ide: cmd646 ->unit has just the value that we want
[qemu.git] / target-mips / op_helper.c
blobd3dab33a36a99abae781ce6abb84c028837ce756
1 /*
2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <stdlib.h>
20 #include "exec.h"
22 #include "host-utils.h"
24 #include "helper.h"
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
28 void helper_raise_exception_err (uint32_t exception, int error_code)
30 #if 1
31 if (exception < 0x100)
32 qemu_log("%s: %d %d\n", __func__, exception, error_code);
33 #endif
34 env->exception_index = exception;
35 env->error_code = error_code;
36 cpu_loop_exit();
39 void helper_raise_exception (uint32_t exception)
41 helper_raise_exception_err(exception, 0);
44 void helper_interrupt_restart (void)
46 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
47 !(env->CP0_Status & (1 << CP0St_ERL)) &&
48 !(env->hflags & MIPS_HFLAG_DM) &&
49 (env->CP0_Status & (1 << CP0St_IE)) &&
50 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
51 env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
52 helper_raise_exception(EXCP_EXT_INTERRUPT);
56 #if !defined(CONFIG_USER_ONLY)
57 static void do_restore_state (void *pc_ptr)
59 TranslationBlock *tb;
60 unsigned long pc = (unsigned long) pc_ptr;
62 tb = tb_find_pc (pc);
63 if (tb) {
64 cpu_restore_state (tb, env, pc, NULL);
67 #endif
69 target_ulong helper_clo (target_ulong arg1)
71 return clo32(arg1);
74 target_ulong helper_clz (target_ulong arg1)
76 return clz32(arg1);
79 #if defined(TARGET_MIPS64)
80 target_ulong helper_dclo (target_ulong arg1)
82 return clo64(arg1);
85 target_ulong helper_dclz (target_ulong arg1)
87 return clz64(arg1);
89 #endif /* TARGET_MIPS64 */
91 /* 64 bits arithmetic for 32 bits hosts */
92 static inline uint64_t get_HILO (void)
94 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
97 static inline void set_HILO (uint64_t HILO)
99 env->active_tc.LO[0] = (int32_t)HILO;
100 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
103 static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO)
105 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
106 arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
109 static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO)
111 arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
112 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
115 /* Multiplication variants of the vr54xx. */
116 target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
118 set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
120 return arg1;
123 target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
125 set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
127 return arg1;
130 target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
132 set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
134 return arg1;
137 target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
139 set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
141 return arg1;
144 target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
146 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
148 return arg1;
151 target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
153 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
155 return arg1;
158 target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
160 set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
162 return arg1;
165 target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
167 set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
169 return arg1;
172 target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
174 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
176 return arg1;
179 target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
181 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
183 return arg1;
186 target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
188 set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
190 return arg1;
193 target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
195 set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
197 return arg1;
200 target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
202 set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
204 return arg1;
207 target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
209 set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
211 return arg1;
214 #ifdef TARGET_MIPS64
215 void helper_dmult (target_ulong arg1, target_ulong arg2)
217 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
220 void helper_dmultu (target_ulong arg1, target_ulong arg2)
222 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
224 #endif
226 #ifdef TARGET_WORDS_BIGENDIAN
227 #define GET_LMASK(v) ((v) & 3)
228 #define GET_OFFSET(addr, offset) (addr + (offset))
229 #else
230 #define GET_LMASK(v) (((v) & 3) ^ 3)
231 #define GET_OFFSET(addr, offset) (addr - (offset))
232 #endif
234 target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
236 target_ulong tmp;
238 #ifdef CONFIG_USER_ONLY
239 #define ldfun ldub_raw
240 #else
241 int (*ldfun)(target_ulong);
243 switch (mem_idx)
245 case 0: ldfun = ldub_kernel; break;
246 case 1: ldfun = ldub_super; break;
247 default:
248 case 2: ldfun = ldub_user; break;
250 #endif
251 tmp = ldfun(arg2);
252 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
254 if (GET_LMASK(arg2) <= 2) {
255 tmp = ldfun(GET_OFFSET(arg2, 1));
256 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
259 if (GET_LMASK(arg2) <= 1) {
260 tmp = ldfun(GET_OFFSET(arg2, 2));
261 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
264 if (GET_LMASK(arg2) == 0) {
265 tmp = ldfun(GET_OFFSET(arg2, 3));
266 arg1 = (arg1 & 0xFFFFFF00) | tmp;
268 return (int32_t)arg1;
271 target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
273 target_ulong tmp;
275 #ifdef CONFIG_USER_ONLY
276 #define ldfun ldub_raw
277 #else
278 int (*ldfun)(target_ulong);
280 switch (mem_idx)
282 case 0: ldfun = ldub_kernel; break;
283 case 1: ldfun = ldub_super; break;
284 default:
285 case 2: ldfun = ldub_user; break;
287 #endif
288 tmp = ldfun(arg2);
289 arg1 = (arg1 & 0xFFFFFF00) | tmp;
291 if (GET_LMASK(arg2) >= 1) {
292 tmp = ldfun(GET_OFFSET(arg2, -1));
293 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
296 if (GET_LMASK(arg2) >= 2) {
297 tmp = ldfun(GET_OFFSET(arg2, -2));
298 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
301 if (GET_LMASK(arg2) == 3) {
302 tmp = ldfun(GET_OFFSET(arg2, -3));
303 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
305 return (int32_t)arg1;
308 void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
310 #ifdef CONFIG_USER_ONLY
311 #define stfun stb_raw
312 #else
313 void (*stfun)(target_ulong, int);
315 switch (mem_idx)
317 case 0: stfun = stb_kernel; break;
318 case 1: stfun = stb_super; break;
319 default:
320 case 2: stfun = stb_user; break;
322 #endif
323 stfun(arg2, (uint8_t)(arg1 >> 24));
325 if (GET_LMASK(arg2) <= 2)
326 stfun(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16));
328 if (GET_LMASK(arg2) <= 1)
329 stfun(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8));
331 if (GET_LMASK(arg2) == 0)
332 stfun(GET_OFFSET(arg2, 3), (uint8_t)arg1);
335 void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
337 #ifdef CONFIG_USER_ONLY
338 #define stfun stb_raw
339 #else
340 void (*stfun)(target_ulong, int);
342 switch (mem_idx)
344 case 0: stfun = stb_kernel; break;
345 case 1: stfun = stb_super; break;
346 default:
347 case 2: stfun = stb_user; break;
349 #endif
350 stfun(arg2, (uint8_t)arg1);
352 if (GET_LMASK(arg2) >= 1)
353 stfun(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8));
355 if (GET_LMASK(arg2) >= 2)
356 stfun(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16));
358 if (GET_LMASK(arg2) == 3)
359 stfun(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24));
362 #if defined(TARGET_MIPS64)
363 /* "half" load and stores. We must do the memory access inline,
364 or fault handling won't work. */
366 #ifdef TARGET_WORDS_BIGENDIAN
367 #define GET_LMASK64(v) ((v) & 7)
368 #else
369 #define GET_LMASK64(v) (((v) & 7) ^ 7)
370 #endif
372 target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
374 uint64_t tmp;
376 #ifdef CONFIG_USER_ONLY
377 #define ldfun ldub_raw
378 #else
379 int (*ldfun)(target_ulong);
381 switch (mem_idx)
383 case 0: ldfun = ldub_kernel; break;
384 case 1: ldfun = ldub_super; break;
385 default:
386 case 2: ldfun = ldub_user; break;
388 #endif
389 tmp = ldfun(arg2);
390 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
392 if (GET_LMASK64(arg2) <= 6) {
393 tmp = ldfun(GET_OFFSET(arg2, 1));
394 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
397 if (GET_LMASK64(arg2) <= 5) {
398 tmp = ldfun(GET_OFFSET(arg2, 2));
399 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
402 if (GET_LMASK64(arg2) <= 4) {
403 tmp = ldfun(GET_OFFSET(arg2, 3));
404 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
407 if (GET_LMASK64(arg2) <= 3) {
408 tmp = ldfun(GET_OFFSET(arg2, 4));
409 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
412 if (GET_LMASK64(arg2) <= 2) {
413 tmp = ldfun(GET_OFFSET(arg2, 5));
414 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
417 if (GET_LMASK64(arg2) <= 1) {
418 tmp = ldfun(GET_OFFSET(arg2, 6));
419 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
422 if (GET_LMASK64(arg2) == 0) {
423 tmp = ldfun(GET_OFFSET(arg2, 7));
424 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
427 return arg1;
430 target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
432 uint64_t tmp;
434 #ifdef CONFIG_USER_ONLY
435 #define ldfun ldub_raw
436 #else
437 int (*ldfun)(target_ulong);
439 switch (mem_idx)
441 case 0: ldfun = ldub_kernel; break;
442 case 1: ldfun = ldub_super; break;
443 default:
444 case 2: ldfun = ldub_user; break;
446 #endif
447 tmp = ldfun(arg2);
448 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
450 if (GET_LMASK64(arg2) >= 1) {
451 tmp = ldfun(GET_OFFSET(arg2, -1));
452 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
455 if (GET_LMASK64(arg2) >= 2) {
456 tmp = ldfun(GET_OFFSET(arg2, -2));
457 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
460 if (GET_LMASK64(arg2) >= 3) {
461 tmp = ldfun(GET_OFFSET(arg2, -3));
462 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
465 if (GET_LMASK64(arg2) >= 4) {
466 tmp = ldfun(GET_OFFSET(arg2, -4));
467 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
470 if (GET_LMASK64(arg2) >= 5) {
471 tmp = ldfun(GET_OFFSET(arg2, -5));
472 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
475 if (GET_LMASK64(arg2) >= 6) {
476 tmp = ldfun(GET_OFFSET(arg2, -6));
477 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
480 if (GET_LMASK64(arg2) == 7) {
481 tmp = ldfun(GET_OFFSET(arg2, -7));
482 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
485 return arg1;
488 void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
490 #ifdef CONFIG_USER_ONLY
491 #define stfun stb_raw
492 #else
493 void (*stfun)(target_ulong, int);
495 switch (mem_idx)
497 case 0: stfun = stb_kernel; break;
498 case 1: stfun = stb_super; break;
499 default:
500 case 2: stfun = stb_user; break;
502 #endif
503 stfun(arg2, (uint8_t)(arg1 >> 56));
505 if (GET_LMASK64(arg2) <= 6)
506 stfun(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48));
508 if (GET_LMASK64(arg2) <= 5)
509 stfun(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40));
511 if (GET_LMASK64(arg2) <= 4)
512 stfun(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32));
514 if (GET_LMASK64(arg2) <= 3)
515 stfun(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24));
517 if (GET_LMASK64(arg2) <= 2)
518 stfun(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16));
520 if (GET_LMASK64(arg2) <= 1)
521 stfun(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8));
523 if (GET_LMASK64(arg2) <= 0)
524 stfun(GET_OFFSET(arg2, 7), (uint8_t)arg1);
527 void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
529 #ifdef CONFIG_USER_ONLY
530 #define stfun stb_raw
531 #else
532 void (*stfun)(target_ulong, int);
534 switch (mem_idx)
536 case 0: stfun = stb_kernel; break;
537 case 1: stfun = stb_super; break;
538 default:
539 case 2: stfun = stb_user; break;
541 #endif
542 stfun(arg2, (uint8_t)arg1);
544 if (GET_LMASK64(arg2) >= 1)
545 stfun(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8));
547 if (GET_LMASK64(arg2) >= 2)
548 stfun(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16));
550 if (GET_LMASK64(arg2) >= 3)
551 stfun(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24));
553 if (GET_LMASK64(arg2) >= 4)
554 stfun(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32));
556 if (GET_LMASK64(arg2) >= 5)
557 stfun(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40));
559 if (GET_LMASK64(arg2) >= 6)
560 stfun(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48));
562 if (GET_LMASK64(arg2) == 7)
563 stfun(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56));
565 #endif /* TARGET_MIPS64 */
567 #ifndef CONFIG_USER_ONLY
568 /* CP0 helpers */
569 target_ulong helper_mfc0_mvpcontrol (void)
571 return env->mvp->CP0_MVPControl;
574 target_ulong helper_mfc0_mvpconf0 (void)
576 return env->mvp->CP0_MVPConf0;
579 target_ulong helper_mfc0_mvpconf1 (void)
581 return env->mvp->CP0_MVPConf1;
584 target_ulong helper_mfc0_random (void)
586 return (int32_t)cpu_mips_get_random(env);
589 target_ulong helper_mfc0_tcstatus (void)
591 return env->active_tc.CP0_TCStatus;
594 target_ulong helper_mftc0_tcstatus(void)
596 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
598 if (other_tc == env->current_tc)
599 return env->active_tc.CP0_TCStatus;
600 else
601 return env->tcs[other_tc].CP0_TCStatus;
604 target_ulong helper_mfc0_tcbind (void)
606 return env->active_tc.CP0_TCBind;
609 target_ulong helper_mftc0_tcbind(void)
611 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
613 if (other_tc == env->current_tc)
614 return env->active_tc.CP0_TCBind;
615 else
616 return env->tcs[other_tc].CP0_TCBind;
619 target_ulong helper_mfc0_tcrestart (void)
621 return env->active_tc.PC;
624 target_ulong helper_mftc0_tcrestart(void)
626 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
628 if (other_tc == env->current_tc)
629 return env->active_tc.PC;
630 else
631 return env->tcs[other_tc].PC;
634 target_ulong helper_mfc0_tchalt (void)
636 return env->active_tc.CP0_TCHalt;
639 target_ulong helper_mftc0_tchalt(void)
641 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
643 if (other_tc == env->current_tc)
644 return env->active_tc.CP0_TCHalt;
645 else
646 return env->tcs[other_tc].CP0_TCHalt;
649 target_ulong helper_mfc0_tccontext (void)
651 return env->active_tc.CP0_TCContext;
654 target_ulong helper_mftc0_tccontext(void)
656 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
658 if (other_tc == env->current_tc)
659 return env->active_tc.CP0_TCContext;
660 else
661 return env->tcs[other_tc].CP0_TCContext;
664 target_ulong helper_mfc0_tcschedule (void)
666 return env->active_tc.CP0_TCSchedule;
669 target_ulong helper_mftc0_tcschedule(void)
671 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
673 if (other_tc == env->current_tc)
674 return env->active_tc.CP0_TCSchedule;
675 else
676 return env->tcs[other_tc].CP0_TCSchedule;
679 target_ulong helper_mfc0_tcschefback (void)
681 return env->active_tc.CP0_TCScheFBack;
684 target_ulong helper_mftc0_tcschefback(void)
686 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
688 if (other_tc == env->current_tc)
689 return env->active_tc.CP0_TCScheFBack;
690 else
691 return env->tcs[other_tc].CP0_TCScheFBack;
694 target_ulong helper_mfc0_count (void)
696 return (int32_t)cpu_mips_get_count(env);
699 target_ulong helper_mftc0_entryhi(void)
701 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
702 int32_t tcstatus;
704 if (other_tc == env->current_tc)
705 tcstatus = env->active_tc.CP0_TCStatus;
706 else
707 tcstatus = env->tcs[other_tc].CP0_TCStatus;
709 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
712 target_ulong helper_mftc0_status(void)
714 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
715 target_ulong t0;
716 int32_t tcstatus;
718 if (other_tc == env->current_tc)
719 tcstatus = env->active_tc.CP0_TCStatus;
720 else
721 tcstatus = env->tcs[other_tc].CP0_TCStatus;
723 t0 = env->CP0_Status & ~0xf1000018;
724 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
725 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
726 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
728 return t0;
731 target_ulong helper_mfc0_lladdr (void)
733 return (int32_t)env->CP0_LLAddr >> 4;
736 target_ulong helper_mfc0_watchlo (uint32_t sel)
738 return (int32_t)env->CP0_WatchLo[sel];
741 target_ulong helper_mfc0_watchhi (uint32_t sel)
743 return env->CP0_WatchHi[sel];
746 target_ulong helper_mfc0_debug (void)
748 target_ulong t0 = env->CP0_Debug;
749 if (env->hflags & MIPS_HFLAG_DM)
750 t0 |= 1 << CP0DB_DM;
752 return t0;
755 target_ulong helper_mftc0_debug(void)
757 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
758 int32_t tcstatus;
760 if (other_tc == env->current_tc)
761 tcstatus = env->active_tc.CP0_Debug_tcstatus;
762 else
763 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
765 /* XXX: Might be wrong, check with EJTAG spec. */
766 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
767 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
770 #if defined(TARGET_MIPS64)
771 target_ulong helper_dmfc0_tcrestart (void)
773 return env->active_tc.PC;
776 target_ulong helper_dmfc0_tchalt (void)
778 return env->active_tc.CP0_TCHalt;
781 target_ulong helper_dmfc0_tccontext (void)
783 return env->active_tc.CP0_TCContext;
786 target_ulong helper_dmfc0_tcschedule (void)
788 return env->active_tc.CP0_TCSchedule;
791 target_ulong helper_dmfc0_tcschefback (void)
793 return env->active_tc.CP0_TCScheFBack;
796 target_ulong helper_dmfc0_lladdr (void)
798 return env->CP0_LLAddr >> 4;
801 target_ulong helper_dmfc0_watchlo (uint32_t sel)
803 return env->CP0_WatchLo[sel];
805 #endif /* TARGET_MIPS64 */
807 void helper_mtc0_index (target_ulong arg1)
809 int num = 1;
810 unsigned int tmp = env->tlb->nb_tlb;
812 do {
813 tmp >>= 1;
814 num <<= 1;
815 } while (tmp);
816 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
819 void helper_mtc0_mvpcontrol (target_ulong arg1)
821 uint32_t mask = 0;
822 uint32_t newval;
824 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
825 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
826 (1 << CP0MVPCo_EVP);
827 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
828 mask |= (1 << CP0MVPCo_STLB);
829 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
831 // TODO: Enable/disable shared TLB, enable/disable VPEs.
833 env->mvp->CP0_MVPControl = newval;
836 void helper_mtc0_vpecontrol (target_ulong arg1)
838 uint32_t mask;
839 uint32_t newval;
841 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
842 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
843 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
845 /* Yield scheduler intercept not implemented. */
846 /* Gating storage scheduler intercept not implemented. */
848 // TODO: Enable/disable TCs.
850 env->CP0_VPEControl = newval;
853 void helper_mtc0_vpeconf0 (target_ulong arg1)
855 uint32_t mask = 0;
856 uint32_t newval;
858 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
859 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
860 mask |= (0xff << CP0VPEC0_XTC);
861 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
863 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
865 // TODO: TC exclusive handling due to ERL/EXL.
867 env->CP0_VPEConf0 = newval;
870 void helper_mtc0_vpeconf1 (target_ulong arg1)
872 uint32_t mask = 0;
873 uint32_t newval;
875 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
876 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
877 (0xff << CP0VPEC1_NCP1);
878 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
880 /* UDI not implemented. */
881 /* CP2 not implemented. */
883 // TODO: Handle FPU (CP1) binding.
885 env->CP0_VPEConf1 = newval;
888 void helper_mtc0_yqmask (target_ulong arg1)
890 /* Yield qualifier inputs not implemented. */
891 env->CP0_YQMask = 0x00000000;
894 void helper_mtc0_vpeopt (target_ulong arg1)
896 env->CP0_VPEOpt = arg1 & 0x0000ffff;
899 void helper_mtc0_entrylo0 (target_ulong arg1)
901 /* Large physaddr (PABITS) not implemented */
902 /* 1k pages not implemented */
903 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
906 void helper_mtc0_tcstatus (target_ulong arg1)
908 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
909 uint32_t newval;
911 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
913 // TODO: Sync with CP0_Status.
915 env->active_tc.CP0_TCStatus = newval;
918 void helper_mttc0_tcstatus (target_ulong arg1)
920 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
922 // TODO: Sync with CP0_Status.
924 if (other_tc == env->current_tc)
925 env->active_tc.CP0_TCStatus = arg1;
926 else
927 env->tcs[other_tc].CP0_TCStatus = arg1;
930 void helper_mtc0_tcbind (target_ulong arg1)
932 uint32_t mask = (1 << CP0TCBd_TBE);
933 uint32_t newval;
935 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
936 mask |= (1 << CP0TCBd_CurVPE);
937 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
938 env->active_tc.CP0_TCBind = newval;
941 void helper_mttc0_tcbind (target_ulong arg1)
943 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
944 uint32_t mask = (1 << CP0TCBd_TBE);
945 uint32_t newval;
947 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
948 mask |= (1 << CP0TCBd_CurVPE);
949 if (other_tc == env->current_tc) {
950 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
951 env->active_tc.CP0_TCBind = newval;
952 } else {
953 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
954 env->tcs[other_tc].CP0_TCBind = newval;
958 void helper_mtc0_tcrestart (target_ulong arg1)
960 env->active_tc.PC = arg1;
961 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
962 env->CP0_LLAddr = 0ULL;
963 /* MIPS16 not implemented. */
966 void helper_mttc0_tcrestart (target_ulong arg1)
968 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
970 if (other_tc == env->current_tc) {
971 env->active_tc.PC = arg1;
972 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
973 env->CP0_LLAddr = 0ULL;
974 /* MIPS16 not implemented. */
975 } else {
976 env->tcs[other_tc].PC = arg1;
977 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
978 env->CP0_LLAddr = 0ULL;
979 /* MIPS16 not implemented. */
983 void helper_mtc0_tchalt (target_ulong arg1)
985 env->active_tc.CP0_TCHalt = arg1 & 0x1;
987 // TODO: Halt TC / Restart (if allocated+active) TC.
990 void helper_mttc0_tchalt (target_ulong arg1)
992 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
994 // TODO: Halt TC / Restart (if allocated+active) TC.
996 if (other_tc == env->current_tc)
997 env->active_tc.CP0_TCHalt = arg1;
998 else
999 env->tcs[other_tc].CP0_TCHalt = arg1;
1002 void helper_mtc0_tccontext (target_ulong arg1)
1004 env->active_tc.CP0_TCContext = arg1;
1007 void helper_mttc0_tccontext (target_ulong arg1)
1009 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1011 if (other_tc == env->current_tc)
1012 env->active_tc.CP0_TCContext = arg1;
1013 else
1014 env->tcs[other_tc].CP0_TCContext = arg1;
1017 void helper_mtc0_tcschedule (target_ulong arg1)
1019 env->active_tc.CP0_TCSchedule = arg1;
1022 void helper_mttc0_tcschedule (target_ulong arg1)
1024 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1026 if (other_tc == env->current_tc)
1027 env->active_tc.CP0_TCSchedule = arg1;
1028 else
1029 env->tcs[other_tc].CP0_TCSchedule = arg1;
1032 void helper_mtc0_tcschefback (target_ulong arg1)
1034 env->active_tc.CP0_TCScheFBack = arg1;
1037 void helper_mttc0_tcschefback (target_ulong arg1)
1039 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1041 if (other_tc == env->current_tc)
1042 env->active_tc.CP0_TCScheFBack = arg1;
1043 else
1044 env->tcs[other_tc].CP0_TCScheFBack = arg1;
1047 void helper_mtc0_entrylo1 (target_ulong arg1)
1049 /* Large physaddr (PABITS) not implemented */
1050 /* 1k pages not implemented */
1051 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1054 void helper_mtc0_context (target_ulong arg1)
1056 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1059 void helper_mtc0_pagemask (target_ulong arg1)
1061 /* 1k pages not implemented */
1062 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1065 void helper_mtc0_pagegrain (target_ulong arg1)
1067 /* SmartMIPS not implemented */
1068 /* Large physaddr (PABITS) not implemented */
1069 /* 1k pages not implemented */
1070 env->CP0_PageGrain = 0;
1073 void helper_mtc0_wired (target_ulong arg1)
1075 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1078 void helper_mtc0_srsconf0 (target_ulong arg1)
1080 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1083 void helper_mtc0_srsconf1 (target_ulong arg1)
1085 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1088 void helper_mtc0_srsconf2 (target_ulong arg1)
1090 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1093 void helper_mtc0_srsconf3 (target_ulong arg1)
1095 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1098 void helper_mtc0_srsconf4 (target_ulong arg1)
1100 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1103 void helper_mtc0_hwrena (target_ulong arg1)
1105 env->CP0_HWREna = arg1 & 0x0000000F;
1108 void helper_mtc0_count (target_ulong arg1)
1110 cpu_mips_store_count(env, arg1);
1113 void helper_mtc0_entryhi (target_ulong arg1)
1115 target_ulong old, val;
1117 /* 1k pages not implemented */
1118 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1119 #if defined(TARGET_MIPS64)
1120 val &= env->SEGMask;
1121 #endif
1122 old = env->CP0_EntryHi;
1123 env->CP0_EntryHi = val;
1124 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1125 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1126 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1128 /* If the ASID changes, flush qemu's TLB. */
1129 if ((old & 0xFF) != (val & 0xFF))
1130 cpu_mips_tlb_flush(env, 1);
1133 void helper_mttc0_entryhi(target_ulong arg1)
1135 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1136 int32_t tcstatus;
1138 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (arg1 & ~0xff);
1139 if (other_tc == env->current_tc) {
1140 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1141 env->active_tc.CP0_TCStatus = tcstatus;
1142 } else {
1143 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1144 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1148 void helper_mtc0_compare (target_ulong arg1)
1150 cpu_mips_store_compare(env, arg1);
1153 void helper_mtc0_status (target_ulong arg1)
1155 uint32_t val, old;
1156 uint32_t mask = env->CP0_Status_rw_bitmask;
1158 val = arg1 & mask;
1159 old = env->CP0_Status;
1160 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1161 compute_hflags(env);
1162 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1163 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1164 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1165 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1166 env->CP0_Cause);
1167 switch (env->hflags & MIPS_HFLAG_KSU) {
1168 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1169 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1170 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1171 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1174 cpu_mips_update_irq(env);
1177 void helper_mttc0_status(target_ulong arg1)
1179 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1180 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1182 env->CP0_Status = arg1 & ~0xf1000018;
1183 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (arg1 & (0xf << CP0St_CU0));
1184 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((arg1 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1185 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((arg1 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1186 if (other_tc == env->current_tc)
1187 env->active_tc.CP0_TCStatus = tcstatus;
1188 else
1189 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1192 void helper_mtc0_intctl (target_ulong arg1)
1194 /* vectored interrupts not implemented, no performance counters. */
1195 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (arg1 & 0x000002e0);
1198 void helper_mtc0_srsctl (target_ulong arg1)
1200 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1201 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1204 void helper_mtc0_cause (target_ulong arg1)
1206 uint32_t mask = 0x00C00300;
1207 uint32_t old = env->CP0_Cause;
1209 if (env->insn_flags & ISA_MIPS32R2)
1210 mask |= 1 << CP0Ca_DC;
1212 env->CP0_Cause = (env->CP0_Cause & ~mask) | (arg1 & mask);
1214 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1215 if (env->CP0_Cause & (1 << CP0Ca_DC))
1216 cpu_mips_stop_count(env);
1217 else
1218 cpu_mips_start_count(env);
1221 /* Handle the software interrupt as an hardware one, as they
1222 are very similar */
1223 if (arg1 & CP0Ca_IP_mask) {
1224 cpu_mips_update_irq(env);
1228 void helper_mtc0_ebase (target_ulong arg1)
1230 /* vectored interrupts not implemented */
1231 /* Multi-CPU not implemented */
1232 env->CP0_EBase = 0x80000000 | (arg1 & 0x3FFFF000);
1235 void helper_mtc0_config0 (target_ulong arg1)
1237 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1240 void helper_mtc0_config2 (target_ulong arg1)
1242 /* tertiary/secondary caches not implemented */
1243 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1246 void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
1248 /* Watch exceptions for instructions, data loads, data stores
1249 not implemented. */
1250 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1253 void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
1255 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1256 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1259 void helper_mtc0_xcontext (target_ulong arg1)
1261 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1262 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1265 void helper_mtc0_framemask (target_ulong arg1)
1267 env->CP0_Framemask = arg1; /* XXX */
1270 void helper_mtc0_debug (target_ulong arg1)
1272 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1273 if (arg1 & (1 << CP0DB_DM))
1274 env->hflags |= MIPS_HFLAG_DM;
1275 else
1276 env->hflags &= ~MIPS_HFLAG_DM;
1279 void helper_mttc0_debug(target_ulong arg1)
1281 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1282 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1284 /* XXX: Might be wrong, check with EJTAG spec. */
1285 if (other_tc == env->current_tc)
1286 env->active_tc.CP0_Debug_tcstatus = val;
1287 else
1288 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1289 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1290 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1293 void helper_mtc0_performance0 (target_ulong arg1)
1295 env->CP0_Performance0 = arg1 & 0x000007ff;
1298 void helper_mtc0_taglo (target_ulong arg1)
1300 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1303 void helper_mtc0_datalo (target_ulong arg1)
1305 env->CP0_DataLo = arg1; /* XXX */
1308 void helper_mtc0_taghi (target_ulong arg1)
1310 env->CP0_TagHi = arg1; /* XXX */
1313 void helper_mtc0_datahi (target_ulong arg1)
1315 env->CP0_DataHi = arg1; /* XXX */
1318 /* MIPS MT functions */
1319 target_ulong helper_mftgpr(uint32_t sel)
1321 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1323 if (other_tc == env->current_tc)
1324 return env->active_tc.gpr[sel];
1325 else
1326 return env->tcs[other_tc].gpr[sel];
1329 target_ulong helper_mftlo(uint32_t sel)
1331 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1333 if (other_tc == env->current_tc)
1334 return env->active_tc.LO[sel];
1335 else
1336 return env->tcs[other_tc].LO[sel];
1339 target_ulong helper_mfthi(uint32_t sel)
1341 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1343 if (other_tc == env->current_tc)
1344 return env->active_tc.HI[sel];
1345 else
1346 return env->tcs[other_tc].HI[sel];
1349 target_ulong helper_mftacx(uint32_t sel)
1351 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1353 if (other_tc == env->current_tc)
1354 return env->active_tc.ACX[sel];
1355 else
1356 return env->tcs[other_tc].ACX[sel];
1359 target_ulong helper_mftdsp(void)
1361 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1363 if (other_tc == env->current_tc)
1364 return env->active_tc.DSPControl;
1365 else
1366 return env->tcs[other_tc].DSPControl;
1369 void helper_mttgpr(target_ulong arg1, uint32_t sel)
1371 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1373 if (other_tc == env->current_tc)
1374 env->active_tc.gpr[sel] = arg1;
1375 else
1376 env->tcs[other_tc].gpr[sel] = arg1;
1379 void helper_mttlo(target_ulong arg1, uint32_t sel)
1381 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1383 if (other_tc == env->current_tc)
1384 env->active_tc.LO[sel] = arg1;
1385 else
1386 env->tcs[other_tc].LO[sel] = arg1;
1389 void helper_mtthi(target_ulong arg1, uint32_t sel)
1391 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1393 if (other_tc == env->current_tc)
1394 env->active_tc.HI[sel] = arg1;
1395 else
1396 env->tcs[other_tc].HI[sel] = arg1;
1399 void helper_mttacx(target_ulong arg1, uint32_t sel)
1401 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1403 if (other_tc == env->current_tc)
1404 env->active_tc.ACX[sel] = arg1;
1405 else
1406 env->tcs[other_tc].ACX[sel] = arg1;
1409 void helper_mttdsp(target_ulong arg1)
1411 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1413 if (other_tc == env->current_tc)
1414 env->active_tc.DSPControl = arg1;
1415 else
1416 env->tcs[other_tc].DSPControl = arg1;
1419 /* MIPS MT functions */
1420 target_ulong helper_dmt(target_ulong arg1)
1422 // TODO
1423 arg1 = 0;
1424 // rt = arg1
1426 return arg1;
1429 target_ulong helper_emt(target_ulong arg1)
1431 // TODO
1432 arg1 = 0;
1433 // rt = arg1
1435 return arg1;
1438 target_ulong helper_dvpe(target_ulong arg1)
1440 // TODO
1441 arg1 = 0;
1442 // rt = arg1
1444 return arg1;
1447 target_ulong helper_evpe(target_ulong arg1)
1449 // TODO
1450 arg1 = 0;
1451 // rt = arg1
1453 return arg1;
1455 #endif /* !CONFIG_USER_ONLY */
1457 void helper_fork(target_ulong arg1, target_ulong arg2)
1459 // arg1 = rt, arg2 = rs
1460 arg1 = 0;
1461 // TODO: store to TC register
1464 target_ulong helper_yield(target_ulong arg1)
1466 if (arg1 < 0) {
1467 /* No scheduling policy implemented. */
1468 if (arg1 != -2) {
1469 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1470 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1471 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1472 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1473 helper_raise_exception(EXCP_THREAD);
1476 } else if (arg1 == 0) {
1477 if (0 /* TODO: TC underflow */) {
1478 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1479 helper_raise_exception(EXCP_THREAD);
1480 } else {
1481 // TODO: Deallocate TC
1483 } else if (arg1 > 0) {
1484 /* Yield qualifier inputs not implemented. */
1485 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1486 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1487 helper_raise_exception(EXCP_THREAD);
1489 return env->CP0_YQMask;
1492 #ifndef CONFIG_USER_ONLY
1493 /* TLB management */
1494 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1496 /* Flush qemu's TLB and discard all shadowed entries. */
1497 tlb_flush (env, flush_global);
1498 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1501 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1503 /* Discard entries from env->tlb[first] onwards. */
1504 while (env->tlb->tlb_in_use > first) {
1505 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1509 static void r4k_fill_tlb (int idx)
1511 r4k_tlb_t *tlb;
1513 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1514 tlb = &env->tlb->mmu.r4k.tlb[idx];
1515 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1516 #if defined(TARGET_MIPS64)
1517 tlb->VPN &= env->SEGMask;
1518 #endif
1519 tlb->ASID = env->CP0_EntryHi & 0xFF;
1520 tlb->PageMask = env->CP0_PageMask;
1521 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1522 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1523 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1524 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1525 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1526 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1527 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1528 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1529 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1532 void r4k_helper_tlbwi (void)
1534 int idx;
1536 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1538 /* Discard cached TLB entries. We could avoid doing this if the
1539 tlbwi is just upgrading access permissions on the current entry;
1540 that might be a further win. */
1541 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1543 r4k_invalidate_tlb(env, idx, 0);
1544 r4k_fill_tlb(idx);
1547 void r4k_helper_tlbwr (void)
1549 int r = cpu_mips_get_random(env);
1551 r4k_invalidate_tlb(env, r, 1);
1552 r4k_fill_tlb(r);
1555 void r4k_helper_tlbp (void)
1557 r4k_tlb_t *tlb;
1558 target_ulong mask;
1559 target_ulong tag;
1560 target_ulong VPN;
1561 uint8_t ASID;
1562 int i;
1564 ASID = env->CP0_EntryHi & 0xFF;
1565 for (i = 0; i < env->tlb->nb_tlb; i++) {
1566 tlb = &env->tlb->mmu.r4k.tlb[i];
1567 /* 1k pages are not supported. */
1568 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1569 tag = env->CP0_EntryHi & ~mask;
1570 VPN = tlb->VPN & ~mask;
1571 /* Check ASID, virtual page number & size */
1572 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1573 /* TLB match */
1574 env->CP0_Index = i;
1575 break;
1578 if (i == env->tlb->nb_tlb) {
1579 /* No match. Discard any shadow entries, if any of them match. */
1580 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1581 tlb = &env->tlb->mmu.r4k.tlb[i];
1582 /* 1k pages are not supported. */
1583 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1584 tag = env->CP0_EntryHi & ~mask;
1585 VPN = tlb->VPN & ~mask;
1586 /* Check ASID, virtual page number & size */
1587 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1588 r4k_mips_tlb_flush_extra (env, i);
1589 break;
1593 env->CP0_Index |= 0x80000000;
1597 void r4k_helper_tlbr (void)
1599 r4k_tlb_t *tlb;
1600 uint8_t ASID;
1601 int idx;
1603 ASID = env->CP0_EntryHi & 0xFF;
1604 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1605 tlb = &env->tlb->mmu.r4k.tlb[idx];
1607 /* If this will change the current ASID, flush qemu's TLB. */
1608 if (ASID != tlb->ASID)
1609 cpu_mips_tlb_flush (env, 1);
1611 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1613 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1614 env->CP0_PageMask = tlb->PageMask;
1615 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1616 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1617 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1618 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1621 void helper_tlbwi(void)
1623 env->tlb->helper_tlbwi();
1626 void helper_tlbwr(void)
1628 env->tlb->helper_tlbwr();
1631 void helper_tlbp(void)
1633 env->tlb->helper_tlbp();
1636 void helper_tlbr(void)
1638 env->tlb->helper_tlbr();
1641 /* Specials */
1642 target_ulong helper_di (void)
1644 target_ulong t0 = env->CP0_Status;
1646 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1647 cpu_mips_update_irq(env);
1649 return t0;
1652 target_ulong helper_ei (void)
1654 target_ulong t0 = env->CP0_Status;
1656 env->CP0_Status = t0 | (1 << CP0St_IE);
1657 cpu_mips_update_irq(env);
1659 return t0;
1662 static void debug_pre_eret (void)
1664 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1665 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1666 env->active_tc.PC, env->CP0_EPC);
1667 if (env->CP0_Status & (1 << CP0St_ERL))
1668 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1669 if (env->hflags & MIPS_HFLAG_DM)
1670 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1671 qemu_log("\n");
1675 static void debug_post_eret (void)
1677 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1678 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1679 env->active_tc.PC, env->CP0_EPC);
1680 if (env->CP0_Status & (1 << CP0St_ERL))
1681 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1682 if (env->hflags & MIPS_HFLAG_DM)
1683 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1684 switch (env->hflags & MIPS_HFLAG_KSU) {
1685 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1686 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1687 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1688 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1693 void helper_eret (void)
1695 debug_pre_eret();
1696 if (env->CP0_Status & (1 << CP0St_ERL)) {
1697 env->active_tc.PC = env->CP0_ErrorEPC;
1698 env->CP0_Status &= ~(1 << CP0St_ERL);
1699 } else {
1700 env->active_tc.PC = env->CP0_EPC;
1701 env->CP0_Status &= ~(1 << CP0St_EXL);
1703 compute_hflags(env);
1704 debug_post_eret();
1705 env->CP0_LLAddr = 1;
1708 void helper_deret (void)
1710 debug_pre_eret();
1711 env->active_tc.PC = env->CP0_DEPC;
1712 env->hflags &= MIPS_HFLAG_DM;
1713 compute_hflags(env);
1714 debug_post_eret();
1715 env->CP0_LLAddr = 1;
1717 #endif /* !CONFIG_USER_ONLY */
1719 target_ulong helper_rdhwr_cpunum(void)
1721 if ((env->hflags & MIPS_HFLAG_CP0) ||
1722 (env->CP0_HWREna & (1 << 0)))
1723 return env->CP0_EBase & 0x3ff;
1724 else
1725 helper_raise_exception(EXCP_RI);
1727 return 0;
1730 target_ulong helper_rdhwr_synci_step(void)
1732 if ((env->hflags & MIPS_HFLAG_CP0) ||
1733 (env->CP0_HWREna & (1 << 1)))
1734 return env->SYNCI_Step;
1735 else
1736 helper_raise_exception(EXCP_RI);
1738 return 0;
1741 target_ulong helper_rdhwr_cc(void)
1743 if ((env->hflags & MIPS_HFLAG_CP0) ||
1744 (env->CP0_HWREna & (1 << 2)))
1745 return env->CP0_Count;
1746 else
1747 helper_raise_exception(EXCP_RI);
1749 return 0;
1752 target_ulong helper_rdhwr_ccres(void)
1754 if ((env->hflags & MIPS_HFLAG_CP0) ||
1755 (env->CP0_HWREna & (1 << 3)))
1756 return env->CCRes;
1757 else
1758 helper_raise_exception(EXCP_RI);
1760 return 0;
1763 void helper_pmon (int function)
1765 function /= 2;
1766 switch (function) {
1767 case 2: /* TODO: char inbyte(int waitflag); */
1768 if (env->active_tc.gpr[4] == 0)
1769 env->active_tc.gpr[2] = -1;
1770 /* Fall through */
1771 case 11: /* TODO: char inbyte (void); */
1772 env->active_tc.gpr[2] = -1;
1773 break;
1774 case 3:
1775 case 12:
1776 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1777 break;
1778 case 17:
1779 break;
1780 case 158:
1782 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1783 printf("%s", fmt);
1785 break;
1789 void helper_wait (void)
1791 env->halted = 1;
1792 helper_raise_exception(EXCP_HLT);
1795 #if !defined(CONFIG_USER_ONLY)
1797 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1799 #define MMUSUFFIX _mmu
1800 #define ALIGNED_ONLY
1802 #define SHIFT 0
1803 #include "softmmu_template.h"
1805 #define SHIFT 1
1806 #include "softmmu_template.h"
1808 #define SHIFT 2
1809 #include "softmmu_template.h"
1811 #define SHIFT 3
1812 #include "softmmu_template.h"
1814 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1816 env->CP0_BadVAddr = addr;
1817 do_restore_state (retaddr);
1818 helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1821 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1823 TranslationBlock *tb;
1824 CPUState *saved_env;
1825 unsigned long pc;
1826 int ret;
1828 /* XXX: hack to restore env in all cases, even if not called from
1829 generated code */
1830 saved_env = env;
1831 env = cpu_single_env;
1832 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1833 if (ret) {
1834 if (retaddr) {
1835 /* now we have a real cpu fault */
1836 pc = (unsigned long)retaddr;
1837 tb = tb_find_pc(pc);
1838 if (tb) {
1839 /* the PC is inside the translated code. It means that we have
1840 a virtual CPU fault */
1841 cpu_restore_state(tb, env, pc, NULL);
1844 helper_raise_exception_err(env->exception_index, env->error_code);
1846 env = saved_env;
1849 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1850 int unused, int size)
1852 if (is_exec)
1853 helper_raise_exception(EXCP_IBE);
1854 else
1855 helper_raise_exception(EXCP_DBE);
1857 #endif /* !CONFIG_USER_ONLY */
1859 /* Complex FPU operations which may need stack space. */
1861 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1862 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1863 #define FLOAT_TWO32 make_float32(1 << 30)
1864 #define FLOAT_TWO64 make_float64(1ULL << 62)
1865 #define FLOAT_QNAN32 0x7fbfffff
1866 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
1867 #define FLOAT_SNAN32 0x7fffffff
1868 #define FLOAT_SNAN64 0x7fffffffffffffffULL
1870 /* convert MIPS rounding mode in FCR31 to IEEE library */
1871 static unsigned int ieee_rm[] = {
1872 float_round_nearest_even,
1873 float_round_to_zero,
1874 float_round_up,
1875 float_round_down
1878 #define RESTORE_ROUNDING_MODE \
1879 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1881 #define RESTORE_FLUSH_MODE \
1882 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
1884 target_ulong helper_cfc1 (uint32_t reg)
1886 target_ulong arg1;
1888 switch (reg) {
1889 case 0:
1890 arg1 = (int32_t)env->active_fpu.fcr0;
1891 break;
1892 case 25:
1893 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
1894 break;
1895 case 26:
1896 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
1897 break;
1898 case 28:
1899 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
1900 break;
1901 default:
1902 arg1 = (int32_t)env->active_fpu.fcr31;
1903 break;
1906 return arg1;
1909 void helper_ctc1 (target_ulong arg1, uint32_t reg)
1911 switch(reg) {
1912 case 25:
1913 if (arg1 & 0xffffff00)
1914 return;
1915 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
1916 ((arg1 & 0x1) << 23);
1917 break;
1918 case 26:
1919 if (arg1 & 0x007c0000)
1920 return;
1921 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
1922 break;
1923 case 28:
1924 if (arg1 & 0x007c0000)
1925 return;
1926 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
1927 ((arg1 & 0x4) << 22);
1928 break;
1929 case 31:
1930 if (arg1 & 0x007c0000)
1931 return;
1932 env->active_fpu.fcr31 = arg1;
1933 break;
1934 default:
1935 return;
1937 /* set rounding mode */
1938 RESTORE_ROUNDING_MODE;
1939 /* set flush-to-zero mode */
1940 RESTORE_FLUSH_MODE;
1941 set_float_exception_flags(0, &env->active_fpu.fp_status);
1942 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
1943 helper_raise_exception(EXCP_FPE);
1946 static inline char ieee_ex_to_mips(char xcpt)
1948 return (xcpt & float_flag_inexact) >> 5 |
1949 (xcpt & float_flag_underflow) >> 3 |
1950 (xcpt & float_flag_overflow) >> 1 |
1951 (xcpt & float_flag_divbyzero) << 1 |
1952 (xcpt & float_flag_invalid) << 4;
1955 static inline char mips_ex_to_ieee(char xcpt)
1957 return (xcpt & FP_INEXACT) << 5 |
1958 (xcpt & FP_UNDERFLOW) << 3 |
1959 (xcpt & FP_OVERFLOW) << 1 |
1960 (xcpt & FP_DIV0) >> 1 |
1961 (xcpt & FP_INVALID) >> 4;
1964 static inline void update_fcr31(void)
1966 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
1968 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
1969 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
1970 helper_raise_exception(EXCP_FPE);
1971 else
1972 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
1975 /* Float support.
1976 Single precition routines have a "s" suffix, double precision a
1977 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
1978 paired single lower "pl", paired single upper "pu". */
1980 /* unary operations, modifying fp status */
1981 uint64_t helper_float_sqrt_d(uint64_t fdt0)
1983 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
1986 uint32_t helper_float_sqrt_s(uint32_t fst0)
1988 return float32_sqrt(fst0, &env->active_fpu.fp_status);
1991 uint64_t helper_float_cvtd_s(uint32_t fst0)
1993 uint64_t fdt2;
1995 set_float_exception_flags(0, &env->active_fpu.fp_status);
1996 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
1997 update_fcr31();
1998 return fdt2;
2001 uint64_t helper_float_cvtd_w(uint32_t wt0)
2003 uint64_t fdt2;
2005 set_float_exception_flags(0, &env->active_fpu.fp_status);
2006 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2007 update_fcr31();
2008 return fdt2;
2011 uint64_t helper_float_cvtd_l(uint64_t dt0)
2013 uint64_t fdt2;
2015 set_float_exception_flags(0, &env->active_fpu.fp_status);
2016 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2017 update_fcr31();
2018 return fdt2;
2021 uint64_t helper_float_cvtl_d(uint64_t fdt0)
2023 uint64_t dt2;
2025 set_float_exception_flags(0, &env->active_fpu.fp_status);
2026 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2027 update_fcr31();
2028 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2029 dt2 = FLOAT_SNAN64;
2030 return dt2;
2033 uint64_t helper_float_cvtl_s(uint32_t fst0)
2035 uint64_t dt2;
2037 set_float_exception_flags(0, &env->active_fpu.fp_status);
2038 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2039 update_fcr31();
2040 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2041 dt2 = FLOAT_SNAN64;
2042 return dt2;
2045 uint64_t helper_float_cvtps_pw(uint64_t dt0)
2047 uint32_t fst2;
2048 uint32_t fsth2;
2050 set_float_exception_flags(0, &env->active_fpu.fp_status);
2051 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2052 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2053 update_fcr31();
2054 return ((uint64_t)fsth2 << 32) | fst2;
2057 uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
2059 uint32_t wt2;
2060 uint32_t wth2;
2062 set_float_exception_flags(0, &env->active_fpu.fp_status);
2063 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2064 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2065 update_fcr31();
2066 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2067 wt2 = FLOAT_SNAN32;
2068 wth2 = FLOAT_SNAN32;
2070 return ((uint64_t)wth2 << 32) | wt2;
2073 uint32_t helper_float_cvts_d(uint64_t fdt0)
2075 uint32_t fst2;
2077 set_float_exception_flags(0, &env->active_fpu.fp_status);
2078 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2079 update_fcr31();
2080 return fst2;
2083 uint32_t helper_float_cvts_w(uint32_t wt0)
2085 uint32_t fst2;
2087 set_float_exception_flags(0, &env->active_fpu.fp_status);
2088 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2089 update_fcr31();
2090 return fst2;
2093 uint32_t helper_float_cvts_l(uint64_t dt0)
2095 uint32_t fst2;
2097 set_float_exception_flags(0, &env->active_fpu.fp_status);
2098 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2099 update_fcr31();
2100 return fst2;
2103 uint32_t helper_float_cvts_pl(uint32_t wt0)
2105 uint32_t wt2;
2107 set_float_exception_flags(0, &env->active_fpu.fp_status);
2108 wt2 = wt0;
2109 update_fcr31();
2110 return wt2;
2113 uint32_t helper_float_cvts_pu(uint32_t wth0)
2115 uint32_t wt2;
2117 set_float_exception_flags(0, &env->active_fpu.fp_status);
2118 wt2 = wth0;
2119 update_fcr31();
2120 return wt2;
2123 uint32_t helper_float_cvtw_s(uint32_t fst0)
2125 uint32_t wt2;
2127 set_float_exception_flags(0, &env->active_fpu.fp_status);
2128 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2129 update_fcr31();
2130 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2131 wt2 = FLOAT_SNAN32;
2132 return wt2;
2135 uint32_t helper_float_cvtw_d(uint64_t fdt0)
2137 uint32_t wt2;
2139 set_float_exception_flags(0, &env->active_fpu.fp_status);
2140 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2141 update_fcr31();
2142 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2143 wt2 = FLOAT_SNAN32;
2144 return wt2;
2147 uint64_t helper_float_roundl_d(uint64_t fdt0)
2149 uint64_t dt2;
2151 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2152 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2153 RESTORE_ROUNDING_MODE;
2154 update_fcr31();
2155 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2156 dt2 = FLOAT_SNAN64;
2157 return dt2;
2160 uint64_t helper_float_roundl_s(uint32_t fst0)
2162 uint64_t dt2;
2164 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2165 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2166 RESTORE_ROUNDING_MODE;
2167 update_fcr31();
2168 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2169 dt2 = FLOAT_SNAN64;
2170 return dt2;
2173 uint32_t helper_float_roundw_d(uint64_t fdt0)
2175 uint32_t wt2;
2177 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2178 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2179 RESTORE_ROUNDING_MODE;
2180 update_fcr31();
2181 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2182 wt2 = FLOAT_SNAN32;
2183 return wt2;
2186 uint32_t helper_float_roundw_s(uint32_t fst0)
2188 uint32_t wt2;
2190 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2191 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2192 RESTORE_ROUNDING_MODE;
2193 update_fcr31();
2194 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2195 wt2 = FLOAT_SNAN32;
2196 return wt2;
2199 uint64_t helper_float_truncl_d(uint64_t fdt0)
2201 uint64_t dt2;
2203 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2204 update_fcr31();
2205 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2206 dt2 = FLOAT_SNAN64;
2207 return dt2;
2210 uint64_t helper_float_truncl_s(uint32_t fst0)
2212 uint64_t dt2;
2214 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2215 update_fcr31();
2216 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2217 dt2 = FLOAT_SNAN64;
2218 return dt2;
2221 uint32_t helper_float_truncw_d(uint64_t fdt0)
2223 uint32_t wt2;
2225 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2226 update_fcr31();
2227 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2228 wt2 = FLOAT_SNAN32;
2229 return wt2;
2232 uint32_t helper_float_truncw_s(uint32_t fst0)
2234 uint32_t wt2;
2236 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2237 update_fcr31();
2238 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2239 wt2 = FLOAT_SNAN32;
2240 return wt2;
2243 uint64_t helper_float_ceill_d(uint64_t fdt0)
2245 uint64_t dt2;
2247 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2248 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2249 RESTORE_ROUNDING_MODE;
2250 update_fcr31();
2251 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2252 dt2 = FLOAT_SNAN64;
2253 return dt2;
2256 uint64_t helper_float_ceill_s(uint32_t fst0)
2258 uint64_t dt2;
2260 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2261 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2262 RESTORE_ROUNDING_MODE;
2263 update_fcr31();
2264 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2265 dt2 = FLOAT_SNAN64;
2266 return dt2;
2269 uint32_t helper_float_ceilw_d(uint64_t fdt0)
2271 uint32_t wt2;
2273 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2274 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2275 RESTORE_ROUNDING_MODE;
2276 update_fcr31();
2277 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2278 wt2 = FLOAT_SNAN32;
2279 return wt2;
2282 uint32_t helper_float_ceilw_s(uint32_t fst0)
2284 uint32_t wt2;
2286 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2287 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2288 RESTORE_ROUNDING_MODE;
2289 update_fcr31();
2290 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2291 wt2 = FLOAT_SNAN32;
2292 return wt2;
2295 uint64_t helper_float_floorl_d(uint64_t fdt0)
2297 uint64_t dt2;
2299 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2300 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2301 RESTORE_ROUNDING_MODE;
2302 update_fcr31();
2303 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2304 dt2 = FLOAT_SNAN64;
2305 return dt2;
2308 uint64_t helper_float_floorl_s(uint32_t fst0)
2310 uint64_t dt2;
2312 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2313 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2314 RESTORE_ROUNDING_MODE;
2315 update_fcr31();
2316 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2317 dt2 = FLOAT_SNAN64;
2318 return dt2;
2321 uint32_t helper_float_floorw_d(uint64_t fdt0)
2323 uint32_t wt2;
2325 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2326 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2327 RESTORE_ROUNDING_MODE;
2328 update_fcr31();
2329 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2330 wt2 = FLOAT_SNAN32;
2331 return wt2;
2334 uint32_t helper_float_floorw_s(uint32_t fst0)
2336 uint32_t wt2;
2338 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2339 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2340 RESTORE_ROUNDING_MODE;
2341 update_fcr31();
2342 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2343 wt2 = FLOAT_SNAN32;
2344 return wt2;
2347 /* unary operations, not modifying fp status */
2348 #define FLOAT_UNOP(name) \
2349 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2351 return float64_ ## name(fdt0); \
2353 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2355 return float32_ ## name(fst0); \
2357 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2359 uint32_t wt0; \
2360 uint32_t wth0; \
2362 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2363 wth0 = float32_ ## name(fdt0 >> 32); \
2364 return ((uint64_t)wth0 << 32) | wt0; \
2366 FLOAT_UNOP(abs)
2367 FLOAT_UNOP(chs)
2368 #undef FLOAT_UNOP
2370 /* MIPS specific unary operations */
2371 uint64_t helper_float_recip_d(uint64_t fdt0)
2373 uint64_t fdt2;
2375 set_float_exception_flags(0, &env->active_fpu.fp_status);
2376 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2377 update_fcr31();
2378 return fdt2;
2381 uint32_t helper_float_recip_s(uint32_t fst0)
2383 uint32_t fst2;
2385 set_float_exception_flags(0, &env->active_fpu.fp_status);
2386 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2387 update_fcr31();
2388 return fst2;
2391 uint64_t helper_float_rsqrt_d(uint64_t fdt0)
2393 uint64_t fdt2;
2395 set_float_exception_flags(0, &env->active_fpu.fp_status);
2396 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2397 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2398 update_fcr31();
2399 return fdt2;
2402 uint32_t helper_float_rsqrt_s(uint32_t fst0)
2404 uint32_t fst2;
2406 set_float_exception_flags(0, &env->active_fpu.fp_status);
2407 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2408 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2409 update_fcr31();
2410 return fst2;
2413 uint64_t helper_float_recip1_d(uint64_t fdt0)
2415 uint64_t fdt2;
2417 set_float_exception_flags(0, &env->active_fpu.fp_status);
2418 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2419 update_fcr31();
2420 return fdt2;
2423 uint32_t helper_float_recip1_s(uint32_t fst0)
2425 uint32_t fst2;
2427 set_float_exception_flags(0, &env->active_fpu.fp_status);
2428 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2429 update_fcr31();
2430 return fst2;
2433 uint64_t helper_float_recip1_ps(uint64_t fdt0)
2435 uint32_t fst2;
2436 uint32_t fsth2;
2438 set_float_exception_flags(0, &env->active_fpu.fp_status);
2439 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2440 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2441 update_fcr31();
2442 return ((uint64_t)fsth2 << 32) | fst2;
2445 uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
2447 uint64_t fdt2;
2449 set_float_exception_flags(0, &env->active_fpu.fp_status);
2450 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2451 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2452 update_fcr31();
2453 return fdt2;
2456 uint32_t helper_float_rsqrt1_s(uint32_t fst0)
2458 uint32_t fst2;
2460 set_float_exception_flags(0, &env->active_fpu.fp_status);
2461 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2462 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2463 update_fcr31();
2464 return fst2;
2467 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
2469 uint32_t fst2;
2470 uint32_t fsth2;
2472 set_float_exception_flags(0, &env->active_fpu.fp_status);
2473 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2474 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2475 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2476 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2477 update_fcr31();
2478 return ((uint64_t)fsth2 << 32) | fst2;
2481 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2483 /* binary operations */
2484 #define FLOAT_BINOP(name) \
2485 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2487 uint64_t dt2; \
2489 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2490 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2491 update_fcr31(); \
2492 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2493 dt2 = FLOAT_QNAN64; \
2494 return dt2; \
2497 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2499 uint32_t wt2; \
2501 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2502 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2503 update_fcr31(); \
2504 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2505 wt2 = FLOAT_QNAN32; \
2506 return wt2; \
2509 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2511 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2512 uint32_t fsth0 = fdt0 >> 32; \
2513 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2514 uint32_t fsth1 = fdt1 >> 32; \
2515 uint32_t wt2; \
2516 uint32_t wth2; \
2518 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2519 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2520 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2521 update_fcr31(); \
2522 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2523 wt2 = FLOAT_QNAN32; \
2524 wth2 = FLOAT_QNAN32; \
2526 return ((uint64_t)wth2 << 32) | wt2; \
2529 FLOAT_BINOP(add)
2530 FLOAT_BINOP(sub)
2531 FLOAT_BINOP(mul)
2532 FLOAT_BINOP(div)
2533 #undef FLOAT_BINOP
2535 /* ternary operations */
2536 #define FLOAT_TERNOP(name1, name2) \
2537 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2538 uint64_t fdt2) \
2540 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2541 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2544 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2545 uint32_t fst2) \
2547 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2548 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2551 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2552 uint64_t fdt2) \
2554 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2555 uint32_t fsth0 = fdt0 >> 32; \
2556 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2557 uint32_t fsth1 = fdt1 >> 32; \
2558 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2559 uint32_t fsth2 = fdt2 >> 32; \
2561 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2562 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2563 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2564 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2565 return ((uint64_t)fsth2 << 32) | fst2; \
2568 FLOAT_TERNOP(mul, add)
2569 FLOAT_TERNOP(mul, sub)
2570 #undef FLOAT_TERNOP
2572 /* negated ternary operations */
2573 #define FLOAT_NTERNOP(name1, name2) \
2574 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2575 uint64_t fdt2) \
2577 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2578 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2579 return float64_chs(fdt2); \
2582 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2583 uint32_t fst2) \
2585 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2586 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2587 return float32_chs(fst2); \
2590 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2591 uint64_t fdt2) \
2593 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2594 uint32_t fsth0 = fdt0 >> 32; \
2595 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2596 uint32_t fsth1 = fdt1 >> 32; \
2597 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2598 uint32_t fsth2 = fdt2 >> 32; \
2600 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2601 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2602 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2603 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2604 fst2 = float32_chs(fst2); \
2605 fsth2 = float32_chs(fsth2); \
2606 return ((uint64_t)fsth2 << 32) | fst2; \
2609 FLOAT_NTERNOP(mul, add)
2610 FLOAT_NTERNOP(mul, sub)
2611 #undef FLOAT_NTERNOP
2613 /* MIPS specific binary operations */
2614 uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2616 set_float_exception_flags(0, &env->active_fpu.fp_status);
2617 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2618 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2619 update_fcr31();
2620 return fdt2;
2623 uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
2625 set_float_exception_flags(0, &env->active_fpu.fp_status);
2626 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2627 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2628 update_fcr31();
2629 return fst2;
2632 uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2634 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2635 uint32_t fsth0 = fdt0 >> 32;
2636 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2637 uint32_t fsth2 = fdt2 >> 32;
2639 set_float_exception_flags(0, &env->active_fpu.fp_status);
2640 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2641 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2642 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2643 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2644 update_fcr31();
2645 return ((uint64_t)fsth2 << 32) | fst2;
2648 uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2650 set_float_exception_flags(0, &env->active_fpu.fp_status);
2651 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2652 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2653 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2654 update_fcr31();
2655 return fdt2;
2658 uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2660 set_float_exception_flags(0, &env->active_fpu.fp_status);
2661 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2662 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2663 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2664 update_fcr31();
2665 return fst2;
2668 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2670 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2671 uint32_t fsth0 = fdt0 >> 32;
2672 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2673 uint32_t fsth2 = fdt2 >> 32;
2675 set_float_exception_flags(0, &env->active_fpu.fp_status);
2676 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2677 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2678 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2679 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2680 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2681 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2682 update_fcr31();
2683 return ((uint64_t)fsth2 << 32) | fst2;
2686 uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2688 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2689 uint32_t fsth0 = fdt0 >> 32;
2690 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2691 uint32_t fsth1 = fdt1 >> 32;
2692 uint32_t fst2;
2693 uint32_t fsth2;
2695 set_float_exception_flags(0, &env->active_fpu.fp_status);
2696 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2697 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2698 update_fcr31();
2699 return ((uint64_t)fsth2 << 32) | fst2;
2702 uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2704 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2705 uint32_t fsth0 = fdt0 >> 32;
2706 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2707 uint32_t fsth1 = fdt1 >> 32;
2708 uint32_t fst2;
2709 uint32_t fsth2;
2711 set_float_exception_flags(0, &env->active_fpu.fp_status);
2712 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2713 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2714 update_fcr31();
2715 return ((uint64_t)fsth2 << 32) | fst2;
2718 /* compare operations */
2719 #define FOP_COND_D(op, cond) \
2720 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2722 int c = cond; \
2723 update_fcr31(); \
2724 if (c) \
2725 SET_FP_COND(cc, env->active_fpu); \
2726 else \
2727 CLEAR_FP_COND(cc, env->active_fpu); \
2729 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2731 int c; \
2732 fdt0 = float64_abs(fdt0); \
2733 fdt1 = float64_abs(fdt1); \
2734 c = cond; \
2735 update_fcr31(); \
2736 if (c) \
2737 SET_FP_COND(cc, env->active_fpu); \
2738 else \
2739 CLEAR_FP_COND(cc, env->active_fpu); \
2742 static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2744 if (float64_is_signaling_nan(a) ||
2745 float64_is_signaling_nan(b) ||
2746 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
2747 float_raise(float_flag_invalid, status);
2748 return 1;
2749 } else if (float64_is_nan(a) || float64_is_nan(b)) {
2750 return 1;
2751 } else {
2752 return 0;
2756 /* NOTE: the comma operator will make "cond" to eval to false,
2757 * but float*_is_unordered() is still called. */
2758 FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2759 FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
2760 FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2761 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2762 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2763 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2764 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2765 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2766 /* NOTE: the comma operator will make "cond" to eval to false,
2767 * but float*_is_unordered() is still called. */
2768 FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2769 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
2770 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2771 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2772 FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2773 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2774 FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2775 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2777 #define FOP_COND_S(op, cond) \
2778 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2780 int c = cond; \
2781 update_fcr31(); \
2782 if (c) \
2783 SET_FP_COND(cc, env->active_fpu); \
2784 else \
2785 CLEAR_FP_COND(cc, env->active_fpu); \
2787 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2789 int c; \
2790 fst0 = float32_abs(fst0); \
2791 fst1 = float32_abs(fst1); \
2792 c = cond; \
2793 update_fcr31(); \
2794 if (c) \
2795 SET_FP_COND(cc, env->active_fpu); \
2796 else \
2797 CLEAR_FP_COND(cc, env->active_fpu); \
2800 static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2802 if (float32_is_signaling_nan(a) ||
2803 float32_is_signaling_nan(b) ||
2804 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
2805 float_raise(float_flag_invalid, status);
2806 return 1;
2807 } else if (float32_is_nan(a) || float32_is_nan(b)) {
2808 return 1;
2809 } else {
2810 return 0;
2814 /* NOTE: the comma operator will make "cond" to eval to false,
2815 * but float*_is_unordered() is still called. */
2816 FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
2817 FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
2818 FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2819 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2820 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2821 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2822 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2823 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2824 /* NOTE: the comma operator will make "cond" to eval to false,
2825 * but float*_is_unordered() is still called. */
2826 FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
2827 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
2828 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2829 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2830 FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2831 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2832 FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2833 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2835 #define FOP_COND_PS(op, condl, condh) \
2836 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2838 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2839 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2840 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2841 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2842 int cl = condl; \
2843 int ch = condh; \
2845 update_fcr31(); \
2846 if (cl) \
2847 SET_FP_COND(cc, env->active_fpu); \
2848 else \
2849 CLEAR_FP_COND(cc, env->active_fpu); \
2850 if (ch) \
2851 SET_FP_COND(cc + 1, env->active_fpu); \
2852 else \
2853 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2855 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2857 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2858 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2859 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2860 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2861 int cl = condl; \
2862 int ch = condh; \
2864 update_fcr31(); \
2865 if (cl) \
2866 SET_FP_COND(cc, env->active_fpu); \
2867 else \
2868 CLEAR_FP_COND(cc, env->active_fpu); \
2869 if (ch) \
2870 SET_FP_COND(cc + 1, env->active_fpu); \
2871 else \
2872 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2875 /* NOTE: the comma operator will make "cond" to eval to false,
2876 * but float*_is_unordered() is still called. */
2877 FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
2878 (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2879 FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
2880 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
2881 FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2882 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2883 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2884 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2885 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2886 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2887 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2888 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2889 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2890 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2891 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2892 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2893 /* NOTE: the comma operator will make "cond" to eval to false,
2894 * but float*_is_unordered() is still called. */
2895 FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
2896 (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2897 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
2898 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
2899 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2900 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2901 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2902 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2903 FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2904 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2905 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2906 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2907 FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2908 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2909 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2910 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))