Update version for v4.2.0-rc2 release
[qemu.git] / hw / mips / mips_malta.c
blob92e9ca5bfa56b31083d9f0a53fbd1bd7ab8baa82
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/southbridge/piix.h"
30 #include "hw/isa/superio.h"
31 #include "hw/char/serial.h"
32 #include "net/net.h"
33 #include "hw/boards.h"
34 #include "hw/i2c/smbus_eeprom.h"
35 #include "hw/block/flash.h"
36 #include "hw/mips/mips.h"
37 #include "hw/mips/cpudevs.h"
38 #include "hw/pci/pci.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/arch_init.h"
41 #include "qemu/log.h"
42 #include "hw/mips/bios.h"
43 #include "hw/ide.h"
44 #include "hw/irq.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "exec/address-spaces.h"
48 #include "hw/sysbus.h" /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "hw/empty_slot.h"
56 #include "sysemu/kvm.h"
57 #include "hw/semihosting/semihost.h"
58 #include "hw/mips/cps.h"
60 #define ENVP_ADDR 0x80002000l
61 #define ENVP_NB_ENTRIES 16
62 #define ENVP_ENTRY_SIZE 256
64 /* Hardware addresses */
65 #define FLASH_ADDRESS 0x1e000000ULL
66 #define FPGA_ADDRESS 0x1f000000ULL
67 #define RESET_ADDRESS 0x1fc00000ULL
69 #define FLASH_SIZE 0x400000
71 #define MAX_IDE_BUS 2
73 typedef struct {
74 MemoryRegion iomem;
75 MemoryRegion iomem_lo; /* 0 - 0x900 */
76 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
77 uint32_t leds;
78 uint32_t brk;
79 uint32_t gpout;
80 uint32_t i2cin;
81 uint32_t i2coe;
82 uint32_t i2cout;
83 uint32_t i2csel;
84 CharBackend display;
85 char display_text[9];
86 SerialState *uart;
87 bool display_inited;
88 } MaltaFPGAState;
90 #define TYPE_MIPS_MALTA "mips-malta"
91 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
93 typedef struct {
94 SysBusDevice parent_obj;
96 MIPSCPSState cps;
97 qemu_irq i8259[ISA_NUM_IRQS];
98 } MaltaState;
100 static struct _loaderparams {
101 int ram_size, ram_low_size;
102 const char *kernel_filename;
103 const char *kernel_cmdline;
104 const char *initrd_filename;
105 } loaderparams;
107 /* Malta FPGA */
108 static void malta_fpga_update_display(void *opaque)
110 char leds_text[9];
111 int i;
112 MaltaFPGAState *s = opaque;
114 for (i = 7 ; i >= 0 ; i--) {
115 if (s->leds & (1 << i)) {
116 leds_text[i] = '#';
117 } else {
118 leds_text[i] = ' ';
121 leds_text[8] = '\0';
123 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
124 leds_text);
125 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
126 s->display_text);
130 * EEPROM 24C01 / 24C02 emulation.
132 * Emulation for serial EEPROMs:
133 * 24C01 - 1024 bit (128 x 8)
134 * 24C02 - 2048 bit (256 x 8)
136 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
139 #if defined(DEBUG)
140 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
141 #else
142 # define logout(fmt, ...) ((void)0)
143 #endif
145 struct _eeprom24c0x_t {
146 uint8_t tick;
147 uint8_t address;
148 uint8_t command;
149 uint8_t ack;
150 uint8_t scl;
151 uint8_t sda;
152 uint8_t data;
153 /* uint16_t size; */
154 uint8_t contents[256];
157 typedef struct _eeprom24c0x_t eeprom24c0x_t;
159 static eeprom24c0x_t spd_eeprom = {
160 .contents = {
161 /* 00000000: */
162 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
163 /* 00000008: */
164 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
165 /* 00000010: */
166 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
167 /* 00000018: */
168 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
169 /* 00000020: */
170 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
171 /* 00000028: */
172 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
173 /* 00000030: */
174 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
175 /* 00000038: */
176 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
177 /* 00000040: */
178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
179 /* 00000048: */
180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
181 /* 00000050: */
182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
183 /* 00000058: */
184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
185 /* 00000060: */
186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
187 /* 00000068: */
188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189 /* 00000070: */
190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191 /* 00000078: */
192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
196 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
198 enum { SDR = 0x4, DDR2 = 0x8 } type;
199 uint8_t *spd = spd_eeprom.contents;
200 uint8_t nbanks = 0;
201 uint16_t density = 0;
202 int i;
204 /* work in terms of MB */
205 ram_size /= MiB;
207 while ((ram_size >= 4) && (nbanks <= 2)) {
208 int sz_log2 = MIN(31 - clz32(ram_size), 14);
209 nbanks++;
210 density |= 1 << (sz_log2 - 2);
211 ram_size -= 1 << sz_log2;
214 /* split to 2 banks if possible */
215 if ((nbanks == 1) && (density > 1)) {
216 nbanks++;
217 density >>= 1;
220 if (density & 0xff00) {
221 density = (density & 0xe0) | ((density >> 8) & 0x1f);
222 type = DDR2;
223 } else if (!(density & 0x1f)) {
224 type = DDR2;
225 } else {
226 type = SDR;
229 if (ram_size) {
230 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
231 " of SDRAM", ram_size);
234 /* fill in SPD memory information */
235 spd[2] = type;
236 spd[5] = nbanks;
237 spd[31] = density;
239 /* checksum */
240 spd[63] = 0;
241 for (i = 0; i < 63; i++) {
242 spd[63] += spd[i];
245 /* copy for SMBUS */
246 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
249 static void generate_eeprom_serial(uint8_t *eeprom)
251 int i, pos = 0;
252 uint8_t mac[6] = { 0x00 };
253 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
255 /* version */
256 eeprom[pos++] = 0x01;
258 /* count */
259 eeprom[pos++] = 0x02;
261 /* MAC address */
262 eeprom[pos++] = 0x01; /* MAC */
263 eeprom[pos++] = 0x06; /* length */
264 memcpy(&eeprom[pos], mac, sizeof(mac));
265 pos += sizeof(mac);
267 /* serial number */
268 eeprom[pos++] = 0x02; /* serial */
269 eeprom[pos++] = 0x05; /* length */
270 memcpy(&eeprom[pos], sn, sizeof(sn));
271 pos += sizeof(sn);
273 /* checksum */
274 eeprom[pos] = 0;
275 for (i = 0; i < pos; i++) {
276 eeprom[pos] += eeprom[i];
280 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
282 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
283 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
284 return eeprom->sda;
287 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
289 if (eeprom->scl && scl && (eeprom->sda != sda)) {
290 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
291 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
292 sda ? "stop" : "start");
293 if (!sda) {
294 eeprom->tick = 1;
295 eeprom->command = 0;
297 } else if (eeprom->tick == 0 && !eeprom->ack) {
298 /* Waiting for start. */
299 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
300 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
301 } else if (!eeprom->scl && scl) {
302 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
303 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
304 if (eeprom->ack) {
305 logout("\ti2c ack bit = 0\n");
306 sda = 0;
307 eeprom->ack = 0;
308 } else if (eeprom->sda == sda) {
309 uint8_t bit = (sda != 0);
310 logout("\ti2c bit = %d\n", bit);
311 if (eeprom->tick < 9) {
312 eeprom->command <<= 1;
313 eeprom->command += bit;
314 eeprom->tick++;
315 if (eeprom->tick == 9) {
316 logout("\tcommand 0x%04x, %s\n", eeprom->command,
317 bit ? "read" : "write");
318 eeprom->ack = 1;
320 } else if (eeprom->tick < 17) {
321 if (eeprom->command & 1) {
322 sda = ((eeprom->data & 0x80) != 0);
324 eeprom->address <<= 1;
325 eeprom->address += bit;
326 eeprom->tick++;
327 eeprom->data <<= 1;
328 if (eeprom->tick == 17) {
329 eeprom->data = eeprom->contents[eeprom->address];
330 logout("\taddress 0x%04x, data 0x%02x\n",
331 eeprom->address, eeprom->data);
332 eeprom->ack = 1;
333 eeprom->tick = 0;
335 } else if (eeprom->tick >= 17) {
336 sda = 0;
338 } else {
339 logout("\tsda changed with raising scl\n");
341 } else {
342 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
343 scl, eeprom->sda, sda);
345 eeprom->scl = scl;
346 eeprom->sda = sda;
349 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
350 unsigned size)
352 MaltaFPGAState *s = opaque;
353 uint32_t val = 0;
354 uint32_t saddr;
356 saddr = (addr & 0xfffff);
358 switch (saddr) {
360 /* SWITCH Register */
361 case 0x00200:
362 /* ori a3, a3, low(ram_low_size) */
363 val = 0x00000000;
364 break;
366 /* STATUS Register */
367 case 0x00208:
368 #ifdef TARGET_WORDS_BIGENDIAN
369 val = 0x00000012;
370 #else
371 val = 0x00000010;
372 #endif
373 break;
375 /* JMPRS Register */
376 case 0x00210:
377 val = 0x00;
378 break;
380 /* LEDBAR Register */
381 case 0x00408:
382 val = s->leds;
383 break;
385 /* BRKRES Register */
386 case 0x00508:
387 val = s->brk;
388 break;
390 /* UART Registers are handled directly by the serial device */
392 /* GPOUT Register */
393 case 0x00a00:
394 val = s->gpout;
395 break;
397 /* XXX: implement a real I2C controller */
399 /* GPINP Register */
400 case 0x00a08:
401 /* IN = OUT until a real I2C control is implemented */
402 if (s->i2csel) {
403 val = s->i2cout;
404 } else {
405 val = 0x00;
407 break;
409 /* I2CINP Register */
410 case 0x00b00:
411 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
412 break;
414 /* I2COE Register */
415 case 0x00b08:
416 val = s->i2coe;
417 break;
419 /* I2COUT Register */
420 case 0x00b10:
421 val = s->i2cout;
422 break;
424 /* I2CSEL Register */
425 case 0x00b18:
426 val = s->i2csel;
427 break;
429 default:
430 #if 0
431 printf("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
432 addr);
433 #endif
434 break;
436 return val;
439 static void malta_fpga_write(void *opaque, hwaddr addr,
440 uint64_t val, unsigned size)
442 MaltaFPGAState *s = opaque;
443 uint32_t saddr;
445 saddr = (addr & 0xfffff);
447 switch (saddr) {
449 /* SWITCH Register */
450 case 0x00200:
451 break;
453 /* JMPRS Register */
454 case 0x00210:
455 break;
457 /* LEDBAR Register */
458 case 0x00408:
459 s->leds = val & 0xff;
460 malta_fpga_update_display(s);
461 break;
463 /* ASCIIWORD Register */
464 case 0x00410:
465 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
466 malta_fpga_update_display(s);
467 break;
469 /* ASCIIPOS0 to ASCIIPOS7 Registers */
470 case 0x00418:
471 case 0x00420:
472 case 0x00428:
473 case 0x00430:
474 case 0x00438:
475 case 0x00440:
476 case 0x00448:
477 case 0x00450:
478 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
479 malta_fpga_update_display(s);
480 break;
482 /* SOFTRES Register */
483 case 0x00500:
484 if (val == 0x42) {
485 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
487 break;
489 /* BRKRES Register */
490 case 0x00508:
491 s->brk = val & 0xff;
492 break;
494 /* UART Registers are handled directly by the serial device */
496 /* GPOUT Register */
497 case 0x00a00:
498 s->gpout = val & 0xff;
499 break;
501 /* I2COE Register */
502 case 0x00b08:
503 s->i2coe = val & 0x03;
504 break;
506 /* I2COUT Register */
507 case 0x00b10:
508 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
509 s->i2cout = val;
510 break;
512 /* I2CSEL Register */
513 case 0x00b18:
514 s->i2csel = val & 0x01;
515 break;
517 default:
518 #if 0
519 printf("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
520 addr);
521 #endif
522 break;
526 static const MemoryRegionOps malta_fpga_ops = {
527 .read = malta_fpga_read,
528 .write = malta_fpga_write,
529 .endianness = DEVICE_NATIVE_ENDIAN,
532 static void malta_fpga_reset(void *opaque)
534 MaltaFPGAState *s = opaque;
536 s->leds = 0x00;
537 s->brk = 0x0a;
538 s->gpout = 0x00;
539 s->i2cin = 0x3;
540 s->i2coe = 0x0;
541 s->i2cout = 0x3;
542 s->i2csel = 0x1;
544 s->display_text[8] = '\0';
545 snprintf(s->display_text, 9, " ");
548 static void malta_fgpa_display_event(void *opaque, int event)
550 MaltaFPGAState *s = opaque;
552 if (event == CHR_EVENT_OPENED && !s->display_inited) {
553 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
554 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
555 qemu_chr_fe_printf(&s->display, "+ +\r\n");
556 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
557 qemu_chr_fe_printf(&s->display, "\n");
558 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
559 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
560 qemu_chr_fe_printf(&s->display, "+ +\r\n");
561 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
562 s->display_inited = true;
566 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
567 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
569 MaltaFPGAState *s;
570 Chardev *chr;
572 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
574 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
575 "malta-fpga", 0x100000);
576 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
577 &s->iomem, 0, 0x900);
578 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
579 &s->iomem, 0xa00, 0x10000 - 0xa00);
581 memory_region_add_subregion(address_space, base, &s->iomem_lo);
582 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
584 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
585 qemu_chr_fe_init(&s->display, chr, NULL);
586 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
587 malta_fgpa_display_event, NULL, s, NULL, true);
589 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
590 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
592 malta_fpga_reset(s);
593 qemu_register_reset(malta_fpga_reset, s);
595 return s;
598 /* Network support */
599 static void network_init(PCIBus *pci_bus)
601 int i;
603 for (i = 0; i < nb_nics; i++) {
604 NICInfo *nd = &nd_table[i];
605 const char *default_devaddr = NULL;
607 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
608 /* The malta board has a PCNet card using PCI SLOT 11 */
609 default_devaddr = "0b";
611 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
615 static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr,
616 int64_t kernel_entry)
618 uint16_t *p;
620 /* Small bootloader */
621 p = (uint16_t *)base;
623 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
624 #define NM_HI2(VAL) \
625 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
626 #define NM_LO(VAL) ((VAL) & 0xfff)
628 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
629 /* bc to_here */
630 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
631 /* nop */
632 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
633 /* nop */
634 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
635 /* nop */
636 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
637 /* nop */
638 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
639 /* nop */
640 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
641 /* nop */
642 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
643 /* nop */
645 /* to_here: */
646 if (semihosting_get_argc()) {
647 /* Preserve a0 content as arguments have been passed */
648 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
649 /* nop */
650 } else {
651 stw_p(p++, 0x0080); stw_p(p++, 0x0002);
652 /* li a0,2 */
655 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64));
657 stw_p(p++, NM_HI2(ENVP_ADDR - 64));
658 /* lui sp,%hi(ENVP_ADDR - 64) */
660 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64));
661 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
663 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR));
665 stw_p(p++, NM_HI2(ENVP_ADDR));
666 /* lui a1,%hi(ENVP_ADDR) */
668 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR));
669 /* ori a1,a1,%lo(ENVP_ADDR) */
671 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8));
673 stw_p(p++, NM_HI2(ENVP_ADDR + 8));
674 /* lui a2,%hi(ENVP_ADDR + 8) */
676 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8));
677 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
679 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
681 stw_p(p++, NM_HI2(loaderparams.ram_low_size));
682 /* lui a3,%hi(loaderparams.ram_low_size) */
684 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
685 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
688 * Load BAR registers as done by YAMON:
690 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
691 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
692 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
695 stw_p(p++, 0xe040); stw_p(p++, 0x0681);
696 /* lui t1, %hi(0xb4000000) */
698 #ifdef TARGET_WORDS_BIGENDIAN
700 stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
701 /* lui t0, %hi(0xdf000000) */
703 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
704 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
705 /* sw t0, 0x68(t1) */
707 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
708 /* lui t1, %hi(0xbbe00000) */
710 stw_p(p++, 0xe020); stw_p(p++, 0x0801);
711 /* lui t0, %hi(0xc0000000) */
713 /* 0x48 corresponds to GT_PCI0IOLD */
714 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
715 /* sw t0, 0x48(t1) */
717 stw_p(p++, 0xe020); stw_p(p++, 0x0800);
718 /* lui t0, %hi(0x40000000) */
720 /* 0x50 corresponds to GT_PCI0IOHD */
721 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
722 /* sw t0, 0x50(t1) */
724 stw_p(p++, 0xe020); stw_p(p++, 0x0001);
725 /* lui t0, %hi(0x80000000) */
727 /* 0x58 corresponds to GT_PCI0M0LD */
728 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
729 /* sw t0, 0x58(t1) */
731 stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
732 /* lui t0, %hi(0x3f000000) */
734 /* 0x60 corresponds to GT_PCI0M0HD */
735 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
736 /* sw t0, 0x60(t1) */
738 stw_p(p++, 0xe020); stw_p(p++, 0x0821);
739 /* lui t0, %hi(0xc1000000) */
741 /* 0x80 corresponds to GT_PCI0M1LD */
742 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
743 /* sw t0, 0x80(t1) */
745 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
746 /* lui t0, %hi(0x5e000000) */
748 #else
750 stw_p(p++, 0x0020); stw_p(p++, 0x00df);
751 /* addiu[32] t0, $0, 0xdf */
753 /* 0x68 corresponds to GT_ISD */
754 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
755 /* sw t0, 0x68(t1) */
757 /* Use kseg2 remapped address 0x1be00000 */
758 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
759 /* lui t1, %hi(0xbbe00000) */
761 stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
762 /* addiu[32] t0, $0, 0xc0 */
764 /* 0x48 corresponds to GT_PCI0IOLD */
765 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
766 /* sw t0, 0x48(t1) */
768 stw_p(p++, 0x0020); stw_p(p++, 0x0040);
769 /* addiu[32] t0, $0, 0x40 */
771 /* 0x50 corresponds to GT_PCI0IOHD */
772 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
773 /* sw t0, 0x50(t1) */
775 stw_p(p++, 0x0020); stw_p(p++, 0x0080);
776 /* addiu[32] t0, $0, 0x80 */
778 /* 0x58 corresponds to GT_PCI0M0LD */
779 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
780 /* sw t0, 0x58(t1) */
782 stw_p(p++, 0x0020); stw_p(p++, 0x003f);
783 /* addiu[32] t0, $0, 0x3f */
785 /* 0x60 corresponds to GT_PCI0M0HD */
786 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
787 /* sw t0, 0x60(t1) */
789 stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
790 /* addiu[32] t0, $0, 0xc1 */
792 /* 0x80 corresponds to GT_PCI0M1LD */
793 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
794 /* sw t0, 0x80(t1) */
796 stw_p(p++, 0x0020); stw_p(p++, 0x005e);
797 /* addiu[32] t0, $0, 0x5e */
799 #endif
801 /* 0x88 corresponds to GT_PCI0M1HD */
802 stw_p(p++, 0x8422); stw_p(p++, 0x9088);
803 /* sw t0, 0x88(t1) */
805 stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
807 stw_p(p++, NM_HI2(kernel_entry));
808 /* lui t9,%hi(kernel_entry) */
810 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
811 /* ori t9,t9,%lo(kernel_entry) */
813 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
814 /* jalrc t8 */
818 * ROM and pseudo bootloader
820 * The following code implements a very very simple bootloader. It first
821 * loads the registers a0 to a3 to the values expected by the OS, and
822 * then jump at the kernel address.
824 * The bootloader should pass the locations of the kernel arguments and
825 * environment variables tables. Those tables contain the 32-bit address
826 * of NULL terminated strings. The environment variables table should be
827 * terminated by a NULL address.
829 * For a simpler implementation, the number of kernel arguments is fixed
830 * to two (the name of the kernel and the command line), and the two
831 * tables are actually the same one.
833 * The registers a0 to a3 should contain the following values:
834 * a0 - number of kernel arguments
835 * a1 - 32-bit address of the kernel arguments table
836 * a2 - 32-bit address of the environment variables table
837 * a3 - RAM size in bytes
839 static void write_bootloader(uint8_t *base, int64_t run_addr,
840 int64_t kernel_entry)
842 uint32_t *p;
844 /* Small bootloader */
845 p = (uint32_t *)base;
847 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
848 ((run_addr + 0x580) & 0x0fffffff) >> 2);
849 stl_p(p++, 0x00000000); /* nop */
851 /* YAMON service vector */
852 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
853 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
854 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
855 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
856 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
857 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
858 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
859 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
860 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
861 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
862 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
863 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
864 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
867 /* Second part of the bootloader */
868 p = (uint32_t *) (base + 0x580);
870 if (semihosting_get_argc()) {
871 /* Preserve a0 content as arguments have been passed */
872 stl_p(p++, 0x00000000); /* nop */
873 } else {
874 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
877 /* lui sp, high(ENVP_ADDR) */
878 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff));
879 /* ori sp, sp, low(ENVP_ADDR) */
880 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));
881 /* lui a1, high(ENVP_ADDR) */
882 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));
883 /* ori a1, a1, low(ENVP_ADDR) */
884 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));
885 /* lui a2, high(ENVP_ADDR + 8) */
886 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff));
887 /* ori a2, a2, low(ENVP_ADDR + 8) */
888 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));
889 /* lui a3, high(ram_low_size) */
890 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
891 /* ori a3, a3, low(ram_low_size) */
892 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
894 /* Load BAR registers as done by YAMON */
895 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
897 #ifdef TARGET_WORDS_BIGENDIAN
898 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
899 #else
900 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
901 #endif
902 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
904 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
906 #ifdef TARGET_WORDS_BIGENDIAN
907 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
908 #else
909 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
910 #endif
911 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
912 #ifdef TARGET_WORDS_BIGENDIAN
913 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
914 #else
915 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
916 #endif
917 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
919 #ifdef TARGET_WORDS_BIGENDIAN
920 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
921 #else
922 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
923 #endif
924 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
925 #ifdef TARGET_WORDS_BIGENDIAN
926 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
927 #else
928 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
929 #endif
930 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
932 #ifdef TARGET_WORDS_BIGENDIAN
933 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
934 #else
935 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
936 #endif
937 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
938 #ifdef TARGET_WORDS_BIGENDIAN
939 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
940 #else
941 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
942 #endif
943 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
945 /* Jump to kernel code */
946 stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
947 stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
948 stl_p(p++, 0x03e00009); /* jalr ra */
949 stl_p(p++, 0x00000000); /* nop */
951 /* YAMON subroutines */
952 p = (uint32_t *) (base + 0x800);
953 stl_p(p++, 0x03e00009); /* jalr ra */
954 stl_p(p++, 0x24020000); /* li v0,0 */
955 /* 808 YAMON print */
956 stl_p(p++, 0x03e06821); /* move t5,ra */
957 stl_p(p++, 0x00805821); /* move t3,a0 */
958 stl_p(p++, 0x00a05021); /* move t2,a1 */
959 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
960 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
961 stl_p(p++, 0x10800005); /* beqz a0,834 */
962 stl_p(p++, 0x00000000); /* nop */
963 stl_p(p++, 0x0ff0021c); /* jal 870 */
964 stl_p(p++, 0x00000000); /* nop */
965 stl_p(p++, 0x1000fff9); /* b 814 */
966 stl_p(p++, 0x00000000); /* nop */
967 stl_p(p++, 0x01a00009); /* jalr t5 */
968 stl_p(p++, 0x01602021); /* move a0,t3 */
969 /* 0x83c YAMON print_count */
970 stl_p(p++, 0x03e06821); /* move t5,ra */
971 stl_p(p++, 0x00805821); /* move t3,a0 */
972 stl_p(p++, 0x00a05021); /* move t2,a1 */
973 stl_p(p++, 0x00c06021); /* move t4,a2 */
974 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
975 stl_p(p++, 0x0ff0021c); /* jal 870 */
976 stl_p(p++, 0x00000000); /* nop */
977 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
978 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
979 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
980 stl_p(p++, 0x00000000); /* nop */
981 stl_p(p++, 0x01a00009); /* jalr t5 */
982 stl_p(p++, 0x01602021); /* move a0,t3 */
983 /* 0x870 */
984 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
985 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
986 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
987 stl_p(p++, 0x00000000); /* nop */
988 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
989 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
990 stl_p(p++, 0x00000000); /* nop */
991 stl_p(p++, 0x03e00009); /* jalr ra */
992 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
996 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
997 const char *string, ...)
999 va_list ap;
1000 int32_t table_addr;
1002 if (index >= ENVP_NB_ENTRIES) {
1003 return;
1006 if (string == NULL) {
1007 prom_buf[index] = 0;
1008 return;
1011 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1012 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
1014 va_start(ap, string);
1015 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1016 va_end(ap);
1019 /* Kernel */
1020 static int64_t load_kernel(void)
1022 int64_t kernel_entry, kernel_high, initrd_size;
1023 long kernel_size;
1024 ram_addr_t initrd_offset;
1025 int big_endian;
1026 uint32_t *prom_buf;
1027 long prom_size;
1028 int prom_index = 0;
1029 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1031 #ifdef TARGET_WORDS_BIGENDIAN
1032 big_endian = 1;
1033 #else
1034 big_endian = 0;
1035 #endif
1037 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1038 cpu_mips_kseg0_to_phys, NULL,
1039 (uint64_t *)&kernel_entry, NULL,
1040 (uint64_t *)&kernel_high, big_endian, EM_MIPS, 1, 0);
1041 if (kernel_size < 0) {
1042 error_report("could not load kernel '%s': %s",
1043 loaderparams.kernel_filename,
1044 load_elf_strerror(kernel_size));
1045 exit(1);
1048 /* Check where the kernel has been linked */
1049 if (kernel_entry & 0x80000000ll) {
1050 if (kvm_enabled()) {
1051 error_report("KVM guest kernels must be linked in useg. "
1052 "Did you forget to enable CONFIG_KVM_GUEST?");
1053 exit(1);
1056 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1057 } else {
1058 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1059 mips_um_ksegs_enable();
1061 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1064 /* load initrd */
1065 initrd_size = 0;
1066 initrd_offset = 0;
1067 if (loaderparams.initrd_filename) {
1068 initrd_size = get_image_size(loaderparams.initrd_filename);
1069 if (initrd_size > 0) {
1071 * The kernel allocates the bootmap memory in the low memory after
1072 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1073 * pages.
1075 initrd_offset = (loaderparams.ram_low_size - initrd_size
1076 - (128 * KiB)
1077 - ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
1078 if (kernel_high >= initrd_offset) {
1079 error_report("memory too small for initial ram disk '%s'",
1080 loaderparams.initrd_filename);
1081 exit(1);
1083 initrd_size = load_image_targphys(loaderparams.initrd_filename,
1084 initrd_offset,
1085 ram_size - initrd_offset);
1087 if (initrd_size == (target_ulong) -1) {
1088 error_report("could not load initial ram disk '%s'",
1089 loaderparams.initrd_filename);
1090 exit(1);
1094 /* Setup prom parameters. */
1095 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1096 prom_buf = g_malloc(prom_size);
1098 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1099 if (initrd_size > 0) {
1100 prom_set(prom_buf, prom_index++,
1101 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1102 xlate_to_kseg0(NULL, initrd_offset),
1103 initrd_size, loaderparams.kernel_cmdline);
1104 } else {
1105 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1108 prom_set(prom_buf, prom_index++, "memsize");
1109 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1111 prom_set(prom_buf, prom_index++, "ememsize");
1112 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1114 prom_set(prom_buf, prom_index++, "modetty0");
1115 prom_set(prom_buf, prom_index++, "38400n8r");
1116 prom_set(prom_buf, prom_index++, NULL);
1118 rom_add_blob_fixed("prom", prom_buf, prom_size,
1119 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
1121 g_free(prom_buf);
1122 return kernel_entry;
1125 static void malta_mips_config(MIPSCPU *cpu)
1127 MachineState *ms = MACHINE(qdev_get_machine());
1128 unsigned int smp_cpus = ms->smp.cpus;
1129 CPUMIPSState *env = &cpu->env;
1130 CPUState *cs = CPU(cpu);
1132 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
1133 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
1136 static void main_cpu_reset(void *opaque)
1138 MIPSCPU *cpu = opaque;
1139 CPUMIPSState *env = &cpu->env;
1141 cpu_reset(CPU(cpu));
1144 * The bootloader does not need to be rewritten as it is located in a
1145 * read only location. The kernel location and the arguments table
1146 * location does not change.
1148 if (loaderparams.kernel_filename) {
1149 env->CP0_Status &= ~(1 << CP0St_ERL);
1152 malta_mips_config(cpu);
1154 if (kvm_enabled()) {
1155 /* Start running from the bootloader we wrote to end of RAM */
1156 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1160 static void create_cpu_without_cps(MachineState *ms,
1161 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1163 CPUMIPSState *env;
1164 MIPSCPU *cpu;
1165 int i;
1167 for (i = 0; i < ms->smp.cpus; i++) {
1168 cpu = MIPS_CPU(cpu_create(ms->cpu_type));
1170 /* Init internal devices */
1171 cpu_mips_irq_init_cpu(cpu);
1172 cpu_mips_clock_init(cpu);
1173 qemu_register_reset(main_cpu_reset, cpu);
1176 cpu = MIPS_CPU(first_cpu);
1177 env = &cpu->env;
1178 *i8259_irq = env->irq[2];
1179 *cbus_irq = env->irq[4];
1182 static void create_cps(MachineState *ms, MaltaState *s,
1183 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1185 Error *err = NULL;
1187 sysbus_init_child_obj(OBJECT(s), "cps", OBJECT(&s->cps), sizeof(s->cps),
1188 TYPE_MIPS_CPS);
1189 object_property_set_str(OBJECT(&s->cps), ms->cpu_type, "cpu-type", &err);
1190 object_property_set_int(OBJECT(&s->cps), ms->smp.cpus, "num-vp", &err);
1191 object_property_set_bool(OBJECT(&s->cps), true, "realized", &err);
1192 if (err != NULL) {
1193 error_report("%s", error_get_pretty(err));
1194 exit(1);
1197 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1199 *i8259_irq = get_cps_irq(&s->cps, 3);
1200 *cbus_irq = NULL;
1203 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1204 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1206 if ((ms->smp.cpus > 1) && cpu_supports_cps_smp(ms->cpu_type)) {
1207 create_cps(ms, s, cbus_irq, i8259_irq);
1208 } else {
1209 create_cpu_without_cps(ms, cbus_irq, i8259_irq);
1213 static
1214 void mips_malta_init(MachineState *machine)
1216 ram_addr_t ram_size = machine->ram_size;
1217 ram_addr_t ram_low_size;
1218 const char *kernel_filename = machine->kernel_filename;
1219 const char *kernel_cmdline = machine->kernel_cmdline;
1220 const char *initrd_filename = machine->initrd_filename;
1221 char *filename;
1222 PFlashCFI01 *fl;
1223 MemoryRegion *system_memory = get_system_memory();
1224 MemoryRegion *ram_high = g_new(MemoryRegion, 1);
1225 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1226 MemoryRegion *ram_low_postio;
1227 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1228 const size_t smbus_eeprom_size = 8 * 256;
1229 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1230 int64_t kernel_entry, bootloader_run_addr;
1231 PCIBus *pci_bus;
1232 ISABus *isa_bus;
1233 qemu_irq cbus_irq, i8259_irq;
1234 I2CBus *smbus;
1235 DriveInfo *dinfo;
1236 int fl_idx = 0;
1237 int be;
1239 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
1240 MaltaState *s = MIPS_MALTA(dev);
1243 * The whole address space decoded by the GT-64120A doesn't generate
1244 * exception when accessing invalid memory. Create an empty slot to
1245 * emulate this feature.\
1247 empty_slot_init(0, 0x20000000);
1249 qdev_init_nofail(dev);
1251 /* create CPU */
1252 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1254 /* allocate RAM */
1255 if (ram_size > 2 * GiB) {
1256 error_report("Too much memory for this machine: %" PRId64 "MB,"
1257 " maximum 2048MB", ram_size / MiB);
1258 exit(1);
1261 /* register RAM at high address where it is undisturbed by IO */
1262 memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram",
1263 ram_size);
1264 memory_region_add_subregion(system_memory, 0x80000000, ram_high);
1266 /* alias for pre IO hole access */
1267 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1268 ram_high, 0, MIN(ram_size, 256 * MiB));
1269 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1271 /* alias for post IO hole access, if there is enough RAM */
1272 if (ram_size > 512 * MiB) {
1273 ram_low_postio = g_new(MemoryRegion, 1);
1274 memory_region_init_alias(ram_low_postio, NULL,
1275 "mips_malta_low_postio.ram",
1276 ram_high, 512 * MiB,
1277 ram_size - 512 * MiB);
1278 memory_region_add_subregion(system_memory, 512 * MiB,
1279 ram_low_postio);
1282 #ifdef TARGET_WORDS_BIGENDIAN
1283 be = 1;
1284 #else
1285 be = 0;
1286 #endif
1288 /* FPGA */
1290 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1291 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1293 /* Load firmware in flash / BIOS. */
1294 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1295 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1296 FLASH_SIZE,
1297 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1298 65536,
1299 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1300 bios = pflash_cfi01_get_memory(fl);
1301 fl_idx++;
1302 if (kernel_filename) {
1303 ram_low_size = MIN(ram_size, 256 * MiB);
1304 /* For KVM we reserve 1MB of RAM for running bootloader */
1305 if (kvm_enabled()) {
1306 ram_low_size -= 0x100000;
1307 bootloader_run_addr = 0x40000000 + ram_low_size;
1308 } else {
1309 bootloader_run_addr = 0xbfc00000;
1312 /* Write a small bootloader to the flash location. */
1313 loaderparams.ram_size = ram_size;
1314 loaderparams.ram_low_size = ram_low_size;
1315 loaderparams.kernel_filename = kernel_filename;
1316 loaderparams.kernel_cmdline = kernel_cmdline;
1317 loaderparams.initrd_filename = initrd_filename;
1318 kernel_entry = load_kernel();
1320 if (!cpu_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1321 write_bootloader(memory_region_get_ram_ptr(bios),
1322 bootloader_run_addr, kernel_entry);
1323 } else {
1324 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1325 bootloader_run_addr, kernel_entry);
1327 if (kvm_enabled()) {
1328 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1329 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1330 ram_low_size,
1331 bootloader_run_addr, kernel_entry);
1333 } else {
1334 target_long bios_size = FLASH_SIZE;
1335 /* The flash region isn't executable from a KVM guest */
1336 if (kvm_enabled()) {
1337 error_report("KVM enabled but no -kernel argument was specified. "
1338 "Booting from flash is not supported with KVM.");
1339 exit(1);
1341 /* Load firmware from flash. */
1342 if (!dinfo) {
1343 /* Load a BIOS image. */
1344 if (bios_name == NULL) {
1345 bios_name = BIOS_FILENAME;
1347 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1348 if (filename) {
1349 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1350 BIOS_SIZE);
1351 g_free(filename);
1352 } else {
1353 bios_size = -1;
1355 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1356 !kernel_filename && !qtest_enabled()) {
1357 error_report("Could not load MIPS bios '%s', and no "
1358 "-kernel argument was specified", bios_name);
1359 exit(1);
1363 * In little endian mode the 32bit words in the bios are swapped,
1364 * a neat trick which allows bi-endian firmware.
1366 #ifndef TARGET_WORDS_BIGENDIAN
1368 uint32_t *end, *addr;
1369 const size_t swapsize = MIN(bios_size, 0x3e0000);
1370 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1371 if (!addr) {
1372 addr = memory_region_get_ram_ptr(bios);
1374 end = (void *)addr + swapsize;
1375 while (addr < end) {
1376 bswap32s(addr);
1377 addr++;
1380 #endif
1384 * Map the BIOS at a 2nd physical location, as on the real board.
1385 * Copy it so that we can patch in the MIPS revision, which cannot be
1386 * handled by an overlapping region as the resulting ROM code subpage
1387 * regions are not executable.
1389 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1390 &error_fatal);
1391 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1392 FLASH_ADDRESS, BIOS_SIZE)) {
1393 memcpy(memory_region_get_ram_ptr(bios_copy),
1394 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1396 memory_region_set_readonly(bios_copy, true);
1397 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1399 /* Board ID = 0x420 (Malta Board with CoreLV) */
1400 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1402 /* Northbridge */
1403 pci_bus = gt64120_register(s->i8259);
1405 /* Southbridge */
1406 dev = piix4_create(pci_bus, &isa_bus, &smbus, MAX_IDE_BUS);
1408 /* Interrupt controller */
1409 qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1410 for (int i = 0; i < ISA_NUM_IRQS; i++) {
1411 s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1414 /* generate SPD EEPROM data */
1415 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1416 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1417 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1418 g_free(smbus_eeprom_buf);
1420 /* Super I/O: SMS FDC37M817 */
1421 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1423 /* Network card */
1424 network_init(pci_bus);
1426 /* Optional PCI video card */
1427 pci_vga_init(pci_bus);
1430 static const TypeInfo mips_malta_device = {
1431 .name = TYPE_MIPS_MALTA,
1432 .parent = TYPE_SYS_BUS_DEVICE,
1433 .instance_size = sizeof(MaltaState),
1436 static void mips_malta_machine_init(MachineClass *mc)
1438 mc->desc = "MIPS Malta Core LV";
1439 mc->init = mips_malta_init;
1440 mc->block_default_type = IF_IDE;
1441 mc->max_cpus = 16;
1442 mc->is_default = 1;
1443 #ifdef TARGET_MIPS64
1444 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1445 #else
1446 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1447 #endif
1450 DEFINE_MACHINE("malta", mips_malta_machine_init)
1452 static void mips_malta_register_types(void)
1454 type_register_static(&mips_malta_device);
1457 type_init(mips_malta_register_types)