2 * S390x MMU related functions
4 * Copyright (c) 2011 Alexander Graf
5 * Copyright (c) 2015 Thomas Huth, IBM Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include "qemu/osdep.h"
19 #include "qemu/error-report.h"
20 #include "exec/address-spaces.h"
22 #include "s390x-internal.h"
23 #include "kvm/kvm_s390x.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "exec/exec-all.h"
29 #include "hw/s390x/storage-keys.h"
30 #include "hw/boards.h"
32 /* Fetch/store bits in the translation exception code: */
34 #define FS_WRITE 0x400
36 static void trigger_access_exception(CPUS390XState
*env
, uint32_t type
,
39 S390CPU
*cpu
= env_archcpu(env
);
42 kvm_s390_access_exception(cpu
, type
, tec
);
44 CPUState
*cs
= env_cpu(env
);
45 if (type
!= PGM_ADDRESSING
) {
46 stq_phys(cs
->as
, env
->psa
+ offsetof(LowCore
, trans_exc_code
), tec
);
48 trigger_pgm_exception(env
, type
);
52 /* check whether the address would be proteted by Low-Address Protection */
53 static bool is_low_address(uint64_t addr
)
55 return addr
<= 511 || (addr
>= 4096 && addr
<= 4607);
58 /* check whether Low-Address Protection is enabled for mmu_translate() */
59 static bool lowprot_enabled(const CPUS390XState
*env
, uint64_t asc
)
61 if (!(env
->cregs
[0] & CR0_LOWPROT
)) {
64 if (!(env
->psw
.mask
& PSW_MASK_DAT
)) {
68 /* Check the private-space control bit */
71 return !(env
->cregs
[1] & ASCE_PRIVATE_SPACE
);
72 case PSW_ASC_SECONDARY
:
73 return !(env
->cregs
[7] & ASCE_PRIVATE_SPACE
);
75 return !(env
->cregs
[13] & ASCE_PRIVATE_SPACE
);
77 /* We don't support access register mode */
78 error_report("unsupported addressing mode");
84 * Translate real address to absolute (= physical)
85 * address by taking care of the prefix mapping.
87 target_ulong
mmu_real2abs(CPUS390XState
*env
, target_ulong raddr
)
90 return raddr
+ env
->psa
; /* Map the lowcore. */
91 } else if (raddr
>= env
->psa
&& raddr
< env
->psa
+ 0x2000) {
92 return raddr
- env
->psa
; /* Map the 0 page. */
97 bool mmu_absolute_addr_valid(target_ulong addr
, bool is_write
)
99 return address_space_access_valid(&address_space_memory
,
100 addr
& TARGET_PAGE_MASK
,
101 TARGET_PAGE_SIZE
, is_write
,
102 MEMTXATTRS_UNSPECIFIED
);
105 static inline bool read_table_entry(CPUS390XState
*env
, hwaddr gaddr
,
108 CPUState
*cs
= env_cpu(env
);
111 * According to the PoP, these table addresses are "unpredictably real
112 * or absolute". Also, "it is unpredictable whether the address wraps
113 * or an addressing exception is recognized".
115 * We treat them as absolute addresses and don't wrap them.
117 if (unlikely(address_space_read(cs
->as
, gaddr
, MEMTXATTRS_UNSPECIFIED
,
118 entry
, sizeof(*entry
)) !=
122 *entry
= be64_to_cpu(*entry
);
126 static int mmu_translate_asce(CPUS390XState
*env
, target_ulong vaddr
,
127 uint64_t asc
, uint64_t asce
, target_ulong
*raddr
,
130 const bool edat1
= (env
->cregs
[0] & CR0_EDAT
) &&
131 s390_has_feat(S390_FEAT_EDAT
);
132 const bool edat2
= edat1
&& s390_has_feat(S390_FEAT_EDAT_2
);
133 const bool iep
= (env
->cregs
[0] & CR0_IEP
) &&
134 s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT
);
135 const int asce_tl
= asce
& ASCE_TABLE_LENGTH
;
136 const int asce_p
= asce
& ASCE_PRIVATE_SPACE
;
137 hwaddr gaddr
= asce
& ASCE_ORIGIN
;
140 if (asce
& ASCE_REAL_SPACE
) {
146 switch (asce
& ASCE_TYPE_MASK
) {
147 case ASCE_TYPE_REGION1
:
148 if (VADDR_REGION1_TL(vaddr
) > asce_tl
) {
149 return PGM_REG_FIRST_TRANS
;
151 gaddr
+= VADDR_REGION1_TX(vaddr
) * 8;
153 case ASCE_TYPE_REGION2
:
154 if (VADDR_REGION1_TX(vaddr
)) {
155 return PGM_ASCE_TYPE
;
157 if (VADDR_REGION2_TL(vaddr
) > asce_tl
) {
158 return PGM_REG_SEC_TRANS
;
160 gaddr
+= VADDR_REGION2_TX(vaddr
) * 8;
162 case ASCE_TYPE_REGION3
:
163 if (VADDR_REGION1_TX(vaddr
) || VADDR_REGION2_TX(vaddr
)) {
164 return PGM_ASCE_TYPE
;
166 if (VADDR_REGION3_TL(vaddr
) > asce_tl
) {
167 return PGM_REG_THIRD_TRANS
;
169 gaddr
+= VADDR_REGION3_TX(vaddr
) * 8;
171 case ASCE_TYPE_SEGMENT
:
172 if (VADDR_REGION1_TX(vaddr
) || VADDR_REGION2_TX(vaddr
) ||
173 VADDR_REGION3_TX(vaddr
)) {
174 return PGM_ASCE_TYPE
;
176 if (VADDR_SEGMENT_TL(vaddr
) > asce_tl
) {
177 return PGM_SEGMENT_TRANS
;
179 gaddr
+= VADDR_SEGMENT_TX(vaddr
) * 8;
183 switch (asce
& ASCE_TYPE_MASK
) {
184 case ASCE_TYPE_REGION1
:
185 if (!read_table_entry(env
, gaddr
, &entry
)) {
186 return PGM_ADDRESSING
;
188 if (entry
& REGION_ENTRY_I
) {
189 return PGM_REG_FIRST_TRANS
;
191 if ((entry
& REGION_ENTRY_TT
) != REGION_ENTRY_TT_REGION1
) {
192 return PGM_TRANS_SPEC
;
194 if (VADDR_REGION2_TL(vaddr
) < (entry
& REGION_ENTRY_TF
) >> 6 ||
195 VADDR_REGION2_TL(vaddr
) > (entry
& REGION_ENTRY_TL
)) {
196 return PGM_REG_SEC_TRANS
;
198 if (edat1
&& (entry
& REGION_ENTRY_P
)) {
199 *flags
&= ~PAGE_WRITE
;
201 gaddr
= (entry
& REGION_ENTRY_ORIGIN
) + VADDR_REGION2_TX(vaddr
) * 8;
203 case ASCE_TYPE_REGION2
:
204 if (!read_table_entry(env
, gaddr
, &entry
)) {
205 return PGM_ADDRESSING
;
207 if (entry
& REGION_ENTRY_I
) {
208 return PGM_REG_SEC_TRANS
;
210 if ((entry
& REGION_ENTRY_TT
) != REGION_ENTRY_TT_REGION2
) {
211 return PGM_TRANS_SPEC
;
213 if (VADDR_REGION3_TL(vaddr
) < (entry
& REGION_ENTRY_TF
) >> 6 ||
214 VADDR_REGION3_TL(vaddr
) > (entry
& REGION_ENTRY_TL
)) {
215 return PGM_REG_THIRD_TRANS
;
217 if (edat1
&& (entry
& REGION_ENTRY_P
)) {
218 *flags
&= ~PAGE_WRITE
;
220 gaddr
= (entry
& REGION_ENTRY_ORIGIN
) + VADDR_REGION3_TX(vaddr
) * 8;
222 case ASCE_TYPE_REGION3
:
223 if (!read_table_entry(env
, gaddr
, &entry
)) {
224 return PGM_ADDRESSING
;
226 if (entry
& REGION_ENTRY_I
) {
227 return PGM_REG_THIRD_TRANS
;
229 if ((entry
& REGION_ENTRY_TT
) != REGION_ENTRY_TT_REGION3
) {
230 return PGM_TRANS_SPEC
;
232 if (edat2
&& (entry
& REGION3_ENTRY_CR
) && asce_p
) {
233 return PGM_TRANS_SPEC
;
235 if (edat1
&& (entry
& REGION_ENTRY_P
)) {
236 *flags
&= ~PAGE_WRITE
;
238 if (edat2
&& (entry
& REGION3_ENTRY_FC
)) {
239 if (iep
&& (entry
& REGION3_ENTRY_IEP
)) {
240 *flags
&= ~PAGE_EXEC
;
242 *raddr
= (entry
& REGION3_ENTRY_RFAA
) |
243 (vaddr
& ~REGION3_ENTRY_RFAA
);
246 if (VADDR_SEGMENT_TL(vaddr
) < (entry
& REGION_ENTRY_TF
) >> 6 ||
247 VADDR_SEGMENT_TL(vaddr
) > (entry
& REGION_ENTRY_TL
)) {
248 return PGM_SEGMENT_TRANS
;
250 gaddr
= (entry
& REGION_ENTRY_ORIGIN
) + VADDR_SEGMENT_TX(vaddr
) * 8;
252 case ASCE_TYPE_SEGMENT
:
253 if (!read_table_entry(env
, gaddr
, &entry
)) {
254 return PGM_ADDRESSING
;
256 if (entry
& SEGMENT_ENTRY_I
) {
257 return PGM_SEGMENT_TRANS
;
259 if ((entry
& SEGMENT_ENTRY_TT
) != SEGMENT_ENTRY_TT_SEGMENT
) {
260 return PGM_TRANS_SPEC
;
262 if ((entry
& SEGMENT_ENTRY_CS
) && asce_p
) {
263 return PGM_TRANS_SPEC
;
265 if (entry
& SEGMENT_ENTRY_P
) {
266 *flags
&= ~PAGE_WRITE
;
268 if (edat1
&& (entry
& SEGMENT_ENTRY_FC
)) {
269 if (iep
&& (entry
& SEGMENT_ENTRY_IEP
)) {
270 *flags
&= ~PAGE_EXEC
;
272 *raddr
= (entry
& SEGMENT_ENTRY_SFAA
) |
273 (vaddr
& ~SEGMENT_ENTRY_SFAA
);
276 gaddr
= (entry
& SEGMENT_ENTRY_ORIGIN
) + VADDR_PAGE_TX(vaddr
) * 8;
280 if (!read_table_entry(env
, gaddr
, &entry
)) {
281 return PGM_ADDRESSING
;
283 if (entry
& PAGE_ENTRY_I
) {
284 return PGM_PAGE_TRANS
;
286 if (entry
& PAGE_ENTRY_0
) {
287 return PGM_TRANS_SPEC
;
289 if (entry
& PAGE_ENTRY_P
) {
290 *flags
&= ~PAGE_WRITE
;
292 if (iep
&& (entry
& PAGE_ENTRY_IEP
)) {
293 *flags
&= ~PAGE_EXEC
;
296 *raddr
= entry
& TARGET_PAGE_MASK
;
300 static void mmu_handle_skey(target_ulong addr
, int rw
, int *flags
)
302 static S390SKeysClass
*skeyclass
;
303 static S390SKeysState
*ss
;
304 uint8_t key
, old_key
;
308 * We expect to be called with an absolute address that has already been
309 * validated, such that we can reliably use it to lookup the storage key.
312 ss
= s390_get_skeys_device();
313 skeyclass
= S390_SKEYS_GET_CLASS(ss
);
317 * Don't enable storage keys if they are still disabled, i.e., no actual
318 * storage key instruction was issued yet.
320 if (!skeyclass
->skeys_are_enabled(ss
)) {
325 * Whenever we create a new TLB entry, we set the storage key reference
326 * bit. In case we allow write accesses, we set the storage key change
327 * bit. Whenever the guest changes the storage key, we have to flush the
328 * TLBs of all CPUs (the whole TLB or all affected entries), so that the
329 * next reference/change will result in an MMU fault and make us properly
330 * update the storage key here.
332 * Note 1: "record of references ... is not necessarily accurate",
333 * "change bit may be set in case no storing has occurred".
334 * -> We can set reference/change bits even on exceptions.
335 * Note 2: certain accesses seem to ignore storage keys. For example,
336 * DAT translation does not set reference bits for table accesses.
338 * TODO: key-controlled protection. Only CPU accesses make use of the
339 * PSW key. CSS accesses are different - we have to pass in the key.
341 * TODO: we have races between getting and setting the key.
343 rc
= skeyclass
->get_skeys(ss
, addr
/ TARGET_PAGE_SIZE
, 1, &key
);
345 trace_get_skeys_nonzero(rc
);
354 * The TLB entry has to remain write-protected on read-faults if
355 * the storage key does not indicate a change already. Otherwise
356 * we might miss setting the change bit on write accesses.
359 *flags
&= ~PAGE_WRITE
;
366 g_assert_not_reached();
369 /* Any store/fetch sets the reference bit */
372 if (key
!= old_key
) {
373 rc
= skeyclass
->set_skeys(ss
, addr
/ TARGET_PAGE_SIZE
, 1, &key
);
375 trace_set_skeys_nonzero(rc
);
381 * Translate a virtual (logical) address into a physical (absolute) address.
382 * @param vaddr the virtual address
383 * @param rw 0 = read, 1 = write, 2 = code fetch, < 0 = load real address
384 * @param asc address space control (one of the PSW_ASC_* modes)
385 * @param raddr the translated address is stored to this pointer
386 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
387 * @param tec the translation exception code if stored to this pointer if
388 * there is an exception to raise
389 * @return 0 = success, != 0, the exception to raise
391 int mmu_translate(CPUS390XState
*env
, target_ulong vaddr
, int rw
, uint64_t asc
,
392 target_ulong
*raddr
, int *flags
, uint64_t *tec
)
397 *tec
= (vaddr
& TARGET_PAGE_MASK
) | (asc
>> 46) |
398 (rw
== MMU_DATA_STORE
? FS_WRITE
: FS_READ
);
399 *flags
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
401 if (is_low_address(vaddr
& TARGET_PAGE_MASK
) && lowprot_enabled(env
, asc
)) {
403 * If any part of this page is currently protected, make sure the
404 * TLB entry will not be reused.
406 * As the protected range is always the first 512 bytes of the
407 * two first pages, we are able to catch all writes to these areas
408 * just by looking at the start address (triggering the tlb miss).
410 *flags
|= PAGE_WRITE_INV
;
411 if (is_low_address(vaddr
) && rw
== MMU_DATA_STORE
) {
412 /* LAP sets bit 56 */
414 return PGM_PROTECTION
;
418 vaddr
&= TARGET_PAGE_MASK
;
420 if (!(env
->psw
.mask
& PSW_MASK_DAT
)) {
426 case PSW_ASC_PRIMARY
:
427 asce
= env
->cregs
[1];
430 asce
= env
->cregs
[13];
432 case PSW_ASC_SECONDARY
:
433 asce
= env
->cregs
[7];
437 hw_error("guest switched to unknown asc mode\n");
441 /* perform the DAT translation */
442 r
= mmu_translate_asce(env
, vaddr
, asc
, asce
, raddr
, flags
);
447 /* check for DAT protection */
448 if (unlikely(rw
== MMU_DATA_STORE
&& !(*flags
& PAGE_WRITE
))) {
449 /* DAT sets bit 61 only */
451 return PGM_PROTECTION
;
454 /* check for Instruction-Execution-Protection */
455 if (unlikely(rw
== MMU_INST_FETCH
&& !(*flags
& PAGE_EXEC
))) {
456 /* IEP sets bit 56 and 61 */
458 return PGM_PROTECTION
;
463 /* Convert real address -> absolute address */
464 *raddr
= mmu_real2abs(env
, *raddr
);
466 if (!mmu_absolute_addr_valid(*raddr
, rw
== MMU_DATA_STORE
)) {
467 *tec
= 0; /* unused */
468 return PGM_ADDRESSING
;
471 mmu_handle_skey(*raddr
, rw
, flags
);
477 * translate_pages: Translate a set of consecutive logical page addresses
478 * to absolute addresses. This function is used for TCG and old KVM without
479 * the MEMOP interface.
481 static int translate_pages(S390CPU
*cpu
, vaddr addr
, int nr_pages
,
482 target_ulong
*pages
, bool is_write
, uint64_t *tec
)
484 uint64_t asc
= cpu
->env
.psw
.mask
& PSW_MASK_ASC
;
485 CPUS390XState
*env
= &cpu
->env
;
488 for (i
= 0; i
< nr_pages
; i
++) {
489 ret
= mmu_translate(env
, addr
, is_write
, asc
, &pages
[i
], &pflags
, tec
);
493 addr
+= TARGET_PAGE_SIZE
;
499 int s390_cpu_pv_mem_rw(S390CPU
*cpu
, unsigned int offset
, void *hostbuf
,
500 int len
, bool is_write
)
505 ret
= kvm_s390_mem_op_pv(cpu
, offset
, hostbuf
, len
, is_write
);
507 /* Protected Virtualization is a KVM/Hardware only feature */
508 g_assert_not_reached();
514 * s390_cpu_virt_mem_rw:
515 * @laddr: the logical start address
516 * @ar: the access register number
517 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
518 * @len: length that should be transferred
519 * @is_write: true = write, false = read
520 * Returns: 0 on success, non-zero if an exception occurred
522 * Copy from/to guest memory using logical addresses. Note that we inject a
523 * program interrupt in case there is an error while accessing the memory.
525 * This function will always return (also for TCG), make sure to call
526 * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
528 int s390_cpu_virt_mem_rw(S390CPU
*cpu
, vaddr laddr
, uint8_t ar
, void *hostbuf
,
529 int len
, bool is_write
)
531 int currlen
, nr_pages
, i
;
537 ret
= kvm_s390_mem_op(cpu
, laddr
, ar
, hostbuf
, len
, is_write
);
543 nr_pages
= (((laddr
& ~TARGET_PAGE_MASK
) + len
- 1) >> TARGET_PAGE_BITS
)
545 pages
= g_malloc(nr_pages
* sizeof(*pages
));
547 ret
= translate_pages(cpu
, laddr
, nr_pages
, pages
, is_write
, &tec
);
549 trigger_access_exception(&cpu
->env
, ret
, tec
);
550 } else if (hostbuf
!= NULL
) {
551 /* Copy data by stepping through the area page by page */
552 for (i
= 0; i
< nr_pages
; i
++) {
553 currlen
= MIN(len
, TARGET_PAGE_SIZE
- (laddr
% TARGET_PAGE_SIZE
));
554 cpu_physical_memory_rw(pages
[i
] | (laddr
& ~TARGET_PAGE_MASK
),
555 hostbuf
, currlen
, is_write
);
566 void s390_cpu_virt_mem_handle_exc(S390CPU
*cpu
, uintptr_t ra
)
568 /* KVM will handle the interrupt automatically, TCG has to exit the TB */
571 cpu_loop_exit_restore(CPU(cpu
), ra
);
577 * Translate a real address into a physical (absolute) address.
578 * @param raddr the real address
579 * @param rw 0 = read, 1 = write, 2 = code fetch
580 * @param addr the translated address is stored to this pointer
581 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
582 * @return 0 = success, != 0, the exception to raise
584 int mmu_translate_real(CPUS390XState
*env
, target_ulong raddr
, int rw
,
585 target_ulong
*addr
, int *flags
, uint64_t *tec
)
587 const bool lowprot_enabled
= env
->cregs
[0] & CR0_LOWPROT
;
589 *flags
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
590 if (is_low_address(raddr
& TARGET_PAGE_MASK
) && lowprot_enabled
) {
591 /* see comment in mmu_translate() how this works */
592 *flags
|= PAGE_WRITE_INV
;
593 if (is_low_address(raddr
) && rw
== MMU_DATA_STORE
) {
594 /* LAP sets bit 56 */
595 *tec
= (raddr
& TARGET_PAGE_MASK
) | FS_WRITE
| 0x80;
596 return PGM_PROTECTION
;
600 *addr
= mmu_real2abs(env
, raddr
& TARGET_PAGE_MASK
);
602 if (!mmu_absolute_addr_valid(*addr
, rw
== MMU_DATA_STORE
)) {
605 return PGM_ADDRESSING
;
608 mmu_handle_skey(*addr
, rw
, flags
);