target/ppc: Fix MPC8555 and MPC8560 core type to e500v1
[qemu.git] / linux-user / elfload.c
blob1de77c7959f3ae8d6cd40b175401d7eb6240b0d6
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
6 #include <sys/shm.h>
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "target_signal.h"
23 #ifdef _ARCH_PPC64
24 #undef ARCH_DLINFO
25 #undef ELF_PLATFORM
26 #undef ELF_HWCAP
27 #undef ELF_HWCAP2
28 #undef ELF_CLASS
29 #undef ELF_DATA
30 #undef ELF_ARCH
31 #endif
33 #define ELF_OSABI ELFOSABI_SYSV
35 /* from personality.h */
38 * Flags for bug emulation.
40 * These occupy the top three bytes.
42 enum {
43 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
44 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
45 descriptors (signal handling) */
46 MMAP_PAGE_ZERO = 0x0100000,
47 ADDR_COMPAT_LAYOUT = 0x0200000,
48 READ_IMPLIES_EXEC = 0x0400000,
49 ADDR_LIMIT_32BIT = 0x0800000,
50 SHORT_INODE = 0x1000000,
51 WHOLE_SECONDS = 0x2000000,
52 STICKY_TIMEOUTS = 0x4000000,
53 ADDR_LIMIT_3GB = 0x8000000,
57 * Personality types.
59 * These go in the low byte. Avoid using the top bit, it will
60 * conflict with error returns.
62 enum {
63 PER_LINUX = 0x0000,
64 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
65 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
66 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
67 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
69 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
70 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
72 PER_BSD = 0x0006,
73 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
74 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
75 PER_LINUX32 = 0x0008,
76 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
77 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
78 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
79 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
80 PER_RISCOS = 0x000c,
81 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
82 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
83 PER_OSF4 = 0x000f, /* OSF/1 v4 */
84 PER_HPUX = 0x0010,
85 PER_MASK = 0x00ff,
89 * Return the base personality without flags.
91 #define personality(pers) (pers & PER_MASK)
93 int info_is_fdpic(struct image_info *info)
95 return info->personality == PER_LINUX_FDPIC;
98 /* this flag is uneffective under linux too, should be deleted */
99 #ifndef MAP_DENYWRITE
100 #define MAP_DENYWRITE 0
101 #endif
103 /* should probably go in elf.h */
104 #ifndef ELIBBAD
105 #define ELIBBAD 80
106 #endif
108 #if TARGET_BIG_ENDIAN
109 #define ELF_DATA ELFDATA2MSB
110 #else
111 #define ELF_DATA ELFDATA2LSB
112 #endif
114 #ifdef TARGET_ABI_MIPSN32
115 typedef abi_ullong target_elf_greg_t;
116 #define tswapreg(ptr) tswap64(ptr)
117 #else
118 typedef abi_ulong target_elf_greg_t;
119 #define tswapreg(ptr) tswapal(ptr)
120 #endif
122 #ifdef USE_UID16
123 typedef abi_ushort target_uid_t;
124 typedef abi_ushort target_gid_t;
125 #else
126 typedef abi_uint target_uid_t;
127 typedef abi_uint target_gid_t;
128 #endif
129 typedef abi_int target_pid_t;
131 #ifdef TARGET_I386
133 #define ELF_HWCAP get_elf_hwcap()
135 static uint32_t get_elf_hwcap(void)
137 X86CPU *cpu = X86_CPU(thread_cpu);
139 return cpu->env.features[FEAT_1_EDX];
142 #ifdef TARGET_X86_64
143 #define ELF_START_MMAP 0x2aaaaab000ULL
145 #define ELF_CLASS ELFCLASS64
146 #define ELF_ARCH EM_X86_64
148 #define ELF_PLATFORM "x86_64"
150 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152 regs->rax = 0;
153 regs->rsp = infop->start_stack;
154 regs->rip = infop->entry;
157 #define ELF_NREG 27
158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
161 * Note that ELF_NREG should be 29 as there should be place for
162 * TRAPNO and ERR "registers" as well but linux doesn't dump
163 * those.
165 * See linux kernel: arch/x86/include/asm/elf.h
167 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
169 (*regs)[0] = tswapreg(env->regs[15]);
170 (*regs)[1] = tswapreg(env->regs[14]);
171 (*regs)[2] = tswapreg(env->regs[13]);
172 (*regs)[3] = tswapreg(env->regs[12]);
173 (*regs)[4] = tswapreg(env->regs[R_EBP]);
174 (*regs)[5] = tswapreg(env->regs[R_EBX]);
175 (*regs)[6] = tswapreg(env->regs[11]);
176 (*regs)[7] = tswapreg(env->regs[10]);
177 (*regs)[8] = tswapreg(env->regs[9]);
178 (*regs)[9] = tswapreg(env->regs[8]);
179 (*regs)[10] = tswapreg(env->regs[R_EAX]);
180 (*regs)[11] = tswapreg(env->regs[R_ECX]);
181 (*regs)[12] = tswapreg(env->regs[R_EDX]);
182 (*regs)[13] = tswapreg(env->regs[R_ESI]);
183 (*regs)[14] = tswapreg(env->regs[R_EDI]);
184 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
185 (*regs)[16] = tswapreg(env->eip);
186 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
187 (*regs)[18] = tswapreg(env->eflags);
188 (*regs)[19] = tswapreg(env->regs[R_ESP]);
189 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
190 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
191 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
192 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
193 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
194 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
195 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
198 #else
200 #define ELF_START_MMAP 0x80000000
203 * This is used to ensure we don't load something for the wrong architecture.
205 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208 * These are used to set parameters in the core dumps.
210 #define ELF_CLASS ELFCLASS32
211 #define ELF_ARCH EM_386
213 #define ELF_PLATFORM get_elf_platform()
215 static const char *get_elf_platform(void)
217 static char elf_platform[] = "i386";
218 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
219 if (family > 6) {
220 family = 6;
222 if (family >= 3) {
223 elf_platform[1] = '0' + family;
225 return elf_platform;
228 static inline void init_thread(struct target_pt_regs *regs,
229 struct image_info *infop)
231 regs->esp = infop->start_stack;
232 regs->eip = infop->entry;
234 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
235 starts %edx contains a pointer to a function which might be
236 registered using `atexit'. This provides a mean for the
237 dynamic linker to call DT_FINI functions for shared libraries
238 that have been loaded before the code runs.
240 A value of 0 tells we have no such handler. */
241 regs->edx = 0;
244 #define ELF_NREG 17
245 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
248 * Note that ELF_NREG should be 19 as there should be place for
249 * TRAPNO and ERR "registers" as well but linux doesn't dump
250 * those.
252 * See linux kernel: arch/x86/include/asm/elf.h
254 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
256 (*regs)[0] = tswapreg(env->regs[R_EBX]);
257 (*regs)[1] = tswapreg(env->regs[R_ECX]);
258 (*regs)[2] = tswapreg(env->regs[R_EDX]);
259 (*regs)[3] = tswapreg(env->regs[R_ESI]);
260 (*regs)[4] = tswapreg(env->regs[R_EDI]);
261 (*regs)[5] = tswapreg(env->regs[R_EBP]);
262 (*regs)[6] = tswapreg(env->regs[R_EAX]);
263 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
264 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
265 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
266 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
267 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
268 (*regs)[12] = tswapreg(env->eip);
269 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
270 (*regs)[14] = tswapreg(env->eflags);
271 (*regs)[15] = tswapreg(env->regs[R_ESP]);
272 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
274 #endif
276 #define USE_ELF_CORE_DUMP
277 #define ELF_EXEC_PAGESIZE 4096
279 #endif
281 #ifdef TARGET_ARM
283 #ifndef TARGET_AARCH64
284 /* 32 bit ARM definitions */
286 #define ELF_START_MMAP 0x80000000
288 #define ELF_ARCH EM_ARM
289 #define ELF_CLASS ELFCLASS32
291 static inline void init_thread(struct target_pt_regs *regs,
292 struct image_info *infop)
294 abi_long stack = infop->start_stack;
295 memset(regs, 0, sizeof(*regs));
297 regs->uregs[16] = ARM_CPU_MODE_USR;
298 if (infop->entry & 1) {
299 regs->uregs[16] |= CPSR_T;
301 regs->uregs[15] = infop->entry & 0xfffffffe;
302 regs->uregs[13] = infop->start_stack;
303 /* FIXME - what to for failure of get_user()? */
304 get_user_ual(regs->uregs[2], stack + 8); /* envp */
305 get_user_ual(regs->uregs[1], stack + 4); /* envp */
306 /* XXX: it seems that r0 is zeroed after ! */
307 regs->uregs[0] = 0;
308 /* For uClinux PIC binaries. */
309 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
310 regs->uregs[10] = infop->start_data;
312 /* Support ARM FDPIC. */
313 if (info_is_fdpic(infop)) {
314 /* As described in the ABI document, r7 points to the loadmap info
315 * prepared by the kernel. If an interpreter is needed, r8 points
316 * to the interpreter loadmap and r9 points to the interpreter
317 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
318 * r9 points to the main program PT_DYNAMIC info.
320 regs->uregs[7] = infop->loadmap_addr;
321 if (infop->interpreter_loadmap_addr) {
322 /* Executable is dynamically loaded. */
323 regs->uregs[8] = infop->interpreter_loadmap_addr;
324 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
325 } else {
326 regs->uregs[8] = 0;
327 regs->uregs[9] = infop->pt_dynamic_addr;
332 #define ELF_NREG 18
333 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
335 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
337 (*regs)[0] = tswapreg(env->regs[0]);
338 (*regs)[1] = tswapreg(env->regs[1]);
339 (*regs)[2] = tswapreg(env->regs[2]);
340 (*regs)[3] = tswapreg(env->regs[3]);
341 (*regs)[4] = tswapreg(env->regs[4]);
342 (*regs)[5] = tswapreg(env->regs[5]);
343 (*regs)[6] = tswapreg(env->regs[6]);
344 (*regs)[7] = tswapreg(env->regs[7]);
345 (*regs)[8] = tswapreg(env->regs[8]);
346 (*regs)[9] = tswapreg(env->regs[9]);
347 (*regs)[10] = tswapreg(env->regs[10]);
348 (*regs)[11] = tswapreg(env->regs[11]);
349 (*regs)[12] = tswapreg(env->regs[12]);
350 (*regs)[13] = tswapreg(env->regs[13]);
351 (*regs)[14] = tswapreg(env->regs[14]);
352 (*regs)[15] = tswapreg(env->regs[15]);
354 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
355 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
358 #define USE_ELF_CORE_DUMP
359 #define ELF_EXEC_PAGESIZE 4096
361 enum
363 ARM_HWCAP_ARM_SWP = 1 << 0,
364 ARM_HWCAP_ARM_HALF = 1 << 1,
365 ARM_HWCAP_ARM_THUMB = 1 << 2,
366 ARM_HWCAP_ARM_26BIT = 1 << 3,
367 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
368 ARM_HWCAP_ARM_FPA = 1 << 5,
369 ARM_HWCAP_ARM_VFP = 1 << 6,
370 ARM_HWCAP_ARM_EDSP = 1 << 7,
371 ARM_HWCAP_ARM_JAVA = 1 << 8,
372 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
373 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
374 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
375 ARM_HWCAP_ARM_NEON = 1 << 12,
376 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
377 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
378 ARM_HWCAP_ARM_TLS = 1 << 15,
379 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
380 ARM_HWCAP_ARM_IDIVA = 1 << 17,
381 ARM_HWCAP_ARM_IDIVT = 1 << 18,
382 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
383 ARM_HWCAP_ARM_LPAE = 1 << 20,
384 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
387 enum {
388 ARM_HWCAP2_ARM_AES = 1 << 0,
389 ARM_HWCAP2_ARM_PMULL = 1 << 1,
390 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
391 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
392 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
395 /* The commpage only exists for 32 bit kernels */
397 #define HI_COMMPAGE (intptr_t)0xffff0f00u
399 static bool init_guest_commpage(void)
401 void *want = g2h_untagged(HI_COMMPAGE & -qemu_host_page_size);
402 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
403 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
405 if (addr == MAP_FAILED) {
406 perror("Allocating guest commpage");
407 exit(EXIT_FAILURE);
409 if (addr != want) {
410 return false;
413 /* Set kernel helper versions; rest of page is 0. */
414 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
416 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
417 perror("Protecting guest commpage");
418 exit(EXIT_FAILURE);
420 return true;
423 #define ELF_HWCAP get_elf_hwcap()
424 #define ELF_HWCAP2 get_elf_hwcap2()
426 static uint32_t get_elf_hwcap(void)
428 ARMCPU *cpu = ARM_CPU(thread_cpu);
429 uint32_t hwcaps = 0;
431 hwcaps |= ARM_HWCAP_ARM_SWP;
432 hwcaps |= ARM_HWCAP_ARM_HALF;
433 hwcaps |= ARM_HWCAP_ARM_THUMB;
434 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
436 /* probe for the extra features */
437 #define GET_FEATURE(feat, hwcap) \
438 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
440 #define GET_FEATURE_ID(feat, hwcap) \
441 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
445 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
446 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
447 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
448 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
449 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
450 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
451 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
452 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
454 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
455 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
456 hwcaps |= ARM_HWCAP_ARM_VFPv3;
457 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
458 hwcaps |= ARM_HWCAP_ARM_VFPD32;
459 } else {
460 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
463 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
465 return hwcaps;
468 static uint32_t get_elf_hwcap2(void)
470 ARMCPU *cpu = ARM_CPU(thread_cpu);
471 uint32_t hwcaps = 0;
473 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
474 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
475 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
476 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
477 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
478 return hwcaps;
481 #undef GET_FEATURE
482 #undef GET_FEATURE_ID
484 #define ELF_PLATFORM get_elf_platform()
486 static const char *get_elf_platform(void)
488 CPUARMState *env = thread_cpu->env_ptr;
490 #if TARGET_BIG_ENDIAN
491 # define END "b"
492 #else
493 # define END "l"
494 #endif
496 if (arm_feature(env, ARM_FEATURE_V8)) {
497 return "v8" END;
498 } else if (arm_feature(env, ARM_FEATURE_V7)) {
499 if (arm_feature(env, ARM_FEATURE_M)) {
500 return "v7m" END;
501 } else {
502 return "v7" END;
504 } else if (arm_feature(env, ARM_FEATURE_V6)) {
505 return "v6" END;
506 } else if (arm_feature(env, ARM_FEATURE_V5)) {
507 return "v5" END;
508 } else {
509 return "v4" END;
512 #undef END
515 #else
516 /* 64 bit ARM definitions */
517 #define ELF_START_MMAP 0x80000000
519 #define ELF_ARCH EM_AARCH64
520 #define ELF_CLASS ELFCLASS64
521 #if TARGET_BIG_ENDIAN
522 # define ELF_PLATFORM "aarch64_be"
523 #else
524 # define ELF_PLATFORM "aarch64"
525 #endif
527 static inline void init_thread(struct target_pt_regs *regs,
528 struct image_info *infop)
530 abi_long stack = infop->start_stack;
531 memset(regs, 0, sizeof(*regs));
533 regs->pc = infop->entry & ~0x3ULL;
534 regs->sp = stack;
537 #define ELF_NREG 34
538 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
540 static void elf_core_copy_regs(target_elf_gregset_t *regs,
541 const CPUARMState *env)
543 int i;
545 for (i = 0; i < 32; i++) {
546 (*regs)[i] = tswapreg(env->xregs[i]);
548 (*regs)[32] = tswapreg(env->pc);
549 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
552 #define USE_ELF_CORE_DUMP
553 #define ELF_EXEC_PAGESIZE 4096
555 enum {
556 ARM_HWCAP_A64_FP = 1 << 0,
557 ARM_HWCAP_A64_ASIMD = 1 << 1,
558 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
559 ARM_HWCAP_A64_AES = 1 << 3,
560 ARM_HWCAP_A64_PMULL = 1 << 4,
561 ARM_HWCAP_A64_SHA1 = 1 << 5,
562 ARM_HWCAP_A64_SHA2 = 1 << 6,
563 ARM_HWCAP_A64_CRC32 = 1 << 7,
564 ARM_HWCAP_A64_ATOMICS = 1 << 8,
565 ARM_HWCAP_A64_FPHP = 1 << 9,
566 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
567 ARM_HWCAP_A64_CPUID = 1 << 11,
568 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
569 ARM_HWCAP_A64_JSCVT = 1 << 13,
570 ARM_HWCAP_A64_FCMA = 1 << 14,
571 ARM_HWCAP_A64_LRCPC = 1 << 15,
572 ARM_HWCAP_A64_DCPOP = 1 << 16,
573 ARM_HWCAP_A64_SHA3 = 1 << 17,
574 ARM_HWCAP_A64_SM3 = 1 << 18,
575 ARM_HWCAP_A64_SM4 = 1 << 19,
576 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
577 ARM_HWCAP_A64_SHA512 = 1 << 21,
578 ARM_HWCAP_A64_SVE = 1 << 22,
579 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
580 ARM_HWCAP_A64_DIT = 1 << 24,
581 ARM_HWCAP_A64_USCAT = 1 << 25,
582 ARM_HWCAP_A64_ILRCPC = 1 << 26,
583 ARM_HWCAP_A64_FLAGM = 1 << 27,
584 ARM_HWCAP_A64_SSBS = 1 << 28,
585 ARM_HWCAP_A64_SB = 1 << 29,
586 ARM_HWCAP_A64_PACA = 1 << 30,
587 ARM_HWCAP_A64_PACG = 1UL << 31,
589 ARM_HWCAP2_A64_DCPODP = 1 << 0,
590 ARM_HWCAP2_A64_SVE2 = 1 << 1,
591 ARM_HWCAP2_A64_SVEAES = 1 << 2,
592 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
593 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
594 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
595 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
596 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
597 ARM_HWCAP2_A64_FRINT = 1 << 8,
598 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
599 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
600 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
601 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
602 ARM_HWCAP2_A64_I8MM = 1 << 13,
603 ARM_HWCAP2_A64_BF16 = 1 << 14,
604 ARM_HWCAP2_A64_DGH = 1 << 15,
605 ARM_HWCAP2_A64_RNG = 1 << 16,
606 ARM_HWCAP2_A64_BTI = 1 << 17,
607 ARM_HWCAP2_A64_MTE = 1 << 18,
610 #define ELF_HWCAP get_elf_hwcap()
611 #define ELF_HWCAP2 get_elf_hwcap2()
613 #define GET_FEATURE_ID(feat, hwcap) \
614 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
616 static uint32_t get_elf_hwcap(void)
618 ARMCPU *cpu = ARM_CPU(thread_cpu);
619 uint32_t hwcaps = 0;
621 hwcaps |= ARM_HWCAP_A64_FP;
622 hwcaps |= ARM_HWCAP_A64_ASIMD;
623 hwcaps |= ARM_HWCAP_A64_CPUID;
625 /* probe for the extra features */
627 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
628 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
629 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
630 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
631 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
632 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
633 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
634 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
635 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
636 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
637 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
638 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
639 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
640 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
641 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
642 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
643 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
644 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
645 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
646 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
647 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
648 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
649 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
651 return hwcaps;
654 static uint32_t get_elf_hwcap2(void)
656 ARMCPU *cpu = ARM_CPU(thread_cpu);
657 uint32_t hwcaps = 0;
659 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
660 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
661 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
662 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
663 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
664 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
665 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
666 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
667 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
668 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
669 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
670 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
671 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
672 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
673 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
674 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
675 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
676 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
678 return hwcaps;
681 #undef GET_FEATURE_ID
683 #endif /* not TARGET_AARCH64 */
684 #endif /* TARGET_ARM */
686 #ifdef TARGET_SPARC
687 #ifdef TARGET_SPARC64
689 #define ELF_START_MMAP 0x80000000
690 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
691 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
692 #ifndef TARGET_ABI32
693 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
694 #else
695 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
696 #endif
698 #define ELF_CLASS ELFCLASS64
699 #define ELF_ARCH EM_SPARCV9
700 #else
701 #define ELF_START_MMAP 0x80000000
702 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
703 | HWCAP_SPARC_MULDIV)
704 #define ELF_CLASS ELFCLASS32
705 #define ELF_ARCH EM_SPARC
706 #endif /* TARGET_SPARC64 */
708 static inline void init_thread(struct target_pt_regs *regs,
709 struct image_info *infop)
711 /* Note that target_cpu_copy_regs does not read psr/tstate. */
712 regs->pc = infop->entry;
713 regs->npc = regs->pc + 4;
714 regs->y = 0;
715 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
716 - TARGET_STACK_BIAS);
718 #endif /* TARGET_SPARC */
720 #ifdef TARGET_PPC
722 #define ELF_MACHINE PPC_ELF_MACHINE
723 #define ELF_START_MMAP 0x80000000
725 #if defined(TARGET_PPC64)
727 #define elf_check_arch(x) ( (x) == EM_PPC64 )
729 #define ELF_CLASS ELFCLASS64
731 #else
733 #define ELF_CLASS ELFCLASS32
735 #endif
737 #define ELF_ARCH EM_PPC
739 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
740 See arch/powerpc/include/asm/cputable.h. */
741 enum {
742 QEMU_PPC_FEATURE_32 = 0x80000000,
743 QEMU_PPC_FEATURE_64 = 0x40000000,
744 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
745 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
746 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
747 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
748 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
749 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
750 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
751 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
752 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
753 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
754 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
755 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
756 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
757 QEMU_PPC_FEATURE_CELL = 0x00010000,
758 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
759 QEMU_PPC_FEATURE_SMT = 0x00004000,
760 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
761 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
762 QEMU_PPC_FEATURE_PA6T = 0x00000800,
763 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
764 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
765 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
766 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
767 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
769 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
770 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
772 /* Feature definitions in AT_HWCAP2. */
773 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
774 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
775 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
776 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
777 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
778 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
779 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
780 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
781 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
782 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
783 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
784 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
785 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
786 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
787 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
790 #define ELF_HWCAP get_elf_hwcap()
792 static uint32_t get_elf_hwcap(void)
794 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
795 uint32_t features = 0;
797 /* We don't have to be terribly complete here; the high points are
798 Altivec/FP/SPE support. Anything else is just a bonus. */
799 #define GET_FEATURE(flag, feature) \
800 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
801 #define GET_FEATURE2(flags, feature) \
802 do { \
803 if ((cpu->env.insns_flags2 & flags) == flags) { \
804 features |= feature; \
806 } while (0)
807 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
808 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
809 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
810 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
811 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
812 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
813 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
814 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
815 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
816 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
817 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
818 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
819 QEMU_PPC_FEATURE_ARCH_2_06);
820 #undef GET_FEATURE
821 #undef GET_FEATURE2
823 return features;
826 #define ELF_HWCAP2 get_elf_hwcap2()
828 static uint32_t get_elf_hwcap2(void)
830 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
831 uint32_t features = 0;
833 #define GET_FEATURE(flag, feature) \
834 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
835 #define GET_FEATURE2(flag, feature) \
836 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
838 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
839 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
840 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
841 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
842 QEMU_PPC_FEATURE2_VEC_CRYPTO);
843 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
844 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
845 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
846 QEMU_PPC_FEATURE2_MMA);
848 #undef GET_FEATURE
849 #undef GET_FEATURE2
851 return features;
855 * The requirements here are:
856 * - keep the final alignment of sp (sp & 0xf)
857 * - make sure the 32-bit value at the first 16 byte aligned position of
858 * AUXV is greater than 16 for glibc compatibility.
859 * AT_IGNOREPPC is used for that.
860 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
861 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
863 #define DLINFO_ARCH_ITEMS 5
864 #define ARCH_DLINFO \
865 do { \
866 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
867 /* \
868 * Handle glibc compatibility: these magic entries must \
869 * be at the lowest addresses in the final auxv. \
870 */ \
871 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
872 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
873 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
874 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
875 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
876 } while (0)
878 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
880 _regs->gpr[1] = infop->start_stack;
881 #if defined(TARGET_PPC64)
882 if (get_ppc64_abi(infop) < 2) {
883 uint64_t val;
884 get_user_u64(val, infop->entry + 8);
885 _regs->gpr[2] = val + infop->load_bias;
886 get_user_u64(val, infop->entry);
887 infop->entry = val + infop->load_bias;
888 } else {
889 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
891 #endif
892 _regs->nip = infop->entry;
895 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
896 #define ELF_NREG 48
897 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
899 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
901 int i;
902 target_ulong ccr = 0;
904 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
905 (*regs)[i] = tswapreg(env->gpr[i]);
908 (*regs)[32] = tswapreg(env->nip);
909 (*regs)[33] = tswapreg(env->msr);
910 (*regs)[35] = tswapreg(env->ctr);
911 (*regs)[36] = tswapreg(env->lr);
912 (*regs)[37] = tswapreg(cpu_read_xer(env));
914 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
915 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
917 (*regs)[38] = tswapreg(ccr);
920 #define USE_ELF_CORE_DUMP
921 #define ELF_EXEC_PAGESIZE 4096
923 #endif
925 #ifdef TARGET_LOONGARCH64
927 #define ELF_START_MMAP 0x80000000
929 #define ELF_CLASS ELFCLASS64
930 #define ELF_ARCH EM_LOONGARCH
932 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
934 static inline void init_thread(struct target_pt_regs *regs,
935 struct image_info *infop)
937 /*Set crmd PG,DA = 1,0 */
938 regs->csr.crmd = 2 << 3;
939 regs->csr.era = infop->entry;
940 regs->regs[3] = infop->start_stack;
943 /* See linux kernel: arch/loongarch/include/asm/elf.h */
944 #define ELF_NREG 45
945 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
947 enum {
948 TARGET_EF_R0 = 0,
949 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
950 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
953 static void elf_core_copy_regs(target_elf_gregset_t *regs,
954 const CPULoongArchState *env)
956 int i;
958 (*regs)[TARGET_EF_R0] = 0;
960 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
961 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
964 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
965 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
968 #define USE_ELF_CORE_DUMP
969 #define ELF_EXEC_PAGESIZE 4096
971 #define ELF_HWCAP get_elf_hwcap()
973 /* See arch/loongarch/include/uapi/asm/hwcap.h */
974 enum {
975 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
976 HWCAP_LOONGARCH_LAM = (1 << 1),
977 HWCAP_LOONGARCH_UAL = (1 << 2),
978 HWCAP_LOONGARCH_FPU = (1 << 3),
979 HWCAP_LOONGARCH_LSX = (1 << 4),
980 HWCAP_LOONGARCH_LASX = (1 << 5),
981 HWCAP_LOONGARCH_CRC32 = (1 << 6),
982 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
983 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
984 HWCAP_LOONGARCH_LVZ = (1 << 9),
985 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
986 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
987 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
990 static uint32_t get_elf_hwcap(void)
992 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
993 uint32_t hwcaps = 0;
995 hwcaps |= HWCAP_LOONGARCH_CRC32;
997 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
998 hwcaps |= HWCAP_LOONGARCH_UAL;
1001 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1002 hwcaps |= HWCAP_LOONGARCH_FPU;
1005 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1006 hwcaps |= HWCAP_LOONGARCH_LAM;
1009 return hwcaps;
1012 #define ELF_PLATFORM "loongarch"
1014 #endif /* TARGET_LOONGARCH64 */
1016 #ifdef TARGET_MIPS
1018 #define ELF_START_MMAP 0x80000000
1020 #ifdef TARGET_MIPS64
1021 #define ELF_CLASS ELFCLASS64
1022 #else
1023 #define ELF_CLASS ELFCLASS32
1024 #endif
1025 #define ELF_ARCH EM_MIPS
1027 #ifdef TARGET_ABI_MIPSN32
1028 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1029 #else
1030 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1031 #endif
1033 static inline void init_thread(struct target_pt_regs *regs,
1034 struct image_info *infop)
1036 regs->cp0_status = 2 << CP0St_KSU;
1037 regs->cp0_epc = infop->entry;
1038 regs->regs[29] = infop->start_stack;
1041 /* See linux kernel: arch/mips/include/asm/elf.h. */
1042 #define ELF_NREG 45
1043 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1045 /* See linux kernel: arch/mips/include/asm/reg.h. */
1046 enum {
1047 #ifdef TARGET_MIPS64
1048 TARGET_EF_R0 = 0,
1049 #else
1050 TARGET_EF_R0 = 6,
1051 #endif
1052 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1053 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1054 TARGET_EF_LO = TARGET_EF_R0 + 32,
1055 TARGET_EF_HI = TARGET_EF_R0 + 33,
1056 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1057 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1058 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1059 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1065 int i;
1067 for (i = 0; i < TARGET_EF_R0; i++) {
1068 (*regs)[i] = 0;
1070 (*regs)[TARGET_EF_R0] = 0;
1072 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1073 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1076 (*regs)[TARGET_EF_R26] = 0;
1077 (*regs)[TARGET_EF_R27] = 0;
1078 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1079 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1080 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1081 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1082 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1083 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1086 #define USE_ELF_CORE_DUMP
1087 #define ELF_EXEC_PAGESIZE 4096
1089 /* See arch/mips/include/uapi/asm/hwcap.h. */
1090 enum {
1091 HWCAP_MIPS_R6 = (1 << 0),
1092 HWCAP_MIPS_MSA = (1 << 1),
1093 HWCAP_MIPS_CRC32 = (1 << 2),
1094 HWCAP_MIPS_MIPS16 = (1 << 3),
1095 HWCAP_MIPS_MDMX = (1 << 4),
1096 HWCAP_MIPS_MIPS3D = (1 << 5),
1097 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1098 HWCAP_MIPS_DSP = (1 << 7),
1099 HWCAP_MIPS_DSP2 = (1 << 8),
1100 HWCAP_MIPS_DSP3 = (1 << 9),
1101 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1102 HWCAP_LOONGSON_MMI = (1 << 11),
1103 HWCAP_LOONGSON_EXT = (1 << 12),
1104 HWCAP_LOONGSON_EXT2 = (1 << 13),
1105 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1108 #define ELF_HWCAP get_elf_hwcap()
1110 #define GET_FEATURE_INSN(_flag, _hwcap) \
1111 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1113 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1114 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1116 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1117 do { \
1118 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1119 hwcaps |= _hwcap; \
1121 } while (0)
1123 static uint32_t get_elf_hwcap(void)
1125 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1126 uint32_t hwcaps = 0;
1128 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1129 2, HWCAP_MIPS_R6);
1130 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1131 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1132 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1134 return hwcaps;
1137 #undef GET_FEATURE_REG_EQU
1138 #undef GET_FEATURE_REG_SET
1139 #undef GET_FEATURE_INSN
1141 #endif /* TARGET_MIPS */
1143 #ifdef TARGET_MICROBLAZE
1145 #define ELF_START_MMAP 0x80000000
1147 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1149 #define ELF_CLASS ELFCLASS32
1150 #define ELF_ARCH EM_MICROBLAZE
1152 static inline void init_thread(struct target_pt_regs *regs,
1153 struct image_info *infop)
1155 regs->pc = infop->entry;
1156 regs->r1 = infop->start_stack;
1160 #define ELF_EXEC_PAGESIZE 4096
1162 #define USE_ELF_CORE_DUMP
1163 #define ELF_NREG 38
1164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1166 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1167 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1169 int i, pos = 0;
1171 for (i = 0; i < 32; i++) {
1172 (*regs)[pos++] = tswapreg(env->regs[i]);
1175 (*regs)[pos++] = tswapreg(env->pc);
1176 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1177 (*regs)[pos++] = 0;
1178 (*regs)[pos++] = tswapreg(env->ear);
1179 (*regs)[pos++] = 0;
1180 (*regs)[pos++] = tswapreg(env->esr);
1183 #endif /* TARGET_MICROBLAZE */
1185 #ifdef TARGET_NIOS2
1187 #define ELF_START_MMAP 0x80000000
1189 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1191 #define ELF_CLASS ELFCLASS32
1192 #define ELF_ARCH EM_ALTERA_NIOS2
1194 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1196 regs->ea = infop->entry;
1197 regs->sp = infop->start_stack;
1200 #define LO_COMMPAGE TARGET_PAGE_SIZE
1202 static bool init_guest_commpage(void)
1204 static const uint8_t kuser_page[4 + 2 * 64] = {
1205 /* __kuser_helper_version */
1206 [0x00] = 0x02, 0x00, 0x00, 0x00,
1208 /* __kuser_cmpxchg */
1209 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1210 0x3a, 0x28, 0x00, 0xf8, /* ret */
1212 /* __kuser_sigtramp */
1213 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1214 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1217 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1218 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1219 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1221 if (addr == MAP_FAILED) {
1222 perror("Allocating guest commpage");
1223 exit(EXIT_FAILURE);
1225 if (addr != want) {
1226 return false;
1229 memcpy(addr, kuser_page, sizeof(kuser_page));
1231 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1232 perror("Protecting guest commpage");
1233 exit(EXIT_FAILURE);
1236 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1237 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1238 return true;
1241 #define ELF_EXEC_PAGESIZE 4096
1243 #define USE_ELF_CORE_DUMP
1244 #define ELF_NREG 49
1245 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1247 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1248 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1249 const CPUNios2State *env)
1251 int i;
1253 (*regs)[0] = -1;
1254 for (i = 1; i < 8; i++) /* r0-r7 */
1255 (*regs)[i] = tswapreg(env->regs[i + 7]);
1257 for (i = 8; i < 16; i++) /* r8-r15 */
1258 (*regs)[i] = tswapreg(env->regs[i - 8]);
1260 for (i = 16; i < 24; i++) /* r16-r23 */
1261 (*regs)[i] = tswapreg(env->regs[i + 7]);
1262 (*regs)[24] = -1; /* R_ET */
1263 (*regs)[25] = -1; /* R_BT */
1264 (*regs)[26] = tswapreg(env->regs[R_GP]);
1265 (*regs)[27] = tswapreg(env->regs[R_SP]);
1266 (*regs)[28] = tswapreg(env->regs[R_FP]);
1267 (*regs)[29] = tswapreg(env->regs[R_EA]);
1268 (*regs)[30] = -1; /* R_SSTATUS */
1269 (*regs)[31] = tswapreg(env->regs[R_RA]);
1271 (*regs)[32] = tswapreg(env->pc);
1273 (*regs)[33] = -1; /* R_STATUS */
1274 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1276 for (i = 35; i < 49; i++) /* ... */
1277 (*regs)[i] = -1;
1280 #endif /* TARGET_NIOS2 */
1282 #ifdef TARGET_OPENRISC
1284 #define ELF_START_MMAP 0x08000000
1286 #define ELF_ARCH EM_OPENRISC
1287 #define ELF_CLASS ELFCLASS32
1288 #define ELF_DATA ELFDATA2MSB
1290 static inline void init_thread(struct target_pt_regs *regs,
1291 struct image_info *infop)
1293 regs->pc = infop->entry;
1294 regs->gpr[1] = infop->start_stack;
1297 #define USE_ELF_CORE_DUMP
1298 #define ELF_EXEC_PAGESIZE 8192
1300 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1301 #define ELF_NREG 34 /* gprs and pc, sr */
1302 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1304 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1305 const CPUOpenRISCState *env)
1307 int i;
1309 for (i = 0; i < 32; i++) {
1310 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1312 (*regs)[32] = tswapreg(env->pc);
1313 (*regs)[33] = tswapreg(cpu_get_sr(env));
1315 #define ELF_HWCAP 0
1316 #define ELF_PLATFORM NULL
1318 #endif /* TARGET_OPENRISC */
1320 #ifdef TARGET_SH4
1322 #define ELF_START_MMAP 0x80000000
1324 #define ELF_CLASS ELFCLASS32
1325 #define ELF_ARCH EM_SH
1327 static inline void init_thread(struct target_pt_regs *regs,
1328 struct image_info *infop)
1330 /* Check other registers XXXXX */
1331 regs->pc = infop->entry;
1332 regs->regs[15] = infop->start_stack;
1335 /* See linux kernel: arch/sh/include/asm/elf.h. */
1336 #define ELF_NREG 23
1337 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1339 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1340 enum {
1341 TARGET_REG_PC = 16,
1342 TARGET_REG_PR = 17,
1343 TARGET_REG_SR = 18,
1344 TARGET_REG_GBR = 19,
1345 TARGET_REG_MACH = 20,
1346 TARGET_REG_MACL = 21,
1347 TARGET_REG_SYSCALL = 22
1350 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1351 const CPUSH4State *env)
1353 int i;
1355 for (i = 0; i < 16; i++) {
1356 (*regs)[i] = tswapreg(env->gregs[i]);
1359 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1360 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1361 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1362 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1363 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1364 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1365 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1368 #define USE_ELF_CORE_DUMP
1369 #define ELF_EXEC_PAGESIZE 4096
1371 enum {
1372 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1373 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1374 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1375 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1376 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1377 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1378 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1379 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1380 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1381 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1384 #define ELF_HWCAP get_elf_hwcap()
1386 static uint32_t get_elf_hwcap(void)
1388 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1389 uint32_t hwcap = 0;
1391 hwcap |= SH_CPU_HAS_FPU;
1393 if (cpu->env.features & SH_FEATURE_SH4A) {
1394 hwcap |= SH_CPU_HAS_LLSC;
1397 return hwcap;
1400 #endif
1402 #ifdef TARGET_CRIS
1404 #define ELF_START_MMAP 0x80000000
1406 #define ELF_CLASS ELFCLASS32
1407 #define ELF_ARCH EM_CRIS
1409 static inline void init_thread(struct target_pt_regs *regs,
1410 struct image_info *infop)
1412 regs->erp = infop->entry;
1415 #define ELF_EXEC_PAGESIZE 8192
1417 #endif
1419 #ifdef TARGET_M68K
1421 #define ELF_START_MMAP 0x80000000
1423 #define ELF_CLASS ELFCLASS32
1424 #define ELF_ARCH EM_68K
1426 /* ??? Does this need to do anything?
1427 #define ELF_PLAT_INIT(_r) */
1429 static inline void init_thread(struct target_pt_regs *regs,
1430 struct image_info *infop)
1432 regs->usp = infop->start_stack;
1433 regs->sr = 0;
1434 regs->pc = infop->entry;
1437 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1438 #define ELF_NREG 20
1439 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1441 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1443 (*regs)[0] = tswapreg(env->dregs[1]);
1444 (*regs)[1] = tswapreg(env->dregs[2]);
1445 (*regs)[2] = tswapreg(env->dregs[3]);
1446 (*regs)[3] = tswapreg(env->dregs[4]);
1447 (*regs)[4] = tswapreg(env->dregs[5]);
1448 (*regs)[5] = tswapreg(env->dregs[6]);
1449 (*regs)[6] = tswapreg(env->dregs[7]);
1450 (*regs)[7] = tswapreg(env->aregs[0]);
1451 (*regs)[8] = tswapreg(env->aregs[1]);
1452 (*regs)[9] = tswapreg(env->aregs[2]);
1453 (*regs)[10] = tswapreg(env->aregs[3]);
1454 (*regs)[11] = tswapreg(env->aregs[4]);
1455 (*regs)[12] = tswapreg(env->aregs[5]);
1456 (*regs)[13] = tswapreg(env->aregs[6]);
1457 (*regs)[14] = tswapreg(env->dregs[0]);
1458 (*regs)[15] = tswapreg(env->aregs[7]);
1459 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1460 (*regs)[17] = tswapreg(env->sr);
1461 (*regs)[18] = tswapreg(env->pc);
1462 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1465 #define USE_ELF_CORE_DUMP
1466 #define ELF_EXEC_PAGESIZE 8192
1468 #endif
1470 #ifdef TARGET_ALPHA
1472 #define ELF_START_MMAP (0x30000000000ULL)
1474 #define ELF_CLASS ELFCLASS64
1475 #define ELF_ARCH EM_ALPHA
1477 static inline void init_thread(struct target_pt_regs *regs,
1478 struct image_info *infop)
1480 regs->pc = infop->entry;
1481 regs->ps = 8;
1482 regs->usp = infop->start_stack;
1485 #define ELF_EXEC_PAGESIZE 8192
1487 #endif /* TARGET_ALPHA */
1489 #ifdef TARGET_S390X
1491 #define ELF_START_MMAP (0x20000000000ULL)
1493 #define ELF_CLASS ELFCLASS64
1494 #define ELF_DATA ELFDATA2MSB
1495 #define ELF_ARCH EM_S390
1497 #include "elf.h"
1499 #define ELF_HWCAP get_elf_hwcap()
1501 #define GET_FEATURE(_feat, _hwcap) \
1502 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1504 static uint32_t get_elf_hwcap(void)
1507 * Let's assume we always have esan3 and zarch.
1508 * 31-bit processes can use 64-bit registers (high gprs).
1510 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1512 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1513 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1514 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1515 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1516 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1517 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1518 hwcap |= HWCAP_S390_ETF3EH;
1520 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1521 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1523 return hwcap;
1526 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1528 regs->psw.addr = infop->entry;
1529 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1530 regs->gprs[15] = infop->start_stack;
1533 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1534 #define ELF_NREG 27
1535 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1537 enum {
1538 TARGET_REG_PSWM = 0,
1539 TARGET_REG_PSWA = 1,
1540 TARGET_REG_GPRS = 2,
1541 TARGET_REG_ARS = 18,
1542 TARGET_REG_ORIG_R2 = 26,
1545 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1546 const CPUS390XState *env)
1548 int i;
1549 uint32_t *aregs;
1551 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1552 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1553 for (i = 0; i < 16; i++) {
1554 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1556 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1557 for (i = 0; i < 16; i++) {
1558 aregs[i] = tswap32(env->aregs[i]);
1560 (*regs)[TARGET_REG_ORIG_R2] = 0;
1563 #define USE_ELF_CORE_DUMP
1564 #define ELF_EXEC_PAGESIZE 4096
1566 #endif /* TARGET_S390X */
1568 #ifdef TARGET_RISCV
1570 #define ELF_START_MMAP 0x80000000
1571 #define ELF_ARCH EM_RISCV
1573 #ifdef TARGET_RISCV32
1574 #define ELF_CLASS ELFCLASS32
1575 #else
1576 #define ELF_CLASS ELFCLASS64
1577 #endif
1579 #define ELF_HWCAP get_elf_hwcap()
1581 static uint32_t get_elf_hwcap(void)
1583 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1584 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1585 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1586 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1588 return cpu->env.misa_ext & mask;
1589 #undef MISA_BIT
1592 static inline void init_thread(struct target_pt_regs *regs,
1593 struct image_info *infop)
1595 regs->sepc = infop->entry;
1596 regs->sp = infop->start_stack;
1599 #define ELF_EXEC_PAGESIZE 4096
1601 #endif /* TARGET_RISCV */
1603 #ifdef TARGET_HPPA
1605 #define ELF_START_MMAP 0x80000000
1606 #define ELF_CLASS ELFCLASS32
1607 #define ELF_ARCH EM_PARISC
1608 #define ELF_PLATFORM "PARISC"
1609 #define STACK_GROWS_DOWN 0
1610 #define STACK_ALIGNMENT 64
1612 static inline void init_thread(struct target_pt_regs *regs,
1613 struct image_info *infop)
1615 regs->iaoq[0] = infop->entry;
1616 regs->iaoq[1] = infop->entry + 4;
1617 regs->gr[23] = 0;
1618 regs->gr[24] = infop->argv;
1619 regs->gr[25] = infop->argc;
1620 /* The top-of-stack contains a linkage buffer. */
1621 regs->gr[30] = infop->start_stack + 64;
1622 regs->gr[31] = infop->entry;
1625 #endif /* TARGET_HPPA */
1627 #ifdef TARGET_XTENSA
1629 #define ELF_START_MMAP 0x20000000
1631 #define ELF_CLASS ELFCLASS32
1632 #define ELF_ARCH EM_XTENSA
1634 static inline void init_thread(struct target_pt_regs *regs,
1635 struct image_info *infop)
1637 regs->windowbase = 0;
1638 regs->windowstart = 1;
1639 regs->areg[1] = infop->start_stack;
1640 regs->pc = infop->entry;
1643 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1644 #define ELF_NREG 128
1645 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1647 enum {
1648 TARGET_REG_PC,
1649 TARGET_REG_PS,
1650 TARGET_REG_LBEG,
1651 TARGET_REG_LEND,
1652 TARGET_REG_LCOUNT,
1653 TARGET_REG_SAR,
1654 TARGET_REG_WINDOWSTART,
1655 TARGET_REG_WINDOWBASE,
1656 TARGET_REG_THREADPTR,
1657 TARGET_REG_AR0 = 64,
1660 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1661 const CPUXtensaState *env)
1663 unsigned i;
1665 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1666 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1667 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1668 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1669 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1670 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1671 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1672 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1673 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1674 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1675 for (i = 0; i < env->config->nareg; ++i) {
1676 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1680 #define USE_ELF_CORE_DUMP
1681 #define ELF_EXEC_PAGESIZE 4096
1683 #endif /* TARGET_XTENSA */
1685 #ifdef TARGET_HEXAGON
1687 #define ELF_START_MMAP 0x20000000
1689 #define ELF_CLASS ELFCLASS32
1690 #define ELF_ARCH EM_HEXAGON
1692 static inline void init_thread(struct target_pt_regs *regs,
1693 struct image_info *infop)
1695 regs->sepc = infop->entry;
1696 regs->sp = infop->start_stack;
1699 #endif /* TARGET_HEXAGON */
1701 #ifndef ELF_PLATFORM
1702 #define ELF_PLATFORM (NULL)
1703 #endif
1705 #ifndef ELF_MACHINE
1706 #define ELF_MACHINE ELF_ARCH
1707 #endif
1709 #ifndef elf_check_arch
1710 #define elf_check_arch(x) ((x) == ELF_ARCH)
1711 #endif
1713 #ifndef elf_check_abi
1714 #define elf_check_abi(x) (1)
1715 #endif
1717 #ifndef ELF_HWCAP
1718 #define ELF_HWCAP 0
1719 #endif
1721 #ifndef STACK_GROWS_DOWN
1722 #define STACK_GROWS_DOWN 1
1723 #endif
1725 #ifndef STACK_ALIGNMENT
1726 #define STACK_ALIGNMENT 16
1727 #endif
1729 #ifdef TARGET_ABI32
1730 #undef ELF_CLASS
1731 #define ELF_CLASS ELFCLASS32
1732 #undef bswaptls
1733 #define bswaptls(ptr) bswap32s(ptr)
1734 #endif
1736 #include "elf.h"
1738 /* We must delay the following stanzas until after "elf.h". */
1739 #if defined(TARGET_AARCH64)
1741 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1742 const uint32_t *data,
1743 struct image_info *info,
1744 Error **errp)
1746 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1747 if (pr_datasz != sizeof(uint32_t)) {
1748 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1749 return false;
1751 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1752 info->note_flags = *data;
1754 return true;
1756 #define ARCH_USE_GNU_PROPERTY 1
1758 #else
1760 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1761 const uint32_t *data,
1762 struct image_info *info,
1763 Error **errp)
1765 g_assert_not_reached();
1767 #define ARCH_USE_GNU_PROPERTY 0
1769 #endif
1771 struct exec
1773 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1774 unsigned int a_text; /* length of text, in bytes */
1775 unsigned int a_data; /* length of data, in bytes */
1776 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1777 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1778 unsigned int a_entry; /* start address */
1779 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1780 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1784 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1785 #define OMAGIC 0407
1786 #define NMAGIC 0410
1787 #define ZMAGIC 0413
1788 #define QMAGIC 0314
1790 /* Necessary parameters */
1791 #define TARGET_ELF_EXEC_PAGESIZE \
1792 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1793 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1794 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1795 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1796 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1797 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1799 #define DLINFO_ITEMS 16
1801 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1803 memcpy(to, from, n);
1806 #ifdef BSWAP_NEEDED
1807 static void bswap_ehdr(struct elfhdr *ehdr)
1809 bswap16s(&ehdr->e_type); /* Object file type */
1810 bswap16s(&ehdr->e_machine); /* Architecture */
1811 bswap32s(&ehdr->e_version); /* Object file version */
1812 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1813 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1814 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1815 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1816 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1817 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1818 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1819 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1820 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1821 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1824 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1826 int i;
1827 for (i = 0; i < phnum; ++i, ++phdr) {
1828 bswap32s(&phdr->p_type); /* Segment type */
1829 bswap32s(&phdr->p_flags); /* Segment flags */
1830 bswaptls(&phdr->p_offset); /* Segment file offset */
1831 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1832 bswaptls(&phdr->p_paddr); /* Segment physical address */
1833 bswaptls(&phdr->p_filesz); /* Segment size in file */
1834 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1835 bswaptls(&phdr->p_align); /* Segment alignment */
1839 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1841 int i;
1842 for (i = 0; i < shnum; ++i, ++shdr) {
1843 bswap32s(&shdr->sh_name);
1844 bswap32s(&shdr->sh_type);
1845 bswaptls(&shdr->sh_flags);
1846 bswaptls(&shdr->sh_addr);
1847 bswaptls(&shdr->sh_offset);
1848 bswaptls(&shdr->sh_size);
1849 bswap32s(&shdr->sh_link);
1850 bswap32s(&shdr->sh_info);
1851 bswaptls(&shdr->sh_addralign);
1852 bswaptls(&shdr->sh_entsize);
1856 static void bswap_sym(struct elf_sym *sym)
1858 bswap32s(&sym->st_name);
1859 bswaptls(&sym->st_value);
1860 bswaptls(&sym->st_size);
1861 bswap16s(&sym->st_shndx);
1864 #ifdef TARGET_MIPS
1865 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1867 bswap16s(&abiflags->version);
1868 bswap32s(&abiflags->ases);
1869 bswap32s(&abiflags->isa_ext);
1870 bswap32s(&abiflags->flags1);
1871 bswap32s(&abiflags->flags2);
1873 #endif
1874 #else
1875 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1876 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1877 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1878 static inline void bswap_sym(struct elf_sym *sym) { }
1879 #ifdef TARGET_MIPS
1880 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1881 #endif
1882 #endif
1884 #ifdef USE_ELF_CORE_DUMP
1885 static int elf_core_dump(int, const CPUArchState *);
1886 #endif /* USE_ELF_CORE_DUMP */
1887 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1889 /* Verify the portions of EHDR within E_IDENT for the target.
1890 This can be performed before bswapping the entire header. */
1891 static bool elf_check_ident(struct elfhdr *ehdr)
1893 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1894 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1895 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1896 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1897 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1898 && ehdr->e_ident[EI_DATA] == ELF_DATA
1899 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1902 /* Verify the portions of EHDR outside of E_IDENT for the target.
1903 This has to wait until after bswapping the header. */
1904 static bool elf_check_ehdr(struct elfhdr *ehdr)
1906 return (elf_check_arch(ehdr->e_machine)
1907 && elf_check_abi(ehdr->e_flags)
1908 && ehdr->e_ehsize == sizeof(struct elfhdr)
1909 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1910 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1914 * 'copy_elf_strings()' copies argument/envelope strings from user
1915 * memory to free pages in kernel mem. These are in a format ready
1916 * to be put directly into the top of new user memory.
1919 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1920 abi_ulong p, abi_ulong stack_limit)
1922 char *tmp;
1923 int len, i;
1924 abi_ulong top = p;
1926 if (!p) {
1927 return 0; /* bullet-proofing */
1930 if (STACK_GROWS_DOWN) {
1931 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1932 for (i = argc - 1; i >= 0; --i) {
1933 tmp = argv[i];
1934 if (!tmp) {
1935 fprintf(stderr, "VFS: argc is wrong");
1936 exit(-1);
1938 len = strlen(tmp) + 1;
1939 tmp += len;
1941 if (len > (p - stack_limit)) {
1942 return 0;
1944 while (len) {
1945 int bytes_to_copy = (len > offset) ? offset : len;
1946 tmp -= bytes_to_copy;
1947 p -= bytes_to_copy;
1948 offset -= bytes_to_copy;
1949 len -= bytes_to_copy;
1951 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1953 if (offset == 0) {
1954 memcpy_to_target(p, scratch, top - p);
1955 top = p;
1956 offset = TARGET_PAGE_SIZE;
1960 if (p != top) {
1961 memcpy_to_target(p, scratch + offset, top - p);
1963 } else {
1964 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1965 for (i = 0; i < argc; ++i) {
1966 tmp = argv[i];
1967 if (!tmp) {
1968 fprintf(stderr, "VFS: argc is wrong");
1969 exit(-1);
1971 len = strlen(tmp) + 1;
1972 if (len > (stack_limit - p)) {
1973 return 0;
1975 while (len) {
1976 int bytes_to_copy = (len > remaining) ? remaining : len;
1978 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1980 tmp += bytes_to_copy;
1981 remaining -= bytes_to_copy;
1982 p += bytes_to_copy;
1983 len -= bytes_to_copy;
1985 if (remaining == 0) {
1986 memcpy_to_target(top, scratch, p - top);
1987 top = p;
1988 remaining = TARGET_PAGE_SIZE;
1992 if (p != top) {
1993 memcpy_to_target(top, scratch, p - top);
1997 return p;
2000 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2001 * argument/environment space. Newer kernels (>2.6.33) allow more,
2002 * dependent on stack size, but guarantee at least 32 pages for
2003 * backwards compatibility.
2005 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2007 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2008 struct image_info *info)
2010 abi_ulong size, error, guard;
2012 size = guest_stack_size;
2013 if (size < STACK_LOWER_LIMIT) {
2014 size = STACK_LOWER_LIMIT;
2016 guard = TARGET_PAGE_SIZE;
2017 if (guard < qemu_real_host_page_size()) {
2018 guard = qemu_real_host_page_size();
2021 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
2022 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2023 if (error == -1) {
2024 perror("mmap stack");
2025 exit(-1);
2028 /* We reserve one extra page at the top of the stack as guard. */
2029 if (STACK_GROWS_DOWN) {
2030 target_mprotect(error, guard, PROT_NONE);
2031 info->stack_limit = error + guard;
2032 return info->stack_limit + size - sizeof(void *);
2033 } else {
2034 target_mprotect(error + size, guard, PROT_NONE);
2035 info->stack_limit = error + size;
2036 return error;
2040 /* Map and zero the bss. We need to explicitly zero any fractional pages
2041 after the data section (i.e. bss). */
2042 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2044 uintptr_t host_start, host_map_start, host_end;
2046 last_bss = TARGET_PAGE_ALIGN(last_bss);
2048 /* ??? There is confusion between qemu_real_host_page_size and
2049 qemu_host_page_size here and elsewhere in target_mmap, which
2050 may lead to the end of the data section mapping from the file
2051 not being mapped. At least there was an explicit test and
2052 comment for that here, suggesting that "the file size must
2053 be known". The comment probably pre-dates the introduction
2054 of the fstat system call in target_mmap which does in fact
2055 find out the size. What isn't clear is if the workaround
2056 here is still actually needed. For now, continue with it,
2057 but merge it with the "normal" mmap that would allocate the bss. */
2059 host_start = (uintptr_t) g2h_untagged(elf_bss);
2060 host_end = (uintptr_t) g2h_untagged(last_bss);
2061 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2063 if (host_map_start < host_end) {
2064 void *p = mmap((void *)host_map_start, host_end - host_map_start,
2065 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2066 if (p == MAP_FAILED) {
2067 perror("cannot mmap brk");
2068 exit(-1);
2072 /* Ensure that the bss page(s) are valid */
2073 if ((page_get_flags(last_bss-1) & prot) != prot) {
2074 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
2077 if (host_start < host_map_start) {
2078 memset((void *)host_start, 0, host_map_start - host_start);
2082 #ifdef TARGET_ARM
2083 static int elf_is_fdpic(struct elfhdr *exec)
2085 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2087 #else
2088 /* Default implementation, always false. */
2089 static int elf_is_fdpic(struct elfhdr *exec)
2091 return 0;
2093 #endif
2095 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2097 uint16_t n;
2098 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2100 /* elf32_fdpic_loadseg */
2101 n = info->nsegs;
2102 while (n--) {
2103 sp -= 12;
2104 put_user_u32(loadsegs[n].addr, sp+0);
2105 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2106 put_user_u32(loadsegs[n].p_memsz, sp+8);
2109 /* elf32_fdpic_loadmap */
2110 sp -= 4;
2111 put_user_u16(0, sp+0); /* version */
2112 put_user_u16(info->nsegs, sp+2); /* nsegs */
2114 info->personality = PER_LINUX_FDPIC;
2115 info->loadmap_addr = sp;
2117 return sp;
2120 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2121 struct elfhdr *exec,
2122 struct image_info *info,
2123 struct image_info *interp_info)
2125 abi_ulong sp;
2126 abi_ulong u_argc, u_argv, u_envp, u_auxv;
2127 int size;
2128 int i;
2129 abi_ulong u_rand_bytes;
2130 uint8_t k_rand_bytes[16];
2131 abi_ulong u_platform;
2132 const char *k_platform;
2133 const int n = sizeof(elf_addr_t);
2135 sp = p;
2137 /* Needs to be before we load the env/argc/... */
2138 if (elf_is_fdpic(exec)) {
2139 /* Need 4 byte alignment for these structs */
2140 sp &= ~3;
2141 sp = loader_build_fdpic_loadmap(info, sp);
2142 info->other_info = interp_info;
2143 if (interp_info) {
2144 interp_info->other_info = info;
2145 sp = loader_build_fdpic_loadmap(interp_info, sp);
2146 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2147 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2148 } else {
2149 info->interpreter_loadmap_addr = 0;
2150 info->interpreter_pt_dynamic_addr = 0;
2154 u_platform = 0;
2155 k_platform = ELF_PLATFORM;
2156 if (k_platform) {
2157 size_t len = strlen(k_platform) + 1;
2158 if (STACK_GROWS_DOWN) {
2159 sp -= (len + n - 1) & ~(n - 1);
2160 u_platform = sp;
2161 /* FIXME - check return value of memcpy_to_target() for failure */
2162 memcpy_to_target(sp, k_platform, len);
2163 } else {
2164 memcpy_to_target(sp, k_platform, len);
2165 u_platform = sp;
2166 sp += len + 1;
2170 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2171 * the argv and envp pointers.
2173 if (STACK_GROWS_DOWN) {
2174 sp = QEMU_ALIGN_DOWN(sp, 16);
2175 } else {
2176 sp = QEMU_ALIGN_UP(sp, 16);
2180 * Generate 16 random bytes for userspace PRNG seeding.
2182 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2183 if (STACK_GROWS_DOWN) {
2184 sp -= 16;
2185 u_rand_bytes = sp;
2186 /* FIXME - check return value of memcpy_to_target() for failure */
2187 memcpy_to_target(sp, k_rand_bytes, 16);
2188 } else {
2189 memcpy_to_target(sp, k_rand_bytes, 16);
2190 u_rand_bytes = sp;
2191 sp += 16;
2194 size = (DLINFO_ITEMS + 1) * 2;
2195 if (k_platform)
2196 size += 2;
2197 #ifdef DLINFO_ARCH_ITEMS
2198 size += DLINFO_ARCH_ITEMS * 2;
2199 #endif
2200 #ifdef ELF_HWCAP2
2201 size += 2;
2202 #endif
2203 info->auxv_len = size * n;
2205 size += envc + argc + 2;
2206 size += 1; /* argc itself */
2207 size *= n;
2209 /* Allocate space and finalize stack alignment for entry now. */
2210 if (STACK_GROWS_DOWN) {
2211 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2212 sp = u_argc;
2213 } else {
2214 u_argc = sp;
2215 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2218 u_argv = u_argc + n;
2219 u_envp = u_argv + (argc + 1) * n;
2220 u_auxv = u_envp + (envc + 1) * n;
2221 info->saved_auxv = u_auxv;
2222 info->argc = argc;
2223 info->envc = envc;
2224 info->argv = u_argv;
2225 info->envp = u_envp;
2227 /* This is correct because Linux defines
2228 * elf_addr_t as Elf32_Off / Elf64_Off
2230 #define NEW_AUX_ENT(id, val) do { \
2231 put_user_ual(id, u_auxv); u_auxv += n; \
2232 put_user_ual(val, u_auxv); u_auxv += n; \
2233 } while(0)
2235 #ifdef ARCH_DLINFO
2237 * ARCH_DLINFO must come first so platform specific code can enforce
2238 * special alignment requirements on the AUXV if necessary (eg. PPC).
2240 ARCH_DLINFO;
2241 #endif
2242 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2243 * on info->auxv_len will trigger.
2245 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2246 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2247 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2248 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2249 /* Target doesn't support host page size alignment */
2250 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2251 } else {
2252 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2253 qemu_host_page_size)));
2255 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2256 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2257 NEW_AUX_ENT(AT_ENTRY, info->entry);
2258 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2259 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2260 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2261 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2262 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2263 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2264 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2265 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2266 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2268 #ifdef ELF_HWCAP2
2269 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2270 #endif
2272 if (u_platform) {
2273 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2275 NEW_AUX_ENT (AT_NULL, 0);
2276 #undef NEW_AUX_ENT
2278 /* Check that our initial calculation of the auxv length matches how much
2279 * we actually put into it.
2281 assert(info->auxv_len == u_auxv - info->saved_auxv);
2283 put_user_ual(argc, u_argc);
2285 p = info->arg_strings;
2286 for (i = 0; i < argc; ++i) {
2287 put_user_ual(p, u_argv);
2288 u_argv += n;
2289 p += target_strlen(p) + 1;
2291 put_user_ual(0, u_argv);
2293 p = info->env_strings;
2294 for (i = 0; i < envc; ++i) {
2295 put_user_ual(p, u_envp);
2296 u_envp += n;
2297 p += target_strlen(p) + 1;
2299 put_user_ual(0, u_envp);
2301 return sp;
2304 #if defined(HI_COMMPAGE)
2305 #define LO_COMMPAGE 0
2306 #elif defined(LO_COMMPAGE)
2307 #define HI_COMMPAGE 0
2308 #else
2309 #define HI_COMMPAGE 0
2310 #define LO_COMMPAGE 0
2311 #define init_guest_commpage() true
2312 #endif
2314 static void pgb_fail_in_use(const char *image_name)
2316 error_report("%s: requires virtual address space that is in use "
2317 "(omit the -B option or choose a different value)",
2318 image_name);
2319 exit(EXIT_FAILURE);
2322 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2323 abi_ulong guest_hiaddr, long align)
2325 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2326 void *addr, *test;
2328 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2329 fprintf(stderr, "Requested guest base %p does not satisfy "
2330 "host minimum alignment (0x%lx)\n",
2331 (void *)guest_base, align);
2332 exit(EXIT_FAILURE);
2335 /* Sanity check the guest binary. */
2336 if (reserved_va) {
2337 if (guest_hiaddr > reserved_va) {
2338 error_report("%s: requires more than reserved virtual "
2339 "address space (0x%" PRIx64 " > 0x%lx)",
2340 image_name, (uint64_t)guest_hiaddr, reserved_va);
2341 exit(EXIT_FAILURE);
2343 } else {
2344 #if HOST_LONG_BITS < TARGET_ABI_BITS
2345 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2346 error_report("%s: requires more virtual address space "
2347 "than the host can provide (0x%" PRIx64 ")",
2348 image_name, (uint64_t)guest_hiaddr - guest_base);
2349 exit(EXIT_FAILURE);
2351 #endif
2355 * Expand the allocation to the entire reserved_va.
2356 * Exclude the mmap_min_addr hole.
2358 if (reserved_va) {
2359 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2360 : mmap_min_addr - guest_base);
2361 guest_hiaddr = reserved_va;
2364 /* Reserve the address space for the binary, or reserved_va. */
2365 test = g2h_untagged(guest_loaddr);
2366 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2367 if (test != addr) {
2368 pgb_fail_in_use(image_name);
2370 qemu_log_mask(CPU_LOG_PAGE,
2371 "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n",
2372 __func__, addr, guest_hiaddr - guest_loaddr);
2376 * pgd_find_hole_fallback: potential mmap address
2377 * @guest_size: size of available space
2378 * @brk: location of break
2379 * @align: memory alignment
2381 * This is a fallback method for finding a hole in the host address
2382 * space if we don't have the benefit of being able to access
2383 * /proc/self/map. It can potentially take a very long time as we can
2384 * only dumbly iterate up the host address space seeing if the
2385 * allocation would work.
2387 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2388 long align, uintptr_t offset)
2390 uintptr_t base;
2392 /* Start (aligned) at the bottom and work our way up */
2393 base = ROUND_UP(mmap_min_addr, align);
2395 while (true) {
2396 uintptr_t align_start, end;
2397 align_start = ROUND_UP(base, align);
2398 end = align_start + guest_size + offset;
2400 /* if brk is anywhere in the range give ourselves some room to grow. */
2401 if (align_start <= brk && brk < end) {
2402 base = brk + (16 * MiB);
2403 continue;
2404 } else if (align_start + guest_size < align_start) {
2405 /* we have run out of space */
2406 return -1;
2407 } else {
2408 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2409 MAP_FIXED_NOREPLACE;
2410 void * mmap_start = mmap((void *) align_start, guest_size,
2411 PROT_NONE, flags, -1, 0);
2412 if (mmap_start != MAP_FAILED) {
2413 munmap(mmap_start, guest_size);
2414 if (mmap_start == (void *) align_start) {
2415 qemu_log_mask(CPU_LOG_PAGE,
2416 "%s: base @ %p for %" PRIdPTR" bytes\n",
2417 __func__, mmap_start + offset, guest_size);
2418 return (uintptr_t) mmap_start + offset;
2421 base += qemu_host_page_size;
2426 /* Return value for guest_base, or -1 if no hole found. */
2427 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2428 long align, uintptr_t offset)
2430 GSList *maps, *iter;
2431 uintptr_t this_start, this_end, next_start, brk;
2432 intptr_t ret = -1;
2434 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2436 maps = read_self_maps();
2438 /* Read brk after we've read the maps, which will malloc. */
2439 brk = (uintptr_t)sbrk(0);
2441 if (!maps) {
2442 return pgd_find_hole_fallback(guest_size, brk, align, offset);
2445 /* The first hole is before the first map entry. */
2446 this_start = mmap_min_addr;
2448 for (iter = maps; iter;
2449 this_start = next_start, iter = g_slist_next(iter)) {
2450 uintptr_t align_start, hole_size;
2452 this_end = ((MapInfo *)iter->data)->start;
2453 next_start = ((MapInfo *)iter->data)->end;
2454 align_start = ROUND_UP(this_start + offset, align);
2456 /* Skip holes that are too small. */
2457 if (align_start >= this_end) {
2458 continue;
2460 hole_size = this_end - align_start;
2461 if (hole_size < guest_size) {
2462 continue;
2465 /* If this hole contains brk, give ourselves some room to grow. */
2466 if (this_start <= brk && brk < this_end) {
2467 hole_size -= guest_size;
2468 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2469 align_start += 1 * GiB;
2470 } else if (hole_size >= 16 * MiB) {
2471 align_start += 16 * MiB;
2472 } else {
2473 align_start = (this_end - guest_size) & -align;
2474 if (align_start < this_start) {
2475 continue;
2480 /* Record the lowest successful match. */
2481 if (ret < 0) {
2482 ret = align_start;
2484 /* If this hole contains the identity map, select it. */
2485 if (align_start <= guest_loaddr &&
2486 guest_loaddr + guest_size <= this_end) {
2487 ret = 0;
2489 /* If this hole ends above the identity map, stop looking. */
2490 if (this_end >= guest_loaddr) {
2491 break;
2494 free_self_maps(maps);
2496 if (ret != -1) {
2497 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2498 " for %" PRIuPTR " bytes\n",
2499 __func__, ret, guest_size);
2502 return ret;
2505 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2506 abi_ulong orig_hiaddr, long align)
2508 uintptr_t loaddr = orig_loaddr;
2509 uintptr_t hiaddr = orig_hiaddr;
2510 uintptr_t offset = 0;
2511 uintptr_t addr;
2513 if (hiaddr != orig_hiaddr) {
2514 error_report("%s: requires virtual address space that the "
2515 "host cannot provide (0x%" PRIx64 ")",
2516 image_name, (uint64_t)orig_hiaddr);
2517 exit(EXIT_FAILURE);
2520 loaddr &= -align;
2521 if (HI_COMMPAGE) {
2523 * Extend the allocation to include the commpage.
2524 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2525 * need to ensure there is space bellow the guest_base so we
2526 * can map the commpage in the place needed when the address
2527 * arithmetic wraps around.
2529 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2530 hiaddr = (uintptr_t) 4 << 30;
2531 } else {
2532 offset = -(HI_COMMPAGE & -align);
2534 } else if (LO_COMMPAGE != 0) {
2535 loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2538 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2539 if (addr == -1) {
2541 * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2542 * that can satisfy both. But as the normal arm32 link base address
2543 * is ~32k, and we extend down to include the commpage, making the
2544 * overhead only ~96k, this is unlikely.
2546 error_report("%s: Unable to allocate %#zx bytes of "
2547 "virtual address space", image_name,
2548 (size_t)(hiaddr - loaddr));
2549 exit(EXIT_FAILURE);
2552 guest_base = addr;
2554 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2555 __func__, addr, hiaddr - loaddr);
2558 static void pgb_dynamic(const char *image_name, long align)
2561 * The executable is dynamic and does not require a fixed address.
2562 * All we need is a commpage that satisfies align.
2563 * If we do not need a commpage, leave guest_base == 0.
2565 if (HI_COMMPAGE) {
2566 uintptr_t addr, commpage;
2568 /* 64-bit hosts should have used reserved_va. */
2569 assert(sizeof(uintptr_t) == 4);
2572 * By putting the commpage at the first hole, that puts guest_base
2573 * just above that, and maximises the positive guest addresses.
2575 commpage = HI_COMMPAGE & -align;
2576 addr = pgb_find_hole(commpage, -commpage, align, 0);
2577 assert(addr != -1);
2578 guest_base = addr;
2582 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2583 abi_ulong guest_hiaddr, long align)
2585 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2586 void *addr, *test;
2588 if (guest_hiaddr > reserved_va) {
2589 error_report("%s: requires more than reserved virtual "
2590 "address space (0x%" PRIx64 " > 0x%lx)",
2591 image_name, (uint64_t)guest_hiaddr, reserved_va);
2592 exit(EXIT_FAILURE);
2595 /* Widen the "image" to the entire reserved address space. */
2596 pgb_static(image_name, 0, reserved_va, align);
2598 /* osdep.h defines this as 0 if it's missing */
2599 flags |= MAP_FIXED_NOREPLACE;
2601 /* Reserve the memory on the host. */
2602 assert(guest_base != 0);
2603 test = g2h_untagged(0);
2604 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2605 if (addr == MAP_FAILED || addr != test) {
2606 error_report("Unable to reserve 0x%lx bytes of virtual address "
2607 "space at %p (%s) for use as guest address space (check your "
2608 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2609 "using -R option)", reserved_va, test, strerror(errno));
2610 exit(EXIT_FAILURE);
2613 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2614 __func__, addr, reserved_va);
2617 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2618 abi_ulong guest_hiaddr)
2620 /* In order to use host shmat, we must be able to honor SHMLBA. */
2621 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2623 if (have_guest_base) {
2624 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2625 } else if (reserved_va) {
2626 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2627 } else if (guest_loaddr) {
2628 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2629 } else {
2630 pgb_dynamic(image_name, align);
2633 /* Reserve and initialize the commpage. */
2634 if (!init_guest_commpage()) {
2636 * With have_guest_base, the user has selected the address and
2637 * we are trying to work with that. Otherwise, we have selected
2638 * free space and init_guest_commpage must succeeded.
2640 assert(have_guest_base);
2641 pgb_fail_in_use(image_name);
2644 assert(QEMU_IS_ALIGNED(guest_base, align));
2645 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2646 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2649 enum {
2650 /* The string "GNU\0" as a magic number. */
2651 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2652 NOTE_DATA_SZ = 1 * KiB,
2653 NOTE_NAME_SZ = 4,
2654 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2658 * Process a single gnu_property entry.
2659 * Return false for error.
2661 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2662 struct image_info *info, bool have_prev_type,
2663 uint32_t *prev_type, Error **errp)
2665 uint32_t pr_type, pr_datasz, step;
2667 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2668 goto error_data;
2670 datasz -= *off;
2671 data += *off / sizeof(uint32_t);
2673 if (datasz < 2 * sizeof(uint32_t)) {
2674 goto error_data;
2676 pr_type = data[0];
2677 pr_datasz = data[1];
2678 data += 2;
2679 datasz -= 2 * sizeof(uint32_t);
2680 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2681 if (step > datasz) {
2682 goto error_data;
2685 /* Properties are supposed to be unique and sorted on pr_type. */
2686 if (have_prev_type && pr_type <= *prev_type) {
2687 if (pr_type == *prev_type) {
2688 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2689 } else {
2690 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2692 return false;
2694 *prev_type = pr_type;
2696 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2697 return false;
2700 *off += 2 * sizeof(uint32_t) + step;
2701 return true;
2703 error_data:
2704 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2705 return false;
2708 /* Process NT_GNU_PROPERTY_TYPE_0. */
2709 static bool parse_elf_properties(int image_fd,
2710 struct image_info *info,
2711 const struct elf_phdr *phdr,
2712 char bprm_buf[BPRM_BUF_SIZE],
2713 Error **errp)
2715 union {
2716 struct elf_note nhdr;
2717 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2718 } note;
2720 int n, off, datasz;
2721 bool have_prev_type;
2722 uint32_t prev_type;
2724 /* Unless the arch requires properties, ignore them. */
2725 if (!ARCH_USE_GNU_PROPERTY) {
2726 return true;
2729 /* If the properties are crazy large, that's too bad. */
2730 n = phdr->p_filesz;
2731 if (n > sizeof(note)) {
2732 error_setg(errp, "PT_GNU_PROPERTY too large");
2733 return false;
2735 if (n < sizeof(note.nhdr)) {
2736 error_setg(errp, "PT_GNU_PROPERTY too small");
2737 return false;
2740 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2741 memcpy(&note, bprm_buf + phdr->p_offset, n);
2742 } else {
2743 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2744 if (len != n) {
2745 error_setg_errno(errp, errno, "Error reading file header");
2746 return false;
2751 * The contents of a valid PT_GNU_PROPERTY is a sequence
2752 * of uint32_t -- swap them all now.
2754 #ifdef BSWAP_NEEDED
2755 for (int i = 0; i < n / 4; i++) {
2756 bswap32s(note.data + i);
2758 #endif
2761 * Note that nhdr is 3 words, and that the "name" described by namesz
2762 * immediately follows nhdr and is thus at the 4th word. Further, all
2763 * of the inputs to the kernel's round_up are multiples of 4.
2765 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2766 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2767 note.data[3] != GNU0_MAGIC) {
2768 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2769 return false;
2771 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2773 datasz = note.nhdr.n_descsz + off;
2774 if (datasz > n) {
2775 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2776 return false;
2779 have_prev_type = false;
2780 prev_type = 0;
2781 while (1) {
2782 if (off == datasz) {
2783 return true; /* end, exit ok */
2785 if (!parse_elf_property(note.data, &off, datasz, info,
2786 have_prev_type, &prev_type, errp)) {
2787 return false;
2789 have_prev_type = true;
2793 /* Load an ELF image into the address space.
2795 IMAGE_NAME is the filename of the image, to use in error messages.
2796 IMAGE_FD is the open file descriptor for the image.
2798 BPRM_BUF is a copy of the beginning of the file; this of course
2799 contains the elf file header at offset 0. It is assumed that this
2800 buffer is sufficiently aligned to present no problems to the host
2801 in accessing data at aligned offsets within the buffer.
2803 On return: INFO values will be filled in, as necessary or available. */
2805 static void load_elf_image(const char *image_name, int image_fd,
2806 struct image_info *info, char **pinterp_name,
2807 char bprm_buf[BPRM_BUF_SIZE])
2809 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2810 struct elf_phdr *phdr;
2811 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2812 int i, retval, prot_exec;
2813 Error *err = NULL;
2815 /* First of all, some simple consistency checks */
2816 if (!elf_check_ident(ehdr)) {
2817 error_setg(&err, "Invalid ELF image for this architecture");
2818 goto exit_errmsg;
2820 bswap_ehdr(ehdr);
2821 if (!elf_check_ehdr(ehdr)) {
2822 error_setg(&err, "Invalid ELF image for this architecture");
2823 goto exit_errmsg;
2826 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2827 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2828 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2829 } else {
2830 phdr = (struct elf_phdr *) alloca(i);
2831 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2832 if (retval != i) {
2833 goto exit_read;
2836 bswap_phdr(phdr, ehdr->e_phnum);
2838 info->nsegs = 0;
2839 info->pt_dynamic_addr = 0;
2841 mmap_lock();
2844 * Find the maximum size of the image and allocate an appropriate
2845 * amount of memory to handle that. Locate the interpreter, if any.
2847 loaddr = -1, hiaddr = 0;
2848 info->alignment = 0;
2849 for (i = 0; i < ehdr->e_phnum; ++i) {
2850 struct elf_phdr *eppnt = phdr + i;
2851 if (eppnt->p_type == PT_LOAD) {
2852 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2853 if (a < loaddr) {
2854 loaddr = a;
2856 a = eppnt->p_vaddr + eppnt->p_memsz;
2857 if (a > hiaddr) {
2858 hiaddr = a;
2860 ++info->nsegs;
2861 info->alignment |= eppnt->p_align;
2862 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2863 g_autofree char *interp_name = NULL;
2865 if (*pinterp_name) {
2866 error_setg(&err, "Multiple PT_INTERP entries");
2867 goto exit_errmsg;
2870 interp_name = g_malloc(eppnt->p_filesz);
2872 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2873 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2874 eppnt->p_filesz);
2875 } else {
2876 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2877 eppnt->p_offset);
2878 if (retval != eppnt->p_filesz) {
2879 goto exit_read;
2882 if (interp_name[eppnt->p_filesz - 1] != 0) {
2883 error_setg(&err, "Invalid PT_INTERP entry");
2884 goto exit_errmsg;
2886 *pinterp_name = g_steal_pointer(&interp_name);
2887 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2888 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2889 goto exit_errmsg;
2894 if (pinterp_name != NULL) {
2896 * This is the main executable.
2898 * Reserve extra space for brk.
2899 * We hold on to this space while placing the interpreter
2900 * and the stack, lest they be placed immediately after
2901 * the data segment and block allocation from the brk.
2903 * 16MB is chosen as "large enough" without being so large as
2904 * to allow the result to not fit with a 32-bit guest on a
2905 * 32-bit host. However some 64 bit guests (e.g. s390x)
2906 * attempt to place their heap further ahead and currently
2907 * nothing stops them smashing into QEMUs address space.
2909 #if TARGET_LONG_BITS == 64
2910 info->reserve_brk = 32 * MiB;
2911 #else
2912 info->reserve_brk = 16 * MiB;
2913 #endif
2914 hiaddr += info->reserve_brk;
2916 if (ehdr->e_type == ET_EXEC) {
2918 * Make sure that the low address does not conflict with
2919 * MMAP_MIN_ADDR or the QEMU application itself.
2921 probe_guest_base(image_name, loaddr, hiaddr);
2922 } else {
2924 * The binary is dynamic, but we still need to
2925 * select guest_base. In this case we pass a size.
2927 probe_guest_base(image_name, 0, hiaddr - loaddr);
2932 * Reserve address space for all of this.
2934 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2935 * exactly the address range that is required.
2937 * Otherwise this is ET_DYN, and we are searching for a location
2938 * that can hold the memory space required. If the image is
2939 * pre-linked, LOADDR will be non-zero, and the kernel should
2940 * honor that address if it happens to be free.
2942 * In both cases, we will overwrite pages in this range with mappings
2943 * from the executable.
2945 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2946 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2947 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2948 -1, 0);
2949 if (load_addr == -1) {
2950 goto exit_mmap;
2952 load_bias = load_addr - loaddr;
2954 if (elf_is_fdpic(ehdr)) {
2955 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2956 g_malloc(sizeof(*loadsegs) * info->nsegs);
2958 for (i = 0; i < ehdr->e_phnum; ++i) {
2959 switch (phdr[i].p_type) {
2960 case PT_DYNAMIC:
2961 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2962 break;
2963 case PT_LOAD:
2964 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2965 loadsegs->p_vaddr = phdr[i].p_vaddr;
2966 loadsegs->p_memsz = phdr[i].p_memsz;
2967 ++loadsegs;
2968 break;
2973 info->load_bias = load_bias;
2974 info->code_offset = load_bias;
2975 info->data_offset = load_bias;
2976 info->load_addr = load_addr;
2977 info->entry = ehdr->e_entry + load_bias;
2978 info->start_code = -1;
2979 info->end_code = 0;
2980 info->start_data = -1;
2981 info->end_data = 0;
2982 info->brk = 0;
2983 info->elf_flags = ehdr->e_flags;
2985 prot_exec = PROT_EXEC;
2986 #ifdef TARGET_AARCH64
2988 * If the BTI feature is present, this indicates that the executable
2989 * pages of the startup binary should be mapped with PROT_BTI, so that
2990 * branch targets are enforced.
2992 * The startup binary is either the interpreter or the static executable.
2993 * The interpreter is responsible for all pages of a dynamic executable.
2995 * Elf notes are backward compatible to older cpus.
2996 * Do not enable BTI unless it is supported.
2998 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2999 && (pinterp_name == NULL || *pinterp_name == 0)
3000 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3001 prot_exec |= TARGET_PROT_BTI;
3003 #endif
3005 for (i = 0; i < ehdr->e_phnum; i++) {
3006 struct elf_phdr *eppnt = phdr + i;
3007 if (eppnt->p_type == PT_LOAD) {
3008 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3009 int elf_prot = 0;
3011 if (eppnt->p_flags & PF_R) {
3012 elf_prot |= PROT_READ;
3014 if (eppnt->p_flags & PF_W) {
3015 elf_prot |= PROT_WRITE;
3017 if (eppnt->p_flags & PF_X) {
3018 elf_prot |= prot_exec;
3021 vaddr = load_bias + eppnt->p_vaddr;
3022 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3023 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3025 vaddr_ef = vaddr + eppnt->p_filesz;
3026 vaddr_em = vaddr + eppnt->p_memsz;
3029 * Some segments may be completely empty, with a non-zero p_memsz
3030 * but no backing file segment.
3032 if (eppnt->p_filesz != 0) {
3033 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3034 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3035 MAP_PRIVATE | MAP_FIXED,
3036 image_fd, eppnt->p_offset - vaddr_po);
3038 if (error == -1) {
3039 goto exit_mmap;
3043 * If the load segment requests extra zeros (e.g. bss), map it.
3045 if (eppnt->p_filesz < eppnt->p_memsz) {
3046 zero_bss(vaddr_ef, vaddr_em, elf_prot);
3048 } else if (eppnt->p_memsz != 0) {
3049 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3050 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3051 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3052 -1, 0);
3054 if (error == -1) {
3055 goto exit_mmap;
3059 /* Find the full program boundaries. */
3060 if (elf_prot & PROT_EXEC) {
3061 if (vaddr < info->start_code) {
3062 info->start_code = vaddr;
3064 if (vaddr_ef > info->end_code) {
3065 info->end_code = vaddr_ef;
3068 if (elf_prot & PROT_WRITE) {
3069 if (vaddr < info->start_data) {
3070 info->start_data = vaddr;
3072 if (vaddr_ef > info->end_data) {
3073 info->end_data = vaddr_ef;
3076 if (vaddr_em > info->brk) {
3077 info->brk = vaddr_em;
3079 #ifdef TARGET_MIPS
3080 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3081 Mips_elf_abiflags_v0 abiflags;
3082 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3083 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3084 goto exit_errmsg;
3086 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3087 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3088 sizeof(Mips_elf_abiflags_v0));
3089 } else {
3090 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3091 eppnt->p_offset);
3092 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3093 goto exit_read;
3096 bswap_mips_abiflags(&abiflags);
3097 info->fp_abi = abiflags.fp_abi;
3098 #endif
3102 if (info->end_data == 0) {
3103 info->start_data = info->end_code;
3104 info->end_data = info->end_code;
3107 if (qemu_log_enabled()) {
3108 load_symbols(ehdr, image_fd, load_bias);
3111 mmap_unlock();
3113 close(image_fd);
3114 return;
3116 exit_read:
3117 if (retval >= 0) {
3118 error_setg(&err, "Incomplete read of file header");
3119 } else {
3120 error_setg_errno(&err, errno, "Error reading file header");
3122 goto exit_errmsg;
3123 exit_mmap:
3124 error_setg_errno(&err, errno, "Error mapping file");
3125 goto exit_errmsg;
3126 exit_errmsg:
3127 error_reportf_err(err, "%s: ", image_name);
3128 exit(-1);
3131 static void load_elf_interp(const char *filename, struct image_info *info,
3132 char bprm_buf[BPRM_BUF_SIZE])
3134 int fd, retval;
3135 Error *err = NULL;
3137 fd = open(path(filename), O_RDONLY);
3138 if (fd < 0) {
3139 error_setg_file_open(&err, errno, filename);
3140 error_report_err(err);
3141 exit(-1);
3144 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3145 if (retval < 0) {
3146 error_setg_errno(&err, errno, "Error reading file header");
3147 error_reportf_err(err, "%s: ", filename);
3148 exit(-1);
3151 if (retval < BPRM_BUF_SIZE) {
3152 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3155 load_elf_image(filename, fd, info, NULL, bprm_buf);
3158 static int symfind(const void *s0, const void *s1)
3160 target_ulong addr = *(target_ulong *)s0;
3161 struct elf_sym *sym = (struct elf_sym *)s1;
3162 int result = 0;
3163 if (addr < sym->st_value) {
3164 result = -1;
3165 } else if (addr >= sym->st_value + sym->st_size) {
3166 result = 1;
3168 return result;
3171 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3173 #if ELF_CLASS == ELFCLASS32
3174 struct elf_sym *syms = s->disas_symtab.elf32;
3175 #else
3176 struct elf_sym *syms = s->disas_symtab.elf64;
3177 #endif
3179 // binary search
3180 struct elf_sym *sym;
3182 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3183 if (sym != NULL) {
3184 return s->disas_strtab + sym->st_name;
3187 return "";
3190 /* FIXME: This should use elf_ops.h */
3191 static int symcmp(const void *s0, const void *s1)
3193 struct elf_sym *sym0 = (struct elf_sym *)s0;
3194 struct elf_sym *sym1 = (struct elf_sym *)s1;
3195 return (sym0->st_value < sym1->st_value)
3196 ? -1
3197 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3200 /* Best attempt to load symbols from this ELF object. */
3201 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3203 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3204 uint64_t segsz;
3205 struct elf_shdr *shdr;
3206 char *strings = NULL;
3207 struct syminfo *s = NULL;
3208 struct elf_sym *new_syms, *syms = NULL;
3210 shnum = hdr->e_shnum;
3211 i = shnum * sizeof(struct elf_shdr);
3212 shdr = (struct elf_shdr *)alloca(i);
3213 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3214 return;
3217 bswap_shdr(shdr, shnum);
3218 for (i = 0; i < shnum; ++i) {
3219 if (shdr[i].sh_type == SHT_SYMTAB) {
3220 sym_idx = i;
3221 str_idx = shdr[i].sh_link;
3222 goto found;
3226 /* There will be no symbol table if the file was stripped. */
3227 return;
3229 found:
3230 /* Now know where the strtab and symtab are. Snarf them. */
3231 s = g_try_new(struct syminfo, 1);
3232 if (!s) {
3233 goto give_up;
3236 segsz = shdr[str_idx].sh_size;
3237 s->disas_strtab = strings = g_try_malloc(segsz);
3238 if (!strings ||
3239 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3240 goto give_up;
3243 segsz = shdr[sym_idx].sh_size;
3244 syms = g_try_malloc(segsz);
3245 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3246 goto give_up;
3249 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3250 /* Implausibly large symbol table: give up rather than ploughing
3251 * on with the number of symbols calculation overflowing
3253 goto give_up;
3255 nsyms = segsz / sizeof(struct elf_sym);
3256 for (i = 0; i < nsyms; ) {
3257 bswap_sym(syms + i);
3258 /* Throw away entries which we do not need. */
3259 if (syms[i].st_shndx == SHN_UNDEF
3260 || syms[i].st_shndx >= SHN_LORESERVE
3261 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3262 if (i < --nsyms) {
3263 syms[i] = syms[nsyms];
3265 } else {
3266 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3267 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3268 syms[i].st_value &= ~(target_ulong)1;
3269 #endif
3270 syms[i].st_value += load_bias;
3271 i++;
3275 /* No "useful" symbol. */
3276 if (nsyms == 0) {
3277 goto give_up;
3280 /* Attempt to free the storage associated with the local symbols
3281 that we threw away. Whether or not this has any effect on the
3282 memory allocation depends on the malloc implementation and how
3283 many symbols we managed to discard. */
3284 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3285 if (new_syms == NULL) {
3286 goto give_up;
3288 syms = new_syms;
3290 qsort(syms, nsyms, sizeof(*syms), symcmp);
3292 s->disas_num_syms = nsyms;
3293 #if ELF_CLASS == ELFCLASS32
3294 s->disas_symtab.elf32 = syms;
3295 #else
3296 s->disas_symtab.elf64 = syms;
3297 #endif
3298 s->lookup_symbol = lookup_symbolxx;
3299 s->next = syminfos;
3300 syminfos = s;
3302 return;
3304 give_up:
3305 g_free(s);
3306 g_free(strings);
3307 g_free(syms);
3310 uint32_t get_elf_eflags(int fd)
3312 struct elfhdr ehdr;
3313 off_t offset;
3314 int ret;
3316 /* Read ELF header */
3317 offset = lseek(fd, 0, SEEK_SET);
3318 if (offset == (off_t) -1) {
3319 return 0;
3321 ret = read(fd, &ehdr, sizeof(ehdr));
3322 if (ret < sizeof(ehdr)) {
3323 return 0;
3325 offset = lseek(fd, offset, SEEK_SET);
3326 if (offset == (off_t) -1) {
3327 return 0;
3330 /* Check ELF signature */
3331 if (!elf_check_ident(&ehdr)) {
3332 return 0;
3335 /* check header */
3336 bswap_ehdr(&ehdr);
3337 if (!elf_check_ehdr(&ehdr)) {
3338 return 0;
3341 /* return architecture id */
3342 return ehdr.e_flags;
3345 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3347 struct image_info interp_info;
3348 struct elfhdr elf_ex;
3349 char *elf_interpreter = NULL;
3350 char *scratch;
3352 memset(&interp_info, 0, sizeof(interp_info));
3353 #ifdef TARGET_MIPS
3354 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3355 #endif
3357 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3359 load_elf_image(bprm->filename, bprm->fd, info,
3360 &elf_interpreter, bprm->buf);
3362 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3363 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3364 when we load the interpreter. */
3365 elf_ex = *(struct elfhdr *)bprm->buf;
3367 /* Do this so that we can load the interpreter, if need be. We will
3368 change some of these later */
3369 bprm->p = setup_arg_pages(bprm, info);
3371 scratch = g_new0(char, TARGET_PAGE_SIZE);
3372 if (STACK_GROWS_DOWN) {
3373 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3374 bprm->p, info->stack_limit);
3375 info->file_string = bprm->p;
3376 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3377 bprm->p, info->stack_limit);
3378 info->env_strings = bprm->p;
3379 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3380 bprm->p, info->stack_limit);
3381 info->arg_strings = bprm->p;
3382 } else {
3383 info->arg_strings = bprm->p;
3384 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3385 bprm->p, info->stack_limit);
3386 info->env_strings = bprm->p;
3387 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3388 bprm->p, info->stack_limit);
3389 info->file_string = bprm->p;
3390 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3391 bprm->p, info->stack_limit);
3394 g_free(scratch);
3396 if (!bprm->p) {
3397 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3398 exit(-1);
3401 if (elf_interpreter) {
3402 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3404 /* If the program interpreter is one of these two, then assume
3405 an iBCS2 image. Otherwise assume a native linux image. */
3407 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3408 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3409 info->personality = PER_SVR4;
3411 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3412 and some applications "depend" upon this behavior. Since
3413 we do not have the power to recompile these, we emulate
3414 the SVr4 behavior. Sigh. */
3415 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3416 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3418 #ifdef TARGET_MIPS
3419 info->interp_fp_abi = interp_info.fp_abi;
3420 #endif
3424 * TODO: load a vdso, which would also contain the signal trampolines.
3425 * Otherwise, allocate a private page to hold them.
3427 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3428 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3429 PROT_READ | PROT_WRITE,
3430 MAP_PRIVATE | MAP_ANON, -1, 0);
3431 if (tramp_page == -1) {
3432 return -errno;
3435 setup_sigtramp(tramp_page);
3436 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3439 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3440 info, (elf_interpreter ? &interp_info : NULL));
3441 info->start_stack = bprm->p;
3443 /* If we have an interpreter, set that as the program's entry point.
3444 Copy the load_bias as well, to help PPC64 interpret the entry
3445 point as a function descriptor. Do this after creating elf tables
3446 so that we copy the original program entry point into the AUXV. */
3447 if (elf_interpreter) {
3448 info->load_bias = interp_info.load_bias;
3449 info->entry = interp_info.entry;
3450 g_free(elf_interpreter);
3453 #ifdef USE_ELF_CORE_DUMP
3454 bprm->core_dump = &elf_core_dump;
3455 #endif
3458 * If we reserved extra space for brk, release it now.
3459 * The implementation of do_brk in syscalls.c expects to be able
3460 * to mmap pages in this space.
3462 if (info->reserve_brk) {
3463 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3464 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3465 target_munmap(start_brk, end_brk - start_brk);
3468 return 0;
3471 #ifdef USE_ELF_CORE_DUMP
3473 * Definitions to generate Intel SVR4-like core files.
3474 * These mostly have the same names as the SVR4 types with "target_elf_"
3475 * tacked on the front to prevent clashes with linux definitions,
3476 * and the typedef forms have been avoided. This is mostly like
3477 * the SVR4 structure, but more Linuxy, with things that Linux does
3478 * not support and which gdb doesn't really use excluded.
3480 * Fields we don't dump (their contents is zero) in linux-user qemu
3481 * are marked with XXX.
3483 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3485 * Porting ELF coredump for target is (quite) simple process. First you
3486 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3487 * the target resides):
3489 * #define USE_ELF_CORE_DUMP
3491 * Next you define type of register set used for dumping. ELF specification
3492 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3494 * typedef <target_regtype> target_elf_greg_t;
3495 * #define ELF_NREG <number of registers>
3496 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3498 * Last step is to implement target specific function that copies registers
3499 * from given cpu into just specified register set. Prototype is:
3501 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3502 * const CPUArchState *env);
3504 * Parameters:
3505 * regs - copy register values into here (allocated and zeroed by caller)
3506 * env - copy registers from here
3508 * Example for ARM target is provided in this file.
3511 /* An ELF note in memory */
3512 struct memelfnote {
3513 const char *name;
3514 size_t namesz;
3515 size_t namesz_rounded;
3516 int type;
3517 size_t datasz;
3518 size_t datasz_rounded;
3519 void *data;
3520 size_t notesz;
3523 struct target_elf_siginfo {
3524 abi_int si_signo; /* signal number */
3525 abi_int si_code; /* extra code */
3526 abi_int si_errno; /* errno */
3529 struct target_elf_prstatus {
3530 struct target_elf_siginfo pr_info; /* Info associated with signal */
3531 abi_short pr_cursig; /* Current signal */
3532 abi_ulong pr_sigpend; /* XXX */
3533 abi_ulong pr_sighold; /* XXX */
3534 target_pid_t pr_pid;
3535 target_pid_t pr_ppid;
3536 target_pid_t pr_pgrp;
3537 target_pid_t pr_sid;
3538 struct target_timeval pr_utime; /* XXX User time */
3539 struct target_timeval pr_stime; /* XXX System time */
3540 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3541 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3542 target_elf_gregset_t pr_reg; /* GP registers */
3543 abi_int pr_fpvalid; /* XXX */
3546 #define ELF_PRARGSZ (80) /* Number of chars for args */
3548 struct target_elf_prpsinfo {
3549 char pr_state; /* numeric process state */
3550 char pr_sname; /* char for pr_state */
3551 char pr_zomb; /* zombie */
3552 char pr_nice; /* nice val */
3553 abi_ulong pr_flag; /* flags */
3554 target_uid_t pr_uid;
3555 target_gid_t pr_gid;
3556 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3557 /* Lots missing */
3558 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3559 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3562 /* Here is the structure in which status of each thread is captured. */
3563 struct elf_thread_status {
3564 QTAILQ_ENTRY(elf_thread_status) ets_link;
3565 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3566 #if 0
3567 elf_fpregset_t fpu; /* NT_PRFPREG */
3568 struct task_struct *thread;
3569 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3570 #endif
3571 struct memelfnote notes[1];
3572 int num_notes;
3575 struct elf_note_info {
3576 struct memelfnote *notes;
3577 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3578 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3580 QTAILQ_HEAD(, elf_thread_status) thread_list;
3581 #if 0
3583 * Current version of ELF coredump doesn't support
3584 * dumping fp regs etc.
3586 elf_fpregset_t *fpu;
3587 elf_fpxregset_t *xfpu;
3588 int thread_status_size;
3589 #endif
3590 int notes_size;
3591 int numnote;
3594 struct vm_area_struct {
3595 target_ulong vma_start; /* start vaddr of memory region */
3596 target_ulong vma_end; /* end vaddr of memory region */
3597 abi_ulong vma_flags; /* protection etc. flags for the region */
3598 QTAILQ_ENTRY(vm_area_struct) vma_link;
3601 struct mm_struct {
3602 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3603 int mm_count; /* number of mappings */
3606 static struct mm_struct *vma_init(void);
3607 static void vma_delete(struct mm_struct *);
3608 static int vma_add_mapping(struct mm_struct *, target_ulong,
3609 target_ulong, abi_ulong);
3610 static int vma_get_mapping_count(const struct mm_struct *);
3611 static struct vm_area_struct *vma_first(const struct mm_struct *);
3612 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3613 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3614 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3615 unsigned long flags);
3617 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3618 static void fill_note(struct memelfnote *, const char *, int,
3619 unsigned int, void *);
3620 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3621 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3622 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3623 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3624 static size_t note_size(const struct memelfnote *);
3625 static void free_note_info(struct elf_note_info *);
3626 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3627 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3629 static int dump_write(int, const void *, size_t);
3630 static int write_note(struct memelfnote *, int);
3631 static int write_note_info(struct elf_note_info *, int);
3633 #ifdef BSWAP_NEEDED
3634 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3636 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3637 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3638 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3639 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3640 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3641 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3642 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3643 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3644 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3645 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3646 /* cpu times are not filled, so we skip them */
3647 /* regs should be in correct format already */
3648 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3651 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3653 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3654 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3655 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3656 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3657 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3658 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3659 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3662 static void bswap_note(struct elf_note *en)
3664 bswap32s(&en->n_namesz);
3665 bswap32s(&en->n_descsz);
3666 bswap32s(&en->n_type);
3668 #else
3669 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3670 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3671 static inline void bswap_note(struct elf_note *en) { }
3672 #endif /* BSWAP_NEEDED */
3675 * Minimal support for linux memory regions. These are needed
3676 * when we are finding out what memory exactly belongs to
3677 * emulated process. No locks needed here, as long as
3678 * thread that received the signal is stopped.
3681 static struct mm_struct *vma_init(void)
3683 struct mm_struct *mm;
3685 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3686 return (NULL);
3688 mm->mm_count = 0;
3689 QTAILQ_INIT(&mm->mm_mmap);
3691 return (mm);
3694 static void vma_delete(struct mm_struct *mm)
3696 struct vm_area_struct *vma;
3698 while ((vma = vma_first(mm)) != NULL) {
3699 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3700 g_free(vma);
3702 g_free(mm);
3705 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3706 target_ulong end, abi_ulong flags)
3708 struct vm_area_struct *vma;
3710 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3711 return (-1);
3713 vma->vma_start = start;
3714 vma->vma_end = end;
3715 vma->vma_flags = flags;
3717 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3718 mm->mm_count++;
3720 return (0);
3723 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3725 return (QTAILQ_FIRST(&mm->mm_mmap));
3728 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3730 return (QTAILQ_NEXT(vma, vma_link));
3733 static int vma_get_mapping_count(const struct mm_struct *mm)
3735 return (mm->mm_count);
3739 * Calculate file (dump) size of given memory region.
3741 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3743 /* if we cannot even read the first page, skip it */
3744 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3745 return (0);
3748 * Usually we don't dump executable pages as they contain
3749 * non-writable code that debugger can read directly from
3750 * target library etc. However, thread stacks are marked
3751 * also executable so we read in first page of given region
3752 * and check whether it contains elf header. If there is
3753 * no elf header, we dump it.
3755 if (vma->vma_flags & PROT_EXEC) {
3756 char page[TARGET_PAGE_SIZE];
3758 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3759 return 0;
3761 if ((page[EI_MAG0] == ELFMAG0) &&
3762 (page[EI_MAG1] == ELFMAG1) &&
3763 (page[EI_MAG2] == ELFMAG2) &&
3764 (page[EI_MAG3] == ELFMAG3)) {
3766 * Mappings are possibly from ELF binary. Don't dump
3767 * them.
3769 return (0);
3773 return (vma->vma_end - vma->vma_start);
3776 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3777 unsigned long flags)
3779 struct mm_struct *mm = (struct mm_struct *)priv;
3781 vma_add_mapping(mm, start, end, flags);
3782 return (0);
3785 static void fill_note(struct memelfnote *note, const char *name, int type,
3786 unsigned int sz, void *data)
3788 unsigned int namesz;
3790 namesz = strlen(name) + 1;
3791 note->name = name;
3792 note->namesz = namesz;
3793 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3794 note->type = type;
3795 note->datasz = sz;
3796 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3798 note->data = data;
3801 * We calculate rounded up note size here as specified by
3802 * ELF document.
3804 note->notesz = sizeof (struct elf_note) +
3805 note->namesz_rounded + note->datasz_rounded;
3808 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3809 uint32_t flags)
3811 (void) memset(elf, 0, sizeof(*elf));
3813 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3814 elf->e_ident[EI_CLASS] = ELF_CLASS;
3815 elf->e_ident[EI_DATA] = ELF_DATA;
3816 elf->e_ident[EI_VERSION] = EV_CURRENT;
3817 elf->e_ident[EI_OSABI] = ELF_OSABI;
3819 elf->e_type = ET_CORE;
3820 elf->e_machine = machine;
3821 elf->e_version = EV_CURRENT;
3822 elf->e_phoff = sizeof(struct elfhdr);
3823 elf->e_flags = flags;
3824 elf->e_ehsize = sizeof(struct elfhdr);
3825 elf->e_phentsize = sizeof(struct elf_phdr);
3826 elf->e_phnum = segs;
3828 bswap_ehdr(elf);
3831 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3833 phdr->p_type = PT_NOTE;
3834 phdr->p_offset = offset;
3835 phdr->p_vaddr = 0;
3836 phdr->p_paddr = 0;
3837 phdr->p_filesz = sz;
3838 phdr->p_memsz = 0;
3839 phdr->p_flags = 0;
3840 phdr->p_align = 0;
3842 bswap_phdr(phdr, 1);
3845 static size_t note_size(const struct memelfnote *note)
3847 return (note->notesz);
3850 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3851 const TaskState *ts, int signr)
3853 (void) memset(prstatus, 0, sizeof (*prstatus));
3854 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3855 prstatus->pr_pid = ts->ts_tid;
3856 prstatus->pr_ppid = getppid();
3857 prstatus->pr_pgrp = getpgrp();
3858 prstatus->pr_sid = getsid(0);
3860 bswap_prstatus(prstatus);
3863 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3865 char *base_filename;
3866 unsigned int i, len;
3868 (void) memset(psinfo, 0, sizeof (*psinfo));
3870 len = ts->info->env_strings - ts->info->arg_strings;
3871 if (len >= ELF_PRARGSZ)
3872 len = ELF_PRARGSZ - 1;
3873 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3874 return -EFAULT;
3876 for (i = 0; i < len; i++)
3877 if (psinfo->pr_psargs[i] == 0)
3878 psinfo->pr_psargs[i] = ' ';
3879 psinfo->pr_psargs[len] = 0;
3881 psinfo->pr_pid = getpid();
3882 psinfo->pr_ppid = getppid();
3883 psinfo->pr_pgrp = getpgrp();
3884 psinfo->pr_sid = getsid(0);
3885 psinfo->pr_uid = getuid();
3886 psinfo->pr_gid = getgid();
3888 base_filename = g_path_get_basename(ts->bprm->filename);
3890 * Using strncpy here is fine: at max-length,
3891 * this field is not NUL-terminated.
3893 (void) strncpy(psinfo->pr_fname, base_filename,
3894 sizeof(psinfo->pr_fname));
3896 g_free(base_filename);
3897 bswap_psinfo(psinfo);
3898 return (0);
3901 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3903 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3904 elf_addr_t orig_auxv = auxv;
3905 void *ptr;
3906 int len = ts->info->auxv_len;
3909 * Auxiliary vector is stored in target process stack. It contains
3910 * {type, value} pairs that we need to dump into note. This is not
3911 * strictly necessary but we do it here for sake of completeness.
3914 /* read in whole auxv vector and copy it to memelfnote */
3915 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3916 if (ptr != NULL) {
3917 fill_note(note, "CORE", NT_AUXV, len, ptr);
3918 unlock_user(ptr, auxv, len);
3923 * Constructs name of coredump file. We have following convention
3924 * for the name:
3925 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3927 * Returns the filename
3929 static char *core_dump_filename(const TaskState *ts)
3931 g_autoptr(GDateTime) now = g_date_time_new_now_local();
3932 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3933 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3935 return g_strdup_printf("qemu_%s_%s_%d.core",
3936 base_filename, nowstr, (int)getpid());
3939 static int dump_write(int fd, const void *ptr, size_t size)
3941 const char *bufp = (const char *)ptr;
3942 ssize_t bytes_written, bytes_left;
3943 struct rlimit dumpsize;
3944 off_t pos;
3946 bytes_written = 0;
3947 getrlimit(RLIMIT_CORE, &dumpsize);
3948 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3949 if (errno == ESPIPE) { /* not a seekable stream */
3950 bytes_left = size;
3951 } else {
3952 return pos;
3954 } else {
3955 if (dumpsize.rlim_cur <= pos) {
3956 return -1;
3957 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3958 bytes_left = size;
3959 } else {
3960 size_t limit_left=dumpsize.rlim_cur - pos;
3961 bytes_left = limit_left >= size ? size : limit_left ;
3966 * In normal conditions, single write(2) should do but
3967 * in case of socket etc. this mechanism is more portable.
3969 do {
3970 bytes_written = write(fd, bufp, bytes_left);
3971 if (bytes_written < 0) {
3972 if (errno == EINTR)
3973 continue;
3974 return (-1);
3975 } else if (bytes_written == 0) { /* eof */
3976 return (-1);
3978 bufp += bytes_written;
3979 bytes_left -= bytes_written;
3980 } while (bytes_left > 0);
3982 return (0);
3985 static int write_note(struct memelfnote *men, int fd)
3987 struct elf_note en;
3989 en.n_namesz = men->namesz;
3990 en.n_type = men->type;
3991 en.n_descsz = men->datasz;
3993 bswap_note(&en);
3995 if (dump_write(fd, &en, sizeof(en)) != 0)
3996 return (-1);
3997 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3998 return (-1);
3999 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4000 return (-1);
4002 return (0);
4005 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4007 CPUState *cpu = env_cpu((CPUArchState *)env);
4008 TaskState *ts = (TaskState *)cpu->opaque;
4009 struct elf_thread_status *ets;
4011 ets = g_malloc0(sizeof (*ets));
4012 ets->num_notes = 1; /* only prstatus is dumped */
4013 fill_prstatus(&ets->prstatus, ts, 0);
4014 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4015 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4016 &ets->prstatus);
4018 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4020 info->notes_size += note_size(&ets->notes[0]);
4023 static void init_note_info(struct elf_note_info *info)
4025 /* Initialize the elf_note_info structure so that it is at
4026 * least safe to call free_note_info() on it. Must be
4027 * called before calling fill_note_info().
4029 memset(info, 0, sizeof (*info));
4030 QTAILQ_INIT(&info->thread_list);
4033 static int fill_note_info(struct elf_note_info *info,
4034 long signr, const CPUArchState *env)
4036 #define NUMNOTES 3
4037 CPUState *cpu = env_cpu((CPUArchState *)env);
4038 TaskState *ts = (TaskState *)cpu->opaque;
4039 int i;
4041 info->notes = g_new0(struct memelfnote, NUMNOTES);
4042 if (info->notes == NULL)
4043 return (-ENOMEM);
4044 info->prstatus = g_malloc0(sizeof (*info->prstatus));
4045 if (info->prstatus == NULL)
4046 return (-ENOMEM);
4047 info->psinfo = g_malloc0(sizeof (*info->psinfo));
4048 if (info->prstatus == NULL)
4049 return (-ENOMEM);
4052 * First fill in status (and registers) of current thread
4053 * including process info & aux vector.
4055 fill_prstatus(info->prstatus, ts, signr);
4056 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4057 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4058 sizeof (*info->prstatus), info->prstatus);
4059 fill_psinfo(info->psinfo, ts);
4060 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4061 sizeof (*info->psinfo), info->psinfo);
4062 fill_auxv_note(&info->notes[2], ts);
4063 info->numnote = 3;
4065 info->notes_size = 0;
4066 for (i = 0; i < info->numnote; i++)
4067 info->notes_size += note_size(&info->notes[i]);
4069 /* read and fill status of all threads */
4070 cpu_list_lock();
4071 CPU_FOREACH(cpu) {
4072 if (cpu == thread_cpu) {
4073 continue;
4075 fill_thread_info(info, cpu->env_ptr);
4077 cpu_list_unlock();
4079 return (0);
4082 static void free_note_info(struct elf_note_info *info)
4084 struct elf_thread_status *ets;
4086 while (!QTAILQ_EMPTY(&info->thread_list)) {
4087 ets = QTAILQ_FIRST(&info->thread_list);
4088 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4089 g_free(ets);
4092 g_free(info->prstatus);
4093 g_free(info->psinfo);
4094 g_free(info->notes);
4097 static int write_note_info(struct elf_note_info *info, int fd)
4099 struct elf_thread_status *ets;
4100 int i, error = 0;
4102 /* write prstatus, psinfo and auxv for current thread */
4103 for (i = 0; i < info->numnote; i++)
4104 if ((error = write_note(&info->notes[i], fd)) != 0)
4105 return (error);
4107 /* write prstatus for each thread */
4108 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4109 if ((error = write_note(&ets->notes[0], fd)) != 0)
4110 return (error);
4113 return (0);
4117 * Write out ELF coredump.
4119 * See documentation of ELF object file format in:
4120 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4122 * Coredump format in linux is following:
4124 * 0 +----------------------+ \
4125 * | ELF header | ET_CORE |
4126 * +----------------------+ |
4127 * | ELF program headers | |--- headers
4128 * | - NOTE section | |
4129 * | - PT_LOAD sections | |
4130 * +----------------------+ /
4131 * | NOTEs: |
4132 * | - NT_PRSTATUS |
4133 * | - NT_PRSINFO |
4134 * | - NT_AUXV |
4135 * +----------------------+ <-- aligned to target page
4136 * | Process memory dump |
4137 * : :
4138 * . .
4139 * : :
4140 * | |
4141 * +----------------------+
4143 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4144 * NT_PRSINFO -> struct elf_prpsinfo
4145 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4147 * Format follows System V format as close as possible. Current
4148 * version limitations are as follows:
4149 * - no floating point registers are dumped
4151 * Function returns 0 in case of success, negative errno otherwise.
4153 * TODO: make this work also during runtime: it should be
4154 * possible to force coredump from running process and then
4155 * continue processing. For example qemu could set up SIGUSR2
4156 * handler (provided that target process haven't registered
4157 * handler for that) that does the dump when signal is received.
4159 static int elf_core_dump(int signr, const CPUArchState *env)
4161 const CPUState *cpu = env_cpu((CPUArchState *)env);
4162 const TaskState *ts = (const TaskState *)cpu->opaque;
4163 struct vm_area_struct *vma = NULL;
4164 g_autofree char *corefile = NULL;
4165 struct elf_note_info info;
4166 struct elfhdr elf;
4167 struct elf_phdr phdr;
4168 struct rlimit dumpsize;
4169 struct mm_struct *mm = NULL;
4170 off_t offset = 0, data_offset = 0;
4171 int segs = 0;
4172 int fd = -1;
4174 init_note_info(&info);
4176 errno = 0;
4177 getrlimit(RLIMIT_CORE, &dumpsize);
4178 if (dumpsize.rlim_cur == 0)
4179 return 0;
4181 corefile = core_dump_filename(ts);
4183 if ((fd = open(corefile, O_WRONLY | O_CREAT,
4184 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4185 return (-errno);
4188 * Walk through target process memory mappings and
4189 * set up structure containing this information. After
4190 * this point vma_xxx functions can be used.
4192 if ((mm = vma_init()) == NULL)
4193 goto out;
4195 walk_memory_regions(mm, vma_walker);
4196 segs = vma_get_mapping_count(mm);
4199 * Construct valid coredump ELF header. We also
4200 * add one more segment for notes.
4202 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4203 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4204 goto out;
4206 /* fill in the in-memory version of notes */
4207 if (fill_note_info(&info, signr, env) < 0)
4208 goto out;
4210 offset += sizeof (elf); /* elf header */
4211 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4213 /* write out notes program header */
4214 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4216 offset += info.notes_size;
4217 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4218 goto out;
4221 * ELF specification wants data to start at page boundary so
4222 * we align it here.
4224 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4227 * Write program headers for memory regions mapped in
4228 * the target process.
4230 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4231 (void) memset(&phdr, 0, sizeof (phdr));
4233 phdr.p_type = PT_LOAD;
4234 phdr.p_offset = offset;
4235 phdr.p_vaddr = vma->vma_start;
4236 phdr.p_paddr = 0;
4237 phdr.p_filesz = vma_dump_size(vma);
4238 offset += phdr.p_filesz;
4239 phdr.p_memsz = vma->vma_end - vma->vma_start;
4240 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4241 if (vma->vma_flags & PROT_WRITE)
4242 phdr.p_flags |= PF_W;
4243 if (vma->vma_flags & PROT_EXEC)
4244 phdr.p_flags |= PF_X;
4245 phdr.p_align = ELF_EXEC_PAGESIZE;
4247 bswap_phdr(&phdr, 1);
4248 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4249 goto out;
4254 * Next we write notes just after program headers. No
4255 * alignment needed here.
4257 if (write_note_info(&info, fd) < 0)
4258 goto out;
4260 /* align data to page boundary */
4261 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4262 goto out;
4265 * Finally we can dump process memory into corefile as well.
4267 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4268 abi_ulong addr;
4269 abi_ulong end;
4271 end = vma->vma_start + vma_dump_size(vma);
4273 for (addr = vma->vma_start; addr < end;
4274 addr += TARGET_PAGE_SIZE) {
4275 char page[TARGET_PAGE_SIZE];
4276 int error;
4279 * Read in page from target process memory and
4280 * write it to coredump file.
4282 error = copy_from_user(page, addr, sizeof (page));
4283 if (error != 0) {
4284 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4285 addr);
4286 errno = -error;
4287 goto out;
4289 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4290 goto out;
4294 out:
4295 free_note_info(&info);
4296 if (mm != NULL)
4297 vma_delete(mm);
4298 (void) close(fd);
4300 if (errno != 0)
4301 return (-errno);
4302 return (0);
4304 #endif /* USE_ELF_CORE_DUMP */
4306 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4308 init_thread(regs, infop);