Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-2.10-20170731' into staging
[qemu.git] / fpu / softfloat-specialize.h
blobde2c5d570205d4ff341a03b0cfd7b7bd665cfdb3
1 /*
2 * QEMU float support
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 #if defined(TARGET_XTENSA)
83 /* Define for architectures which deviate from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
86 #define NO_SIGNALING_NANS 1
87 #endif
89 /*----------------------------------------------------------------------------
90 | The pattern for a default generated half-precision NaN.
91 *----------------------------------------------------------------------------*/
92 float16 float16_default_nan(float_status *status)
94 #if defined(TARGET_ARM)
95 return const_float16(0x7E00);
96 #else
97 if (status->snan_bit_is_one) {
98 return const_float16(0x7DFF);
99 } else {
100 #if defined(TARGET_MIPS)
101 return const_float16(0x7E00);
102 #else
103 return const_float16(0xFE00);
104 #endif
106 #endif
109 /*----------------------------------------------------------------------------
110 | The pattern for a default generated single-precision NaN.
111 *----------------------------------------------------------------------------*/
112 float32 float32_default_nan(float_status *status)
114 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
115 return const_float32(0x7FFFFFFF);
116 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
117 defined(TARGET_XTENSA) || defined(TARGET_S390X) || defined(TARGET_TRICORE)
118 return const_float32(0x7FC00000);
119 #elif defined(TARGET_HPPA)
120 return const_float32(0x7FA00000);
121 #else
122 if (status->snan_bit_is_one) {
123 return const_float32(0x7FBFFFFF);
124 } else {
125 #if defined(TARGET_MIPS)
126 return const_float32(0x7FC00000);
127 #else
128 return const_float32(0xFFC00000);
129 #endif
131 #endif
134 /*----------------------------------------------------------------------------
135 | The pattern for a default generated double-precision NaN.
136 *----------------------------------------------------------------------------*/
137 float64 float64_default_nan(float_status *status)
139 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
140 return const_float64(LIT64(0x7FFFFFFFFFFFFFFF));
141 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
142 defined(TARGET_S390X)
143 return const_float64(LIT64(0x7FF8000000000000));
144 #elif defined(TARGET_HPPA)
145 return const_float64(LIT64(0x7FF4000000000000));
146 #else
147 if (status->snan_bit_is_one) {
148 return const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
149 } else {
150 #if defined(TARGET_MIPS)
151 return const_float64(LIT64(0x7FF8000000000000));
152 #else
153 return const_float64(LIT64(0xFFF8000000000000));
154 #endif
156 #endif
159 /*----------------------------------------------------------------------------
160 | The pattern for a default generated extended double-precision NaN.
161 *----------------------------------------------------------------------------*/
162 floatx80 floatx80_default_nan(float_status *status)
164 floatx80 r;
165 #if defined(TARGET_M68K)
166 r.low = LIT64(0xFFFFFFFFFFFFFFFF);
167 r.high = 0x7FFF;
168 #else
169 if (status->snan_bit_is_one) {
170 r.low = LIT64(0xBFFFFFFFFFFFFFFF);
171 r.high = 0x7FFF;
172 } else {
173 r.low = LIT64(0xC000000000000000);
174 r.high = 0xFFFF;
176 #endif
177 return r;
180 /*----------------------------------------------------------------------------
181 | The pattern for a default generated quadruple-precision NaN.
182 *----------------------------------------------------------------------------*/
183 float128 float128_default_nan(float_status *status)
185 float128 r;
187 if (status->snan_bit_is_one) {
188 r.low = LIT64(0xFFFFFFFFFFFFFFFF);
189 r.high = LIT64(0x7FFF7FFFFFFFFFFF);
190 } else {
191 r.low = LIT64(0x0000000000000000);
192 #if defined(TARGET_S390X) || defined(TARGET_PPC)
193 r.high = LIT64(0x7FFF800000000000);
194 #else
195 r.high = LIT64(0xFFFF800000000000);
196 #endif
198 return r;
201 /*----------------------------------------------------------------------------
202 | Raises the exceptions specified by `flags'. Floating-point traps can be
203 | defined here if desired. It is currently not possible for such a trap
204 | to substitute a result value. If traps are not implemented, this routine
205 | should be simply `float_exception_flags |= flags;'.
206 *----------------------------------------------------------------------------*/
208 void float_raise(uint8_t flags, float_status *status)
210 status->float_exception_flags |= flags;
213 /*----------------------------------------------------------------------------
214 | Internal canonical NaN format.
215 *----------------------------------------------------------------------------*/
216 typedef struct {
217 flag sign;
218 uint64_t high, low;
219 } commonNaNT;
221 #ifdef NO_SIGNALING_NANS
222 int float16_is_quiet_nan(float16 a_, float_status *status)
224 return float16_is_any_nan(a_);
227 int float16_is_signaling_nan(float16 a_, float_status *status)
229 return 0;
231 #else
232 /*----------------------------------------------------------------------------
233 | Returns 1 if the half-precision floating-point value `a' is a quiet
234 | NaN; otherwise returns 0.
235 *----------------------------------------------------------------------------*/
237 int float16_is_quiet_nan(float16 a_, float_status *status)
239 uint16_t a = float16_val(a_);
240 if (status->snan_bit_is_one) {
241 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
242 } else {
243 return ((a & ~0x8000) >= 0x7C80);
247 /*----------------------------------------------------------------------------
248 | Returns 1 if the half-precision floating-point value `a' is a signaling
249 | NaN; otherwise returns 0.
250 *----------------------------------------------------------------------------*/
252 int float16_is_signaling_nan(float16 a_, float_status *status)
254 uint16_t a = float16_val(a_);
255 if (status->snan_bit_is_one) {
256 return ((a & ~0x8000) >= 0x7C80);
257 } else {
258 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
261 #endif
263 /*----------------------------------------------------------------------------
264 | Returns a quiet NaN if the half-precision floating point value `a' is a
265 | signaling NaN; otherwise returns `a'.
266 *----------------------------------------------------------------------------*/
267 float16 float16_maybe_silence_nan(float16 a_, float_status *status)
269 if (float16_is_signaling_nan(a_, status)) {
270 if (status->snan_bit_is_one) {
271 return float16_default_nan(status);
272 } else {
273 uint16_t a = float16_val(a_);
274 a |= (1 << 9);
275 return make_float16(a);
278 return a_;
281 /*----------------------------------------------------------------------------
282 | Returns the result of converting the half-precision floating-point NaN
283 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
284 | exception is raised.
285 *----------------------------------------------------------------------------*/
287 static commonNaNT float16ToCommonNaN(float16 a, float_status *status)
289 commonNaNT z;
291 if (float16_is_signaling_nan(a, status)) {
292 float_raise(float_flag_invalid, status);
294 z.sign = float16_val(a) >> 15;
295 z.low = 0;
296 z.high = ((uint64_t) float16_val(a)) << 54;
297 return z;
300 /*----------------------------------------------------------------------------
301 | Returns the result of converting the canonical NaN `a' to the half-
302 | precision floating-point format.
303 *----------------------------------------------------------------------------*/
305 static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
307 uint16_t mantissa = a.high >> 54;
309 if (status->default_nan_mode) {
310 return float16_default_nan(status);
313 if (mantissa) {
314 return make_float16(((((uint16_t) a.sign) << 15)
315 | (0x1F << 10) | mantissa));
316 } else {
317 return float16_default_nan(status);
321 #ifdef NO_SIGNALING_NANS
322 int float32_is_quiet_nan(float32 a_, float_status *status)
324 return float32_is_any_nan(a_);
327 int float32_is_signaling_nan(float32 a_, float_status *status)
329 return 0;
331 #else
332 /*----------------------------------------------------------------------------
333 | Returns 1 if the single-precision floating-point value `a' is a quiet
334 | NaN; otherwise returns 0.
335 *----------------------------------------------------------------------------*/
337 int float32_is_quiet_nan(float32 a_, float_status *status)
339 uint32_t a = float32_val(a_);
340 if (status->snan_bit_is_one) {
341 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
342 } else {
343 return ((uint32_t)(a << 1) >= 0xFF800000);
347 /*----------------------------------------------------------------------------
348 | Returns 1 if the single-precision floating-point value `a' is a signaling
349 | NaN; otherwise returns 0.
350 *----------------------------------------------------------------------------*/
352 int float32_is_signaling_nan(float32 a_, float_status *status)
354 uint32_t a = float32_val(a_);
355 if (status->snan_bit_is_one) {
356 return ((uint32_t)(a << 1) >= 0xFF800000);
357 } else {
358 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
361 #endif
363 /*----------------------------------------------------------------------------
364 | Returns a quiet NaN if the single-precision floating point value `a' is a
365 | signaling NaN; otherwise returns `a'.
366 *----------------------------------------------------------------------------*/
368 float32 float32_maybe_silence_nan(float32 a_, float_status *status)
370 if (float32_is_signaling_nan(a_, status)) {
371 if (status->snan_bit_is_one) {
372 #ifdef TARGET_HPPA
373 uint32_t a = float32_val(a_);
374 a &= ~0x00400000;
375 a |= 0x00200000;
376 return make_float32(a);
377 #else
378 return float32_default_nan(status);
379 #endif
380 } else {
381 uint32_t a = float32_val(a_);
382 a |= (1 << 22);
383 return make_float32(a);
386 return a_;
389 /*----------------------------------------------------------------------------
390 | Returns the result of converting the single-precision floating-point NaN
391 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
392 | exception is raised.
393 *----------------------------------------------------------------------------*/
395 static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
397 commonNaNT z;
399 if (float32_is_signaling_nan(a, status)) {
400 float_raise(float_flag_invalid, status);
402 z.sign = float32_val(a) >> 31;
403 z.low = 0;
404 z.high = ((uint64_t)float32_val(a)) << 41;
405 return z;
408 /*----------------------------------------------------------------------------
409 | Returns the result of converting the canonical NaN `a' to the single-
410 | precision floating-point format.
411 *----------------------------------------------------------------------------*/
413 static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
415 uint32_t mantissa = a.high >> 41;
417 if (status->default_nan_mode) {
418 return float32_default_nan(status);
421 if (mantissa) {
422 return make_float32(
423 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
424 } else {
425 return float32_default_nan(status);
429 /*----------------------------------------------------------------------------
430 | Select which NaN to propagate for a two-input operation.
431 | IEEE754 doesn't specify all the details of this, so the
432 | algorithm is target-specific.
433 | The routine is passed various bits of information about the
434 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
435 | Note that signalling NaNs are always squashed to quiet NaNs
436 | by the caller, by calling floatXX_maybe_silence_nan() before
437 | returning them.
439 | aIsLargerSignificand is only valid if both a and b are NaNs
440 | of some kind, and is true if a has the larger significand,
441 | or if both a and b have the same significand but a is
442 | positive but b is negative. It is only needed for the x87
443 | tie-break rule.
444 *----------------------------------------------------------------------------*/
446 #if defined(TARGET_ARM)
447 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
448 flag aIsLargerSignificand)
450 /* ARM mandated NaN propagation rules: take the first of:
451 * 1. A if it is signaling
452 * 2. B if it is signaling
453 * 3. A (quiet)
454 * 4. B (quiet)
455 * A signaling NaN is always quietened before returning it.
457 if (aIsSNaN) {
458 return 0;
459 } else if (bIsSNaN) {
460 return 1;
461 } else if (aIsQNaN) {
462 return 0;
463 } else {
464 return 1;
467 #elif defined(TARGET_MIPS) || defined(TARGET_HPPA)
468 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
469 flag aIsLargerSignificand)
471 /* According to MIPS specifications, if one of the two operands is
472 * a sNaN, a new qNaN has to be generated. This is done in
473 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
474 * says: "When possible, this QNaN result is one of the operand QNaN
475 * values." In practice it seems that most implementations choose
476 * the first operand if both operands are qNaN. In short this gives
477 * the following rules:
478 * 1. A if it is signaling
479 * 2. B if it is signaling
480 * 3. A (quiet)
481 * 4. B (quiet)
482 * A signaling NaN is always silenced before returning it.
484 if (aIsSNaN) {
485 return 0;
486 } else if (bIsSNaN) {
487 return 1;
488 } else if (aIsQNaN) {
489 return 0;
490 } else {
491 return 1;
494 #elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
495 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
496 flag aIsLargerSignificand)
498 /* PowerPC propagation rules:
499 * 1. A if it sNaN or qNaN
500 * 2. B if it sNaN or qNaN
501 * A signaling NaN is always silenced before returning it.
503 if (aIsSNaN || aIsQNaN) {
504 return 0;
505 } else {
506 return 1;
509 #elif defined(TARGET_M68K)
510 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
511 flag aIsLargerSignificand)
513 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
514 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
515 * If either operand, but not both operands, of an operation is a
516 * nonsignaling NaN, then that NaN is returned as the result. If both
517 * operands are nonsignaling NaNs, then the destination operand
518 * nonsignaling NaN is returned as the result.
519 * If either operand to an operation is a signaling NaN (SNaN), then the
520 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
521 * is set in the FPCR ENABLE byte, then the exception is taken and the
522 * destination is not modified. If the SNaN exception enable bit is not
523 * set, setting the SNaN bit in the operand to a one converts the SNaN to
524 * a nonsignaling NaN. The operation then continues as described in the
525 * preceding paragraph for nonsignaling NaNs.
527 if (aIsQNaN || aIsSNaN) { /* a is the destination operand */
528 return 0; /* return the destination operand */
529 } else {
530 return 1; /* return b */
533 #else
534 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
535 flag aIsLargerSignificand)
537 /* This implements x87 NaN propagation rules:
538 * SNaN + QNaN => return the QNaN
539 * two SNaNs => return the one with the larger significand, silenced
540 * two QNaNs => return the one with the larger significand
541 * SNaN and a non-NaN => return the SNaN, silenced
542 * QNaN and a non-NaN => return the QNaN
544 * If we get down to comparing significands and they are the same,
545 * return the NaN with the positive sign bit (if any).
547 if (aIsSNaN) {
548 if (bIsSNaN) {
549 return aIsLargerSignificand ? 0 : 1;
551 return bIsQNaN ? 1 : 0;
552 } else if (aIsQNaN) {
553 if (bIsSNaN || !bIsQNaN) {
554 return 0;
555 } else {
556 return aIsLargerSignificand ? 0 : 1;
558 } else {
559 return 1;
562 #endif
564 /*----------------------------------------------------------------------------
565 | Select which NaN to propagate for a three-input operation.
566 | For the moment we assume that no CPU needs the 'larger significand'
567 | information.
568 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
569 *----------------------------------------------------------------------------*/
570 #if defined(TARGET_ARM)
571 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
572 flag cIsQNaN, flag cIsSNaN, flag infzero,
573 float_status *status)
575 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
576 * the default NaN
578 if (infzero && cIsQNaN) {
579 float_raise(float_flag_invalid, status);
580 return 3;
583 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
584 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
586 if (cIsSNaN) {
587 return 2;
588 } else if (aIsSNaN) {
589 return 0;
590 } else if (bIsSNaN) {
591 return 1;
592 } else if (cIsQNaN) {
593 return 2;
594 } else if (aIsQNaN) {
595 return 0;
596 } else {
597 return 1;
600 #elif defined(TARGET_MIPS)
601 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
602 flag cIsQNaN, flag cIsSNaN, flag infzero,
603 float_status *status)
605 /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
606 * the default NaN
608 if (infzero) {
609 float_raise(float_flag_invalid, status);
610 return 3;
613 if (status->snan_bit_is_one) {
614 /* Prefer sNaN over qNaN, in the a, b, c order. */
615 if (aIsSNaN) {
616 return 0;
617 } else if (bIsSNaN) {
618 return 1;
619 } else if (cIsSNaN) {
620 return 2;
621 } else if (aIsQNaN) {
622 return 0;
623 } else if (bIsQNaN) {
624 return 1;
625 } else {
626 return 2;
628 } else {
629 /* Prefer sNaN over qNaN, in the c, a, b order. */
630 if (cIsSNaN) {
631 return 2;
632 } else if (aIsSNaN) {
633 return 0;
634 } else if (bIsSNaN) {
635 return 1;
636 } else if (cIsQNaN) {
637 return 2;
638 } else if (aIsQNaN) {
639 return 0;
640 } else {
641 return 1;
645 #elif defined(TARGET_PPC)
646 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
647 flag cIsQNaN, flag cIsSNaN, flag infzero,
648 float_status *status)
650 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
651 * to return an input NaN if we have one (ie c) rather than generating
652 * a default NaN
654 if (infzero) {
655 float_raise(float_flag_invalid, status);
656 return 2;
659 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
660 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
662 if (aIsSNaN || aIsQNaN) {
663 return 0;
664 } else if (cIsSNaN || cIsQNaN) {
665 return 2;
666 } else {
667 return 1;
670 #else
671 /* A default implementation: prefer a to b to c.
672 * This is unlikely to actually match any real implementation.
674 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
675 flag cIsQNaN, flag cIsSNaN, flag infzero,
676 float_status *status)
678 if (aIsSNaN || aIsQNaN) {
679 return 0;
680 } else if (bIsSNaN || bIsQNaN) {
681 return 1;
682 } else {
683 return 2;
686 #endif
688 /*----------------------------------------------------------------------------
689 | Takes two single-precision floating-point values `a' and `b', one of which
690 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
691 | signaling NaN, the invalid exception is raised.
692 *----------------------------------------------------------------------------*/
694 static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
696 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
697 flag aIsLargerSignificand;
698 uint32_t av, bv;
700 aIsQuietNaN = float32_is_quiet_nan(a, status);
701 aIsSignalingNaN = float32_is_signaling_nan(a, status);
702 bIsQuietNaN = float32_is_quiet_nan(b, status);
703 bIsSignalingNaN = float32_is_signaling_nan(b, status);
704 av = float32_val(a);
705 bv = float32_val(b);
707 if (aIsSignalingNaN | bIsSignalingNaN) {
708 float_raise(float_flag_invalid, status);
711 if (status->default_nan_mode) {
712 return float32_default_nan(status);
715 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
716 aIsLargerSignificand = 0;
717 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
718 aIsLargerSignificand = 1;
719 } else {
720 aIsLargerSignificand = (av < bv) ? 1 : 0;
723 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
724 aIsLargerSignificand)) {
725 return float32_maybe_silence_nan(b, status);
726 } else {
727 return float32_maybe_silence_nan(a, status);
731 /*----------------------------------------------------------------------------
732 | Takes three single-precision floating-point values `a', `b' and `c', one of
733 | which is a NaN, and returns the appropriate NaN result. If any of `a',
734 | `b' or `c' is a signaling NaN, the invalid exception is raised.
735 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
736 | obviously c is a NaN, and whether to propagate c or some other NaN is
737 | implementation defined).
738 *----------------------------------------------------------------------------*/
740 static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
741 float32 c, flag infzero,
742 float_status *status)
744 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
745 cIsQuietNaN, cIsSignalingNaN;
746 int which;
748 aIsQuietNaN = float32_is_quiet_nan(a, status);
749 aIsSignalingNaN = float32_is_signaling_nan(a, status);
750 bIsQuietNaN = float32_is_quiet_nan(b, status);
751 bIsSignalingNaN = float32_is_signaling_nan(b, status);
752 cIsQuietNaN = float32_is_quiet_nan(c, status);
753 cIsSignalingNaN = float32_is_signaling_nan(c, status);
755 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
756 float_raise(float_flag_invalid, status);
759 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
760 bIsQuietNaN, bIsSignalingNaN,
761 cIsQuietNaN, cIsSignalingNaN, infzero, status);
763 if (status->default_nan_mode) {
764 /* Note that this check is after pickNaNMulAdd so that function
765 * has an opportunity to set the Invalid flag.
767 return float32_default_nan(status);
770 switch (which) {
771 case 0:
772 return float32_maybe_silence_nan(a, status);
773 case 1:
774 return float32_maybe_silence_nan(b, status);
775 case 2:
776 return float32_maybe_silence_nan(c, status);
777 case 3:
778 default:
779 return float32_default_nan(status);
783 #ifdef NO_SIGNALING_NANS
784 int float64_is_quiet_nan(float64 a_, float_status *status)
786 return float64_is_any_nan(a_);
789 int float64_is_signaling_nan(float64 a_, float_status *status)
791 return 0;
793 #else
794 /*----------------------------------------------------------------------------
795 | Returns 1 if the double-precision floating-point value `a' is a quiet
796 | NaN; otherwise returns 0.
797 *----------------------------------------------------------------------------*/
799 int float64_is_quiet_nan(float64 a_, float_status *status)
801 uint64_t a = float64_val(a_);
802 if (status->snan_bit_is_one) {
803 return (((a >> 51) & 0xFFF) == 0xFFE)
804 && (a & 0x0007FFFFFFFFFFFFULL);
805 } else {
806 return ((a << 1) >= 0xFFF0000000000000ULL);
810 /*----------------------------------------------------------------------------
811 | Returns 1 if the double-precision floating-point value `a' is a signaling
812 | NaN; otherwise returns 0.
813 *----------------------------------------------------------------------------*/
815 int float64_is_signaling_nan(float64 a_, float_status *status)
817 uint64_t a = float64_val(a_);
818 if (status->snan_bit_is_one) {
819 return ((a << 1) >= 0xFFF0000000000000ULL);
820 } else {
821 return (((a >> 51) & 0xFFF) == 0xFFE)
822 && (a & LIT64(0x0007FFFFFFFFFFFF));
825 #endif
827 /*----------------------------------------------------------------------------
828 | Returns a quiet NaN if the double-precision floating point value `a' is a
829 | signaling NaN; otherwise returns `a'.
830 *----------------------------------------------------------------------------*/
832 float64 float64_maybe_silence_nan(float64 a_, float_status *status)
834 if (float64_is_signaling_nan(a_, status)) {
835 if (status->snan_bit_is_one) {
836 #ifdef TARGET_HPPA
837 uint64_t a = float64_val(a_);
838 a &= ~0x0008000000000000ULL;
839 a |= 0x0004000000000000ULL;
840 return make_float64(a);
841 #else
842 return float64_default_nan(status);
843 #endif
844 } else {
845 uint64_t a = float64_val(a_);
846 a |= LIT64(0x0008000000000000);
847 return make_float64(a);
850 return a_;
853 /*----------------------------------------------------------------------------
854 | Returns the result of converting the double-precision floating-point NaN
855 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
856 | exception is raised.
857 *----------------------------------------------------------------------------*/
859 static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
861 commonNaNT z;
863 if (float64_is_signaling_nan(a, status)) {
864 float_raise(float_flag_invalid, status);
866 z.sign = float64_val(a) >> 63;
867 z.low = 0;
868 z.high = float64_val(a) << 12;
869 return z;
872 /*----------------------------------------------------------------------------
873 | Returns the result of converting the canonical NaN `a' to the double-
874 | precision floating-point format.
875 *----------------------------------------------------------------------------*/
877 static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
879 uint64_t mantissa = a.high >> 12;
881 if (status->default_nan_mode) {
882 return float64_default_nan(status);
885 if (mantissa) {
886 return make_float64(
887 (((uint64_t) a.sign) << 63)
888 | LIT64(0x7FF0000000000000)
889 | (a.high >> 12));
890 } else {
891 return float64_default_nan(status);
895 /*----------------------------------------------------------------------------
896 | Takes two double-precision floating-point values `a' and `b', one of which
897 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
898 | signaling NaN, the invalid exception is raised.
899 *----------------------------------------------------------------------------*/
901 static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
903 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
904 flag aIsLargerSignificand;
905 uint64_t av, bv;
907 aIsQuietNaN = float64_is_quiet_nan(a, status);
908 aIsSignalingNaN = float64_is_signaling_nan(a, status);
909 bIsQuietNaN = float64_is_quiet_nan(b, status);
910 bIsSignalingNaN = float64_is_signaling_nan(b, status);
911 av = float64_val(a);
912 bv = float64_val(b);
914 if (aIsSignalingNaN | bIsSignalingNaN) {
915 float_raise(float_flag_invalid, status);
918 if (status->default_nan_mode) {
919 return float64_default_nan(status);
922 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
923 aIsLargerSignificand = 0;
924 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
925 aIsLargerSignificand = 1;
926 } else {
927 aIsLargerSignificand = (av < bv) ? 1 : 0;
930 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
931 aIsLargerSignificand)) {
932 return float64_maybe_silence_nan(b, status);
933 } else {
934 return float64_maybe_silence_nan(a, status);
938 /*----------------------------------------------------------------------------
939 | Takes three double-precision floating-point values `a', `b' and `c', one of
940 | which is a NaN, and returns the appropriate NaN result. If any of `a',
941 | `b' or `c' is a signaling NaN, the invalid exception is raised.
942 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
943 | obviously c is a NaN, and whether to propagate c or some other NaN is
944 | implementation defined).
945 *----------------------------------------------------------------------------*/
947 static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
948 float64 c, flag infzero,
949 float_status *status)
951 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
952 cIsQuietNaN, cIsSignalingNaN;
953 int which;
955 aIsQuietNaN = float64_is_quiet_nan(a, status);
956 aIsSignalingNaN = float64_is_signaling_nan(a, status);
957 bIsQuietNaN = float64_is_quiet_nan(b, status);
958 bIsSignalingNaN = float64_is_signaling_nan(b, status);
959 cIsQuietNaN = float64_is_quiet_nan(c, status);
960 cIsSignalingNaN = float64_is_signaling_nan(c, status);
962 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
963 float_raise(float_flag_invalid, status);
966 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
967 bIsQuietNaN, bIsSignalingNaN,
968 cIsQuietNaN, cIsSignalingNaN, infzero, status);
970 if (status->default_nan_mode) {
971 /* Note that this check is after pickNaNMulAdd so that function
972 * has an opportunity to set the Invalid flag.
974 return float64_default_nan(status);
977 switch (which) {
978 case 0:
979 return float64_maybe_silence_nan(a, status);
980 case 1:
981 return float64_maybe_silence_nan(b, status);
982 case 2:
983 return float64_maybe_silence_nan(c, status);
984 case 3:
985 default:
986 return float64_default_nan(status);
990 #ifdef NO_SIGNALING_NANS
991 int floatx80_is_quiet_nan(floatx80 a_, float_status *status)
993 return floatx80_is_any_nan(a_);
996 int floatx80_is_signaling_nan(floatx80 a_, float_status *status)
998 return 0;
1000 #else
1001 /*----------------------------------------------------------------------------
1002 | Returns 1 if the extended double-precision floating-point value `a' is a
1003 | quiet NaN; otherwise returns 0. This slightly differs from the same
1004 | function for other types as floatx80 has an explicit bit.
1005 *----------------------------------------------------------------------------*/
1007 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
1009 if (status->snan_bit_is_one) {
1010 uint64_t aLow;
1012 aLow = a.low & ~0x4000000000000000ULL;
1013 return ((a.high & 0x7FFF) == 0x7FFF)
1014 && (aLow << 1)
1015 && (a.low == aLow);
1016 } else {
1017 return ((a.high & 0x7FFF) == 0x7FFF)
1018 && (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
1022 /*----------------------------------------------------------------------------
1023 | Returns 1 if the extended double-precision floating-point value `a' is a
1024 | signaling NaN; otherwise returns 0. This slightly differs from the same
1025 | function for other types as floatx80 has an explicit bit.
1026 *----------------------------------------------------------------------------*/
1028 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
1030 if (status->snan_bit_is_one) {
1031 return ((a.high & 0x7FFF) == 0x7FFF)
1032 && ((a.low << 1) >= 0x8000000000000000ULL);
1033 } else {
1034 uint64_t aLow;
1036 aLow = a.low & ~LIT64(0x4000000000000000);
1037 return ((a.high & 0x7FFF) == 0x7FFF)
1038 && (uint64_t)(aLow << 1)
1039 && (a.low == aLow);
1042 #endif
1044 /*----------------------------------------------------------------------------
1045 | Returns a quiet NaN if the extended double-precision floating point value
1046 | `a' is a signaling NaN; otherwise returns `a'.
1047 *----------------------------------------------------------------------------*/
1049 floatx80 floatx80_maybe_silence_nan(floatx80 a, float_status *status)
1051 if (floatx80_is_signaling_nan(a, status)) {
1052 if (status->snan_bit_is_one) {
1053 a = floatx80_default_nan(status);
1054 } else {
1055 a.low |= LIT64(0xC000000000000000);
1056 return a;
1059 return a;
1062 /*----------------------------------------------------------------------------
1063 | Returns the result of converting the extended double-precision floating-
1064 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
1065 | invalid exception is raised.
1066 *----------------------------------------------------------------------------*/
1068 static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
1070 floatx80 dflt;
1071 commonNaNT z;
1073 if (floatx80_is_signaling_nan(a, status)) {
1074 float_raise(float_flag_invalid, status);
1076 if (a.low >> 63) {
1077 z.sign = a.high >> 15;
1078 z.low = 0;
1079 z.high = a.low << 1;
1080 } else {
1081 dflt = floatx80_default_nan(status);
1082 z.sign = dflt.high >> 15;
1083 z.low = 0;
1084 z.high = dflt.low << 1;
1086 return z;
1089 /*----------------------------------------------------------------------------
1090 | Returns the result of converting the canonical NaN `a' to the extended
1091 | double-precision floating-point format.
1092 *----------------------------------------------------------------------------*/
1094 static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
1096 floatx80 z;
1098 if (status->default_nan_mode) {
1099 return floatx80_default_nan(status);
1102 if (a.high >> 1) {
1103 z.low = LIT64(0x8000000000000000) | a.high >> 1;
1104 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
1105 } else {
1106 z = floatx80_default_nan(status);
1108 return z;
1111 /*----------------------------------------------------------------------------
1112 | Takes two extended double-precision floating-point values `a' and `b', one
1113 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
1114 | `b' is a signaling NaN, the invalid exception is raised.
1115 *----------------------------------------------------------------------------*/
1117 static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b,
1118 float_status *status)
1120 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1121 flag aIsLargerSignificand;
1123 aIsQuietNaN = floatx80_is_quiet_nan(a, status);
1124 aIsSignalingNaN = floatx80_is_signaling_nan(a, status);
1125 bIsQuietNaN = floatx80_is_quiet_nan(b, status);
1126 bIsSignalingNaN = floatx80_is_signaling_nan(b, status);
1128 if (aIsSignalingNaN | bIsSignalingNaN) {
1129 float_raise(float_flag_invalid, status);
1132 if (status->default_nan_mode) {
1133 return floatx80_default_nan(status);
1136 if (a.low < b.low) {
1137 aIsLargerSignificand = 0;
1138 } else if (b.low < a.low) {
1139 aIsLargerSignificand = 1;
1140 } else {
1141 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1144 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1145 aIsLargerSignificand)) {
1146 return floatx80_maybe_silence_nan(b, status);
1147 } else {
1148 return floatx80_maybe_silence_nan(a, status);
1152 #ifdef NO_SIGNALING_NANS
1153 int float128_is_quiet_nan(float128 a_, float_status *status)
1155 return float128_is_any_nan(a_);
1158 int float128_is_signaling_nan(float128 a_, float_status *status)
1160 return 0;
1162 #else
1163 /*----------------------------------------------------------------------------
1164 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1165 | NaN; otherwise returns 0.
1166 *----------------------------------------------------------------------------*/
1168 int float128_is_quiet_nan(float128 a, float_status *status)
1170 if (status->snan_bit_is_one) {
1171 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1172 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1173 } else {
1174 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1175 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1179 /*----------------------------------------------------------------------------
1180 | Returns 1 if the quadruple-precision floating-point value `a' is a
1181 | signaling NaN; otherwise returns 0.
1182 *----------------------------------------------------------------------------*/
1184 int float128_is_signaling_nan(float128 a, float_status *status)
1186 if (status->snan_bit_is_one) {
1187 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1188 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1189 } else {
1190 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1191 && (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF)));
1194 #endif
1196 /*----------------------------------------------------------------------------
1197 | Returns a quiet NaN if the quadruple-precision floating point value `a' is
1198 | a signaling NaN; otherwise returns `a'.
1199 *----------------------------------------------------------------------------*/
1201 float128 float128_maybe_silence_nan(float128 a, float_status *status)
1203 if (float128_is_signaling_nan(a, status)) {
1204 if (status->snan_bit_is_one) {
1205 a = float128_default_nan(status);
1206 } else {
1207 a.high |= LIT64(0x0000800000000000);
1208 return a;
1211 return a;
1214 /*----------------------------------------------------------------------------
1215 | Returns the result of converting the quadruple-precision floating-point NaN
1216 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1217 | exception is raised.
1218 *----------------------------------------------------------------------------*/
1220 static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1222 commonNaNT z;
1224 if (float128_is_signaling_nan(a, status)) {
1225 float_raise(float_flag_invalid, status);
1227 z.sign = a.high >> 63;
1228 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1229 return z;
1232 /*----------------------------------------------------------------------------
1233 | Returns the result of converting the canonical NaN `a' to the quadruple-
1234 | precision floating-point format.
1235 *----------------------------------------------------------------------------*/
1237 static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1239 float128 z;
1241 if (status->default_nan_mode) {
1242 return float128_default_nan(status);
1245 shift128Right(a.high, a.low, 16, &z.high, &z.low);
1246 z.high |= (((uint64_t)a.sign) << 63) | LIT64(0x7FFF000000000000);
1247 return z;
1250 /*----------------------------------------------------------------------------
1251 | Takes two quadruple-precision floating-point values `a' and `b', one of
1252 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1253 | `b' is a signaling NaN, the invalid exception is raised.
1254 *----------------------------------------------------------------------------*/
1256 static float128 propagateFloat128NaN(float128 a, float128 b,
1257 float_status *status)
1259 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1260 flag aIsLargerSignificand;
1262 aIsQuietNaN = float128_is_quiet_nan(a, status);
1263 aIsSignalingNaN = float128_is_signaling_nan(a, status);
1264 bIsQuietNaN = float128_is_quiet_nan(b, status);
1265 bIsSignalingNaN = float128_is_signaling_nan(b, status);
1267 if (aIsSignalingNaN | bIsSignalingNaN) {
1268 float_raise(float_flag_invalid, status);
1271 if (status->default_nan_mode) {
1272 return float128_default_nan(status);
1275 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1276 aIsLargerSignificand = 0;
1277 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1278 aIsLargerSignificand = 1;
1279 } else {
1280 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1283 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1284 aIsLargerSignificand)) {
1285 return float128_maybe_silence_nan(b, status);
1286 } else {
1287 return float128_maybe_silence_nan(a, status);