2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
29 #include "hw/southbridge/piix.h"
30 #include "hw/isa/superio.h"
31 #include "hw/char/serial.h"
33 #include "hw/boards.h"
34 #include "hw/i2c/smbus_eeprom.h"
35 #include "hw/block/flash.h"
36 #include "hw/mips/mips.h"
37 #include "hw/mips/cpudevs.h"
38 #include "hw/pci/pci.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/arch_init.h"
42 #include "hw/mips/bios.h"
45 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "hw/sysbus.h" /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "hw/empty_slot.h"
56 #include "sysemu/kvm.h"
57 #include "hw/semihosting/semihost.h"
58 #include "hw/mips/cps.h"
60 #define ENVP_ADDR 0x80002000l
61 #define ENVP_NB_ENTRIES 16
62 #define ENVP_ENTRY_SIZE 256
64 /* Hardware addresses */
65 #define FLASH_ADDRESS 0x1e000000ULL
66 #define FPGA_ADDRESS 0x1f000000ULL
67 #define RESET_ADDRESS 0x1fc00000ULL
69 #define FLASH_SIZE 0x400000
75 MemoryRegion iomem_lo
; /* 0 - 0x900 */
76 MemoryRegion iomem_hi
; /* 0xa00 - 0x100000 */
90 #define TYPE_MIPS_MALTA "mips-malta"
91 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
94 SysBusDevice parent_obj
;
97 qemu_irq i8259
[ISA_NUM_IRQS
];
100 static struct _loaderparams
{
101 int ram_size
, ram_low_size
;
102 const char *kernel_filename
;
103 const char *kernel_cmdline
;
104 const char *initrd_filename
;
108 static void malta_fpga_update_display(void *opaque
)
112 MaltaFPGAState
*s
= opaque
;
114 for (i
= 7 ; i
>= 0 ; i
--) {
115 if (s
->leds
& (1 << i
)) {
123 qemu_chr_fe_printf(&s
->display
, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
125 qemu_chr_fe_printf(&s
->display
, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
130 * EEPROM 24C01 / 24C02 emulation.
132 * Emulation for serial EEPROMs:
133 * 24C01 - 1024 bit (128 x 8)
134 * 24C02 - 2048 bit (256 x 8)
136 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
140 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
142 # define logout(fmt, ...) ((void)0)
145 struct _eeprom24c0x_t
{
154 uint8_t contents
[256];
157 typedef struct _eeprom24c0x_t eeprom24c0x_t
;
159 static eeprom24c0x_t spd_eeprom
= {
162 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
164 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
166 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
168 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
170 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
172 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
174 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
176 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
196 static void generate_eeprom_spd(uint8_t *eeprom
, ram_addr_t ram_size
)
198 enum { SDR
= 0x4, DDR2
= 0x8 } type
;
199 uint8_t *spd
= spd_eeprom
.contents
;
201 uint16_t density
= 0;
204 /* work in terms of MB */
207 while ((ram_size
>= 4) && (nbanks
<= 2)) {
208 int sz_log2
= MIN(31 - clz32(ram_size
), 14);
210 density
|= 1 << (sz_log2
- 2);
211 ram_size
-= 1 << sz_log2
;
214 /* split to 2 banks if possible */
215 if ((nbanks
== 1) && (density
> 1)) {
220 if (density
& 0xff00) {
221 density
= (density
& 0xe0) | ((density
>> 8) & 0x1f);
223 } else if (!(density
& 0x1f)) {
230 warn_report("SPD cannot represent final " RAM_ADDR_FMT
"MB"
231 " of SDRAM", ram_size
);
234 /* fill in SPD memory information */
241 for (i
= 0; i
< 63; i
++) {
246 memcpy(eeprom
, spd
, sizeof(spd_eeprom
.contents
));
249 static void generate_eeprom_serial(uint8_t *eeprom
)
252 uint8_t mac
[6] = { 0x00 };
253 uint8_t sn
[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
256 eeprom
[pos
++] = 0x01;
259 eeprom
[pos
++] = 0x02;
262 eeprom
[pos
++] = 0x01; /* MAC */
263 eeprom
[pos
++] = 0x06; /* length */
264 memcpy(&eeprom
[pos
], mac
, sizeof(mac
));
268 eeprom
[pos
++] = 0x02; /* serial */
269 eeprom
[pos
++] = 0x05; /* length */
270 memcpy(&eeprom
[pos
], sn
, sizeof(sn
));
275 for (i
= 0; i
< pos
; i
++) {
276 eeprom
[pos
] += eeprom
[i
];
280 static uint8_t eeprom24c0x_read(eeprom24c0x_t
*eeprom
)
282 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
283 eeprom
->tick
, eeprom
->scl
, eeprom
->sda
, eeprom
->data
);
287 static void eeprom24c0x_write(eeprom24c0x_t
*eeprom
, int scl
, int sda
)
289 if (eeprom
->scl
&& scl
&& (eeprom
->sda
!= sda
)) {
290 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
291 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
,
292 sda
? "stop" : "start");
297 } else if (eeprom
->tick
== 0 && !eeprom
->ack
) {
298 /* Waiting for start. */
299 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
300 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
);
301 } else if (!eeprom
->scl
&& scl
) {
302 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
303 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
);
305 logout("\ti2c ack bit = 0\n");
308 } else if (eeprom
->sda
== sda
) {
309 uint8_t bit
= (sda
!= 0);
310 logout("\ti2c bit = %d\n", bit
);
311 if (eeprom
->tick
< 9) {
312 eeprom
->command
<<= 1;
313 eeprom
->command
+= bit
;
315 if (eeprom
->tick
== 9) {
316 logout("\tcommand 0x%04x, %s\n", eeprom
->command
,
317 bit
? "read" : "write");
320 } else if (eeprom
->tick
< 17) {
321 if (eeprom
->command
& 1) {
322 sda
= ((eeprom
->data
& 0x80) != 0);
324 eeprom
->address
<<= 1;
325 eeprom
->address
+= bit
;
328 if (eeprom
->tick
== 17) {
329 eeprom
->data
= eeprom
->contents
[eeprom
->address
];
330 logout("\taddress 0x%04x, data 0x%02x\n",
331 eeprom
->address
, eeprom
->data
);
335 } else if (eeprom
->tick
>= 17) {
339 logout("\tsda changed with raising scl\n");
342 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom
->tick
, eeprom
->scl
,
343 scl
, eeprom
->sda
, sda
);
349 static uint64_t malta_fpga_read(void *opaque
, hwaddr addr
,
352 MaltaFPGAState
*s
= opaque
;
356 saddr
= (addr
& 0xfffff);
360 /* SWITCH Register */
362 /* ori a3, a3, low(ram_low_size) */
366 /* STATUS Register */
368 #ifdef TARGET_WORDS_BIGENDIAN
380 /* LEDBAR Register */
385 /* BRKRES Register */
390 /* UART Registers are handled directly by the serial device */
397 /* XXX: implement a real I2C controller */
401 /* IN = OUT until a real I2C control is implemented */
409 /* I2CINP Register */
411 val
= ((s
->i2cin
& ~1) | eeprom24c0x_read(&spd_eeprom
));
419 /* I2COUT Register */
424 /* I2CSEL Register */
431 printf("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx
"\n",
439 static void malta_fpga_write(void *opaque
, hwaddr addr
,
440 uint64_t val
, unsigned size
)
442 MaltaFPGAState
*s
= opaque
;
445 saddr
= (addr
& 0xfffff);
449 /* SWITCH Register */
457 /* LEDBAR Register */
459 s
->leds
= val
& 0xff;
460 malta_fpga_update_display(s
);
463 /* ASCIIWORD Register */
465 snprintf(s
->display_text
, 9, "%08X", (uint32_t)val
);
466 malta_fpga_update_display(s
);
469 /* ASCIIPOS0 to ASCIIPOS7 Registers */
478 s
->display_text
[(saddr
- 0x00418) >> 3] = (char) val
;
479 malta_fpga_update_display(s
);
482 /* SOFTRES Register */
485 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
489 /* BRKRES Register */
494 /* UART Registers are handled directly by the serial device */
498 s
->gpout
= val
& 0xff;
503 s
->i2coe
= val
& 0x03;
506 /* I2COUT Register */
508 eeprom24c0x_write(&spd_eeprom
, val
& 0x02, val
& 0x01);
512 /* I2CSEL Register */
514 s
->i2csel
= val
& 0x01;
519 printf("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx
"\n",
526 static const MemoryRegionOps malta_fpga_ops
= {
527 .read
= malta_fpga_read
,
528 .write
= malta_fpga_write
,
529 .endianness
= DEVICE_NATIVE_ENDIAN
,
532 static void malta_fpga_reset(void *opaque
)
534 MaltaFPGAState
*s
= opaque
;
544 s
->display_text
[8] = '\0';
545 snprintf(s
->display_text
, 9, " ");
548 static void malta_fgpa_display_event(void *opaque
, int event
)
550 MaltaFPGAState
*s
= opaque
;
552 if (event
== CHR_EVENT_OPENED
&& !s
->display_inited
) {
553 qemu_chr_fe_printf(&s
->display
, "\e[HMalta LEDBAR\r\n");
554 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
555 qemu_chr_fe_printf(&s
->display
, "+ +\r\n");
556 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
557 qemu_chr_fe_printf(&s
->display
, "\n");
558 qemu_chr_fe_printf(&s
->display
, "Malta ASCII\r\n");
559 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
560 qemu_chr_fe_printf(&s
->display
, "+ +\r\n");
561 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
562 s
->display_inited
= true;
566 static MaltaFPGAState
*malta_fpga_init(MemoryRegion
*address_space
,
567 hwaddr base
, qemu_irq uart_irq
, Chardev
*uart_chr
)
572 s
= (MaltaFPGAState
*)g_malloc0(sizeof(MaltaFPGAState
));
574 memory_region_init_io(&s
->iomem
, NULL
, &malta_fpga_ops
, s
,
575 "malta-fpga", 0x100000);
576 memory_region_init_alias(&s
->iomem_lo
, NULL
, "malta-fpga",
577 &s
->iomem
, 0, 0x900);
578 memory_region_init_alias(&s
->iomem_hi
, NULL
, "malta-fpga",
579 &s
->iomem
, 0xa00, 0x10000 - 0xa00);
581 memory_region_add_subregion(address_space
, base
, &s
->iomem_lo
);
582 memory_region_add_subregion(address_space
, base
+ 0xa00, &s
->iomem_hi
);
584 chr
= qemu_chr_new("fpga", "vc:320x200", NULL
);
585 qemu_chr_fe_init(&s
->display
, chr
, NULL
);
586 qemu_chr_fe_set_handlers(&s
->display
, NULL
, NULL
,
587 malta_fgpa_display_event
, NULL
, s
, NULL
, true);
589 s
->uart
= serial_mm_init(address_space
, base
+ 0x900, 3, uart_irq
,
590 230400, uart_chr
, DEVICE_NATIVE_ENDIAN
);
593 qemu_register_reset(malta_fpga_reset
, s
);
598 /* Network support */
599 static void network_init(PCIBus
*pci_bus
)
603 for (i
= 0; i
< nb_nics
; i
++) {
604 NICInfo
*nd
= &nd_table
[i
];
605 const char *default_devaddr
= NULL
;
607 if (i
== 0 && (!nd
->model
|| strcmp(nd
->model
, "pcnet") == 0))
608 /* The malta board has a PCNet card using PCI SLOT 11 */
609 default_devaddr
= "0b";
611 pci_nic_init_nofail(nd
, pci_bus
, "pcnet", default_devaddr
);
615 static void write_bootloader_nanomips(uint8_t *base
, int64_t run_addr
,
616 int64_t kernel_entry
)
620 /* Small bootloader */
621 p
= (uint16_t *)base
;
623 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
624 #define NM_HI2(VAL) \
625 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
626 #define NM_LO(VAL) ((VAL) & 0xfff)
628 stw_p(p
++, 0x2800); stw_p(p
++, 0x001c);
630 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
632 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
634 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
636 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
638 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
640 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
642 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
646 if (semihosting_get_argc()) {
647 /* Preserve a0 content as arguments have been passed */
648 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
651 stw_p(p
++, 0x0080); stw_p(p
++, 0x0002);
655 stw_p(p
++, 0xe3a0 | NM_HI1(ENVP_ADDR
- 64));
657 stw_p(p
++, NM_HI2(ENVP_ADDR
- 64));
658 /* lui sp,%hi(ENVP_ADDR - 64) */
660 stw_p(p
++, 0x83bd); stw_p(p
++, NM_LO(ENVP_ADDR
- 64));
661 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
663 stw_p(p
++, 0xe0a0 | NM_HI1(ENVP_ADDR
));
665 stw_p(p
++, NM_HI2(ENVP_ADDR
));
666 /* lui a1,%hi(ENVP_ADDR) */
668 stw_p(p
++, 0x80a5); stw_p(p
++, NM_LO(ENVP_ADDR
));
669 /* ori a1,a1,%lo(ENVP_ADDR) */
671 stw_p(p
++, 0xe0c0 | NM_HI1(ENVP_ADDR
+ 8));
673 stw_p(p
++, NM_HI2(ENVP_ADDR
+ 8));
674 /* lui a2,%hi(ENVP_ADDR + 8) */
676 stw_p(p
++, 0x80c6); stw_p(p
++, NM_LO(ENVP_ADDR
+ 8));
677 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
679 stw_p(p
++, 0xe0e0 | NM_HI1(loaderparams
.ram_low_size
));
681 stw_p(p
++, NM_HI2(loaderparams
.ram_low_size
));
682 /* lui a3,%hi(loaderparams.ram_low_size) */
684 stw_p(p
++, 0x80e7); stw_p(p
++, NM_LO(loaderparams
.ram_low_size
));
685 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
688 * Load BAR registers as done by YAMON:
690 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
691 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
692 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
695 stw_p(p
++, 0xe040); stw_p(p
++, 0x0681);
696 /* lui t1, %hi(0xb4000000) */
698 #ifdef TARGET_WORDS_BIGENDIAN
700 stw_p(p
++, 0xe020); stw_p(p
++, 0x0be1);
701 /* lui t0, %hi(0xdf000000) */
703 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
704 stw_p(p
++, 0x8422); stw_p(p
++, 0x9068);
705 /* sw t0, 0x68(t1) */
707 stw_p(p
++, 0xe040); stw_p(p
++, 0x077d);
708 /* lui t1, %hi(0xbbe00000) */
710 stw_p(p
++, 0xe020); stw_p(p
++, 0x0801);
711 /* lui t0, %hi(0xc0000000) */
713 /* 0x48 corresponds to GT_PCI0IOLD */
714 stw_p(p
++, 0x8422); stw_p(p
++, 0x9048);
715 /* sw t0, 0x48(t1) */
717 stw_p(p
++, 0xe020); stw_p(p
++, 0x0800);
718 /* lui t0, %hi(0x40000000) */
720 /* 0x50 corresponds to GT_PCI0IOHD */
721 stw_p(p
++, 0x8422); stw_p(p
++, 0x9050);
722 /* sw t0, 0x50(t1) */
724 stw_p(p
++, 0xe020); stw_p(p
++, 0x0001);
725 /* lui t0, %hi(0x80000000) */
727 /* 0x58 corresponds to GT_PCI0M0LD */
728 stw_p(p
++, 0x8422); stw_p(p
++, 0x9058);
729 /* sw t0, 0x58(t1) */
731 stw_p(p
++, 0xe020); stw_p(p
++, 0x07e0);
732 /* lui t0, %hi(0x3f000000) */
734 /* 0x60 corresponds to GT_PCI0M0HD */
735 stw_p(p
++, 0x8422); stw_p(p
++, 0x9060);
736 /* sw t0, 0x60(t1) */
738 stw_p(p
++, 0xe020); stw_p(p
++, 0x0821);
739 /* lui t0, %hi(0xc1000000) */
741 /* 0x80 corresponds to GT_PCI0M1LD */
742 stw_p(p
++, 0x8422); stw_p(p
++, 0x9080);
743 /* sw t0, 0x80(t1) */
745 stw_p(p
++, 0xe020); stw_p(p
++, 0x0bc0);
746 /* lui t0, %hi(0x5e000000) */
750 stw_p(p
++, 0x0020); stw_p(p
++, 0x00df);
751 /* addiu[32] t0, $0, 0xdf */
753 /* 0x68 corresponds to GT_ISD */
754 stw_p(p
++, 0x8422); stw_p(p
++, 0x9068);
755 /* sw t0, 0x68(t1) */
757 /* Use kseg2 remapped address 0x1be00000 */
758 stw_p(p
++, 0xe040); stw_p(p
++, 0x077d);
759 /* lui t1, %hi(0xbbe00000) */
761 stw_p(p
++, 0x0020); stw_p(p
++, 0x00c0);
762 /* addiu[32] t0, $0, 0xc0 */
764 /* 0x48 corresponds to GT_PCI0IOLD */
765 stw_p(p
++, 0x8422); stw_p(p
++, 0x9048);
766 /* sw t0, 0x48(t1) */
768 stw_p(p
++, 0x0020); stw_p(p
++, 0x0040);
769 /* addiu[32] t0, $0, 0x40 */
771 /* 0x50 corresponds to GT_PCI0IOHD */
772 stw_p(p
++, 0x8422); stw_p(p
++, 0x9050);
773 /* sw t0, 0x50(t1) */
775 stw_p(p
++, 0x0020); stw_p(p
++, 0x0080);
776 /* addiu[32] t0, $0, 0x80 */
778 /* 0x58 corresponds to GT_PCI0M0LD */
779 stw_p(p
++, 0x8422); stw_p(p
++, 0x9058);
780 /* sw t0, 0x58(t1) */
782 stw_p(p
++, 0x0020); stw_p(p
++, 0x003f);
783 /* addiu[32] t0, $0, 0x3f */
785 /* 0x60 corresponds to GT_PCI0M0HD */
786 stw_p(p
++, 0x8422); stw_p(p
++, 0x9060);
787 /* sw t0, 0x60(t1) */
789 stw_p(p
++, 0x0020); stw_p(p
++, 0x00c1);
790 /* addiu[32] t0, $0, 0xc1 */
792 /* 0x80 corresponds to GT_PCI0M1LD */
793 stw_p(p
++, 0x8422); stw_p(p
++, 0x9080);
794 /* sw t0, 0x80(t1) */
796 stw_p(p
++, 0x0020); stw_p(p
++, 0x005e);
797 /* addiu[32] t0, $0, 0x5e */
801 /* 0x88 corresponds to GT_PCI0M1HD */
802 stw_p(p
++, 0x8422); stw_p(p
++, 0x9088);
803 /* sw t0, 0x88(t1) */
805 stw_p(p
++, 0xe320 | NM_HI1(kernel_entry
));
807 stw_p(p
++, NM_HI2(kernel_entry
));
808 /* lui t9,%hi(kernel_entry) */
810 stw_p(p
++, 0x8339); stw_p(p
++, NM_LO(kernel_entry
));
811 /* ori t9,t9,%lo(kernel_entry) */
813 stw_p(p
++, 0x4bf9); stw_p(p
++, 0x0000);
818 * ROM and pseudo bootloader
820 * The following code implements a very very simple bootloader. It first
821 * loads the registers a0 to a3 to the values expected by the OS, and
822 * then jump at the kernel address.
824 * The bootloader should pass the locations of the kernel arguments and
825 * environment variables tables. Those tables contain the 32-bit address
826 * of NULL terminated strings. The environment variables table should be
827 * terminated by a NULL address.
829 * For a simpler implementation, the number of kernel arguments is fixed
830 * to two (the name of the kernel and the command line), and the two
831 * tables are actually the same one.
833 * The registers a0 to a3 should contain the following values:
834 * a0 - number of kernel arguments
835 * a1 - 32-bit address of the kernel arguments table
836 * a2 - 32-bit address of the environment variables table
837 * a3 - RAM size in bytes
839 static void write_bootloader(uint8_t *base
, int64_t run_addr
,
840 int64_t kernel_entry
)
844 /* Small bootloader */
845 p
= (uint32_t *)base
;
847 stl_p(p
++, 0x08000000 | /* j 0x1fc00580 */
848 ((run_addr
+ 0x580) & 0x0fffffff) >> 2);
849 stl_p(p
++, 0x00000000); /* nop */
851 /* YAMON service vector */
852 stl_p(base
+ 0x500, run_addr
+ 0x0580); /* start: */
853 stl_p(base
+ 0x504, run_addr
+ 0x083c); /* print_count: */
854 stl_p(base
+ 0x520, run_addr
+ 0x0580); /* start: */
855 stl_p(base
+ 0x52c, run_addr
+ 0x0800); /* flush_cache: */
856 stl_p(base
+ 0x534, run_addr
+ 0x0808); /* print: */
857 stl_p(base
+ 0x538, run_addr
+ 0x0800); /* reg_cpu_isr: */
858 stl_p(base
+ 0x53c, run_addr
+ 0x0800); /* unred_cpu_isr: */
859 stl_p(base
+ 0x540, run_addr
+ 0x0800); /* reg_ic_isr: */
860 stl_p(base
+ 0x544, run_addr
+ 0x0800); /* unred_ic_isr: */
861 stl_p(base
+ 0x548, run_addr
+ 0x0800); /* reg_esr: */
862 stl_p(base
+ 0x54c, run_addr
+ 0x0800); /* unreg_esr: */
863 stl_p(base
+ 0x550, run_addr
+ 0x0800); /* getchar: */
864 stl_p(base
+ 0x554, run_addr
+ 0x0800); /* syscon_read: */
867 /* Second part of the bootloader */
868 p
= (uint32_t *) (base
+ 0x580);
870 if (semihosting_get_argc()) {
871 /* Preserve a0 content as arguments have been passed */
872 stl_p(p
++, 0x00000000); /* nop */
874 stl_p(p
++, 0x24040002); /* addiu a0, zero, 2 */
877 /* lui sp, high(ENVP_ADDR) */
878 stl_p(p
++, 0x3c1d0000 | (((ENVP_ADDR
- 64) >> 16) & 0xffff));
879 /* ori sp, sp, low(ENVP_ADDR) */
880 stl_p(p
++, 0x37bd0000 | ((ENVP_ADDR
- 64) & 0xffff));
881 /* lui a1, high(ENVP_ADDR) */
882 stl_p(p
++, 0x3c050000 | ((ENVP_ADDR
>> 16) & 0xffff));
883 /* ori a1, a1, low(ENVP_ADDR) */
884 stl_p(p
++, 0x34a50000 | (ENVP_ADDR
& 0xffff));
885 /* lui a2, high(ENVP_ADDR + 8) */
886 stl_p(p
++, 0x3c060000 | (((ENVP_ADDR
+ 8) >> 16) & 0xffff));
887 /* ori a2, a2, low(ENVP_ADDR + 8) */
888 stl_p(p
++, 0x34c60000 | ((ENVP_ADDR
+ 8) & 0xffff));
889 /* lui a3, high(ram_low_size) */
890 stl_p(p
++, 0x3c070000 | (loaderparams
.ram_low_size
>> 16));
891 /* ori a3, a3, low(ram_low_size) */
892 stl_p(p
++, 0x34e70000 | (loaderparams
.ram_low_size
& 0xffff));
894 /* Load BAR registers as done by YAMON */
895 stl_p(p
++, 0x3c09b400); /* lui t1, 0xb400 */
897 #ifdef TARGET_WORDS_BIGENDIAN
898 stl_p(p
++, 0x3c08df00); /* lui t0, 0xdf00 */
900 stl_p(p
++, 0x340800df); /* ori t0, r0, 0x00df */
902 stl_p(p
++, 0xad280068); /* sw t0, 0x0068(t1) */
904 stl_p(p
++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
906 #ifdef TARGET_WORDS_BIGENDIAN
907 stl_p(p
++, 0x3c08c000); /* lui t0, 0xc000 */
909 stl_p(p
++, 0x340800c0); /* ori t0, r0, 0x00c0 */
911 stl_p(p
++, 0xad280048); /* sw t0, 0x0048(t1) */
912 #ifdef TARGET_WORDS_BIGENDIAN
913 stl_p(p
++, 0x3c084000); /* lui t0, 0x4000 */
915 stl_p(p
++, 0x34080040); /* ori t0, r0, 0x0040 */
917 stl_p(p
++, 0xad280050); /* sw t0, 0x0050(t1) */
919 #ifdef TARGET_WORDS_BIGENDIAN
920 stl_p(p
++, 0x3c088000); /* lui t0, 0x8000 */
922 stl_p(p
++, 0x34080080); /* ori t0, r0, 0x0080 */
924 stl_p(p
++, 0xad280058); /* sw t0, 0x0058(t1) */
925 #ifdef TARGET_WORDS_BIGENDIAN
926 stl_p(p
++, 0x3c083f00); /* lui t0, 0x3f00 */
928 stl_p(p
++, 0x3408003f); /* ori t0, r0, 0x003f */
930 stl_p(p
++, 0xad280060); /* sw t0, 0x0060(t1) */
932 #ifdef TARGET_WORDS_BIGENDIAN
933 stl_p(p
++, 0x3c08c100); /* lui t0, 0xc100 */
935 stl_p(p
++, 0x340800c1); /* ori t0, r0, 0x00c1 */
937 stl_p(p
++, 0xad280080); /* sw t0, 0x0080(t1) */
938 #ifdef TARGET_WORDS_BIGENDIAN
939 stl_p(p
++, 0x3c085e00); /* lui t0, 0x5e00 */
941 stl_p(p
++, 0x3408005e); /* ori t0, r0, 0x005e */
943 stl_p(p
++, 0xad280088); /* sw t0, 0x0088(t1) */
945 /* Jump to kernel code */
946 stl_p(p
++, 0x3c1f0000 | ((kernel_entry
>> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
947 stl_p(p
++, 0x37ff0000 | (kernel_entry
& 0xffff)); /* ori ra, ra, low(kernel_entry) */
948 stl_p(p
++, 0x03e00009); /* jalr ra */
949 stl_p(p
++, 0x00000000); /* nop */
951 /* YAMON subroutines */
952 p
= (uint32_t *) (base
+ 0x800);
953 stl_p(p
++, 0x03e00009); /* jalr ra */
954 stl_p(p
++, 0x24020000); /* li v0,0 */
955 /* 808 YAMON print */
956 stl_p(p
++, 0x03e06821); /* move t5,ra */
957 stl_p(p
++, 0x00805821); /* move t3,a0 */
958 stl_p(p
++, 0x00a05021); /* move t2,a1 */
959 stl_p(p
++, 0x91440000); /* lbu a0,0(t2) */
960 stl_p(p
++, 0x254a0001); /* addiu t2,t2,1 */
961 stl_p(p
++, 0x10800005); /* beqz a0,834 */
962 stl_p(p
++, 0x00000000); /* nop */
963 stl_p(p
++, 0x0ff0021c); /* jal 870 */
964 stl_p(p
++, 0x00000000); /* nop */
965 stl_p(p
++, 0x1000fff9); /* b 814 */
966 stl_p(p
++, 0x00000000); /* nop */
967 stl_p(p
++, 0x01a00009); /* jalr t5 */
968 stl_p(p
++, 0x01602021); /* move a0,t3 */
969 /* 0x83c YAMON print_count */
970 stl_p(p
++, 0x03e06821); /* move t5,ra */
971 stl_p(p
++, 0x00805821); /* move t3,a0 */
972 stl_p(p
++, 0x00a05021); /* move t2,a1 */
973 stl_p(p
++, 0x00c06021); /* move t4,a2 */
974 stl_p(p
++, 0x91440000); /* lbu a0,0(t2) */
975 stl_p(p
++, 0x0ff0021c); /* jal 870 */
976 stl_p(p
++, 0x00000000); /* nop */
977 stl_p(p
++, 0x254a0001); /* addiu t2,t2,1 */
978 stl_p(p
++, 0x258cffff); /* addiu t4,t4,-1 */
979 stl_p(p
++, 0x1580fffa); /* bnez t4,84c */
980 stl_p(p
++, 0x00000000); /* nop */
981 stl_p(p
++, 0x01a00009); /* jalr t5 */
982 stl_p(p
++, 0x01602021); /* move a0,t3 */
984 stl_p(p
++, 0x3c08b800); /* lui t0,0xb400 */
985 stl_p(p
++, 0x350803f8); /* ori t0,t0,0x3f8 */
986 stl_p(p
++, 0x91090005); /* lbu t1,5(t0) */
987 stl_p(p
++, 0x00000000); /* nop */
988 stl_p(p
++, 0x31290040); /* andi t1,t1,0x40 */
989 stl_p(p
++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
990 stl_p(p
++, 0x00000000); /* nop */
991 stl_p(p
++, 0x03e00009); /* jalr ra */
992 stl_p(p
++, 0xa1040000); /* sb a0,0(t0) */
996 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf
, int index
,
997 const char *string
, ...)
1002 if (index
>= ENVP_NB_ENTRIES
) {
1006 if (string
== NULL
) {
1007 prom_buf
[index
] = 0;
1011 table_addr
= sizeof(int32_t) * ENVP_NB_ENTRIES
+ index
* ENVP_ENTRY_SIZE
;
1012 prom_buf
[index
] = tswap32(ENVP_ADDR
+ table_addr
);
1014 va_start(ap
, string
);
1015 vsnprintf((char *)prom_buf
+ table_addr
, ENVP_ENTRY_SIZE
, string
, ap
);
1020 static int64_t load_kernel(void)
1022 int64_t kernel_entry
, kernel_high
, initrd_size
;
1024 ram_addr_t initrd_offset
;
1029 uint64_t (*xlate_to_kseg0
) (void *opaque
, uint64_t addr
);
1031 #ifdef TARGET_WORDS_BIGENDIAN
1037 kernel_size
= load_elf(loaderparams
.kernel_filename
, NULL
,
1038 cpu_mips_kseg0_to_phys
, NULL
,
1039 (uint64_t *)&kernel_entry
, NULL
,
1040 (uint64_t *)&kernel_high
, big_endian
, EM_MIPS
, 1, 0);
1041 if (kernel_size
< 0) {
1042 error_report("could not load kernel '%s': %s",
1043 loaderparams
.kernel_filename
,
1044 load_elf_strerror(kernel_size
));
1048 /* Check where the kernel has been linked */
1049 if (kernel_entry
& 0x80000000ll
) {
1050 if (kvm_enabled()) {
1051 error_report("KVM guest kernels must be linked in useg. "
1052 "Did you forget to enable CONFIG_KVM_GUEST?");
1056 xlate_to_kseg0
= cpu_mips_phys_to_kseg0
;
1058 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1059 mips_um_ksegs_enable();
1061 xlate_to_kseg0
= cpu_mips_kvm_um_phys_to_kseg0
;
1067 if (loaderparams
.initrd_filename
) {
1068 initrd_size
= get_image_size(loaderparams
.initrd_filename
);
1069 if (initrd_size
> 0) {
1071 * The kernel allocates the bootmap memory in the low memory after
1072 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1075 initrd_offset
= (loaderparams
.ram_low_size
- initrd_size
1077 - ~INITRD_PAGE_MASK
) & INITRD_PAGE_MASK
;
1078 if (kernel_high
>= initrd_offset
) {
1079 error_report("memory too small for initial ram disk '%s'",
1080 loaderparams
.initrd_filename
);
1083 initrd_size
= load_image_targphys(loaderparams
.initrd_filename
,
1085 ram_size
- initrd_offset
);
1087 if (initrd_size
== (target_ulong
) -1) {
1088 error_report("could not load initial ram disk '%s'",
1089 loaderparams
.initrd_filename
);
1094 /* Setup prom parameters. */
1095 prom_size
= ENVP_NB_ENTRIES
* (sizeof(int32_t) + ENVP_ENTRY_SIZE
);
1096 prom_buf
= g_malloc(prom_size
);
1098 prom_set(prom_buf
, prom_index
++, "%s", loaderparams
.kernel_filename
);
1099 if (initrd_size
> 0) {
1100 prom_set(prom_buf
, prom_index
++,
1101 "rd_start=0x%" PRIx64
" rd_size=%" PRId64
" %s",
1102 xlate_to_kseg0(NULL
, initrd_offset
),
1103 initrd_size
, loaderparams
.kernel_cmdline
);
1105 prom_set(prom_buf
, prom_index
++, "%s", loaderparams
.kernel_cmdline
);
1108 prom_set(prom_buf
, prom_index
++, "memsize");
1109 prom_set(prom_buf
, prom_index
++, "%u", loaderparams
.ram_low_size
);
1111 prom_set(prom_buf
, prom_index
++, "ememsize");
1112 prom_set(prom_buf
, prom_index
++, "%u", loaderparams
.ram_size
);
1114 prom_set(prom_buf
, prom_index
++, "modetty0");
1115 prom_set(prom_buf
, prom_index
++, "38400n8r");
1116 prom_set(prom_buf
, prom_index
++, NULL
);
1118 rom_add_blob_fixed("prom", prom_buf
, prom_size
,
1119 cpu_mips_kseg0_to_phys(NULL
, ENVP_ADDR
));
1122 return kernel_entry
;
1125 static void malta_mips_config(MIPSCPU
*cpu
)
1127 MachineState
*ms
= MACHINE(qdev_get_machine());
1128 unsigned int smp_cpus
= ms
->smp
.cpus
;
1129 CPUMIPSState
*env
= &cpu
->env
;
1130 CPUState
*cs
= CPU(cpu
);
1132 env
->mvp
->CP0_MVPConf0
|= ((smp_cpus
- 1) << CP0MVPC0_PVPE
) |
1133 ((smp_cpus
* cs
->nr_threads
- 1) << CP0MVPC0_PTC
);
1136 static void main_cpu_reset(void *opaque
)
1138 MIPSCPU
*cpu
= opaque
;
1139 CPUMIPSState
*env
= &cpu
->env
;
1141 cpu_reset(CPU(cpu
));
1144 * The bootloader does not need to be rewritten as it is located in a
1145 * read only location. The kernel location and the arguments table
1146 * location does not change.
1148 if (loaderparams
.kernel_filename
) {
1149 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1152 malta_mips_config(cpu
);
1154 if (kvm_enabled()) {
1155 /* Start running from the bootloader we wrote to end of RAM */
1156 env
->active_tc
.PC
= 0x40000000 + loaderparams
.ram_low_size
;
1160 static void create_cpu_without_cps(MachineState
*ms
,
1161 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1167 for (i
= 0; i
< ms
->smp
.cpus
; i
++) {
1168 cpu
= MIPS_CPU(cpu_create(ms
->cpu_type
));
1170 /* Init internal devices */
1171 cpu_mips_irq_init_cpu(cpu
);
1172 cpu_mips_clock_init(cpu
);
1173 qemu_register_reset(main_cpu_reset
, cpu
);
1176 cpu
= MIPS_CPU(first_cpu
);
1178 *i8259_irq
= env
->irq
[2];
1179 *cbus_irq
= env
->irq
[4];
1182 static void create_cps(MachineState
*ms
, MaltaState
*s
,
1183 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1187 sysbus_init_child_obj(OBJECT(s
), "cps", OBJECT(&s
->cps
), sizeof(s
->cps
),
1189 object_property_set_str(OBJECT(&s
->cps
), ms
->cpu_type
, "cpu-type", &err
);
1190 object_property_set_int(OBJECT(&s
->cps
), ms
->smp
.cpus
, "num-vp", &err
);
1191 object_property_set_bool(OBJECT(&s
->cps
), true, "realized", &err
);
1193 error_report("%s", error_get_pretty(err
));
1197 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s
->cps
), 0, 0, 1);
1199 *i8259_irq
= get_cps_irq(&s
->cps
, 3);
1203 static void mips_create_cpu(MachineState
*ms
, MaltaState
*s
,
1204 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1206 if ((ms
->smp
.cpus
> 1) && cpu_supports_cps_smp(ms
->cpu_type
)) {
1207 create_cps(ms
, s
, cbus_irq
, i8259_irq
);
1209 create_cpu_without_cps(ms
, cbus_irq
, i8259_irq
);
1214 void mips_malta_init(MachineState
*machine
)
1216 ram_addr_t ram_size
= machine
->ram_size
;
1217 ram_addr_t ram_low_size
;
1218 const char *kernel_filename
= machine
->kernel_filename
;
1219 const char *kernel_cmdline
= machine
->kernel_cmdline
;
1220 const char *initrd_filename
= machine
->initrd_filename
;
1223 MemoryRegion
*system_memory
= get_system_memory();
1224 MemoryRegion
*ram_high
= g_new(MemoryRegion
, 1);
1225 MemoryRegion
*ram_low_preio
= g_new(MemoryRegion
, 1);
1226 MemoryRegion
*ram_low_postio
;
1227 MemoryRegion
*bios
, *bios_copy
= g_new(MemoryRegion
, 1);
1228 const size_t smbus_eeprom_size
= 8 * 256;
1229 uint8_t *smbus_eeprom_buf
= g_malloc0(smbus_eeprom_size
);
1230 int64_t kernel_entry
, bootloader_run_addr
;
1233 qemu_irq cbus_irq
, i8259_irq
;
1239 DeviceState
*dev
= qdev_create(NULL
, TYPE_MIPS_MALTA
);
1240 MaltaState
*s
= MIPS_MALTA(dev
);
1243 * The whole address space decoded by the GT-64120A doesn't generate
1244 * exception when accessing invalid memory. Create an empty slot to
1245 * emulate this feature.\
1247 empty_slot_init(0, 0x20000000);
1249 qdev_init_nofail(dev
);
1252 mips_create_cpu(machine
, s
, &cbus_irq
, &i8259_irq
);
1255 if (ram_size
> 2 * GiB
) {
1256 error_report("Too much memory for this machine: %" PRId64
"MB,"
1257 " maximum 2048MB", ram_size
/ MiB
);
1261 /* register RAM at high address where it is undisturbed by IO */
1262 memory_region_allocate_system_memory(ram_high
, NULL
, "mips_malta.ram",
1264 memory_region_add_subregion(system_memory
, 0x80000000, ram_high
);
1266 /* alias for pre IO hole access */
1267 memory_region_init_alias(ram_low_preio
, NULL
, "mips_malta_low_preio.ram",
1268 ram_high
, 0, MIN(ram_size
, 256 * MiB
));
1269 memory_region_add_subregion(system_memory
, 0, ram_low_preio
);
1271 /* alias for post IO hole access, if there is enough RAM */
1272 if (ram_size
> 512 * MiB
) {
1273 ram_low_postio
= g_new(MemoryRegion
, 1);
1274 memory_region_init_alias(ram_low_postio
, NULL
,
1275 "mips_malta_low_postio.ram",
1276 ram_high
, 512 * MiB
,
1277 ram_size
- 512 * MiB
);
1278 memory_region_add_subregion(system_memory
, 512 * MiB
,
1282 #ifdef TARGET_WORDS_BIGENDIAN
1290 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1291 malta_fpga_init(system_memory
, FPGA_ADDRESS
, cbus_irq
, serial_hd(2));
1293 /* Load firmware in flash / BIOS. */
1294 dinfo
= drive_get(IF_PFLASH
, 0, fl_idx
);
1295 fl
= pflash_cfi01_register(FLASH_ADDRESS
, "mips_malta.bios",
1297 dinfo
? blk_by_legacy_dinfo(dinfo
) : NULL
,
1299 4, 0x0000, 0x0000, 0x0000, 0x0000, be
);
1300 bios
= pflash_cfi01_get_memory(fl
);
1302 if (kernel_filename
) {
1303 ram_low_size
= MIN(ram_size
, 256 * MiB
);
1304 /* For KVM we reserve 1MB of RAM for running bootloader */
1305 if (kvm_enabled()) {
1306 ram_low_size
-= 0x100000;
1307 bootloader_run_addr
= 0x40000000 + ram_low_size
;
1309 bootloader_run_addr
= 0xbfc00000;
1312 /* Write a small bootloader to the flash location. */
1313 loaderparams
.ram_size
= ram_size
;
1314 loaderparams
.ram_low_size
= ram_low_size
;
1315 loaderparams
.kernel_filename
= kernel_filename
;
1316 loaderparams
.kernel_cmdline
= kernel_cmdline
;
1317 loaderparams
.initrd_filename
= initrd_filename
;
1318 kernel_entry
= load_kernel();
1320 if (!cpu_supports_isa(machine
->cpu_type
, ISA_NANOMIPS32
)) {
1321 write_bootloader(memory_region_get_ram_ptr(bios
),
1322 bootloader_run_addr
, kernel_entry
);
1324 write_bootloader_nanomips(memory_region_get_ram_ptr(bios
),
1325 bootloader_run_addr
, kernel_entry
);
1327 if (kvm_enabled()) {
1328 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1329 write_bootloader(memory_region_get_ram_ptr(ram_low_preio
) +
1331 bootloader_run_addr
, kernel_entry
);
1334 target_long bios_size
= FLASH_SIZE
;
1335 /* The flash region isn't executable from a KVM guest */
1336 if (kvm_enabled()) {
1337 error_report("KVM enabled but no -kernel argument was specified. "
1338 "Booting from flash is not supported with KVM.");
1341 /* Load firmware from flash. */
1343 /* Load a BIOS image. */
1344 if (bios_name
== NULL
) {
1345 bios_name
= BIOS_FILENAME
;
1347 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1349 bios_size
= load_image_targphys(filename
, FLASH_ADDRESS
,
1355 if ((bios_size
< 0 || bios_size
> BIOS_SIZE
) &&
1356 !kernel_filename
&& !qtest_enabled()) {
1357 error_report("Could not load MIPS bios '%s', and no "
1358 "-kernel argument was specified", bios_name
);
1363 * In little endian mode the 32bit words in the bios are swapped,
1364 * a neat trick which allows bi-endian firmware.
1366 #ifndef TARGET_WORDS_BIGENDIAN
1368 uint32_t *end
, *addr
;
1369 const size_t swapsize
= MIN(bios_size
, 0x3e0000);
1370 addr
= rom_ptr(FLASH_ADDRESS
, swapsize
);
1372 addr
= memory_region_get_ram_ptr(bios
);
1374 end
= (void *)addr
+ swapsize
;
1375 while (addr
< end
) {
1384 * Map the BIOS at a 2nd physical location, as on the real board.
1385 * Copy it so that we can patch in the MIPS revision, which cannot be
1386 * handled by an overlapping region as the resulting ROM code subpage
1387 * regions are not executable.
1389 memory_region_init_ram(bios_copy
, NULL
, "bios.1fc", BIOS_SIZE
,
1391 if (!rom_copy(memory_region_get_ram_ptr(bios_copy
),
1392 FLASH_ADDRESS
, BIOS_SIZE
)) {
1393 memcpy(memory_region_get_ram_ptr(bios_copy
),
1394 memory_region_get_ram_ptr(bios
), BIOS_SIZE
);
1396 memory_region_set_readonly(bios_copy
, true);
1397 memory_region_add_subregion(system_memory
, RESET_ADDRESS
, bios_copy
);
1399 /* Board ID = 0x420 (Malta Board with CoreLV) */
1400 stl_p(memory_region_get_ram_ptr(bios_copy
) + 0x10, 0x00000420);
1403 pci_bus
= gt64120_register(s
->i8259
);
1406 dev
= piix4_create(pci_bus
, &isa_bus
, &smbus
, MAX_IDE_BUS
);
1408 /* Interrupt controller */
1409 qdev_connect_gpio_out_named(dev
, "intr", 0, i8259_irq
);
1410 for (int i
= 0; i
< ISA_NUM_IRQS
; i
++) {
1411 s
->i8259
[i
] = qdev_get_gpio_in_named(dev
, "isa", i
);
1414 /* generate SPD EEPROM data */
1415 generate_eeprom_spd(&smbus_eeprom_buf
[0 * 256], ram_size
);
1416 generate_eeprom_serial(&smbus_eeprom_buf
[6 * 256]);
1417 smbus_eeprom_init(smbus
, 8, smbus_eeprom_buf
, smbus_eeprom_size
);
1418 g_free(smbus_eeprom_buf
);
1420 /* Super I/O: SMS FDC37M817 */
1421 isa_create_simple(isa_bus
, TYPE_FDC37M81X_SUPERIO
);
1424 network_init(pci_bus
);
1426 /* Optional PCI video card */
1427 pci_vga_init(pci_bus
);
1430 static const TypeInfo mips_malta_device
= {
1431 .name
= TYPE_MIPS_MALTA
,
1432 .parent
= TYPE_SYS_BUS_DEVICE
,
1433 .instance_size
= sizeof(MaltaState
),
1436 static void mips_malta_machine_init(MachineClass
*mc
)
1438 mc
->desc
= "MIPS Malta Core LV";
1439 mc
->init
= mips_malta_init
;
1440 mc
->block_default_type
= IF_IDE
;
1443 #ifdef TARGET_MIPS64
1444 mc
->default_cpu_type
= MIPS_CPU_TYPE_NAME("20Kc");
1446 mc
->default_cpu_type
= MIPS_CPU_TYPE_NAME("24Kf");
1450 DEFINE_MACHINE("malta", mips_malta_machine_init
)
1452 static void mips_malta_register_types(void)
1454 type_register_static(&mips_malta_device
);
1457 type_init(mips_malta_register_types
)