aspeed/smc: Use the RAM memory region for DMAs
[qemu.git] / hw / char / ibex_uart.c
blob73b8f2e45bed2325f75f8ce041215ac8197d2c58
1 /*
2 * QEMU lowRISC Ibex UART device
4 * Copyright (c) 2020 Western Digital
6 * For details check the documentation here:
7 * https://docs.opentitan.org/hw/ip/uart/doc/
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
28 #include "qemu/osdep.h"
29 #include "hw/char/ibex_uart.h"
30 #include "hw/irq.h"
31 #include "hw/qdev-clock.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "migration/vmstate.h"
35 #include "qemu/log.h"
36 #include "qemu/module.h"
38 static void ibex_uart_update_irqs(IbexUartState *s)
40 if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_WATERMARK_MASK) {
41 qemu_set_irq(s->tx_watermark, 1);
42 } else {
43 qemu_set_irq(s->tx_watermark, 0);
46 if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_WATERMARK_MASK) {
47 qemu_set_irq(s->rx_watermark, 1);
48 } else {
49 qemu_set_irq(s->rx_watermark, 0);
52 if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_EMPTY_MASK) {
53 qemu_set_irq(s->tx_empty, 1);
54 } else {
55 qemu_set_irq(s->tx_empty, 0);
58 if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_OVERFLOW_MASK) {
59 qemu_set_irq(s->rx_overflow, 1);
60 } else {
61 qemu_set_irq(s->rx_overflow, 0);
65 static int ibex_uart_can_receive(void *opaque)
67 IbexUartState *s = opaque;
69 if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK)
70 && !(s->uart_status & R_STATUS_RXFULL_MASK)) {
71 return 1;
74 return 0;
77 static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size)
79 IbexUartState *s = opaque;
80 uint8_t rx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_RXILVL_MASK)
81 >> R_FIFO_CTRL_RXILVL_SHIFT;
83 s->uart_rdata = *buf;
85 s->uart_status &= ~R_STATUS_RXIDLE_MASK;
86 s->uart_status &= ~R_STATUS_RXEMPTY_MASK;
87 /* The RXFULL is set after receiving a single byte
88 * as the FIFO buffers are not yet implemented.
90 s->uart_status |= R_STATUS_RXFULL_MASK;
91 s->rx_level += 1;
93 if (size > rx_fifo_level) {
94 s->uart_intr_state |= R_INTR_STATE_RX_WATERMARK_MASK;
97 ibex_uart_update_irqs(s);
100 static gboolean ibex_uart_xmit(GIOChannel *chan, GIOCondition cond,
101 void *opaque)
103 IbexUartState *s = opaque;
104 uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
105 >> R_FIFO_CTRL_TXILVL_SHIFT;
106 int ret;
108 /* instant drain the fifo when there's no back-end */
109 if (!qemu_chr_fe_backend_connected(&s->chr)) {
110 s->tx_level = 0;
111 return FALSE;
114 if (!s->tx_level) {
115 s->uart_status &= ~R_STATUS_TXFULL_MASK;
116 s->uart_status |= R_STATUS_TXEMPTY_MASK;
117 s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
118 s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
119 ibex_uart_update_irqs(s);
120 return FALSE;
123 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level);
125 if (ret >= 0) {
126 s->tx_level -= ret;
127 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level);
130 if (s->tx_level) {
131 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
132 ibex_uart_xmit, s);
133 if (!r) {
134 s->tx_level = 0;
135 return FALSE;
139 /* Clear the TX Full bit */
140 if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) {
141 s->uart_status &= ~R_STATUS_TXFULL_MASK;
144 /* Disable the TX_WATERMARK IRQ */
145 if (s->tx_level < tx_fifo_level) {
146 s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
149 /* Set TX empty */
150 if (s->tx_level == 0) {
151 s->uart_status |= R_STATUS_TXEMPTY_MASK;
152 s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
155 ibex_uart_update_irqs(s);
156 return FALSE;
159 static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf,
160 int size)
162 uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
163 uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
164 >> R_FIFO_CTRL_TXILVL_SHIFT;
166 if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) {
167 size = IBEX_UART_TX_FIFO_SIZE - s->tx_level;
168 qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow");
171 memcpy(s->tx_fifo + s->tx_level, buf, size);
172 s->tx_level += size;
174 if (s->tx_level > 0) {
175 s->uart_status &= ~R_STATUS_TXEMPTY_MASK;
178 if (s->tx_level >= tx_fifo_level) {
179 s->uart_intr_state |= R_INTR_STATE_TX_WATERMARK_MASK;
180 ibex_uart_update_irqs(s);
183 if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) {
184 s->uart_status |= R_STATUS_TXFULL_MASK;
187 timer_mod(s->fifo_trigger_handle, current_time +
188 (s->char_tx_time * 4));
191 static void ibex_uart_reset(DeviceState *dev)
193 IbexUartState *s = IBEX_UART(dev);
195 s->uart_intr_state = 0x00000000;
196 s->uart_intr_state = 0x00000000;
197 s->uart_intr_enable = 0x00000000;
198 s->uart_ctrl = 0x00000000;
199 s->uart_status = 0x0000003c;
200 s->uart_rdata = 0x00000000;
201 s->uart_fifo_ctrl = 0x00000000;
202 s->uart_fifo_status = 0x00000000;
203 s->uart_ovrd = 0x00000000;
204 s->uart_val = 0x00000000;
205 s->uart_timeout_ctrl = 0x00000000;
207 s->tx_level = 0;
208 s->rx_level = 0;
210 s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10;
212 ibex_uart_update_irqs(s);
215 static uint64_t ibex_uart_get_baud(IbexUartState *s)
217 uint64_t baud;
219 baud = ((s->uart_ctrl & R_CTRL_NCO_MASK) >> 16);
220 baud *= clock_get_hz(s->f_clk);
221 baud >>= 20;
223 return baud;
226 static uint64_t ibex_uart_read(void *opaque, hwaddr addr,
227 unsigned int size)
229 IbexUartState *s = opaque;
230 uint64_t retvalue = 0;
232 switch (addr >> 2) {
233 case R_INTR_STATE:
234 retvalue = s->uart_intr_state;
235 break;
236 case R_INTR_ENABLE:
237 retvalue = s->uart_intr_enable;
238 break;
239 case R_INTR_TEST:
240 qemu_log_mask(LOG_GUEST_ERROR,
241 "%s: wdata is write only\n", __func__);
242 break;
244 case R_CTRL:
245 retvalue = s->uart_ctrl;
246 break;
247 case R_STATUS:
248 retvalue = s->uart_status;
249 break;
251 case R_RDATA:
252 retvalue = s->uart_rdata;
253 if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) && (s->rx_level > 0)) {
254 qemu_chr_fe_accept_input(&s->chr);
256 s->rx_level -= 1;
257 s->uart_status &= ~R_STATUS_RXFULL_MASK;
258 if (s->rx_level == 0) {
259 s->uart_status |= R_STATUS_RXIDLE_MASK;
260 s->uart_status |= R_STATUS_RXEMPTY_MASK;
263 break;
264 case R_WDATA:
265 qemu_log_mask(LOG_GUEST_ERROR,
266 "%s: wdata is write only\n", __func__);
267 break;
269 case R_FIFO_CTRL:
270 retvalue = s->uart_fifo_ctrl;
271 break;
272 case R_FIFO_STATUS:
273 retvalue = s->uart_fifo_status;
275 retvalue |= (s->rx_level & 0x1F) << R_FIFO_STATUS_RXLVL_SHIFT;
276 retvalue |= (s->tx_level & 0x1F) << R_FIFO_STATUS_TXLVL_SHIFT;
278 qemu_log_mask(LOG_UNIMP,
279 "%s: RX fifos are not supported\n", __func__);
280 break;
282 case R_OVRD:
283 retvalue = s->uart_ovrd;
284 qemu_log_mask(LOG_UNIMP,
285 "%s: ovrd is not supported\n", __func__);
286 break;
287 case R_VAL:
288 retvalue = s->uart_val;
289 qemu_log_mask(LOG_UNIMP,
290 "%s: val is not supported\n", __func__);
291 break;
292 case R_TIMEOUT_CTRL:
293 retvalue = s->uart_timeout_ctrl;
294 qemu_log_mask(LOG_UNIMP,
295 "%s: timeout_ctrl is not supported\n", __func__);
296 break;
297 default:
298 qemu_log_mask(LOG_GUEST_ERROR,
299 "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
300 return 0;
303 return retvalue;
306 static void ibex_uart_write(void *opaque, hwaddr addr,
307 uint64_t val64, unsigned int size)
309 IbexUartState *s = opaque;
310 uint32_t value = val64;
312 switch (addr >> 2) {
313 case R_INTR_STATE:
314 /* Write 1 clear */
315 s->uart_intr_state &= ~value;
316 ibex_uart_update_irqs(s);
317 break;
318 case R_INTR_ENABLE:
319 s->uart_intr_enable = value;
320 ibex_uart_update_irqs(s);
321 break;
322 case R_INTR_TEST:
323 s->uart_intr_state |= value;
324 ibex_uart_update_irqs(s);
325 break;
327 case R_CTRL:
328 s->uart_ctrl = value;
330 if (value & R_CTRL_NF_MASK) {
331 qemu_log_mask(LOG_UNIMP,
332 "%s: UART_CTRL_NF is not supported\n", __func__);
334 if (value & R_CTRL_SLPBK_MASK) {
335 qemu_log_mask(LOG_UNIMP,
336 "%s: UART_CTRL_SLPBK is not supported\n", __func__);
338 if (value & R_CTRL_LLPBK_MASK) {
339 qemu_log_mask(LOG_UNIMP,
340 "%s: UART_CTRL_LLPBK is not supported\n", __func__);
342 if (value & R_CTRL_PARITY_EN_MASK) {
343 qemu_log_mask(LOG_UNIMP,
344 "%s: UART_CTRL_PARITY_EN is not supported\n",
345 __func__);
347 if (value & R_CTRL_PARITY_ODD_MASK) {
348 qemu_log_mask(LOG_UNIMP,
349 "%s: UART_CTRL_PARITY_ODD is not supported\n",
350 __func__);
352 if (value & R_CTRL_RXBLVL_MASK) {
353 qemu_log_mask(LOG_UNIMP,
354 "%s: UART_CTRL_RXBLVL is not supported\n", __func__);
356 if (value & R_CTRL_NCO_MASK) {
357 uint64_t baud = ibex_uart_get_baud(s);
359 s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
361 break;
362 case R_STATUS:
363 qemu_log_mask(LOG_GUEST_ERROR,
364 "%s: status is read only\n", __func__);
365 break;
367 case R_RDATA:
368 qemu_log_mask(LOG_GUEST_ERROR,
369 "%s: rdata is read only\n", __func__);
370 break;
371 case R_WDATA:
372 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
373 break;
375 case R_FIFO_CTRL:
376 s->uart_fifo_ctrl = value;
378 if (value & R_FIFO_CTRL_RXRST_MASK) {
379 s->rx_level = 0;
380 qemu_log_mask(LOG_UNIMP,
381 "%s: RX fifos are not supported\n", __func__);
383 if (value & R_FIFO_CTRL_TXRST_MASK) {
384 s->tx_level = 0;
386 break;
387 case R_FIFO_STATUS:
388 qemu_log_mask(LOG_GUEST_ERROR,
389 "%s: fifo_status is read only\n", __func__);
390 break;
392 case R_OVRD:
393 s->uart_ovrd = value;
394 qemu_log_mask(LOG_UNIMP,
395 "%s: ovrd is not supported\n", __func__);
396 break;
397 case R_VAL:
398 qemu_log_mask(LOG_GUEST_ERROR,
399 "%s: val is read only\n", __func__);
400 break;
401 case R_TIMEOUT_CTRL:
402 s->uart_timeout_ctrl = value;
403 qemu_log_mask(LOG_UNIMP,
404 "%s: timeout_ctrl is not supported\n", __func__);
405 break;
406 default:
407 qemu_log_mask(LOG_GUEST_ERROR,
408 "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
412 static void ibex_uart_clk_update(void *opaque, ClockEvent event)
414 IbexUartState *s = opaque;
416 /* recompute uart's speed on clock change */
417 uint64_t baud = ibex_uart_get_baud(s);
419 s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
422 static void fifo_trigger_update(void *opaque)
424 IbexUartState *s = opaque;
426 if (s->uart_ctrl & R_CTRL_TX_ENABLE_MASK) {
427 ibex_uart_xmit(NULL, G_IO_OUT, s);
431 static const MemoryRegionOps ibex_uart_ops = {
432 .read = ibex_uart_read,
433 .write = ibex_uart_write,
434 .endianness = DEVICE_NATIVE_ENDIAN,
435 .impl.min_access_size = 4,
436 .impl.max_access_size = 4,
439 static int ibex_uart_post_load(void *opaque, int version_id)
441 IbexUartState *s = opaque;
443 ibex_uart_update_irqs(s);
444 return 0;
447 static const VMStateDescription vmstate_ibex_uart = {
448 .name = TYPE_IBEX_UART,
449 .version_id = 1,
450 .minimum_version_id = 1,
451 .post_load = ibex_uart_post_load,
452 .fields = (VMStateField[]) {
453 VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState,
454 IBEX_UART_TX_FIFO_SIZE),
455 VMSTATE_UINT32(tx_level, IbexUartState),
456 VMSTATE_UINT64(char_tx_time, IbexUartState),
457 VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState),
458 VMSTATE_UINT32(uart_intr_state, IbexUartState),
459 VMSTATE_UINT32(uart_intr_enable, IbexUartState),
460 VMSTATE_UINT32(uart_ctrl, IbexUartState),
461 VMSTATE_UINT32(uart_status, IbexUartState),
462 VMSTATE_UINT32(uart_rdata, IbexUartState),
463 VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState),
464 VMSTATE_UINT32(uart_fifo_status, IbexUartState),
465 VMSTATE_UINT32(uart_ovrd, IbexUartState),
466 VMSTATE_UINT32(uart_val, IbexUartState),
467 VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState),
468 VMSTATE_END_OF_LIST()
472 static Property ibex_uart_properties[] = {
473 DEFINE_PROP_CHR("chardev", IbexUartState, chr),
474 DEFINE_PROP_END_OF_LIST(),
477 static void ibex_uart_init(Object *obj)
479 IbexUartState *s = IBEX_UART(obj);
481 s->f_clk = qdev_init_clock_in(DEVICE(obj), "f_clock",
482 ibex_uart_clk_update, s, ClockUpdate);
483 clock_set_hz(s->f_clk, IBEX_UART_CLOCK);
485 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark);
486 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark);
487 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty);
488 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow);
490 memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s,
491 TYPE_IBEX_UART, 0x400);
492 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
495 static void ibex_uart_realize(DeviceState *dev, Error **errp)
497 IbexUartState *s = IBEX_UART(dev);
499 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
500 fifo_trigger_update, s);
502 qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive,
503 ibex_uart_receive, NULL, NULL,
504 s, NULL, true);
507 static void ibex_uart_class_init(ObjectClass *klass, void *data)
509 DeviceClass *dc = DEVICE_CLASS(klass);
511 dc->reset = ibex_uart_reset;
512 dc->realize = ibex_uart_realize;
513 dc->vmsd = &vmstate_ibex_uart;
514 device_class_set_props(dc, ibex_uart_properties);
517 static const TypeInfo ibex_uart_info = {
518 .name = TYPE_IBEX_UART,
519 .parent = TYPE_SYS_BUS_DEVICE,
520 .instance_size = sizeof(IbexUartState),
521 .instance_init = ibex_uart_init,
522 .class_init = ibex_uart_class_init,
525 static void ibex_uart_register_types(void)
527 type_register_static(&ibex_uart_info);
530 type_init(ibex_uart_register_types)