * We generate the handle with the slot id of NVDIMM device and reserve
193 * 0 for NVDIMM root device.
195 static uint32_t nvdimm_slot_to_handle(int slot)
197 return slot + 1;
201 * index uniquely identifies the structure, 0 is reserved which indicates
202 * that the structure is not valid or the associated structure is not
203 * present.
205 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
206 * nfit_dc which are generated by the slot id of NVDIMM device.
208 static uint16_t nvdimm_slot_to_spa_index(int slot)
210 return (slot + 1) << 1;
213 /* See the comments of nvdimm_slot_to_spa_index(). */
214 static uint32_t nvdimm_slot_to_dcr_index(int slot)
216 return nvdimm_slot_to_spa_index(slot) + 1;
219 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
221 NVDIMMDevice *nvdimm = NULL;
222 GSList *list, *device_list = nvdimm_get_plugged_device_list();
224 for (list = device_list; list; list = list->next) {
225 NVDIMMDevice *nvd = list->data;
226 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
227 NULL);
229 if (nvdimm_slot_to_handle(slot) == handle) {
230 nvdimm = nvd;
231 break;
235 g_slist_free(device_list);
236 return nvdimm;
239 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
240 static void
241 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
243 NvdimmNfitSpa *nfit_spa;
244 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
245 NULL);
246 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
247 NULL);
248 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
249 NULL);
250 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
251 NULL);
253 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
255 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
256 Structure */);
257 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
258 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
261 * Control region is strict as all the device info, such as SN, index,
262 * is associated with slot id.
264 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
265 management during hot add/online
266 operation */ |
267 2 /* Data in Proximity Domain field is
268 valid*/);
270 /* NUMA node. */
271 nfit_spa->proximity_domain = cpu_to_le32(node);
272 /* the region reported as PMEM. */
273 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
274 sizeof(nvdimm_nfit_spa_uuid));
276 nfit_spa->spa_base = cpu_to_le64(addr);
277 nfit_spa->spa_length = cpu_to_le64(size);
279 /* It is the PMEM and can be cached as writeback. */
280 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
281 0x8000ULL /* EFI_MEMORY_NV */);
285 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
286 * Structure
288 static void
289 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
291 NvdimmNfitMemDev *nfit_memdev;
292 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
293 NULL);
294 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
295 NULL);
296 uint32_t handle = nvdimm_slot_to_handle(slot);
298 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
300 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
301 Range Map Structure*/);
302 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
303 nfit_memdev->nfit_handle = cpu_to_le32(handle);
306 * associate memory device with System Physical Address Range
307 * Structure.
309 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
310 /* associate memory device with Control Region Structure. */
311 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
313 /* The memory region on the device. */
314 nfit_memdev->region_len = cpu_to_le64(size);
315 /* The device address starts from 0. */
316 nfit_memdev->region_dpa = cpu_to_le64(0);
318 /* Only one interleave for PMEM. */
319 nfit_memdev->interleave_ways = cpu_to_le16(1);
323 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
325 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
327 NvdimmNfitControlRegion *nfit_dcr;
328 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
329 NULL);
330 uint32_t sn = nvdimm_slot_to_sn(slot);
332 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
334 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
335 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
336 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
338 /* vendor: Intel. */
339 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
340 nfit_dcr->device_id = cpu_to_le16(1);
342 /* The _DSM method is following Intel's DSM specification. */
343 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
344 in ACPI 6.0 is 1. */);
345 nfit_dcr->serial_number = cpu_to_le32(sn);
346 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
347 2: NVDIMM Device Specific Method
348 (DSM) in DSM Spec Rev1.*/);
351 static GArray *nvdimm_build_device_structure(void)
353 GSList *device_list = nvdimm_get_plugged_device_list();
354 GArray *structures = g_array_new(false, true /* clear */, 1);
356 for (; device_list; device_list = device_list->next) {
357 DeviceState *dev = device_list->data;
359 /* build System Physical Address Range Structure. */
360 nvdimm_build_structure_spa(structures, dev);
363 * build Memory Device to System Physical Address Range Mapping
364 * Structure.
366 nvdimm_build_structure_memdev(structures, dev);
368 /* build NVDIMM Control Region Structure. */
369 nvdimm_build_structure_dcr(structures, dev);
371 g_slist_free(device_list);
373 return structures;
376 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
378 qemu_mutex_init(&fit_buf->lock);
379 fit_buf->fit = g_array_new(false, true /* clear */, 1);
382 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf)
384 qemu_mutex_lock(&fit_buf->lock);
385 g_array_free(fit_buf->fit, true);
386 fit_buf->fit = nvdimm_build_device_structure();
387 fit_buf->dirty = true;
388 qemu_mutex_unlock(&fit_buf->lock);
391 void nvdimm_acpi_hotplug(AcpiNVDIMMState *state)
393 nvdimm_build_fit_buffer(&state->fit_buf);
396 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
397 GArray *table_data, BIOSLinker *linker)
399 NvdimmFitBuffer *fit_buf = &state->fit_buf;
400 unsigned int header;
402 qemu_mutex_lock(&fit_buf->lock);
404 /* NVDIMM device is not plugged? */
405 if (!fit_buf->fit->len) {
406 goto exit;
409 acpi_add_table(table_offsets, table_data);
411 /* NFIT header. */
412 header = table_data->len;
413 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
414 /* NVDIMM device structures. */
415 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
417 build_header(linker, table_data,
418 (void *)(table_data->data + header), "NFIT",
419 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
421 exit:
422 qemu_mutex_unlock(&fit_buf->lock);
425 struct NvdimmDsmIn {
426 uint32_t handle;
427 uint32_t revision;
428 uint32_t function;
429 /* the remaining size in the page is used by arg3. */
430 union {
431 uint8_t arg3[4084];
433 } QEMU_PACKED;
434 typedef struct NvdimmDsmIn NvdimmDsmIn;
435 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);
437 struct NvdimmDsmOut {
438 /* the size of buffer filled by QEMU. */
439 uint32_t len;
440 uint8_t data[4092];
441 } QEMU_PACKED;
442 typedef struct NvdimmDsmOut NvdimmDsmOut;
443 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);
445 struct NvdimmDsmFunc0Out {
446 /* the size of buffer filled by QEMU. */
447 uint32_t len;
448 uint32_t supported_func;
449 } QEMU_PACKED;
450 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
452 struct NvdimmDsmFuncNoPayloadOut {
453 /* the size of buffer filled by QEMU. */
454 uint32_t len;
455 uint32_t func_ret_status;
456 } QEMU_PACKED;
457 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
459 struct NvdimmFuncGetLabelSizeOut {
460 /* the size of buffer filled by QEMU. */
461 uint32_t len;
462 uint32_t func_ret_status; /* return status code. */
463 uint32_t label_size; /* the size of label data area. */
465 * Maximum size of the namespace label data length supported by
466 * the platform in Get/Set Namespace Label Data functions.
468 uint32_t max_xfer;
469 } QEMU_PACKED;
470 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
471 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096);
473 struct NvdimmFuncGetLabelDataIn {
474 uint32_t offset; /* the offset in the namespace label data area. */
475 uint32_t length; /* the size of data is to be read via the function. */
476 } QEMU_PACKED;
477 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
478 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
479 offsetof(NvdimmDsmIn, arg3) > 4096);
481 struct NvdimmFuncGetLabelDataOut {
482 /* the size of buffer filled by QEMU. */
483 uint32_t len;
484 uint32_t func_ret_status; /* return status code. */
485 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
486 } QEMU_PACKED;
487 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096);
490 struct NvdimmFuncSetLabelDataIn {
491 uint32_t offset; /* the offset in the namespace label data area. */
492 uint32_t length; /* the size of data is to be written via the function. */
493 uint8_t in_buf[0]; /* the data written to label data area. */
494 } QEMU_PACKED;
495 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
496 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
497 offsetof(NvdimmDsmIn, arg3) > 4096);
499 struct NvdimmFuncReadFITIn {
500 uint32_t offset; /* the offset of FIT buffer. */
501 } QEMU_PACKED;
502 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
503 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
504 offsetof(NvdimmDsmIn, arg3) > 4096);
506 struct NvdimmFuncReadFITOut {
507 /* the size of buffer filled by QEMU. */
508 uint32_t len;
509 uint32_t func_ret_status; /* return status code. */
510 uint8_t fit[0]; /* the FIT data. */
511 } QEMU_PACKED;
512 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
513 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > 4096);
515 static void
516 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
518 NvdimmDsmFunc0Out func0 = {
519 .len = cpu_to_le32(sizeof(func0)),
520 .supported_func = cpu_to_le32(supported_func),
522 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
525 static void
526 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
528 NvdimmDsmFuncNoPayloadOut out = {
529 .len = cpu_to_le32(sizeof(out)),
530 .func_ret_status = cpu_to_le32(func_ret_status),
532 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
535 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
537 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
538 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in,
539 hwaddr dsm_mem_addr)
541 NvdimmFitBuffer *fit_buf = &state->fit_buf;
542 NvdimmFuncReadFITIn *read_fit;
543 NvdimmFuncReadFITOut *read_fit_out;
544 GArray *fit;
545 uint32_t read_len = 0, func_ret_status;
546 int size;
548 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
549 le32_to_cpus(&read_fit->offset);
551 qemu_mutex_lock(&fit_buf->lock);
552 fit = fit_buf->fit;
554 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
555 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
557 if (read_fit->offset > fit->len) {
558 func_ret_status = 3 /* Invalid Input Parameters */;
559 goto exit;
562 /* It is the first time to read FIT. */
563 if (!read_fit->offset) {
564 fit_buf->dirty = false;
565 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
566 func_ret_status = 0x100 /* fit changed */;
567 goto exit;
570 func_ret_status = 0 /* Success */;
571 read_len = MIN(fit->len - read_fit->offset,
572 4096 - sizeof(NvdimmFuncReadFITOut));
574 exit:
575 size = sizeof(NvdimmFuncReadFITOut) + read_len;
576 read_fit_out = g_malloc(size);
578 read_fit_out->len = cpu_to_le32(size);
579 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
580 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
582 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
584 g_free(read_fit_out);
585 qemu_mutex_unlock(&fit_buf->lock);
588 static void nvdimm_dsm_reserved_root(AcpiNVDIMMState *state, NvdimmDsmIn *in,
589 hwaddr dsm_mem_addr)
591 switch (in->function) {
592 case 0x0:
593 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
594 return;
595 case 0x1 /*Read FIT */:
596 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
597 return;
600 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
603 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
606 * function 0 is called to inquire which functions are supported by
607 * OSPM
609 if (!in->function) {
610 nvdimm_dsm_function0(0 /* No function supported other than
611 function 0 */, dsm_mem_addr);
612 return;
615 /* No function except function 0 is supported yet. */
616 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
620 * the max transfer size is the max size transferred by both a
621 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
622 * function.
624 static uint32_t nvdimm_get_max_xfer_label_size(void)
626 uint32_t max_get_size, max_set_size, dsm_memory_size = 4096;
629 * the max data ACPI can read one time which is transferred by
630 * the response of 'Get Namespace Label Data' function.
632 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
635 * the max data ACPI can write one time which is transferred by
636 * 'Set Namespace Label Data' function.
638 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
639 sizeof(NvdimmFuncSetLabelDataIn);
641 return MIN(max_get_size, max_set_size);
645 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
647 * It gets the size of Namespace Label data area and the max data size
648 * that Get/Set Namespace Label Data functions can transfer.
650 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
652 NvdimmFuncGetLabelSizeOut label_size_out = {
653 .len = cpu_to_le32(sizeof(label_size_out)),
655 uint32_t label_size, mxfer;
657 label_size = nvdimm->label_size;
658 mxfer = nvdimm_get_max_xfer_label_size();
660 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
662 label_size_out.func_ret_status = cpu_to_le32(0 /* Success */);
663 label_size_out.label_size = cpu_to_le32(label_size);
664 label_size_out.max_xfer = cpu_to_le32(mxfer);
666 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
667 sizeof(label_size_out));
670 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
671 uint32_t offset, uint32_t length)
673 uint32_t ret = 3 /* Invalid Input Parameters */;
675 if (offset + length < offset) {
676 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
677 length);
678 return ret;
681 if (nvdimm->label_size < offset + length) {
682 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
683 offset + length, nvdimm->label_size);
684 return ret;
687 if (length > nvdimm_get_max_xfer_label_size()) {
688 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
689 length, nvdimm_get_max_xfer_label_size());
690 return ret;
693 return 0 /* Success */;
697 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
699 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
700 hwaddr dsm_mem_addr)
702 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
703 NvdimmFuncGetLabelDataIn *get_label_data;
704 NvdimmFuncGetLabelDataOut *get_label_data_out;
705 uint32_t status;
706 int size;
708 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
709 le32_to_cpus(&get_label_data->offset);
710 le32_to_cpus(&get_label_data->length);
712 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
713 get_label_data->offset, get_label_data->length);
715 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
716 get_label_data->length);
717 if (status != 0 /* Success */) {
718 nvdimm_dsm_no_payload(status, dsm_mem_addr);
719 return;
722 size = sizeof(*get_label_data_out) + get_label_data->length;
723 assert(size <= 4096);
724 get_label_data_out = g_malloc(size);
726 get_label_data_out->len = cpu_to_le32(size);
727 get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */);
728 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
729 get_label_data->length, get_label_data->offset);
731 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
732 g_free(get_label_data_out);
736 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
738 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
739 hwaddr dsm_mem_addr)
741 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
742 NvdimmFuncSetLabelDataIn *set_label_data;
743 uint32_t status;
745 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
747 le32_to_cpus(&set_label_data->offset);
748 le32_to_cpus(&set_label_data->length);
750 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
751 set_label_data->offset, set_label_data->length);
753 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
754 set_label_data->length);
755 if (status != 0 /* Success */) {
756 nvdimm_dsm_no_payload(status, dsm_mem_addr);
757 return;
760 assert(offsetof(NvdimmDsmIn, arg3) +
761 sizeof(*set_label_data) + set_label_data->length <= 4096);
763 nvc->write_label_data(nvdimm, set_label_data->in_buf,
764 set_label_data->length, set_label_data->offset);
765 nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr);
768 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
770 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
772 /* See the comments in nvdimm_dsm_root(). */
773 if (!in->function) {
774 uint32_t supported_func = 0;
776 if (nvdimm && nvdimm->label_size) {
777 supported_func |= 0x1 /* Bit 0 indicates whether there is
778 support for any functions other
779 than function 0. */ |
780 1 << 4 /* Get Namespace Label Size */ |
781 1 << 5 /* Get Namespace Label Data */ |
782 1 << 6 /* Set Namespace Label Data */;
784 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
785 return;
788 if (!nvdimm) {
789 nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */,
790 dsm_mem_addr);
791 return;
794 /* Encode DSM function according to DSM Spec Rev1. */
795 switch (in->function) {
796 case 4 /* Get Namespace Label Size */:
797 if (nvdimm->label_size) {
798 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
799 return;
801 break;
802 case 5 /* Get Namespace Label Data */:
803 if (nvdimm->label_size) {
804 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
805 return;
807 break;
808 case 0x6 /* Set Namespace Label Data */:
809 if (nvdimm->label_size) {
810 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
811 return;
813 break;
816 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
819 static uint64_t
820 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
822 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
823 return 0;
826 static void
827 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
829 AcpiNVDIMMState *state = opaque;
830 NvdimmDsmIn *in;
831 hwaddr dsm_mem_addr = val;
833 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
836 * The DSM memory is mapped to guest address space so an evil guest
837 * can change its content while we are doing DSM emulation. Avoid
838 * this by copying DSM memory to QEMU local memory.
840 in = g_new(NvdimmDsmIn, 1);
841 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
843 le32_to_cpus(&in->revision);
844 le32_to_cpus(&in->function);
845 le32_to_cpus(&in->handle);
847 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
848 in->handle, in->function);
850 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
851 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
852 in->revision, 0x1);
853 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
854 goto exit;
857 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
858 nvdimm_dsm_reserved_root(state, in, dsm_mem_addr);
859 goto exit;
862 /* Handle 0 is reserved for NVDIMM Root Device. */
863 if (!in->handle) {
864 nvdimm_dsm_root(in, dsm_mem_addr);
865 goto exit;
868 nvdimm_dsm_device(in, dsm_mem_addr);
870 exit:
871 g_free(in);
874 static const MemoryRegionOps nvdimm_dsm_ops = {
875 .read = nvdimm_dsm_read,
876 .write = nvdimm_dsm_write,
877 .endianness = DEVICE_LITTLE_ENDIAN,
878 .valid = {
879 .min_access_size = 4,
880 .max_access_size = 4,
884 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
885 FWCfgState *fw_cfg, Object *owner)
887 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
888 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
889 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
891 state->dsm_mem = g_array_new(false, true /* clear */, 1);
892 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
893 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
894 state->dsm_mem->len);
896 nvdimm_init_fit_buffer(&state->fit_buf);
899 #define NVDIMM_COMMON_DSM "NCAL"
900 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
902 #define NVDIMM_DSM_MEMORY "NRAM"
903 #define NVDIMM_DSM_IOPORT "NPIO"
905 #define NVDIMM_DSM_NOTIFY "NTFI"
906 #define NVDIMM_DSM_HANDLE "HDLE"
907 #define NVDIMM_DSM_REVISION "REVS"
908 #define NVDIMM_DSM_FUNCTION "FUNC"
909 #define NVDIMM_DSM_ARG3 "FARG"
911 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
912 #define NVDIMM_DSM_OUT_BUF "ODAT"
914 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
916 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
918 static void nvdimm_build_common_dsm(Aml *dev)
920 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
921 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
922 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
923 uint8_t byte_list[1];
925 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
926 uuid = aml_arg(0);
927 function = aml_arg(2);
928 handle = aml_arg(4);
929 dsm_mem = aml_local(6);
930 dsm_out_buf = aml_local(7);
932 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
934 /* map DSM memory and IO into ACPI namespace. */
935 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
936 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
937 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
938 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
941 * DSM notifier:
942 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
943 * emulate the access.
945 * It is the IO port so that accessing them will cause VM-exit, the
946 * control will be transferred to QEMU.
948 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
949 AML_PRESERVE);
950 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
951 sizeof(uint32_t) * BITS_PER_BYTE));
952 aml_append(method, field);
955 * DSM input:
956 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
957 * happens on NVDIMM Root Device.
958 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
959 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
960 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
961 * containing function-specific arguments.
963 * They are RAM mapping on host so that these accesses never cause
964 * VM-EXIT.
966 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
967 AML_PRESERVE);
968 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
969 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
970 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
971 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
972 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
973 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
974 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
975 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
976 aml_append(method, field);
979 * DSM output:
980 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
981 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
983 * Since the page is reused by both input and out, the input data
984 * will be lost after storing new result into ODAT so we should fetch
985 * all the input data before writing the result.
987 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
988 AML_PRESERVE);
989 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
990 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
991 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
992 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
993 aml_append(method, field);
996 * do not support any method if DSM memory address has not been
997 * patched.
999 unpatched = aml_equal(dsm_mem, aml_int(0x0));
1001 expected_uuid = aml_local(0);
1003 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1004 aml_append(ifctx, aml_store(
1005 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1006 /* UUID for NVDIMM Root Device */, expected_uuid));
1007 aml_append(method, ifctx);
1008 elsectx = aml_else();
1009 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1010 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1011 /* UUID for QEMU internal use */), expected_uuid));
1012 aml_append(elsectx, ifctx);
1013 elsectx2 = aml_else();
1014 aml_append(elsectx2, aml_store(
1015 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1016 /* UUID for NVDIMM Devices */, expected_uuid));
1017 aml_append(elsectx, elsectx2);
1018 aml_append(method, elsectx);
1020 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1022 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1025 * function 0 is called to inquire what functions are supported by
1026 * OSPM
1028 ifctx = aml_if(aml_equal(function, aml_int(0)));
1029 byte_list[0] = 0 /* No function Supported */;
1030 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1031 aml_append(unsupport, ifctx);
1033 /* No function is supported yet. */
1034 byte_list[0] = 1 /* Not Supported */;
1035 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1036 aml_append(method, unsupport);
1039 * The HDLE indicates the DSM function is issued from which device,
1040 * it reserves 0 for root device and is the handle for NVDIMM devices.
1041 * See the comments in nvdimm_slot_to_handle().
1043 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1044 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1045 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
1048 * The fourth parameter (Arg3) of _DSM is a package which contains
1049 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1050 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1051 * in the DSM Spec.
1053 pckg = aml_arg(3);
1054 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1055 aml_int(4 /* Package */)) /* It is a Package? */,
1056 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1057 NULL));
1059 pckg_index = aml_local(2);
1060 pckg_buf = aml_local(3);
1061 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1062 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1063 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1064 aml_append(method, ifctx);
1067 * tell QEMU about the real address of DSM memory, then QEMU
1068 * gets the control and fills the result in DSM memory.
1070 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1072 dsm_out_buf_size = aml_local(1);
1073 /* RLEN is not included in the payload returned to guest. */
1074 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1075 aml_int(4), dsm_out_buf_size));
1076 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1077 dsm_out_buf_size));
1078 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1079 aml_int(0), dsm_out_buf_size, "OBUF"));
1080 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1081 dsm_out_buf));
1082 aml_append(method, aml_return(dsm_out_buf));
1083 aml_append(dev, method);
1086 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1088 Aml *method;
1090 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1091 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1092 aml_arg(1), aml_arg(2), aml_arg(3),
1093 aml_int(handle))));
1094 aml_append(dev, method);
1097 static void nvdimm_build_fit(Aml *dev)
1099 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1100 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1102 buf = aml_local(0);
1103 buf_size = aml_local(1);
1104 fit = aml_local(2);
1106 aml_append(dev, aml_create_dword_field(aml_buffer(4, NULL),
1107 aml_int(0), NVDIMM_DSM_RFIT_STATUS));
1109 /* build helper function, RFIT. */
1110 method = aml_method("RFIT", 1, AML_SERIALIZED);
1111 aml_append(method, aml_create_dword_field(aml_buffer(4, NULL),
1112 aml_int(0), "OFST"));
1114 /* prepare input package. */
1115 pkg = aml_package(1);
1116 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1117 aml_append(pkg, aml_name("OFST"));
1119 /* call Read_FIT function. */
1120 call_result = aml_call5(NVDIMM_COMMON_DSM,
1121 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1122 aml_int(1) /* Revision 1 */,
1123 aml_int(0x1) /* Read FIT */,
1124 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1125 aml_append(method, aml_store(call_result, buf));
1127 /* handle _DSM result. */
1128 aml_append(method, aml_create_dword_field(buf,
1129 aml_int(0) /* offset at byte 0 */, "STAU"));
1131 aml_append(method, aml_store(aml_name("STAU"),
1132 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1134 /* if something is wrong during _DSM. */
1135 ifcond = aml_equal(aml_int(0 /* Success */), aml_name("STAU"));
1136 ifctx = aml_if(aml_lnot(ifcond));
1137 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1138 aml_append(method, ifctx);
1140 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1141 aml_append(method, aml_subtract(buf_size,
1142 aml_int(4) /* the size of "STAU" */,
1143 buf_size));
1145 /* if we read the end of fit. */
1146 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1147 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1148 aml_append(method, ifctx);
1150 aml_append(method, aml_store(aml_shiftleft(buf_size, aml_int(3)),
1151 buf_size));
1152 aml_append(method, aml_create_field(buf,
1153 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1154 buf_size, "BUFF"));
1155 aml_append(method, aml_return(aml_name("BUFF")));
1156 aml_append(dev, method);
1158 /* build _FIT. */
1159 method = aml_method("_FIT", 0, AML_SERIALIZED);
1160 offset = aml_local(3);
1162 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1163 aml_append(method, aml_store(aml_int(0), offset));
1165 whilectx = aml_while(aml_int(1));
1166 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1167 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1170 * if fit buffer was changed during RFIT, read from the beginning
1171 * again.
1173 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1174 aml_int(0x100 /* fit changed */)));
1175 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1176 aml_append(ifctx, aml_store(aml_int(0), offset));
1177 aml_append(whilectx, ifctx);
1179 elsectx = aml_else();
1181 /* finish fit read if no data is read out. */
1182 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1183 aml_append(ifctx, aml_return(fit));
1184 aml_append(elsectx, ifctx);
1186 /* update the offset. */
1187 aml_append(elsectx, aml_add(offset, buf_size, offset));
1188 /* append the data we read out to the fit buffer. */
1189 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1190 aml_append(whilectx, elsectx);
1191 aml_append(method, whilectx);
1193 aml_append(dev, method);
1196 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1198 uint32_t slot;
1200 for (slot = 0; slot < ram_slots; slot++) {
1201 uint32_t handle = nvdimm_slot_to_handle(slot);
1202 Aml *nvdimm_dev;
1204 nvdimm_dev = aml_device("NV%02X", slot);
1207 * ACPI 6.0: 9.20 NVDIMM Devices:
1209 * _ADR object that is used to supply OSPM with unique address
1210 * of the NVDIMM device. This is done by returning the NFIT Device
1211 * handle that is used to identify the associated entries in ACPI
1212 * table NFIT or _FIT.
1214 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1216 nvdimm_build_device_dsm(nvdimm_dev, handle);
1217 aml_append(root_dev, nvdimm_dev);
1221 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1222 BIOSLinker *linker, GArray *dsm_dma_arrea,
1223 uint32_t ram_slots)
1225 Aml *ssdt, *sb_scope, *dev;
1226 int mem_addr_offset, nvdimm_ssdt;
1228 acpi_add_table(table_offsets, table_data);
1230 ssdt = init_aml_allocator();
1231 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1233 sb_scope = aml_scope("\\_SB");
1235 dev = aml_device("NVDR");
1238 * ACPI 6.0: 9.20 NVDIMM Devices:
1240 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1241 * NVDIMM interface device. Platform firmware is required to contain one
1242 * such device in _SB scope if NVDIMMs support is exposed by platform to
1243 * OSPM.
1244 * For each NVDIMM present or intended to be supported by platform,
1245 * platform firmware also exposes an ACPI Namespace Device under the
1246 * root device.
1248 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1250 nvdimm_build_common_dsm(dev);
1252 /* 0 is reserved for root device. */
1253 nvdimm_build_device_dsm(dev, 0);
1254 nvdimm_build_fit(dev);
1256 nvdimm_build_nvdimm_devices(dev, ram_slots);
1258 aml_append(sb_scope, dev);
1259 aml_append(ssdt, sb_scope);
1261 nvdimm_ssdt = table_data->len;
1263 /* copy AML table into ACPI tables blob and patch header there */
1264 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1265 mem_addr_offset = build_append_named_dword(table_data,
1266 NVDIMM_ACPI_MEM_ADDR);
1268 bios_linker_loader_alloc(linker,
1269 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1270 sizeof(NvdimmDsmIn), false /* high memory */);
1271 bios_linker_loader_add_pointer(linker,
1272 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1273 NVDIMM_DSM_MEM_FILE, 0);
1274 build_header(linker, table_data,
1275 (void *)(table_data->data + nvdimm_ssdt),
1276 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1277 free_aml_allocator();
1280 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1281 BIOSLinker *linker, AcpiNVDIMMState *state,
1282 uint32_t ram_slots)
1284 nvdimm_build_nfit(state, table_offsets, table_data, linker);
1287 * NVDIMM device is allowed to be plugged only if there is available
1288 * slot.
1290 if (ram_slots) {
1291 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1292 ram_slots);