2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/visitor.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/hostmem.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
39 #include "hw/fw-path-provider.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/cpus.h"
44 #include "sysemu/hw_accel.h"
46 #include "migration/misc.h"
47 #include "migration/qemu-file-types.h"
48 #include "migration/global_state.h"
49 #include "migration/register.h"
50 #include "migration/blocker.h"
51 #include "mmu-hash64.h"
52 #include "mmu-book3s-v3.h"
53 #include "cpu-models.h"
54 #include "hw/core/cpu.h"
56 #include "hw/boards.h"
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
72 #include "exec/address-spaces.h"
73 #include "exec/ram_addr.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
79 #include "hw/intc/intc.h"
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
87 #include "monitor/monitor.h"
91 /* SLOF memory layout:
93 * SLOF raw image loaded at 0, copies its romfs right below the flat
94 * device-tree, then position SLOF itself 31M below that
96 * So we set FW_OVERHEAD to 40MB which should account for all of that
99 * We load our kernel at 4M, leaving space for SLOF initial image
101 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
102 #define FW_MAX_SIZE 0x400000
103 #define FW_FILE_NAME "slof.bin"
104 #define FW_OVERHEAD 0x2800000
105 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
107 #define MIN_RMA_SLOF (128 * MiB)
109 #define PHANDLE_INTC 0x00001111
111 /* These two functions implement the VCPU id numbering: one to compute them
112 * all and one to identify thread 0 of a VCORE. Any change to the first one
113 * is likely to have an impact on the second one, so let's keep them close.
115 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
117 MachineState
*ms
= MACHINE(spapr
);
118 unsigned int smp_threads
= ms
->smp
.threads
;
122 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
124 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
128 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
131 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
133 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
134 * and newer QEMUs don't even have them. In both cases, we don't want
135 * to send anything on the wire.
140 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
141 .name
= "icp/server",
143 .minimum_version_id
= 1,
144 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
145 .fields
= (VMStateField
[]) {
146 VMSTATE_UNUSED(4), /* uint32_t xirr */
147 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
148 VMSTATE_UNUSED(1), /* uint8_t mfrr */
149 VMSTATE_END_OF_LIST()
153 static void pre_2_10_vmstate_register_dummy_icp(int i
)
155 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
156 (void *)(uintptr_t) i
);
159 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
161 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
162 (void *)(uintptr_t) i
);
165 int spapr_max_server_number(SpaprMachineState
*spapr
)
167 MachineState
*ms
= MACHINE(spapr
);
170 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
173 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
177 uint32_t servers_prop
[smt_threads
];
178 uint32_t gservers_prop
[smt_threads
* 2];
179 int index
= spapr_get_vcpu_id(cpu
);
181 if (cpu
->compat_pvr
) {
182 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
188 /* Build interrupt servers and gservers properties */
189 for (i
= 0; i
< smt_threads
; i
++) {
190 servers_prop
[i
] = cpu_to_be32(index
+ i
);
191 /* Hack, direct the group queues back to cpu 0 */
192 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
193 gservers_prop
[i
*2 + 1] = 0;
195 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
196 servers_prop
, sizeof(servers_prop
));
200 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
201 gservers_prop
, sizeof(gservers_prop
));
206 static void spapr_dt_pa_features(SpaprMachineState
*spapr
,
208 void *fdt
, int offset
)
210 uint8_t pa_features_206
[] = { 6, 0,
211 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
212 uint8_t pa_features_207
[] = { 24, 0,
213 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
214 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
215 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
216 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
217 uint8_t pa_features_300
[] = { 66, 0,
218 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
219 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
220 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
222 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
224 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
225 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
226 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
227 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
229 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
230 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
231 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
233 /* 42: PM, 44: PC RA, 46: SC vec'd */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
235 /* 48: SIMD, 50: QP BFP, 52: String */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
237 /* 54: DecFP, 56: DecI, 58: SHA */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
239 /* 60: NM atomic, 62: RNG */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
242 uint8_t *pa_features
= NULL
;
245 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
246 pa_features
= pa_features_206
;
247 pa_size
= sizeof(pa_features_206
);
249 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
250 pa_features
= pa_features_207
;
251 pa_size
= sizeof(pa_features_207
);
253 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
254 pa_features
= pa_features_300
;
255 pa_size
= sizeof(pa_features_300
);
261 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
263 * Note: we keep CI large pages off by default because a 64K capable
264 * guest provisioned with large pages might otherwise try to map a qemu
265 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
266 * even if that qemu runs on a 4k host.
267 * We dd this bit back here if we are confident this is not an issue
269 pa_features
[3] |= 0x20;
271 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
272 pa_features
[24] |= 0x80; /* Transactional memory support */
274 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
275 /* Workaround for broken kernels that attempt (guest) radix
276 * mode when they can't handle it, if they see the radix bit set
277 * in pa-features. So hide it from them. */
278 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
281 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
284 static hwaddr
spapr_node0_size(MachineState
*machine
)
286 if (machine
->numa_state
->num_nodes
) {
288 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
289 if (machine
->numa_state
->nodes
[i
].node_mem
) {
290 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
295 return machine
->ram_size
;
298 bool spapr_machine_using_legacy_numa(SpaprMachineState
*spapr
)
300 MachineState
*machine
= MACHINE(spapr
);
301 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
303 return smc
->pre_5_2_numa_associativity
||
304 machine
->numa_state
->num_nodes
<= 1;
307 static void add_str(GString
*s
, const gchar
*s1
)
309 g_string_append_len(s
, s1
, strlen(s1
) + 1);
312 static int spapr_dt_memory_node(SpaprMachineState
*spapr
, void *fdt
, int nodeid
,
313 hwaddr start
, hwaddr size
)
316 uint64_t mem_reg_property
[2];
319 mem_reg_property
[0] = cpu_to_be64(start
);
320 mem_reg_property
[1] = cpu_to_be64(size
);
322 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
323 off
= fdt_add_subnode(fdt
, 0, mem_name
);
325 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
326 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
327 sizeof(mem_reg_property
))));
328 spapr_numa_write_associativity_dt(spapr
, fdt
, off
, nodeid
);
332 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
334 MemoryDeviceInfoList
*info
;
336 for (info
= list
; info
; info
= info
->next
) {
337 MemoryDeviceInfo
*value
= info
->value
;
339 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
340 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
342 if (addr
>= pcdimm_info
->addr
&&
343 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
344 return pcdimm_info
->node
;
352 struct sPAPRDrconfCellV2
{
360 typedef struct DrconfCellQueue
{
361 struct sPAPRDrconfCellV2 cell
;
362 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
365 static DrconfCellQueue
*
366 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
367 uint32_t drc_index
, uint32_t aa_index
,
370 DrconfCellQueue
*elem
;
372 elem
= g_malloc0(sizeof(*elem
));
373 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
374 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
375 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
376 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
377 elem
->cell
.flags
= cpu_to_be32(flags
);
382 static int spapr_dt_dynamic_memory_v2(SpaprMachineState
*spapr
, void *fdt
,
383 int offset
, MemoryDeviceInfoList
*dimms
)
385 MachineState
*machine
= MACHINE(spapr
);
386 uint8_t *int_buf
, *cur_index
;
388 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
389 uint64_t addr
, cur_addr
, size
;
390 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
391 uint64_t mem_end
= machine
->device_memory
->base
+
392 memory_region_size(&machine
->device_memory
->mr
);
393 uint32_t node
, buf_len
, nr_entries
= 0;
395 DrconfCellQueue
*elem
, *next
;
396 MemoryDeviceInfoList
*info
;
397 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
398 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
400 /* Entry to cover RAM and the gap area */
401 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
402 SPAPR_LMB_FLAGS_RESERVED
|
403 SPAPR_LMB_FLAGS_DRC_INVALID
);
404 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
407 cur_addr
= machine
->device_memory
->base
;
408 for (info
= dimms
; info
; info
= info
->next
) {
409 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
416 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
417 * area is marked hotpluggable in the next iteration for the bigger
418 * chunk including the NVDIMM occupied area.
420 if (info
->value
->type
== MEMORY_DEVICE_INFO_KIND_NVDIMM
)
423 /* Entry for hot-pluggable area */
424 if (cur_addr
< addr
) {
425 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
427 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
428 cur_addr
, spapr_drc_index(drc
), -1, 0);
429 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
434 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
436 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
437 spapr_drc_index(drc
), node
,
438 (SPAPR_LMB_FLAGS_ASSIGNED
|
439 SPAPR_LMB_FLAGS_HOTREMOVABLE
));
440 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
442 cur_addr
= addr
+ size
;
445 /* Entry for remaining hotpluggable area */
446 if (cur_addr
< mem_end
) {
447 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
449 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
450 cur_addr
, spapr_drc_index(drc
), -1, 0);
451 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
455 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
456 int_buf
= cur_index
= g_malloc0(buf_len
);
457 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
458 cur_index
+= sizeof(nr_entries
);
460 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
461 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
462 cur_index
+= sizeof(elem
->cell
);
463 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
467 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
475 static int spapr_dt_dynamic_memory(SpaprMachineState
*spapr
, void *fdt
,
476 int offset
, MemoryDeviceInfoList
*dimms
)
478 MachineState
*machine
= MACHINE(spapr
);
480 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
481 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
482 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
483 memory_region_size(&machine
->device_memory
->mr
)) /
485 uint32_t *int_buf
, *cur_index
, buf_len
;
488 * Allocate enough buffer size to fit in ibm,dynamic-memory
490 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
491 cur_index
= int_buf
= g_malloc0(buf_len
);
492 int_buf
[0] = cpu_to_be32(nr_lmbs
);
494 for (i
= 0; i
< nr_lmbs
; i
++) {
495 uint64_t addr
= i
* lmb_size
;
496 uint32_t *dynamic_memory
= cur_index
;
498 if (i
>= device_lmb_start
) {
501 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
504 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
505 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
506 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
507 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
508 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
509 if (memory_region_present(get_system_memory(), addr
)) {
510 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
512 dynamic_memory
[5] = cpu_to_be32(0);
516 * LMB information for RMA, boot time RAM and gap b/n RAM and
517 * device memory region -- all these are marked as reserved
518 * and as having no valid DRC.
520 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
521 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
522 dynamic_memory
[2] = cpu_to_be32(0);
523 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
524 dynamic_memory
[4] = cpu_to_be32(-1);
525 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
526 SPAPR_LMB_FLAGS_DRC_INVALID
);
529 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
531 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
540 * Adds ibm,dynamic-reconfiguration-memory node.
541 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
542 * of this device tree node.
544 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState
*spapr
,
547 MachineState
*machine
= MACHINE(spapr
);
549 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
550 uint32_t prop_lmb_size
[] = {cpu_to_be32(lmb_size
>> 32),
551 cpu_to_be32(lmb_size
& 0xffffffff)};
552 MemoryDeviceInfoList
*dimms
= NULL
;
555 * Don't create the node if there is no device memory
557 if (machine
->ram_size
== machine
->maxram_size
) {
561 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
563 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
564 sizeof(prop_lmb_size
));
569 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
574 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
579 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
580 dimms
= qmp_memory_device_list();
581 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
582 ret
= spapr_dt_dynamic_memory_v2(spapr
, fdt
, offset
, dimms
);
584 ret
= spapr_dt_dynamic_memory(spapr
, fdt
, offset
, dimms
);
586 qapi_free_MemoryDeviceInfoList(dimms
);
592 ret
= spapr_numa_write_assoc_lookup_arrays(spapr
, fdt
, offset
);
597 static int spapr_dt_memory(SpaprMachineState
*spapr
, void *fdt
)
599 MachineState
*machine
= MACHINE(spapr
);
600 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
601 hwaddr mem_start
, node_size
;
602 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
603 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
605 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
606 if (!nodes
[i
].node_mem
) {
609 if (mem_start
>= machine
->ram_size
) {
612 node_size
= nodes
[i
].node_mem
;
613 if (node_size
> machine
->ram_size
- mem_start
) {
614 node_size
= machine
->ram_size
- mem_start
;
618 /* spapr_machine_init() checks for rma_size <= node0_size
620 spapr_dt_memory_node(spapr
, fdt
, i
, 0, spapr
->rma_size
);
621 mem_start
+= spapr
->rma_size
;
622 node_size
-= spapr
->rma_size
;
624 for ( ; node_size
; ) {
625 hwaddr sizetmp
= pow2floor(node_size
);
627 /* mem_start != 0 here */
628 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
629 sizetmp
= 1ULL << ctzl(mem_start
);
632 spapr_dt_memory_node(spapr
, fdt
, i
, mem_start
, sizetmp
);
633 node_size
-= sizetmp
;
634 mem_start
+= sizetmp
;
638 /* Generate ibm,dynamic-reconfiguration-memory node if required */
639 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRCONF_MEMORY
)) {
642 g_assert(smc
->dr_lmb_enabled
);
643 ret
= spapr_dt_dynamic_reconfiguration_memory(spapr
, fdt
);
652 static void spapr_dt_cpu(CPUState
*cs
, void *fdt
, int offset
,
653 SpaprMachineState
*spapr
)
655 MachineState
*ms
= MACHINE(spapr
);
656 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
657 CPUPPCState
*env
= &cpu
->env
;
658 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
659 int index
= spapr_get_vcpu_id(cpu
);
660 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
661 0xffffffff, 0xffffffff};
662 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
663 : SPAPR_TIMEBASE_FREQ
;
664 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
665 uint32_t page_sizes_prop
[64];
666 size_t page_sizes_prop_size
;
667 unsigned int smp_threads
= ms
->smp
.threads
;
668 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
669 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
670 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
673 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
676 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
678 drc_index
= spapr_drc_index(drc
);
679 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
682 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
683 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
685 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
686 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
687 env
->dcache_line_size
)));
688 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
689 env
->dcache_line_size
)));
690 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
691 env
->icache_line_size
)));
692 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
693 env
->icache_line_size
)));
695 if (pcc
->l1_dcache_size
) {
696 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
697 pcc
->l1_dcache_size
)));
699 warn_report("Unknown L1 dcache size for cpu");
701 if (pcc
->l1_icache_size
) {
702 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
703 pcc
->l1_icache_size
)));
705 warn_report("Unknown L1 icache size for cpu");
708 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
709 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
710 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
711 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
712 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
713 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
715 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
716 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
718 if (env
->spr_cb
[SPR_SPURR
].oea_read
) {
719 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
722 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
723 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
724 segs
, sizeof(segs
))));
727 /* Advertise VSX (vector extensions) if available
728 * 1 == VMX / Altivec available
731 * Only CPUs for which we create core types in spapr_cpu_core.c
732 * are possible, and all of those have VMX */
733 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
734 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
736 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
739 /* Advertise DFP (Decimal Floating Point) if available
740 * 0 / no property == no DFP
741 * 1 == DFP available */
742 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
743 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
746 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
747 sizeof(page_sizes_prop
));
748 if (page_sizes_prop_size
) {
749 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
750 page_sizes_prop
, page_sizes_prop_size
)));
753 spapr_dt_pa_features(spapr
, cpu
, fdt
, offset
);
755 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
756 cs
->cpu_index
/ vcpus_per_socket
)));
758 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
759 pft_size_prop
, sizeof(pft_size_prop
))));
761 if (ms
->numa_state
->num_nodes
> 1) {
762 _FDT(spapr_numa_fixup_cpu_dt(spapr
, fdt
, offset
, cpu
));
765 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
767 if (pcc
->radix_page_info
) {
768 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
769 radix_AP_encodings
[i
] =
770 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
772 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
774 pcc
->radix_page_info
->count
*
775 sizeof(radix_AP_encodings
[0]))));
779 * We set this property to let the guest know that it can use the large
780 * decrementer and its width in bits.
782 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
783 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
784 pcc
->lrg_decr_bits
)));
787 static void spapr_dt_cpus(void *fdt
, SpaprMachineState
*spapr
)
796 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
798 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
799 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
802 * We walk the CPUs in reverse order to ensure that CPU DT nodes
803 * created by fdt_add_subnode() end up in the right order in FDT
804 * for the guest kernel the enumerate the CPUs correctly.
806 * The CPU list cannot be traversed in reverse order, so we need
812 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
816 for (i
= n_cpus
- 1; i
>= 0; i
--) {
817 CPUState
*cs
= rev
[i
];
818 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
819 int index
= spapr_get_vcpu_id(cpu
);
820 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
823 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
827 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
828 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
831 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
837 static int spapr_dt_rng(void *fdt
)
842 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
846 ret
= fdt_setprop_string(fdt
, node
, "device_type",
847 "ibm,platform-facilities");
848 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
849 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
851 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
855 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
860 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
862 MachineState
*ms
= MACHINE(spapr
);
864 GString
*hypertas
= g_string_sized_new(256);
865 GString
*qemu_hypertas
= g_string_sized_new(256);
866 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
867 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
868 uint32_t lrdr_capacity
[] = {
869 cpu_to_be32(max_device_addr
>> 32),
870 cpu_to_be32(max_device_addr
& 0xffffffff),
871 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
>> 32),
872 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
& 0xffffffff),
873 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
876 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
879 add_str(hypertas
, "hcall-pft");
880 add_str(hypertas
, "hcall-term");
881 add_str(hypertas
, "hcall-dabr");
882 add_str(hypertas
, "hcall-interrupt");
883 add_str(hypertas
, "hcall-tce");
884 add_str(hypertas
, "hcall-vio");
885 add_str(hypertas
, "hcall-splpar");
886 add_str(hypertas
, "hcall-join");
887 add_str(hypertas
, "hcall-bulk");
888 add_str(hypertas
, "hcall-set-mode");
889 add_str(hypertas
, "hcall-sprg0");
890 add_str(hypertas
, "hcall-copy");
891 add_str(hypertas
, "hcall-debug");
892 add_str(hypertas
, "hcall-vphn");
893 add_str(qemu_hypertas
, "hcall-memop1");
895 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
896 add_str(hypertas
, "hcall-multi-tce");
899 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
900 add_str(hypertas
, "hcall-hpt-resize");
903 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
904 hypertas
->str
, hypertas
->len
));
905 g_string_free(hypertas
, TRUE
);
906 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
907 qemu_hypertas
->str
, qemu_hypertas
->len
));
908 g_string_free(qemu_hypertas
, TRUE
);
910 spapr_numa_write_rtas_dt(spapr
, fdt
, rtas
);
913 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
914 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
916 * The system reset requirements are driven by existing Linux and PowerVM
917 * implementation which (contrary to PAPR) saves r3 in the error log
918 * structure like machine check, so Linux expects to find the saved r3
919 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
920 * does not look at the error value).
922 * System reset interrupts are not subject to interlock like machine
923 * check, so this memory area could be corrupted if the sreset is
924 * interrupted by a machine check (or vice versa) if it was shared. To
925 * prevent this, system reset uses per-CPU areas for the sreset save
926 * area. A system reset that interrupts a system reset handler could
927 * still overwrite this area, but Linux doesn't try to recover in that
930 * The extra 8 bytes is required because Linux's FWNMI error log check
933 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-size", RTAS_ERROR_LOG_MAX
+
934 ms
->smp
.max_cpus
* sizeof(uint64_t)*2 + sizeof(uint64_t)));
935 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
936 RTAS_ERROR_LOG_MAX
));
937 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
938 RTAS_EVENT_SCAN_RATE
));
940 g_assert(msi_nonbroken
);
941 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
944 * According to PAPR, rtas ibm,os-term does not guarantee a return
945 * back to the guest cpu.
947 * While an additional ibm,extended-os-term property indicates
948 * that rtas call return will always occur. Set this property.
950 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
952 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
953 lrdr_capacity
, sizeof(lrdr_capacity
)));
955 spapr_dt_rtas_tokens(fdt
, rtas
);
959 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
960 * and the XIVE features that the guest may request and thus the valid
961 * values for bytes 23..26 of option vector 5:
963 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
966 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
969 23, 0x00, /* XICS / XIVE mode */
970 24, 0x00, /* Hash/Radix, filled in below. */
971 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
972 26, 0x40, /* Radix options: GTSE == yes. */
975 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
976 val
[1] = SPAPR_OV5_XIVE_BOTH
;
977 } else if (spapr
->irq
->xive
) {
978 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
980 assert(spapr
->irq
->xics
);
981 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
984 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
985 first_ppc_cpu
->compat_pvr
)) {
987 * If we're in a pre POWER9 compat mode then the guest should
988 * do hash and use the legacy interrupt mode
990 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
991 val
[3] = 0x00; /* Hash */
992 } else if (kvm_enabled()) {
993 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
994 val
[3] = 0x80; /* OV5_MMU_BOTH */
995 } else if (kvmppc_has_cap_mmu_radix()) {
996 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
998 val
[3] = 0x00; /* Hash */
1001 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1004 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1008 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
, bool reset
)
1010 MachineState
*machine
= MACHINE(spapr
);
1011 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1014 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1017 const char *boot_device
= machine
->boot_order
;
1018 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1020 char *bootlist
= get_boot_devices_list(&cb
);
1022 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1023 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1024 machine
->kernel_cmdline
));
1027 if (spapr
->initrd_size
) {
1028 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1029 spapr
->initrd_base
));
1030 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1031 spapr
->initrd_base
+ spapr
->initrd_size
));
1034 if (spapr
->kernel_size
) {
1035 uint64_t kprop
[2] = { cpu_to_be64(spapr
->kernel_addr
),
1036 cpu_to_be64(spapr
->kernel_size
) };
1038 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1039 &kprop
, sizeof(kprop
)));
1040 if (spapr
->kernel_le
) {
1041 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1045 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1047 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1048 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1049 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1051 if (cb
&& bootlist
) {
1054 for (i
= 0; i
< cb
; i
++) {
1055 if (bootlist
[i
] == '\n') {
1059 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1062 if (boot_device
&& strlen(boot_device
)) {
1063 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1066 if (!spapr
->has_graphics
&& stdout_path
) {
1068 * "linux,stdout-path" and "stdout" properties are
1069 * deprecated by linux kernel. New platforms should only
1070 * use the "stdout-path" property. Set the new property
1071 * and continue using older property to remain compatible
1072 * with the existing firmware.
1074 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1075 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1079 * We can deal with BAR reallocation just fine, advertise it
1082 if (smc
->linux_pci_probe
) {
1083 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1086 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1088 g_free(stdout_path
);
1092 _FDT(spapr_dt_ovec(fdt
, chosen
, spapr
->ov5_cas
, "ibm,architecture-vec-5"));
1095 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1097 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1098 * KVM to work under pHyp with some guest co-operation */
1100 uint8_t hypercall
[16];
1102 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1103 /* indicate KVM hypercall interface */
1104 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1105 if (kvmppc_has_cap_fixup_hcalls()) {
1107 * Older KVM versions with older guest kernels were broken
1108 * with the magic page, don't allow the guest to map it.
1110 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1111 sizeof(hypercall
))) {
1112 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1113 hypercall
, sizeof(hypercall
)));
1118 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1120 MachineState
*machine
= MACHINE(spapr
);
1121 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1122 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1123 uint32_t root_drc_type_mask
= 0;
1129 fdt
= g_malloc0(space
);
1130 _FDT((fdt_create_empty_tree(fdt
, space
)));
1133 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1134 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1135 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1137 /* Guest UUID & Name*/
1138 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1139 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1140 if (qemu_uuid_set
) {
1141 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1145 if (qemu_get_vm_name()) {
1146 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1147 qemu_get_vm_name()));
1150 /* Host Model & Serial Number */
1151 if (spapr
->host_model
) {
1152 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1153 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1154 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1158 if (spapr
->host_serial
) {
1159 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1160 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1161 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1165 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1166 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1168 /* /interrupt controller */
1169 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1171 ret
= spapr_dt_memory(spapr
, fdt
);
1173 error_report("couldn't setup memory nodes in fdt");
1178 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1180 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1181 ret
= spapr_dt_rng(fdt
);
1183 error_report("could not set up rng device in the fdt");
1188 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1189 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1191 error_report("couldn't setup PCI devices in fdt");
1196 spapr_dt_cpus(fdt
, spapr
);
1198 /* ibm,drc-indexes and friends */
1199 if (smc
->dr_lmb_enabled
) {
1200 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_LMB
;
1202 if (smc
->dr_phb_enabled
) {
1203 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PHB
;
1205 if (mc
->nvdimm_supported
) {
1206 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PMEM
;
1208 if (root_drc_type_mask
) {
1209 _FDT(spapr_dt_drc(fdt
, 0, NULL
, root_drc_type_mask
));
1212 if (mc
->has_hotpluggable_cpus
) {
1213 int offset
= fdt_path_offset(fdt
, "/cpus");
1214 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1216 error_report("Couldn't set up CPU DR device tree properties");
1221 /* /event-sources */
1222 spapr_dt_events(spapr
, fdt
);
1225 spapr_dt_rtas(spapr
, fdt
);
1228 spapr_dt_chosen(spapr
, fdt
, reset
);
1231 if (kvm_enabled()) {
1232 spapr_dt_hypervisor(spapr
, fdt
);
1235 /* Build memory reserve map */
1237 if (spapr
->kernel_size
) {
1238 _FDT((fdt_add_mem_rsv(fdt
, spapr
->kernel_addr
,
1239 spapr
->kernel_size
)));
1241 if (spapr
->initrd_size
) {
1242 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1243 spapr
->initrd_size
)));
1247 /* NVDIMM devices */
1248 if (mc
->nvdimm_supported
) {
1249 spapr_dt_persistent_memory(spapr
, fdt
);
1255 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1257 SpaprMachineState
*spapr
= opaque
;
1259 return (addr
& 0x0fffffff) + spapr
->kernel_addr
;
1262 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1265 CPUPPCState
*env
= &cpu
->env
;
1267 /* The TCG path should also be holding the BQL at this point */
1268 g_assert(qemu_mutex_iothread_locked());
1271 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1272 env
->gpr
[3] = H_PRIVILEGE
;
1274 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1278 struct LPCRSyncState
{
1283 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1285 struct LPCRSyncState
*s
= arg
.host_ptr
;
1286 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1287 CPUPPCState
*env
= &cpu
->env
;
1290 cpu_synchronize_state(cs
);
1291 lpcr
= env
->spr
[SPR_LPCR
];
1294 ppc_store_lpcr(cpu
, lpcr
);
1297 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1300 struct LPCRSyncState s
= {
1305 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1309 static void spapr_get_pate(PPCVirtualHypervisor
*vhyp
, ppc_v3_pate_t
*entry
)
1311 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1313 /* Copy PATE1:GR into PATE0:HR */
1314 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1315 entry
->dw1
= spapr
->patb_entry
;
1318 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1319 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1320 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1321 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1322 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1325 * Get the fd to access the kernel htab, re-opening it if necessary
1327 static int get_htab_fd(SpaprMachineState
*spapr
)
1329 Error
*local_err
= NULL
;
1331 if (spapr
->htab_fd
>= 0) {
1332 return spapr
->htab_fd
;
1335 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1336 if (spapr
->htab_fd
< 0) {
1337 error_report_err(local_err
);
1340 return spapr
->htab_fd
;
1343 void close_htab_fd(SpaprMachineState
*spapr
)
1345 if (spapr
->htab_fd
>= 0) {
1346 close(spapr
->htab_fd
);
1348 spapr
->htab_fd
= -1;
1351 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1353 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1355 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1358 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1360 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1362 assert(kvm_enabled());
1368 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1371 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1374 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1375 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1379 * HTAB is controlled by KVM. Fetch into temporary buffer
1381 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1382 kvmppc_read_hptes(hptes
, ptex
, n
);
1387 * HTAB is controlled by QEMU. Just point to the internally
1390 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1393 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1394 const ppc_hash_pte64_t
*hptes
,
1397 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1400 g_free((void *)hptes
);
1403 /* Nothing to do for qemu managed HPT */
1406 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1407 uint64_t pte0
, uint64_t pte1
)
1409 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1410 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1413 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1415 if (pte0
& HPTE64_V_VALID
) {
1416 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1418 * When setting valid, we write PTE1 first. This ensures
1419 * proper synchronization with the reading code in
1420 * ppc_hash64_pteg_search()
1423 stq_p(spapr
->htab
+ offset
, pte0
);
1425 stq_p(spapr
->htab
+ offset
, pte0
);
1427 * When clearing it we set PTE0 first. This ensures proper
1428 * synchronization with the reading code in
1429 * ppc_hash64_pteg_search()
1432 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1437 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1440 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 15;
1441 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1444 /* There should always be a hash table when this is called */
1445 error_report("spapr_hpte_set_c called with no hash table !");
1449 /* The HW performs a non-atomic byte update */
1450 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1453 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1456 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 14;
1457 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1460 /* There should always be a hash table when this is called */
1461 error_report("spapr_hpte_set_r called with no hash table !");
1465 /* The HW performs a non-atomic byte update */
1466 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1469 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1473 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1474 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1475 * that's much more than is needed for Linux guests */
1476 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1477 shift
= MAX(shift
, 18); /* Minimum architected size */
1478 shift
= MIN(shift
, 46); /* Maximum architected size */
1482 void spapr_free_hpt(SpaprMachineState
*spapr
)
1484 g_free(spapr
->htab
);
1486 spapr
->htab_shift
= 0;
1487 close_htab_fd(spapr
);
1490 int spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
, Error
**errp
)
1495 /* Clean up any HPT info from a previous boot */
1496 spapr_free_hpt(spapr
);
1498 rc
= kvmppc_reset_htab(shift
);
1500 if (rc
== -EOPNOTSUPP
) {
1501 error_setg(errp
, "HPT not supported in nested guests");
1506 /* kernel-side HPT needed, but couldn't allocate one */
1507 error_setg_errno(errp
, errno
, "Failed to allocate KVM HPT of order %d",
1509 error_append_hint(errp
, "Try smaller maxmem?\n");
1511 } else if (rc
> 0) {
1512 /* kernel-side HPT allocated */
1515 "Requested order %d HPT, but kernel allocated order %ld",
1517 error_append_hint(errp
, "Try smaller maxmem?\n");
1521 spapr
->htab_shift
= shift
;
1524 /* kernel-side HPT not needed, allocate in userspace instead */
1525 size_t size
= 1ULL << shift
;
1528 spapr
->htab
= qemu_memalign(size
, size
);
1529 memset(spapr
->htab
, 0, size
);
1530 spapr
->htab_shift
= shift
;
1532 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1533 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1536 /* We're setting up a hash table, so that means we're not radix */
1537 spapr
->patb_entry
= 0;
1538 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1542 void spapr_setup_hpt(SpaprMachineState
*spapr
)
1546 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
1547 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1549 uint64_t current_ram_size
;
1551 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1552 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1554 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1556 if (kvm_enabled()) {
1557 hwaddr vrma_limit
= kvmppc_vrma_limit(spapr
->htab_shift
);
1559 /* Check our RMA fits in the possible VRMA */
1560 if (vrma_limit
< spapr
->rma_size
) {
1561 error_report("Unable to create %" HWADDR_PRIu
1562 "MiB RMA (VRMA only allows %" HWADDR_PRIu
"MiB",
1563 spapr
->rma_size
/ MiB
, vrma_limit
/ MiB
);
1569 static void spapr_machine_reset(MachineState
*machine
)
1571 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1572 PowerPCCPU
*first_ppc_cpu
;
1577 kvmppc_svm_off(&error_fatal
);
1578 spapr_caps_apply(spapr
);
1580 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1581 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1582 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1583 spapr
->max_compat_pvr
)) {
1585 * If using KVM with radix mode available, VCPUs can be started
1586 * without a HPT because KVM will start them in radix mode.
1587 * Set the GR bit in PATE so that we know there is no HPT.
1589 spapr
->patb_entry
= PATE1_GR
;
1590 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1592 spapr_setup_hpt(spapr
);
1595 qemu_devices_reset();
1597 spapr_ovec_cleanup(spapr
->ov5_cas
);
1598 spapr
->ov5_cas
= spapr_ovec_new();
1600 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1603 * This is fixing some of the default configuration of the XIVE
1604 * devices. To be called after the reset of the machine devices.
1606 spapr_irq_reset(spapr
, &error_fatal
);
1609 * There is no CAS under qtest. Simulate one to please the code that
1610 * depends on spapr->ov5_cas. This is especially needed to test device
1611 * unplug, so we do that before resetting the DRCs.
1613 if (qtest_enabled()) {
1614 spapr_ovec_cleanup(spapr
->ov5_cas
);
1615 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1618 /* DRC reset may cause a device to be unplugged. This will cause troubles
1619 * if this device is used by another device (eg, a running vhost backend
1620 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1621 * situations, we reset DRCs after all devices have been reset.
1623 spapr_drc_reset_all(spapr
);
1625 spapr_clear_pending_events(spapr
);
1628 * We place the device tree and RTAS just below either the top of the RMA,
1629 * or just below 2GB, whichever is lower, so that it can be
1630 * processed with 32-bit real mode code if necessary
1632 fdt_addr
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FDT_MAX_SIZE
;
1634 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1638 /* Should only fail if we've built a corrupted tree */
1642 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1643 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1644 g_free(spapr
->fdt_blob
);
1645 spapr
->fdt_size
= fdt_totalsize(fdt
);
1646 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1647 spapr
->fdt_blob
= fdt
;
1649 /* Set up the entry state */
1650 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, 0, fdt_addr
, 0);
1651 first_ppc_cpu
->env
.gpr
[5] = 0;
1653 spapr
->fwnmi_system_reset_addr
= -1;
1654 spapr
->fwnmi_machine_check_addr
= -1;
1655 spapr
->fwnmi_machine_check_interlock
= -1;
1657 /* Signal all vCPUs waiting on this condition */
1658 qemu_cond_broadcast(&spapr
->fwnmi_machine_check_interlock_cond
);
1660 migrate_del_blocker(spapr
->fwnmi_migration_blocker
);
1663 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1665 DeviceState
*dev
= qdev_new("spapr-nvram");
1666 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1669 qdev_prop_set_drive_err(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1673 qdev_realize_and_unref(dev
, &spapr
->vio_bus
->bus
, &error_fatal
);
1675 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1678 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1680 object_initialize_child_with_props(OBJECT(spapr
), "rtc", &spapr
->rtc
,
1681 sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1682 &error_fatal
, NULL
);
1683 qdev_realize(DEVICE(&spapr
->rtc
), NULL
, &error_fatal
);
1684 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1688 /* Returns whether we want to use VGA or not */
1689 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1691 switch (vga_interface_type
) {
1699 return pci_vga_init(pci_bus
) != NULL
;
1702 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1707 static int spapr_pre_load(void *opaque
)
1711 rc
= spapr_caps_pre_load(opaque
);
1719 static int spapr_post_load(void *opaque
, int version_id
)
1721 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1724 err
= spapr_caps_post_migration(spapr
);
1730 * In earlier versions, there was no separate qdev for the PAPR
1731 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1732 * So when migrating from those versions, poke the incoming offset
1733 * value into the RTC device
1735 if (version_id
< 3) {
1736 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1742 if (kvm_enabled() && spapr
->patb_entry
) {
1743 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1744 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1745 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1748 * Update LPCR:HR and UPRT as they may not be set properly in
1751 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1752 LPCR_HR
| LPCR_UPRT
);
1754 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1756 error_report("Process table config unsupported by the host");
1761 err
= spapr_irq_post_load(spapr
, version_id
);
1769 static int spapr_pre_save(void *opaque
)
1773 rc
= spapr_caps_pre_save(opaque
);
1781 static bool version_before_3(void *opaque
, int version_id
)
1783 return version_id
< 3;
1786 static bool spapr_pending_events_needed(void *opaque
)
1788 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1789 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1792 static const VMStateDescription vmstate_spapr_event_entry
= {
1793 .name
= "spapr_event_log_entry",
1795 .minimum_version_id
= 1,
1796 .fields
= (VMStateField
[]) {
1797 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1798 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1799 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1800 NULL
, extended_length
),
1801 VMSTATE_END_OF_LIST()
1805 static const VMStateDescription vmstate_spapr_pending_events
= {
1806 .name
= "spapr_pending_events",
1808 .minimum_version_id
= 1,
1809 .needed
= spapr_pending_events_needed
,
1810 .fields
= (VMStateField
[]) {
1811 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1812 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1813 VMSTATE_END_OF_LIST()
1817 static bool spapr_ov5_cas_needed(void *opaque
)
1819 SpaprMachineState
*spapr
= opaque
;
1820 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1823 /* Prior to the introduction of SpaprOptionVector, we had two option
1824 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1825 * Both of these options encode machine topology into the device-tree
1826 * in such a way that the now-booted OS should still be able to interact
1827 * appropriately with QEMU regardless of what options were actually
1828 * negotiatied on the source side.
1830 * As such, we can avoid migrating the CAS-negotiated options if these
1831 * are the only options available on the current machine/platform.
1832 * Since these are the only options available for pseries-2.7 and
1833 * earlier, this allows us to maintain old->new/new->old migration
1836 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1837 * via default pseries-2.8 machines and explicit command-line parameters.
1838 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1839 * of the actual CAS-negotiated values to continue working properly. For
1840 * example, availability of memory unplug depends on knowing whether
1841 * OV5_HP_EVT was negotiated via CAS.
1843 * Thus, for any cases where the set of available CAS-negotiatable
1844 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1845 * include the CAS-negotiated options in the migration stream, unless
1846 * if they affect boot time behaviour only.
1848 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1849 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1850 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1852 /* We need extra information if we have any bits outside the mask
1854 cas_needed
= !spapr_ovec_subset(spapr
->ov5
, ov5_mask
);
1856 spapr_ovec_cleanup(ov5_mask
);
1861 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1862 .name
= "spapr_option_vector_ov5_cas",
1864 .minimum_version_id
= 1,
1865 .needed
= spapr_ov5_cas_needed
,
1866 .fields
= (VMStateField
[]) {
1867 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1868 vmstate_spapr_ovec
, SpaprOptionVector
),
1869 VMSTATE_END_OF_LIST()
1873 static bool spapr_patb_entry_needed(void *opaque
)
1875 SpaprMachineState
*spapr
= opaque
;
1877 return !!spapr
->patb_entry
;
1880 static const VMStateDescription vmstate_spapr_patb_entry
= {
1881 .name
= "spapr_patb_entry",
1883 .minimum_version_id
= 1,
1884 .needed
= spapr_patb_entry_needed
,
1885 .fields
= (VMStateField
[]) {
1886 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1887 VMSTATE_END_OF_LIST()
1891 static bool spapr_irq_map_needed(void *opaque
)
1893 SpaprMachineState
*spapr
= opaque
;
1895 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1898 static const VMStateDescription vmstate_spapr_irq_map
= {
1899 .name
= "spapr_irq_map",
1901 .minimum_version_id
= 1,
1902 .needed
= spapr_irq_map_needed
,
1903 .fields
= (VMStateField
[]) {
1904 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1905 VMSTATE_END_OF_LIST()
1909 static bool spapr_dtb_needed(void *opaque
)
1911 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1913 return smc
->update_dt_enabled
;
1916 static int spapr_dtb_pre_load(void *opaque
)
1918 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1920 g_free(spapr
->fdt_blob
);
1921 spapr
->fdt_blob
= NULL
;
1922 spapr
->fdt_size
= 0;
1927 static const VMStateDescription vmstate_spapr_dtb
= {
1928 .name
= "spapr_dtb",
1930 .minimum_version_id
= 1,
1931 .needed
= spapr_dtb_needed
,
1932 .pre_load
= spapr_dtb_pre_load
,
1933 .fields
= (VMStateField
[]) {
1934 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
1935 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
1936 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
1938 VMSTATE_END_OF_LIST()
1942 static bool spapr_fwnmi_needed(void *opaque
)
1944 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1946 return spapr
->fwnmi_machine_check_addr
!= -1;
1949 static int spapr_fwnmi_pre_save(void *opaque
)
1951 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1954 * Check if machine check handling is in progress and print a
1957 if (spapr
->fwnmi_machine_check_interlock
!= -1) {
1958 warn_report("A machine check is being handled during migration. The"
1959 "handler may run and log hardware error on the destination");
1965 static const VMStateDescription vmstate_spapr_fwnmi
= {
1966 .name
= "spapr_fwnmi",
1968 .minimum_version_id
= 1,
1969 .needed
= spapr_fwnmi_needed
,
1970 .pre_save
= spapr_fwnmi_pre_save
,
1971 .fields
= (VMStateField
[]) {
1972 VMSTATE_UINT64(fwnmi_system_reset_addr
, SpaprMachineState
),
1973 VMSTATE_UINT64(fwnmi_machine_check_addr
, SpaprMachineState
),
1974 VMSTATE_INT32(fwnmi_machine_check_interlock
, SpaprMachineState
),
1975 VMSTATE_END_OF_LIST()
1979 static const VMStateDescription vmstate_spapr
= {
1982 .minimum_version_id
= 1,
1983 .pre_load
= spapr_pre_load
,
1984 .post_load
= spapr_post_load
,
1985 .pre_save
= spapr_pre_save
,
1986 .fields
= (VMStateField
[]) {
1987 /* used to be @next_irq */
1988 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1991 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
1993 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
1994 VMSTATE_END_OF_LIST()
1996 .subsections
= (const VMStateDescription
*[]) {
1997 &vmstate_spapr_ov5_cas
,
1998 &vmstate_spapr_patb_entry
,
1999 &vmstate_spapr_pending_events
,
2000 &vmstate_spapr_cap_htm
,
2001 &vmstate_spapr_cap_vsx
,
2002 &vmstate_spapr_cap_dfp
,
2003 &vmstate_spapr_cap_cfpc
,
2004 &vmstate_spapr_cap_sbbc
,
2005 &vmstate_spapr_cap_ibs
,
2006 &vmstate_spapr_cap_hpt_maxpagesize
,
2007 &vmstate_spapr_irq_map
,
2008 &vmstate_spapr_cap_nested_kvm_hv
,
2010 &vmstate_spapr_cap_large_decr
,
2011 &vmstate_spapr_cap_ccf_assist
,
2012 &vmstate_spapr_cap_fwnmi
,
2013 &vmstate_spapr_fwnmi
,
2018 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2020 SpaprMachineState
*spapr
= opaque
;
2022 /* "Iteration" header */
2023 if (!spapr
->htab_shift
) {
2024 qemu_put_be32(f
, -1);
2026 qemu_put_be32(f
, spapr
->htab_shift
);
2030 spapr
->htab_save_index
= 0;
2031 spapr
->htab_first_pass
= true;
2033 if (spapr
->htab_shift
) {
2034 assert(kvm_enabled());
2042 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2043 int chunkstart
, int n_valid
, int n_invalid
)
2045 qemu_put_be32(f
, chunkstart
);
2046 qemu_put_be16(f
, n_valid
);
2047 qemu_put_be16(f
, n_invalid
);
2048 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2049 HASH_PTE_SIZE_64
* n_valid
);
2052 static void htab_save_end_marker(QEMUFile
*f
)
2054 qemu_put_be32(f
, 0);
2055 qemu_put_be16(f
, 0);
2056 qemu_put_be16(f
, 0);
2059 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2062 bool has_timeout
= max_ns
!= -1;
2063 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2064 int index
= spapr
->htab_save_index
;
2065 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2067 assert(spapr
->htab_first_pass
);
2072 /* Consume invalid HPTEs */
2073 while ((index
< htabslots
)
2074 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2075 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2079 /* Consume valid HPTEs */
2081 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2082 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2083 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2087 if (index
> chunkstart
) {
2088 int n_valid
= index
- chunkstart
;
2090 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2093 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2097 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2099 if (index
>= htabslots
) {
2100 assert(index
== htabslots
);
2102 spapr
->htab_first_pass
= false;
2104 spapr
->htab_save_index
= index
;
2107 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2110 bool final
= max_ns
< 0;
2111 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2112 int examined
= 0, sent
= 0;
2113 int index
= spapr
->htab_save_index
;
2114 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2116 assert(!spapr
->htab_first_pass
);
2119 int chunkstart
, invalidstart
;
2121 /* Consume non-dirty HPTEs */
2122 while ((index
< htabslots
)
2123 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2129 /* Consume valid dirty HPTEs */
2130 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2131 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2132 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2133 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2138 invalidstart
= index
;
2139 /* Consume invalid dirty HPTEs */
2140 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2141 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2142 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2143 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2148 if (index
> chunkstart
) {
2149 int n_valid
= invalidstart
- chunkstart
;
2150 int n_invalid
= index
- invalidstart
;
2152 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2153 sent
+= index
- chunkstart
;
2155 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2160 if (examined
>= htabslots
) {
2164 if (index
>= htabslots
) {
2165 assert(index
== htabslots
);
2168 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2170 if (index
>= htabslots
) {
2171 assert(index
== htabslots
);
2175 spapr
->htab_save_index
= index
;
2177 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2180 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2181 #define MAX_KVM_BUF_SIZE 2048
2183 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2185 SpaprMachineState
*spapr
= opaque
;
2189 /* Iteration header */
2190 if (!spapr
->htab_shift
) {
2191 qemu_put_be32(f
, -1);
2194 qemu_put_be32(f
, 0);
2198 assert(kvm_enabled());
2200 fd
= get_htab_fd(spapr
);
2205 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2209 } else if (spapr
->htab_first_pass
) {
2210 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2212 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2215 htab_save_end_marker(f
);
2220 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2222 SpaprMachineState
*spapr
= opaque
;
2225 /* Iteration header */
2226 if (!spapr
->htab_shift
) {
2227 qemu_put_be32(f
, -1);
2230 qemu_put_be32(f
, 0);
2236 assert(kvm_enabled());
2238 fd
= get_htab_fd(spapr
);
2243 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2248 if (spapr
->htab_first_pass
) {
2249 htab_save_first_pass(f
, spapr
, -1);
2251 htab_save_later_pass(f
, spapr
, -1);
2255 htab_save_end_marker(f
);
2260 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2262 SpaprMachineState
*spapr
= opaque
;
2263 uint32_t section_hdr
;
2265 Error
*local_err
= NULL
;
2267 if (version_id
< 1 || version_id
> 1) {
2268 error_report("htab_load() bad version");
2272 section_hdr
= qemu_get_be32(f
);
2274 if (section_hdr
== -1) {
2275 spapr_free_hpt(spapr
);
2282 /* First section gives the htab size */
2283 ret
= spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2285 error_report_err(local_err
);
2292 assert(kvm_enabled());
2294 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2296 error_report_err(local_err
);
2303 uint16_t n_valid
, n_invalid
;
2305 index
= qemu_get_be32(f
);
2306 n_valid
= qemu_get_be16(f
);
2307 n_invalid
= qemu_get_be16(f
);
2309 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2314 if ((index
+ n_valid
+ n_invalid
) >
2315 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2316 /* Bad index in stream */
2318 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2319 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2325 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2326 HASH_PTE_SIZE_64
* n_valid
);
2329 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2330 HASH_PTE_SIZE_64
* n_invalid
);
2337 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
,
2340 error_report_err(local_err
);
2354 static void htab_save_cleanup(void *opaque
)
2356 SpaprMachineState
*spapr
= opaque
;
2358 close_htab_fd(spapr
);
2361 static SaveVMHandlers savevm_htab_handlers
= {
2362 .save_setup
= htab_save_setup
,
2363 .save_live_iterate
= htab_save_iterate
,
2364 .save_live_complete_precopy
= htab_save_complete
,
2365 .save_cleanup
= htab_save_cleanup
,
2366 .load_state
= htab_load
,
2369 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2372 MachineState
*machine
= MACHINE(opaque
);
2373 machine
->boot_order
= g_strdup(boot_device
);
2376 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2378 MachineState
*machine
= MACHINE(spapr
);
2379 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2380 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2383 for (i
= 0; i
< nr_lmbs
; i
++) {
2386 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2387 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2393 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2394 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2395 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2397 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2401 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2402 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2403 " is not aligned to %" PRIu64
" MiB",
2405 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2409 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2410 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2411 " is not aligned to %" PRIu64
" MiB",
2413 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2417 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2418 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2420 "Node %d memory size 0x%" PRIx64
2421 " is not aligned to %" PRIu64
" MiB",
2422 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2423 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2429 /* find cpu slot in machine->possible_cpus by core_id */
2430 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2432 int index
= id
/ ms
->smp
.threads
;
2434 if (index
>= ms
->possible_cpus
->len
) {
2440 return &ms
->possible_cpus
->cpus
[index
];
2443 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2445 MachineState
*ms
= MACHINE(spapr
);
2446 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2447 Error
*local_err
= NULL
;
2448 bool vsmt_user
= !!spapr
->vsmt
;
2449 int kvm_smt
= kvmppc_smt_threads();
2451 unsigned int smp_threads
= ms
->smp
.threads
;
2453 if (!kvm_enabled() && (smp_threads
> 1)) {
2454 error_setg(errp
, "TCG cannot support more than 1 thread/core "
2455 "on a pseries machine");
2458 if (!is_power_of_2(smp_threads
)) {
2459 error_setg(errp
, "Cannot support %d threads/core on a pseries "
2460 "machine because it must be a power of 2", smp_threads
);
2464 /* Detemine the VSMT mode to use: */
2466 if (spapr
->vsmt
< smp_threads
) {
2467 error_setg(errp
, "Cannot support VSMT mode %d"
2468 " because it must be >= threads/core (%d)",
2469 spapr
->vsmt
, smp_threads
);
2472 /* In this case, spapr->vsmt has been set by the command line */
2473 } else if (!smc
->smp_threads_vsmt
) {
2475 * Default VSMT value is tricky, because we need it to be as
2476 * consistent as possible (for migration), but this requires
2477 * changing it for at least some existing cases. We pick 8 as
2478 * the value that we'd get with KVM on POWER8, the
2479 * overwhelmingly common case in production systems.
2481 spapr
->vsmt
= MAX(8, smp_threads
);
2483 spapr
->vsmt
= smp_threads
;
2486 /* KVM: If necessary, set the SMT mode: */
2487 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2488 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2490 /* Looks like KVM isn't able to change VSMT mode */
2491 error_setg(&local_err
,
2492 "Failed to set KVM's VSMT mode to %d (errno %d)",
2494 /* We can live with that if the default one is big enough
2495 * for the number of threads, and a submultiple of the one
2496 * we want. In this case we'll waste some vcpu ids, but
2497 * behaviour will be correct */
2498 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2499 warn_report_err(local_err
);
2502 error_append_hint(&local_err
,
2503 "On PPC, a VM with %d threads/core"
2504 " on a host with %d threads/core"
2505 " requires the use of VSMT mode %d.\n",
2506 smp_threads
, kvm_smt
, spapr
->vsmt
);
2508 kvmppc_error_append_smt_possible_hint(&local_err
);
2509 error_propagate(errp
, local_err
);
2513 /* else TCG: nothing to do currently */
2516 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2518 MachineState
*machine
= MACHINE(spapr
);
2519 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2520 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2521 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2522 const CPUArchIdList
*possible_cpus
;
2523 unsigned int smp_cpus
= machine
->smp
.cpus
;
2524 unsigned int smp_threads
= machine
->smp
.threads
;
2525 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2526 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2529 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2530 if (mc
->has_hotpluggable_cpus
) {
2531 if (smp_cpus
% smp_threads
) {
2532 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2533 smp_cpus
, smp_threads
);
2536 if (max_cpus
% smp_threads
) {
2537 error_report("max_cpus (%u) must be multiple of threads (%u)",
2538 max_cpus
, smp_threads
);
2542 if (max_cpus
!= smp_cpus
) {
2543 error_report("This machine version does not support CPU hotplug");
2546 boot_cores_nr
= possible_cpus
->len
;
2549 if (smc
->pre_2_10_has_unused_icps
) {
2552 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2553 /* Dummy entries get deregistered when real ICPState objects
2554 * are registered during CPU core hotplug.
2556 pre_2_10_vmstate_register_dummy_icp(i
);
2560 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2561 int core_id
= i
* smp_threads
;
2563 if (mc
->has_hotpluggable_cpus
) {
2564 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2565 spapr_vcpu_id(spapr
, core_id
));
2568 if (i
< boot_cores_nr
) {
2569 Object
*core
= object_new(type
);
2570 int nr_threads
= smp_threads
;
2572 /* Handle the partially filled core for older machine types */
2573 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2574 nr_threads
= smp_cpus
- i
* smp_threads
;
2577 object_property_set_int(core
, "nr-threads", nr_threads
,
2579 object_property_set_int(core
, CPU_CORE_PROP_CORE_ID
, core_id
,
2581 qdev_realize(DEVICE(core
), NULL
, &error_fatal
);
2588 static PCIHostState
*spapr_create_default_phb(void)
2592 dev
= qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE
);
2593 qdev_prop_set_uint32(dev
, "index", 0);
2594 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
2596 return PCI_HOST_BRIDGE(dev
);
2599 static hwaddr
spapr_rma_size(SpaprMachineState
*spapr
, Error
**errp
)
2601 MachineState
*machine
= MACHINE(spapr
);
2602 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2603 hwaddr rma_size
= machine
->ram_size
;
2604 hwaddr node0_size
= spapr_node0_size(machine
);
2606 /* RMA has to fit in the first NUMA node */
2607 rma_size
= MIN(rma_size
, node0_size
);
2610 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2613 rma_size
= MIN(rma_size
, 1 * TiB
);
2616 * Clamp the RMA size based on machine type. This is for
2617 * migration compatibility with older qemu versions, which limited
2618 * the RMA size for complicated and mostly bad reasons.
2620 if (smc
->rma_limit
) {
2621 rma_size
= MIN(rma_size
, smc
->rma_limit
);
2624 if (rma_size
< MIN_RMA_SLOF
) {
2626 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2627 "ldMiB guest RMA (Real Mode Area memory)",
2628 MIN_RMA_SLOF
/ MiB
);
2635 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState
*spapr
)
2637 MachineState
*machine
= MACHINE(spapr
);
2640 for (i
= 0; i
< machine
->ram_slots
; i
++) {
2641 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_PMEM
, i
);
2645 /* pSeries LPAR / sPAPR hardware init */
2646 static void spapr_machine_init(MachineState
*machine
)
2648 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2649 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2650 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2651 const char *bios_name
= machine
->firmware
?: FW_FILE_NAME
;
2652 const char *kernel_filename
= machine
->kernel_filename
;
2653 const char *initrd_filename
= machine
->initrd_filename
;
2656 MemoryRegion
*sysmem
= get_system_memory();
2657 long load_limit
, fw_size
;
2659 Error
*resize_hpt_err
= NULL
;
2661 msi_nonbroken
= true;
2663 QLIST_INIT(&spapr
->phbs
);
2664 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2666 /* Determine capabilities to run with */
2667 spapr_caps_init(spapr
);
2669 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2670 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2672 * If the user explicitly requested a mode we should either
2673 * supply it, or fail completely (which we do below). But if
2674 * it's not set explicitly, we reset our mode to something
2677 if (resize_hpt_err
) {
2678 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2679 error_free(resize_hpt_err
);
2680 resize_hpt_err
= NULL
;
2682 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2686 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2688 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2690 * User requested HPT resize, but this host can't supply it. Bail out
2692 error_report_err(resize_hpt_err
);
2695 error_free(resize_hpt_err
);
2697 spapr
->rma_size
= spapr_rma_size(spapr
, &error_fatal
);
2699 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2700 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2703 * VSMT must be set in order to be able to compute VCPU ids, ie to
2704 * call spapr_max_server_number() or spapr_vcpu_id().
2706 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2708 /* Set up Interrupt Controller before we create the VCPUs */
2709 spapr_irq_init(spapr
, &error_fatal
);
2711 /* Set up containers for ibm,client-architecture-support negotiated options
2713 spapr
->ov5
= spapr_ovec_new();
2714 spapr
->ov5_cas
= spapr_ovec_new();
2716 if (smc
->dr_lmb_enabled
) {
2717 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2718 spapr_validate_node_memory(machine
, &error_fatal
);
2721 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2723 /* advertise support for dedicated HP event source to guests */
2724 if (spapr
->use_hotplug_event_source
) {
2725 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2728 /* advertise support for HPT resizing */
2729 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2730 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2733 /* advertise support for ibm,dyamic-memory-v2 */
2734 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2736 /* advertise XIVE on POWER9 machines */
2737 if (spapr
->irq
->xive
) {
2738 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2742 spapr_init_cpus(spapr
);
2745 * check we don't have a memory-less/cpu-less NUMA node
2746 * Firmware relies on the existing memory/cpu topology to provide the
2747 * NUMA topology to the kernel.
2748 * And the linux kernel needs to know the NUMA topology at start
2749 * to be able to hotplug CPUs later.
2751 if (machine
->numa_state
->num_nodes
) {
2752 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
2753 /* check for memory-less node */
2754 if (machine
->numa_state
->nodes
[i
].node_mem
== 0) {
2757 /* check for cpu-less node */
2759 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2760 if (cpu
->node_id
== i
) {
2765 /* memory-less and cpu-less node */
2768 "Memory-less/cpu-less nodes are not supported (node %d)",
2778 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2779 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2780 * called from vPHB reset handler so we initialize the counter here.
2781 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2782 * must be equally distant from any other node.
2783 * The final value of spapr->gpu_numa_id is going to be written to
2784 * max-associativity-domains in spapr_build_fdt().
2786 spapr
->gpu_numa_id
= MAX(1, machine
->numa_state
->num_nodes
);
2788 /* Init numa_assoc_array */
2789 spapr_numa_associativity_init(spapr
, machine
);
2791 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2792 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2793 spapr
->max_compat_pvr
)) {
2794 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_300
);
2795 /* KVM and TCG always allow GTSE with radix... */
2796 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2798 /* ... but not with hash (currently). */
2800 if (kvm_enabled()) {
2801 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2802 kvmppc_enable_logical_ci_hcalls();
2803 kvmppc_enable_set_mode_hcall();
2805 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2806 kvmppc_enable_clear_ref_mod_hcalls();
2808 /* Enable H_PAGE_INIT */
2809 kvmppc_enable_h_page_init();
2813 memory_region_add_subregion(sysmem
, 0, machine
->ram
);
2815 /* always allocate the device memory information */
2816 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2818 /* initialize hotplug memory address space */
2819 if (machine
->ram_size
< machine
->maxram_size
) {
2820 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2822 * Limit the number of hotpluggable memory slots to half the number
2823 * slots that KVM supports, leaving the other half for PCI and other
2824 * devices. However ensure that number of slots doesn't drop below 32.
2826 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2827 SPAPR_MAX_RAM_SLOTS
;
2829 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2830 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2832 if (machine
->ram_slots
> max_memslots
) {
2833 error_report("Specified number of memory slots %"
2834 PRIu64
" exceeds max supported %d",
2835 machine
->ram_slots
, max_memslots
);
2839 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2840 SPAPR_DEVICE_MEM_ALIGN
);
2841 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2842 "device-memory", device_mem_size
);
2843 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2844 &machine
->device_memory
->mr
);
2847 if (smc
->dr_lmb_enabled
) {
2848 spapr_create_lmb_dr_connectors(spapr
);
2851 if (spapr_get_cap(spapr
, SPAPR_CAP_FWNMI
) == SPAPR_CAP_ON
) {
2852 /* Create the error string for live migration blocker */
2853 error_setg(&spapr
->fwnmi_migration_blocker
,
2854 "A machine check is being handled during migration. The handler"
2855 "may run and log hardware error on the destination");
2858 if (mc
->nvdimm_supported
) {
2859 spapr_create_nvdimm_dr_connectors(spapr
);
2862 /* Set up RTAS event infrastructure */
2863 spapr_events_init(spapr
);
2865 /* Set up the RTC RTAS interfaces */
2866 spapr_rtc_create(spapr
);
2868 /* Set up VIO bus */
2869 spapr
->vio_bus
= spapr_vio_bus_init();
2871 for (i
= 0; serial_hd(i
); i
++) {
2872 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2875 /* We always have at least the nvram device on VIO */
2876 spapr_create_nvram(spapr
);
2879 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2880 * connectors (described in root DT node's "ibm,drc-types" property)
2881 * are pre-initialized here. additional child connectors (such as
2882 * connectors for a PHBs PCI slots) are added as needed during their
2883 * parent's realization.
2885 if (smc
->dr_phb_enabled
) {
2886 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2887 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2892 spapr_pci_rtas_init();
2894 phb
= spapr_create_default_phb();
2896 for (i
= 0; i
< nb_nics
; i
++) {
2897 NICInfo
*nd
= &nd_table
[i
];
2900 nd
->model
= g_strdup("spapr-vlan");
2903 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2904 g_str_equal(nd
->model
, "ibmveth")) {
2905 spapr_vlan_create(spapr
->vio_bus
, nd
);
2907 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2911 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2912 spapr_vscsi_create(spapr
->vio_bus
);
2916 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2917 spapr
->has_graphics
= true;
2918 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2922 if (smc
->use_ohci_by_default
) {
2923 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2925 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2928 if (spapr
->has_graphics
) {
2929 USBBus
*usb_bus
= usb_bus_find(-1);
2931 usb_create_simple(usb_bus
, "usb-kbd");
2932 usb_create_simple(usb_bus
, "usb-mouse");
2936 if (kernel_filename
) {
2937 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2938 translate_kernel_address
, spapr
,
2939 NULL
, NULL
, NULL
, NULL
, 1,
2940 PPC_ELF_MACHINE
, 0, 0);
2941 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2942 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2943 translate_kernel_address
, spapr
,
2944 NULL
, NULL
, NULL
, NULL
, 0,
2945 PPC_ELF_MACHINE
, 0, 0);
2946 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2948 if (spapr
->kernel_size
< 0) {
2949 error_report("error loading %s: %s", kernel_filename
,
2950 load_elf_strerror(spapr
->kernel_size
));
2955 if (initrd_filename
) {
2956 /* Try to locate the initrd in the gap between the kernel
2957 * and the firmware. Add a bit of space just in case
2959 spapr
->initrd_base
= (spapr
->kernel_addr
+ spapr
->kernel_size
2960 + 0x1ffff) & ~0xffff;
2961 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2964 - spapr
->initrd_base
);
2965 if (spapr
->initrd_size
< 0) {
2966 error_report("could not load initial ram disk '%s'",
2973 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2975 error_report("Could not find LPAR firmware '%s'", bios_name
);
2978 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2980 error_report("Could not load LPAR firmware '%s'", filename
);
2985 /* FIXME: Should register things through the MachineState's qdev
2986 * interface, this is a legacy from the sPAPREnvironment structure
2987 * which predated MachineState but had a similar function */
2988 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2989 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY
, 1,
2990 &savevm_htab_handlers
, spapr
);
2992 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
));
2994 qemu_register_boot_set(spapr_boot_set
, spapr
);
2997 * Nothing needs to be done to resume a suspended guest because
2998 * suspending does not change the machine state, so no need for
2999 * a ->wakeup method.
3001 qemu_register_wakeup_support();
3003 if (kvm_enabled()) {
3004 /* to stop and start vmclock */
3005 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
3008 kvmppc_spapr_enable_inkernel_multitce();
3011 qemu_cond_init(&spapr
->fwnmi_machine_check_interlock_cond
);
3014 #define DEFAULT_KVM_TYPE "auto"
3015 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3018 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3019 * accomodate the 'HV' and 'PV' formats that exists in the
3020 * wild. The 'auto' mode is being introduced already as
3021 * lower-case, thus we don't need to bother checking for
3024 if (!vm_type
|| !strcmp(vm_type
, DEFAULT_KVM_TYPE
)) {
3028 if (!g_ascii_strcasecmp(vm_type
, "hv")) {
3032 if (!g_ascii_strcasecmp(vm_type
, "pr")) {
3036 error_report("Unknown kvm-type specified '%s'", vm_type
);
3041 * Implementation of an interface to adjust firmware path
3042 * for the bootindex property handling.
3044 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3047 #define CAST(type, obj, name) \
3048 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3049 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3050 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3051 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3054 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3055 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3056 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3060 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3061 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3062 * 0x8000 | (target << 8) | (bus << 5) | lun
3063 * (see the "Logical unit addressing format" table in SAM5)
3065 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3066 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3067 (uint64_t)id
<< 48);
3068 } else if (virtio
) {
3070 * We use SRP luns of the form 01000000 | (target << 8) | lun
3071 * in the top 32 bits of the 64-bit LUN
3072 * Note: the quote above is from SLOF and it is wrong,
3073 * the actual binding is:
3074 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3076 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3077 if (d
->lun
>= 256) {
3078 /* Use the LUN "flat space addressing method" */
3081 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3082 (uint64_t)id
<< 32);
3085 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3086 * in the top 32 bits of the 64-bit LUN
3088 unsigned usb_port
= atoi(usb
->port
->path
);
3089 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3090 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3091 (uint64_t)id
<< 32);
3096 * SLOF probes the USB devices, and if it recognizes that the device is a
3097 * storage device, it changes its name to "storage" instead of "usb-host",
3098 * and additionally adds a child node for the SCSI LUN, so the correct
3099 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3101 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3102 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3103 if (usb_host_dev_is_scsi_storage(usbdev
)) {
3104 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3109 /* Replace "pci" with "pci@800000020000000" */
3110 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3114 /* Same logic as virtio above */
3115 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3116 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3119 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3120 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3121 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3122 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3128 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3130 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3132 return g_strdup(spapr
->kvm_type
);
3135 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3137 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3139 g_free(spapr
->kvm_type
);
3140 spapr
->kvm_type
= g_strdup(value
);
3143 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3145 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3147 return spapr
->use_hotplug_event_source
;
3150 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3153 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3155 spapr
->use_hotplug_event_source
= value
;
3158 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3163 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3165 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3167 switch (spapr
->resize_hpt
) {
3168 case SPAPR_RESIZE_HPT_DEFAULT
:
3169 return g_strdup("default");
3170 case SPAPR_RESIZE_HPT_DISABLED
:
3171 return g_strdup("disabled");
3172 case SPAPR_RESIZE_HPT_ENABLED
:
3173 return g_strdup("enabled");
3174 case SPAPR_RESIZE_HPT_REQUIRED
:
3175 return g_strdup("required");
3177 g_assert_not_reached();
3180 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3182 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3184 if (strcmp(value
, "default") == 0) {
3185 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3186 } else if (strcmp(value
, "disabled") == 0) {
3187 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3188 } else if (strcmp(value
, "enabled") == 0) {
3189 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3190 } else if (strcmp(value
, "required") == 0) {
3191 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3193 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3197 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3199 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3201 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3202 return g_strdup("legacy");
3203 } else if (spapr
->irq
== &spapr_irq_xics
) {
3204 return g_strdup("xics");
3205 } else if (spapr
->irq
== &spapr_irq_xive
) {
3206 return g_strdup("xive");
3207 } else if (spapr
->irq
== &spapr_irq_dual
) {
3208 return g_strdup("dual");
3210 g_assert_not_reached();
3213 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3215 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3217 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3218 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3222 /* The legacy IRQ backend can not be set */
3223 if (strcmp(value
, "xics") == 0) {
3224 spapr
->irq
= &spapr_irq_xics
;
3225 } else if (strcmp(value
, "xive") == 0) {
3226 spapr
->irq
= &spapr_irq_xive
;
3227 } else if (strcmp(value
, "dual") == 0) {
3228 spapr
->irq
= &spapr_irq_dual
;
3230 error_setg(errp
, "Bad value for \"ic-mode\" property");
3234 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3236 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3238 return g_strdup(spapr
->host_model
);
3241 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3243 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3245 g_free(spapr
->host_model
);
3246 spapr
->host_model
= g_strdup(value
);
3249 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3251 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3253 return g_strdup(spapr
->host_serial
);
3256 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3258 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3260 g_free(spapr
->host_serial
);
3261 spapr
->host_serial
= g_strdup(value
);
3264 static void spapr_instance_init(Object
*obj
)
3266 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3267 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3268 MachineState
*ms
= MACHINE(spapr
);
3269 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
3272 * NVDIMM support went live in 5.1 without considering that, in
3273 * other archs, the user needs to enable NVDIMM support with the
3274 * 'nvdimm' machine option and the default behavior is NVDIMM
3275 * support disabled. It is too late to roll back to the standard
3276 * behavior without breaking 5.1 guests.
3278 if (mc
->nvdimm_supported
) {
3279 ms
->nvdimms_state
->is_enabled
= true;
3282 spapr
->htab_fd
= -1;
3283 spapr
->use_hotplug_event_source
= true;
3284 spapr
->kvm_type
= g_strdup(DEFAULT_KVM_TYPE
);
3285 object_property_add_str(obj
, "kvm-type",
3286 spapr_get_kvm_type
, spapr_set_kvm_type
);
3287 object_property_set_description(obj
, "kvm-type",
3288 "Specifies the KVM virtualization mode (auto,"
3289 " hv, pr). Defaults to 'auto'. This mode will use"
3290 " any available KVM module loaded in the host,"
3291 " where kvm_hv takes precedence if both kvm_hv and"
3292 " kvm_pr are loaded.");
3293 object_property_add_bool(obj
, "modern-hotplug-events",
3294 spapr_get_modern_hotplug_events
,
3295 spapr_set_modern_hotplug_events
);
3296 object_property_set_description(obj
, "modern-hotplug-events",
3297 "Use dedicated hotplug event mechanism in"
3298 " place of standard EPOW events when possible"
3299 " (required for memory hot-unplug support)");
3300 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3301 "Maximum permitted CPU compatibility mode");
3303 object_property_add_str(obj
, "resize-hpt",
3304 spapr_get_resize_hpt
, spapr_set_resize_hpt
);
3305 object_property_set_description(obj
, "resize-hpt",
3306 "Resizing of the Hash Page Table (enabled, disabled, required)");
3307 object_property_add_uint32_ptr(obj
, "vsmt",
3308 &spapr
->vsmt
, OBJ_PROP_FLAG_READWRITE
);
3309 object_property_set_description(obj
, "vsmt",
3310 "Virtual SMT: KVM behaves as if this were"
3311 " the host's SMT mode");
3313 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3314 spapr_get_msix_emulation
, NULL
);
3316 object_property_add_uint64_ptr(obj
, "kernel-addr",
3317 &spapr
->kernel_addr
, OBJ_PROP_FLAG_READWRITE
);
3318 object_property_set_description(obj
, "kernel-addr",
3319 stringify(KERNEL_LOAD_ADDR
)
3320 " for -kernel is the default");
3321 spapr
->kernel_addr
= KERNEL_LOAD_ADDR
;
3322 /* The machine class defines the default interrupt controller mode */
3323 spapr
->irq
= smc
->irq
;
3324 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3326 object_property_set_description(obj
, "ic-mode",
3327 "Specifies the interrupt controller mode (xics, xive, dual)");
3329 object_property_add_str(obj
, "host-model",
3330 spapr_get_host_model
, spapr_set_host_model
);
3331 object_property_set_description(obj
, "host-model",
3332 "Host model to advertise in guest device tree");
3333 object_property_add_str(obj
, "host-serial",
3334 spapr_get_host_serial
, spapr_set_host_serial
);
3335 object_property_set_description(obj
, "host-serial",
3336 "Host serial number to advertise in guest device tree");
3339 static void spapr_machine_finalizefn(Object
*obj
)
3341 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3343 g_free(spapr
->kvm_type
);
3346 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3348 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3349 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3350 CPUPPCState
*env
= &cpu
->env
;
3352 cpu_synchronize_state(cs
);
3353 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3354 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3355 uint64_t rtas_addr
, addr
;
3357 /* get rtas addr from fdt */
3358 rtas_addr
= spapr_get_rtas_addr();
3360 qemu_system_guest_panicked(NULL
);
3364 addr
= rtas_addr
+ RTAS_ERROR_LOG_MAX
+ cs
->cpu_index
* sizeof(uint64_t)*2;
3365 stq_be_phys(&address_space_memory
, addr
, env
->gpr
[3]);
3366 stq_be_phys(&address_space_memory
, addr
+ sizeof(uint64_t), 0);
3369 ppc_cpu_do_system_reset(cs
);
3370 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3371 env
->nip
= spapr
->fwnmi_system_reset_addr
;
3375 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3380 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3384 int spapr_lmb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3385 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3390 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3391 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3393 *fdt_start_offset
= spapr_dt_memory_node(spapr
, fdt
, node
, addr
,
3394 SPAPR_MEMORY_BLOCK_SIZE
);
3398 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3399 bool dedicated_hp_event_source
)
3402 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3404 uint64_t addr
= addr_start
;
3405 bool hotplugged
= spapr_drc_hotplugged(dev
);
3407 for (i
= 0; i
< nr_lmbs
; i
++) {
3408 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3409 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3413 * memory_device_get_free_addr() provided a range of free addresses
3414 * that doesn't overlap with any existing mapping at pre-plug. The
3415 * corresponding LMB DRCs are thus assumed to be all attachable.
3417 spapr_drc_attach(drc
, dev
);
3419 spapr_drc_reset(drc
);
3421 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3423 /* send hotplug notification to the
3424 * guest only in case of hotplugged memory
3427 if (dedicated_hp_event_source
) {
3428 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3429 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3431 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3433 spapr_drc_index(drc
));
3435 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3441 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3443 SpaprMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3444 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3445 uint64_t size
, addr
;
3447 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3449 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3451 pc_dimm_plug(dimm
, MACHINE(ms
));
3454 addr
= object_property_get_uint(OBJECT(dimm
),
3455 PC_DIMM_ADDR_PROP
, &error_abort
);
3456 spapr_add_lmbs(dev
, addr
, size
,
3457 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
));
3459 slot
= object_property_get_int(OBJECT(dimm
),
3460 PC_DIMM_SLOT_PROP
, &error_abort
);
3461 /* We should have valid slot number at this point */
3462 g_assert(slot
>= 0);
3463 spapr_add_nvdimm(dev
, slot
);
3467 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3470 const SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3471 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3472 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3473 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3474 Error
*local_err
= NULL
;
3479 if (!smc
->dr_lmb_enabled
) {
3480 error_setg(errp
, "Memory hotplug not supported for this machine");
3484 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3486 error_propagate(errp
, local_err
);
3491 if (!spapr_nvdimm_validate(hotplug_dev
, NVDIMM(dev
), size
, errp
)) {
3494 } else if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3495 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3496 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3500 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3502 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3503 if (!spapr_check_pagesize(spapr
, pagesize
, errp
)) {
3507 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3510 struct SpaprDimmState
{
3513 QTAILQ_ENTRY(SpaprDimmState
) next
;
3516 static SpaprDimmState
*spapr_pending_dimm_unplugs_find(SpaprMachineState
*s
,
3519 SpaprDimmState
*dimm_state
= NULL
;
3521 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3522 if (dimm_state
->dimm
== dimm
) {
3529 static SpaprDimmState
*spapr_pending_dimm_unplugs_add(SpaprMachineState
*spapr
,
3533 SpaprDimmState
*ds
= NULL
;
3536 * If this request is for a DIMM whose removal had failed earlier
3537 * (due to guest's refusal to remove the LMBs), we would have this
3538 * dimm already in the pending_dimm_unplugs list. In that
3539 * case don't add again.
3541 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3543 ds
= g_malloc0(sizeof(SpaprDimmState
));
3544 ds
->nr_lmbs
= nr_lmbs
;
3546 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3551 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState
*spapr
,
3552 SpaprDimmState
*dimm_state
)
3554 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3558 static SpaprDimmState
*spapr_recover_pending_dimm_state(SpaprMachineState
*ms
,
3562 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3564 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3565 uint32_t avail_lmbs
= 0;
3566 uint64_t addr_start
, addr
;
3569 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3573 for (i
= 0; i
< nr_lmbs
; i
++) {
3574 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3575 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3580 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3583 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3586 /* Callback to be called during DRC release. */
3587 void spapr_lmb_release(DeviceState
*dev
)
3589 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3590 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3591 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3593 /* This information will get lost if a migration occurs
3594 * during the unplug process. In this case recover it. */
3596 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3598 /* The DRC being examined by the caller at least must be counted */
3599 g_assert(ds
->nr_lmbs
);
3602 if (--ds
->nr_lmbs
) {
3607 * Now that all the LMBs have been removed by the guest, call the
3608 * unplug handler chain. This can never fail.
3610 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3611 object_unparent(OBJECT(dev
));
3614 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3616 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3617 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3619 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3620 qdev_unrealize(dev
);
3621 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3624 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3625 DeviceState
*dev
, Error
**errp
)
3627 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3628 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3630 uint64_t size
, addr_start
, addr
;
3634 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
3635 error_setg(errp
, "nvdimm device hot unplug is not supported yet.");
3639 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3640 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3642 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3646 * An existing pending dimm state for this DIMM means that there is an
3647 * unplug operation in progress, waiting for the spapr_lmb_release
3648 * callback to complete the job (BQL can't cover that far). In this case,
3649 * bail out to avoid detaching DRCs that were already released.
3651 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3652 error_setg(errp
, "Memory unplug already in progress for device %s",
3657 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3660 for (i
= 0; i
< nr_lmbs
; i
++) {
3661 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3662 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3665 spapr_drc_detach(drc
);
3666 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3669 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3670 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3672 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3673 nr_lmbs
, spapr_drc_index(drc
));
3676 /* Callback to be called during DRC release. */
3677 void spapr_core_release(DeviceState
*dev
)
3679 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3681 /* Call the unplug handler chain. This can never fail. */
3682 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3683 object_unparent(OBJECT(dev
));
3686 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3688 MachineState
*ms
= MACHINE(hotplug_dev
);
3689 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3690 CPUCore
*cc
= CPU_CORE(dev
);
3691 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3693 if (smc
->pre_2_10_has_unused_icps
) {
3694 SpaprCpuCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3697 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3698 CPUState
*cs
= CPU(sc
->threads
[i
]);
3700 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3705 core_slot
->cpu
= NULL
;
3706 qdev_unrealize(dev
);
3710 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3713 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3716 CPUCore
*cc
= CPU_CORE(dev
);
3718 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3719 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3724 error_setg(errp
, "Boot CPU core may not be unplugged");
3728 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3729 spapr_vcpu_id(spapr
, cc
->core_id
));
3732 if (!spapr_drc_unplug_requested(drc
)) {
3733 spapr_drc_detach(drc
);
3734 spapr_hotplug_req_remove_by_index(drc
);
3738 int spapr_core_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3739 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3741 SpaprCpuCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3742 CPUState
*cs
= CPU(core
->threads
[0]);
3743 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3744 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3745 int id
= spapr_get_vcpu_id(cpu
);
3749 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3750 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3753 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
3755 *fdt_start_offset
= offset
;
3759 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3761 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3762 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3763 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3764 SpaprCpuCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3765 CPUCore
*cc
= CPU_CORE(dev
);
3768 CPUArchId
*core_slot
;
3770 bool hotplugged
= spapr_drc_hotplugged(dev
);
3773 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3774 g_assert(core_slot
); /* Already checked in spapr_core_pre_plug() */
3776 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3777 spapr_vcpu_id(spapr
, cc
->core_id
));
3779 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3783 * spapr_core_pre_plug() already buys us this is a brand new
3784 * core being plugged into a free slot. Nothing should already
3785 * be attached to the corresponding DRC.
3787 spapr_drc_attach(drc
, dev
);
3791 * Send hotplug notification interrupt to the guest only
3792 * in case of hotplugged CPUs.
3794 spapr_hotplug_req_add_by_index(drc
);
3796 spapr_drc_reset(drc
);
3800 core_slot
->cpu
= OBJECT(dev
);
3803 * Set compatibility mode to match the boot CPU, which was either set
3804 * by the machine reset code or by CAS. This really shouldn't fail at
3808 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3809 ppc_set_compat(core
->threads
[i
], POWERPC_CPU(first_cpu
)->compat_pvr
,
3814 if (smc
->pre_2_10_has_unused_icps
) {
3815 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3816 cs
= CPU(core
->threads
[i
]);
3817 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3822 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3825 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3826 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3827 CPUCore
*cc
= CPU_CORE(dev
);
3828 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3829 const char *type
= object_get_typename(OBJECT(dev
));
3830 CPUArchId
*core_slot
;
3832 unsigned int smp_threads
= machine
->smp
.threads
;
3834 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3835 error_setg(errp
, "CPU hotplug not supported for this machine");
3839 if (strcmp(base_core_type
, type
)) {
3840 error_setg(errp
, "CPU core type should be %s", base_core_type
);
3844 if (cc
->core_id
% smp_threads
) {
3845 error_setg(errp
, "invalid core id %d", cc
->core_id
);
3850 * In general we should have homogeneous threads-per-core, but old
3851 * (pre hotplug support) machine types allow the last core to have
3852 * reduced threads as a compatibility hack for when we allowed
3853 * total vcpus not a multiple of threads-per-core.
3855 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3856 error_setg(errp
, "invalid nr-threads %d, must be %d", cc
->nr_threads
,
3861 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3863 error_setg(errp
, "core id %d out of range", cc
->core_id
);
3867 if (core_slot
->cpu
) {
3868 error_setg(errp
, "core %d already populated", cc
->core_id
);
3872 numa_cpu_pre_plug(core_slot
, dev
, errp
);
3875 int spapr_phb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3876 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3878 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
3881 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
3882 if (intc_phandle
<= 0) {
3886 if (spapr_dt_phb(spapr
, sphb
, intc_phandle
, fdt
, fdt_start_offset
)) {
3887 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
3891 /* generally SLOF creates these, for hotplug it's up to QEMU */
3892 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
3897 static bool spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3900 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3901 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3902 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3903 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
3906 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
3907 error_setg(errp
, "PHB hotplug not supported for this machine");
3911 if (sphb
->index
== (uint32_t)-1) {
3912 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
3916 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3917 if (drc
&& drc
->dev
) {
3918 error_setg(errp
, "PHB %d already attached", sphb
->index
);
3923 * This will check that sphb->index doesn't exceed the maximum number of
3924 * PHBs for the current machine type.
3927 smc
->phb_placement(spapr
, sphb
->index
,
3928 &sphb
->buid
, &sphb
->io_win_addr
,
3929 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
3930 windows_supported
, sphb
->dma_liobn
,
3931 &sphb
->nv2_gpa_win_addr
, &sphb
->nv2_atsd_win_addr
,
3935 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3937 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3938 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3939 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3941 bool hotplugged
= spapr_drc_hotplugged(dev
);
3943 if (!smc
->dr_phb_enabled
) {
3947 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3948 /* hotplug hooks should check it's enabled before getting this far */
3951 /* spapr_phb_pre_plug() already checked the DRC is attachable */
3952 spapr_drc_attach(drc
, dev
);
3955 spapr_hotplug_req_add_by_index(drc
);
3957 spapr_drc_reset(drc
);
3961 void spapr_phb_release(DeviceState
*dev
)
3963 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3965 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3966 object_unparent(OBJECT(dev
));
3969 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3971 qdev_unrealize(dev
);
3974 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
3975 DeviceState
*dev
, Error
**errp
)
3977 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3980 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3983 if (!spapr_drc_unplug_requested(drc
)) {
3984 spapr_drc_detach(drc
);
3985 spapr_hotplug_req_remove_by_index(drc
);
3990 bool spapr_tpm_proxy_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3993 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3995 if (spapr
->tpm_proxy
!= NULL
) {
3996 error_setg(errp
, "Only one TPM proxy can be specified for this machine");
4003 static void spapr_tpm_proxy_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4005 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4006 SpaprTpmProxy
*tpm_proxy
= SPAPR_TPM_PROXY(dev
);
4008 /* Already checked in spapr_tpm_proxy_pre_plug() */
4009 g_assert(spapr
->tpm_proxy
== NULL
);
4011 spapr
->tpm_proxy
= tpm_proxy
;
4014 static void spapr_tpm_proxy_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4016 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4018 qdev_unrealize(dev
);
4019 object_unparent(OBJECT(dev
));
4020 spapr
->tpm_proxy
= NULL
;
4023 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
4024 DeviceState
*dev
, Error
**errp
)
4026 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4027 spapr_memory_plug(hotplug_dev
, dev
);
4028 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4029 spapr_core_plug(hotplug_dev
, dev
);
4030 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4031 spapr_phb_plug(hotplug_dev
, dev
);
4032 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4033 spapr_tpm_proxy_plug(hotplug_dev
, dev
);
4037 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
4038 DeviceState
*dev
, Error
**errp
)
4040 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4041 spapr_memory_unplug(hotplug_dev
, dev
);
4042 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4043 spapr_core_unplug(hotplug_dev
, dev
);
4044 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4045 spapr_phb_unplug(hotplug_dev
, dev
);
4046 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4047 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4051 bool spapr_memory_hot_unplug_supported(SpaprMachineState
*spapr
)
4053 return spapr_ovec_test(spapr
->ov5_cas
, OV5_HP_EVT
) ||
4055 * CAS will process all pending unplug requests.
4057 * HACK: a guest could theoretically have cleared all bits in OV5,
4058 * but none of the guests we care for do.
4060 spapr_ovec_empty(spapr
->ov5_cas
);
4063 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
4064 DeviceState
*dev
, Error
**errp
)
4066 SpaprMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4067 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4068 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4070 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4071 if (spapr_memory_hot_unplug_supported(sms
)) {
4072 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4074 error_setg(errp
, "Memory hot unplug not supported for this guest");
4076 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4077 if (!mc
->has_hotpluggable_cpus
) {
4078 error_setg(errp
, "CPU hot unplug not supported on this machine");
4081 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4082 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4083 if (!smc
->dr_phb_enabled
) {
4084 error_setg(errp
, "PHB hot unplug not supported on this machine");
4087 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4088 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4089 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4093 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4094 DeviceState
*dev
, Error
**errp
)
4096 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4097 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4098 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4099 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4100 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4101 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4102 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4103 spapr_tpm_proxy_pre_plug(hotplug_dev
, dev
, errp
);
4107 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4110 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4111 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4112 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
) ||
4113 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4114 return HOTPLUG_HANDLER(machine
);
4116 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
4117 PCIDevice
*pcidev
= PCI_DEVICE(dev
);
4118 PCIBus
*root
= pci_device_root_bus(pcidev
);
4119 SpaprPhbState
*phb
=
4120 (SpaprPhbState
*)object_dynamic_cast(OBJECT(BUS(root
)->parent
),
4121 TYPE_SPAPR_PCI_HOST_BRIDGE
);
4124 return HOTPLUG_HANDLER(phb
);
4130 static CpuInstanceProperties
4131 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4133 CPUArchId
*core_slot
;
4134 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4136 /* make sure possible_cpu are intialized */
4137 mc
->possible_cpu_arch_ids(machine
);
4138 /* get CPU core slot containing thread that matches cpu_index */
4139 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4141 return core_slot
->props
;
4144 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4146 return idx
/ ms
->smp
.cores
% ms
->numa_state
->num_nodes
;
4149 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4152 unsigned int smp_threads
= machine
->smp
.threads
;
4153 unsigned int smp_cpus
= machine
->smp
.cpus
;
4154 const char *core_type
;
4155 int spapr_max_cores
= machine
->smp
.max_cpus
/ smp_threads
;
4156 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4158 if (!mc
->has_hotpluggable_cpus
) {
4159 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4161 if (machine
->possible_cpus
) {
4162 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4163 return machine
->possible_cpus
;
4166 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4168 error_report("Unable to find sPAPR CPU Core definition");
4172 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4173 sizeof(CPUArchId
) * spapr_max_cores
);
4174 machine
->possible_cpus
->len
= spapr_max_cores
;
4175 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4176 int core_id
= i
* smp_threads
;
4178 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4179 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4180 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4181 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4182 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4184 return machine
->possible_cpus
;
4187 static bool spapr_phb_placement(SpaprMachineState
*spapr
, uint32_t index
,
4188 uint64_t *buid
, hwaddr
*pio
,
4189 hwaddr
*mmio32
, hwaddr
*mmio64
,
4190 unsigned n_dma
, uint32_t *liobns
,
4191 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4194 * New-style PHB window placement.
4196 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4197 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4200 * Some guest kernels can't work with MMIO windows above 1<<46
4201 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4203 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4204 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4205 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4206 * 1TiB 64-bit MMIO windows for each PHB.
4208 const uint64_t base_buid
= 0x800000020000000ULL
;
4211 /* Sanity check natural alignments */
4212 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4213 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4214 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4215 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4216 /* Sanity check bounds */
4217 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4218 SPAPR_PCI_MEM32_WIN_SIZE
);
4219 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4220 SPAPR_PCI_MEM64_WIN_SIZE
);
4222 if (index
>= SPAPR_MAX_PHBS
) {
4223 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4224 SPAPR_MAX_PHBS
- 1);
4228 *buid
= base_buid
+ index
;
4229 for (i
= 0; i
< n_dma
; ++i
) {
4230 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4233 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4234 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4235 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4237 *nv2gpa
= SPAPR_PCI_NV2RAM64_WIN_BASE
+ index
* SPAPR_PCI_NV2RAM64_WIN_SIZE
;
4238 *nv2atsd
= SPAPR_PCI_NV2ATSD_WIN_BASE
+ index
* SPAPR_PCI_NV2ATSD_WIN_SIZE
;
4242 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4244 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4246 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4249 static void spapr_ics_resend(XICSFabric
*dev
)
4251 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4253 ics_resend(spapr
->ics
);
4256 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4258 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4260 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4263 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4266 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
4268 spapr_irq_print_info(spapr
, mon
);
4269 monitor_printf(mon
, "irqchip: %s\n",
4270 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4274 * This is a XIVE only operation
4276 static int spapr_match_nvt(XiveFabric
*xfb
, uint8_t format
,
4277 uint8_t nvt_blk
, uint32_t nvt_idx
,
4278 bool cam_ignore
, uint8_t priority
,
4279 uint32_t logic_serv
, XiveTCTXMatch
*match
)
4281 SpaprMachineState
*spapr
= SPAPR_MACHINE(xfb
);
4282 XivePresenter
*xptr
= XIVE_PRESENTER(spapr
->active_intc
);
4283 XivePresenterClass
*xpc
= XIVE_PRESENTER_GET_CLASS(xptr
);
4286 count
= xpc
->match_nvt(xptr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
4287 priority
, logic_serv
, match
);
4293 * When we implement the save and restore of the thread interrupt
4294 * contexts in the enter/exit CPU handlers of the machine and the
4295 * escalations in QEMU, we should be able to handle non dispatched
4298 * Until this is done, the sPAPR machine should find at least one
4299 * matching context always.
4302 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is not dispatched\n",
4309 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4311 return cpu
->vcpu_id
;
4314 bool spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4316 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4317 MachineState
*ms
= MACHINE(spapr
);
4320 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4322 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4323 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4324 error_append_hint(errp
, "Adjust the number of cpus to %d "
4325 "or try to raise the number of threads per core\n",
4326 vcpu_id
* ms
->smp
.threads
/ spapr
->vsmt
);
4330 cpu
->vcpu_id
= vcpu_id
;
4334 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4339 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4341 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4349 static void spapr_cpu_exec_enter(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4351 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4353 /* These are only called by TCG, KVM maintains dispatch state */
4355 spapr_cpu
->prod
= false;
4356 if (spapr_cpu
->vpa_addr
) {
4357 CPUState
*cs
= CPU(cpu
);
4360 dispatch
= ldl_be_phys(cs
->as
,
4361 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4363 if ((dispatch
& 1) != 0) {
4364 qemu_log_mask(LOG_GUEST_ERROR
,
4365 "VPA: incorrect dispatch counter value for "
4366 "dispatched partition %u, correcting.\n", dispatch
);
4370 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4374 static void spapr_cpu_exec_exit(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4376 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4378 if (spapr_cpu
->vpa_addr
) {
4379 CPUState
*cs
= CPU(cpu
);
4382 dispatch
= ldl_be_phys(cs
->as
,
4383 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4385 if ((dispatch
& 1) != 1) {
4386 qemu_log_mask(LOG_GUEST_ERROR
,
4387 "VPA: incorrect dispatch counter value for "
4388 "preempted partition %u, correcting.\n", dispatch
);
4392 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4396 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4398 MachineClass
*mc
= MACHINE_CLASS(oc
);
4399 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4400 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4401 NMIClass
*nc
= NMI_CLASS(oc
);
4402 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4403 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4404 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4405 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4406 XiveFabricClass
*xfc
= XIVE_FABRIC_CLASS(oc
);
4408 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4409 mc
->ignore_boot_device_suffixes
= true;
4412 * We set up the default / latest behaviour here. The class_init
4413 * functions for the specific versioned machine types can override
4414 * these details for backwards compatibility
4416 mc
->init
= spapr_machine_init
;
4417 mc
->reset
= spapr_machine_reset
;
4418 mc
->block_default_type
= IF_SCSI
;
4419 mc
->max_cpus
= 1024;
4420 mc
->no_parallel
= 1;
4421 mc
->default_boot_order
= "";
4422 mc
->default_ram_size
= 512 * MiB
;
4423 mc
->default_ram_id
= "ppc_spapr.ram";
4424 mc
->default_display
= "std";
4425 mc
->kvm_type
= spapr_kvm_type
;
4426 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4427 mc
->pci_allow_0_address
= true;
4428 assert(!mc
->get_hotplug_handler
);
4429 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4430 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4431 hc
->plug
= spapr_machine_device_plug
;
4432 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4433 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4434 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4435 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4436 hc
->unplug
= spapr_machine_device_unplug
;
4438 smc
->dr_lmb_enabled
= true;
4439 smc
->update_dt_enabled
= true;
4440 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4441 mc
->has_hotpluggable_cpus
= true;
4442 mc
->nvdimm_supported
= true;
4443 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4444 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4445 nc
->nmi_monitor_handler
= spapr_nmi
;
4446 smc
->phb_placement
= spapr_phb_placement
;
4447 vhc
->hypercall
= emulate_spapr_hypercall
;
4448 vhc
->hpt_mask
= spapr_hpt_mask
;
4449 vhc
->map_hptes
= spapr_map_hptes
;
4450 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4451 vhc
->hpte_set_c
= spapr_hpte_set_c
;
4452 vhc
->hpte_set_r
= spapr_hpte_set_r
;
4453 vhc
->get_pate
= spapr_get_pate
;
4454 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4455 vhc
->cpu_exec_enter
= spapr_cpu_exec_enter
;
4456 vhc
->cpu_exec_exit
= spapr_cpu_exec_exit
;
4457 xic
->ics_get
= spapr_ics_get
;
4458 xic
->ics_resend
= spapr_ics_resend
;
4459 xic
->icp_get
= spapr_icp_get
;
4460 ispc
->print_info
= spapr_pic_print_info
;
4461 /* Force NUMA node memory size to be a multiple of
4462 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4463 * in which LMBs are represented and hot-added
4465 mc
->numa_mem_align_shift
= 28;
4466 mc
->auto_enable_numa
= true;
4468 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4469 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4470 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4471 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4472 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4473 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_WORKAROUND
;
4474 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4475 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4476 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4477 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_ON
;
4478 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_ON
;
4479 spapr_caps_add_properties(smc
);
4480 smc
->irq
= &spapr_irq_dual
;
4481 smc
->dr_phb_enabled
= true;
4482 smc
->linux_pci_probe
= true;
4483 smc
->smp_threads_vsmt
= true;
4484 smc
->nr_xirqs
= SPAPR_NR_XIRQS
;
4485 xfc
->match_nvt
= spapr_match_nvt
;
4488 static const TypeInfo spapr_machine_info
= {
4489 .name
= TYPE_SPAPR_MACHINE
,
4490 .parent
= TYPE_MACHINE
,
4492 .instance_size
= sizeof(SpaprMachineState
),
4493 .instance_init
= spapr_instance_init
,
4494 .instance_finalize
= spapr_machine_finalizefn
,
4495 .class_size
= sizeof(SpaprMachineClass
),
4496 .class_init
= spapr_machine_class_init
,
4497 .interfaces
= (InterfaceInfo
[]) {
4498 { TYPE_FW_PATH_PROVIDER
},
4500 { TYPE_HOTPLUG_HANDLER
},
4501 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4502 { TYPE_XICS_FABRIC
},
4503 { TYPE_INTERRUPT_STATS_PROVIDER
},
4504 { TYPE_XIVE_FABRIC
},
4509 static void spapr_machine_latest_class_options(MachineClass
*mc
)
4511 mc
->alias
= "pseries";
4512 mc
->is_default
= true;
4515 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4516 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4519 MachineClass *mc = MACHINE_CLASS(oc); \
4520 spapr_machine_##suffix##_class_options(mc); \
4522 spapr_machine_latest_class_options(mc); \
4525 static const TypeInfo spapr_machine_##suffix##_info = { \
4526 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4527 .parent = TYPE_SPAPR_MACHINE, \
4528 .class_init = spapr_machine_##suffix##_class_init, \
4530 static void spapr_machine_register_##suffix(void) \
4532 type_register(&spapr_machine_##suffix##_info); \
4534 type_init(spapr_machine_register_##suffix)
4539 static void spapr_machine_6_0_class_options(MachineClass
*mc
)
4541 /* Defaults for the latest behaviour inherited from the base class */
4544 DEFINE_SPAPR_MACHINE(6_0
, "6.0", true);
4549 static void spapr_machine_5_2_class_options(MachineClass
*mc
)
4551 spapr_machine_6_0_class_options(mc
);
4552 compat_props_add(mc
->compat_props
, hw_compat_5_2
, hw_compat_5_2_len
);
4555 DEFINE_SPAPR_MACHINE(5_2
, "5.2", false);
4560 static void spapr_machine_5_1_class_options(MachineClass
*mc
)
4562 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4564 spapr_machine_5_2_class_options(mc
);
4565 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
4566 smc
->pre_5_2_numa_associativity
= true;
4569 DEFINE_SPAPR_MACHINE(5_1
, "5.1", false);
4574 static void spapr_machine_5_0_class_options(MachineClass
*mc
)
4576 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4577 static GlobalProperty compat
[] = {
4578 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-5.1-associativity", "on" },
4581 spapr_machine_5_1_class_options(mc
);
4582 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
4583 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4584 mc
->numa_mem_supported
= true;
4585 smc
->pre_5_1_assoc_refpoints
= true;
4588 DEFINE_SPAPR_MACHINE(5_0
, "5.0", false);
4593 static void spapr_machine_4_2_class_options(MachineClass
*mc
)
4595 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4597 spapr_machine_5_0_class_options(mc
);
4598 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
4599 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_OFF
;
4600 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_OFF
;
4601 smc
->rma_limit
= 16 * GiB
;
4602 mc
->nvdimm_supported
= false;
4605 DEFINE_SPAPR_MACHINE(4_2
, "4.2", false);
4610 static void spapr_machine_4_1_class_options(MachineClass
*mc
)
4612 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4613 static GlobalProperty compat
[] = {
4614 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4615 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pgsz", "0x11000" },
4618 spapr_machine_4_2_class_options(mc
);
4619 smc
->linux_pci_probe
= false;
4620 smc
->smp_threads_vsmt
= false;
4621 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
4622 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4625 DEFINE_SPAPR_MACHINE(4_1
, "4.1", false);
4630 static bool phb_placement_4_0(SpaprMachineState
*spapr
, uint32_t index
,
4631 uint64_t *buid
, hwaddr
*pio
,
4632 hwaddr
*mmio32
, hwaddr
*mmio64
,
4633 unsigned n_dma
, uint32_t *liobns
,
4634 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4636 if (!spapr_phb_placement(spapr
, index
, buid
, pio
, mmio32
, mmio64
, n_dma
,
4637 liobns
, nv2gpa
, nv2atsd
, errp
)) {
4645 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4647 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4649 spapr_machine_4_1_class_options(mc
);
4650 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
4651 smc
->phb_placement
= phb_placement_4_0
;
4652 smc
->irq
= &spapr_irq_xics
;
4653 smc
->pre_4_1_migration
= true;
4656 DEFINE_SPAPR_MACHINE(4_0
, "4.0", false);
4661 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4663 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4665 spapr_machine_4_0_class_options(mc
);
4666 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4668 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4669 smc
->update_dt_enabled
= false;
4670 smc
->dr_phb_enabled
= false;
4671 smc
->broken_host_serial_model
= true;
4672 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4673 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4674 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4675 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4678 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4684 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4686 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4688 spapr_machine_3_1_class_options(mc
);
4689 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4691 smc
->legacy_irq_allocation
= true;
4692 smc
->nr_xirqs
= 0x400;
4693 smc
->irq
= &spapr_irq_xics_legacy
;
4696 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4701 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4703 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4704 static GlobalProperty compat
[] = {
4705 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4706 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4709 spapr_machine_3_0_class_options(mc
);
4710 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4711 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4713 /* We depend on kvm_enabled() to choose a default value for the
4714 * hpt-max-page-size capability. Of course we can't do it here
4715 * because this is too early and the HW accelerator isn't initialzed
4716 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4718 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4721 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4723 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4725 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4727 spapr_machine_2_12_class_options(mc
);
4728 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4729 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4730 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4733 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4739 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4741 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4743 spapr_machine_2_12_class_options(mc
);
4744 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4745 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
4748 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4754 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4756 spapr_machine_2_11_class_options(mc
);
4757 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
4760 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4766 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4768 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4769 static GlobalProperty compat
[] = {
4770 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
4773 spapr_machine_2_10_class_options(mc
);
4774 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
4775 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4776 smc
->pre_2_10_has_unused_icps
= true;
4777 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4780 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4786 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4788 static GlobalProperty compat
[] = {
4789 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
4792 spapr_machine_2_9_class_options(mc
);
4793 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
4794 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4795 mc
->numa_mem_align_shift
= 23;
4798 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4804 static bool phb_placement_2_7(SpaprMachineState
*spapr
, uint32_t index
,
4805 uint64_t *buid
, hwaddr
*pio
,
4806 hwaddr
*mmio32
, hwaddr
*mmio64
,
4807 unsigned n_dma
, uint32_t *liobns
,
4808 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4810 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4811 const uint64_t base_buid
= 0x800000020000000ULL
;
4812 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4813 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4814 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4815 const uint32_t max_index
= 255;
4816 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4818 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4819 hwaddr phb0_base
, phb_base
;
4822 /* Do we have device memory? */
4823 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4824 /* Can't just use maxram_size, because there may be an
4825 * alignment gap between normal and device memory regions
4827 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4828 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4831 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4833 if (index
> max_index
) {
4834 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4839 *buid
= base_buid
+ index
;
4840 for (i
= 0; i
< n_dma
; ++i
) {
4841 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4844 phb_base
= phb0_base
+ index
* phb_spacing
;
4845 *pio
= phb_base
+ pio_offset
;
4846 *mmio32
= phb_base
+ mmio_offset
;
4848 * We don't set the 64-bit MMIO window, relying on the PHB's
4849 * fallback behaviour of automatically splitting a large "32-bit"
4850 * window into contiguous 32-bit and 64-bit windows
4858 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4860 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4861 static GlobalProperty compat
[] = {
4862 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
4863 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
4864 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
4865 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
4868 spapr_machine_2_8_class_options(mc
);
4869 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4870 mc
->default_machine_opts
= "modern-hotplug-events=off";
4871 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
4872 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4873 smc
->phb_placement
= phb_placement_2_7
;
4876 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4882 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4884 static GlobalProperty compat
[] = {
4885 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
4888 spapr_machine_2_7_class_options(mc
);
4889 mc
->has_hotpluggable_cpus
= false;
4890 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
4891 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4894 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4900 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4902 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4903 static GlobalProperty compat
[] = {
4904 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4907 spapr_machine_2_6_class_options(mc
);
4908 smc
->use_ohci_by_default
= true;
4909 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
4910 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4913 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4919 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4921 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4923 spapr_machine_2_5_class_options(mc
);
4924 smc
->dr_lmb_enabled
= false;
4925 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
4928 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4934 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4936 static GlobalProperty compat
[] = {
4937 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4939 spapr_machine_2_4_class_options(mc
);
4940 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
4941 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4943 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4949 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4951 static GlobalProperty compat
[] = {
4952 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
4955 spapr_machine_2_3_class_options(mc
);
4956 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
4957 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4958 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
4960 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4966 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4968 spapr_machine_2_2_class_options(mc
);
4969 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
4971 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4973 static void spapr_machine_register_types(void)
4975 type_register_static(&spapr_machine_info
);
4978 type_init(spapr_machine_register_types
)