target-arm: increase arrays of registers R13 & R14
[qemu.git] / hw / block / pflash_cfi01.c
blob89d380e59d176e2e84a379ef8c4897f44f1b6356
1 /*
2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
24 * - flash read
25 * - flash write
26 * - flash ID read
27 * - sector erase
28 * - CFI queries
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
39 #include "hw/hw.h"
40 #include "hw/block/flash.h"
41 #include "sysemu/block-backend.h"
42 #include "qemu/timer.h"
43 #include "qemu/bitops.h"
44 #include "exec/address-spaces.h"
45 #include "qemu/host-utils.h"
46 #include "hw/sysbus.h"
48 #define PFLASH_BUG(fmt, ...) \
49 do { \
50 fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \
51 exit(1); \
52 } while(0)
54 /* #define PFLASH_DEBUG */
55 #ifdef PFLASH_DEBUG
56 #define DPRINTF(fmt, ...) \
57 do { \
58 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
59 } while (0)
60 #else
61 #define DPRINTF(fmt, ...) do { } while (0)
62 #endif
64 #define TYPE_CFI_PFLASH01 "cfi.pflash01"
65 #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01)
67 struct pflash_t {
68 /*< private >*/
69 SysBusDevice parent_obj;
70 /*< public >*/
72 BlockBackend *blk;
73 uint32_t nb_blocs;
74 uint64_t sector_len;
75 uint8_t bank_width;
76 uint8_t device_width; /* If 0, device width not specified. */
77 uint8_t max_device_width; /* max device width in bytes */
78 uint8_t be;
79 uint8_t wcycle; /* if 0, the flash is read normally */
80 int ro;
81 uint8_t cmd;
82 uint8_t status;
83 uint16_t ident0;
84 uint16_t ident1;
85 uint16_t ident2;
86 uint16_t ident3;
87 uint8_t cfi_len;
88 uint8_t cfi_table[0x52];
89 uint64_t counter;
90 unsigned int writeblock_size;
91 QEMUTimer *timer;
92 MemoryRegion mem;
93 char *name;
94 void *storage;
97 static int pflash_post_load(void *opaque, int version_id);
99 static const VMStateDescription vmstate_pflash = {
100 .name = "pflash_cfi01",
101 .version_id = 1,
102 .minimum_version_id = 1,
103 .post_load = pflash_post_load,
104 .fields = (VMStateField[]) {
105 VMSTATE_UINT8(wcycle, pflash_t),
106 VMSTATE_UINT8(cmd, pflash_t),
107 VMSTATE_UINT8(status, pflash_t),
108 VMSTATE_UINT64(counter, pflash_t),
109 VMSTATE_END_OF_LIST()
113 static void pflash_timer (void *opaque)
115 pflash_t *pfl = opaque;
117 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
118 /* Reset flash */
119 pfl->status ^= 0x80;
120 memory_region_rom_device_set_romd(&pfl->mem, true);
121 pfl->wcycle = 0;
122 pfl->cmd = 0;
125 /* Perform a CFI query based on the bank width of the flash.
126 * If this code is called we know we have a device_width set for
127 * this flash.
129 static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset)
131 int i;
132 uint32_t resp = 0;
133 hwaddr boff;
135 /* Adjust incoming offset to match expected device-width
136 * addressing. CFI query addresses are always specified in terms of
137 * the maximum supported width of the device. This means that x8
138 * devices and x8/x16 devices in x8 mode behave differently. For
139 * devices that are not used at their max width, we will be
140 * provided with addresses that use higher address bits than
141 * expected (based on the max width), so we will shift them lower
142 * so that they will match the addresses used when
143 * device_width==max_device_width.
145 boff = offset >> (ctz32(pfl->bank_width) +
146 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
148 if (boff > pfl->cfi_len) {
149 return 0;
151 /* Now we will construct the CFI response generated by a single
152 * device, then replicate that for all devices that make up the
153 * bus. For wide parts used in x8 mode, CFI query responses
154 * are different than native byte-wide parts.
156 resp = pfl->cfi_table[boff];
157 if (pfl->device_width != pfl->max_device_width) {
158 /* The only case currently supported is x8 mode for a
159 * wider part.
161 if (pfl->device_width != 1 || pfl->bank_width > 4) {
162 DPRINTF("%s: Unsupported device configuration: "
163 "device_width=%d, max_device_width=%d\n",
164 __func__, pfl->device_width,
165 pfl->max_device_width);
166 return 0;
168 /* CFI query data is repeated, rather than zero padded for
169 * wide devices used in x8 mode.
171 for (i = 1; i < pfl->max_device_width; i++) {
172 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
175 /* Replicate responses for each device in bank. */
176 if (pfl->device_width < pfl->bank_width) {
177 for (i = pfl->device_width;
178 i < pfl->bank_width; i += pfl->device_width) {
179 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
183 return resp;
188 /* Perform a device id query based on the bank width of the flash. */
189 static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset)
191 int i;
192 uint32_t resp;
193 hwaddr boff;
195 /* Adjust incoming offset to match expected device-width
196 * addressing. Device ID read addresses are always specified in
197 * terms of the maximum supported width of the device. This means
198 * that x8 devices and x8/x16 devices in x8 mode behave
199 * differently. For devices that are not used at their max width,
200 * we will be provided with addresses that use higher address bits
201 * than expected (based on the max width), so we will shift them
202 * lower so that they will match the addresses used when
203 * device_width==max_device_width.
205 boff = offset >> (ctz32(pfl->bank_width) +
206 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
208 /* Mask off upper bits which may be used in to query block
209 * or sector lock status at other addresses.
210 * Offsets 2/3 are block lock status, is not emulated.
212 switch (boff & 0xFF) {
213 case 0:
214 resp = pfl->ident0;
215 DPRINTF("%s: Manufacturer Code %04x\n", __func__, resp);
216 break;
217 case 1:
218 resp = pfl->ident1;
219 DPRINTF("%s: Device ID Code %04x\n", __func__, resp);
220 break;
221 default:
222 DPRINTF("%s: Read Device Information offset=%x\n", __func__,
223 (unsigned)offset);
224 return 0;
225 break;
227 /* Replicate responses for each device in bank. */
228 if (pfl->device_width < pfl->bank_width) {
229 for (i = pfl->device_width;
230 i < pfl->bank_width; i += pfl->device_width) {
231 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
235 return resp;
238 static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
239 int width, int be)
241 hwaddr boff;
242 uint32_t ret;
243 uint8_t *p;
245 ret = -1;
247 #if 0
248 DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n",
249 __func__, offset, pfl->cmd, width);
250 #endif
251 switch (pfl->cmd) {
252 default:
253 /* This should never happen : reset state & treat it as a read */
254 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
255 pfl->wcycle = 0;
256 pfl->cmd = 0;
257 /* fall through to read code */
258 case 0x00:
259 /* Flash area read */
260 p = pfl->storage;
261 switch (width) {
262 case 1:
263 ret = p[offset];
264 DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n",
265 __func__, offset, ret);
266 break;
267 case 2:
268 if (be) {
269 ret = p[offset] << 8;
270 ret |= p[offset + 1];
271 } else {
272 ret = p[offset];
273 ret |= p[offset + 1] << 8;
275 DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n",
276 __func__, offset, ret);
277 break;
278 case 4:
279 if (be) {
280 ret = p[offset] << 24;
281 ret |= p[offset + 1] << 16;
282 ret |= p[offset + 2] << 8;
283 ret |= p[offset + 3];
284 } else {
285 ret = p[offset];
286 ret |= p[offset + 1] << 8;
287 ret |= p[offset + 2] << 16;
288 ret |= p[offset + 3] << 24;
290 DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n",
291 __func__, offset, ret);
292 break;
293 default:
294 DPRINTF("BUG in %s\n", __func__);
297 break;
298 case 0x10: /* Single byte program */
299 case 0x20: /* Block erase */
300 case 0x28: /* Block erase */
301 case 0x40: /* single byte program */
302 case 0x50: /* Clear status register */
303 case 0x60: /* Block /un)lock */
304 case 0x70: /* Status Register */
305 case 0xe8: /* Write block */
306 /* Status register read. Return status from each device in
307 * bank.
309 ret = pfl->status;
310 if (pfl->device_width && width > pfl->device_width) {
311 int shift = pfl->device_width * 8;
312 while (shift + pfl->device_width * 8 <= width * 8) {
313 ret |= pfl->status << shift;
314 shift += pfl->device_width * 8;
316 } else if (!pfl->device_width && width > 2) {
317 /* Handle 32 bit flash cases where device width is not
318 * set. (Existing behavior before device width added.)
320 ret |= pfl->status << 16;
322 DPRINTF("%s: status %x\n", __func__, ret);
323 break;
324 case 0x90:
325 if (!pfl->device_width) {
326 /* Preserve old behavior if device width not specified */
327 boff = offset & 0xFF;
328 if (pfl->bank_width == 2) {
329 boff = boff >> 1;
330 } else if (pfl->bank_width == 4) {
331 boff = boff >> 2;
334 switch (boff) {
335 case 0:
336 ret = pfl->ident0 << 8 | pfl->ident1;
337 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
338 break;
339 case 1:
340 ret = pfl->ident2 << 8 | pfl->ident3;
341 DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
342 break;
343 default:
344 DPRINTF("%s: Read Device Information boff=%x\n", __func__,
345 (unsigned)boff);
346 ret = 0;
347 break;
349 } else {
350 /* If we have a read larger than the bank_width, combine multiple
351 * manufacturer/device ID queries into a single response.
353 int i;
354 for (i = 0; i < width; i += pfl->bank_width) {
355 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
356 pflash_devid_query(pfl,
357 offset + i * pfl->bank_width));
360 break;
361 case 0x98: /* Query mode */
362 if (!pfl->device_width) {
363 /* Preserve old behavior if device width not specified */
364 boff = offset & 0xFF;
365 if (pfl->bank_width == 2) {
366 boff = boff >> 1;
367 } else if (pfl->bank_width == 4) {
368 boff = boff >> 2;
371 if (boff > pfl->cfi_len) {
372 ret = 0;
373 } else {
374 ret = pfl->cfi_table[boff];
376 } else {
377 /* If we have a read larger than the bank_width, combine multiple
378 * CFI queries into a single response.
380 int i;
381 for (i = 0; i < width; i += pfl->bank_width) {
382 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
383 pflash_cfi_query(pfl,
384 offset + i * pfl->bank_width));
388 break;
390 return ret;
393 /* update flash content on disk */
394 static void pflash_update(pflash_t *pfl, int offset,
395 int size)
397 int offset_end;
398 if (pfl->blk) {
399 offset_end = offset + size;
400 /* round to sectors */
401 offset = offset >> 9;
402 offset_end = (offset_end + 511) >> 9;
403 blk_write(pfl->blk, offset, pfl->storage + (offset << 9),
404 offset_end - offset);
408 static inline void pflash_data_write(pflash_t *pfl, hwaddr offset,
409 uint32_t value, int width, int be)
411 uint8_t *p = pfl->storage;
413 DPRINTF("%s: block write offset " TARGET_FMT_plx
414 " value %x counter %016" PRIx64 "\n",
415 __func__, offset, value, pfl->counter);
416 switch (width) {
417 case 1:
418 p[offset] = value;
419 break;
420 case 2:
421 if (be) {
422 p[offset] = value >> 8;
423 p[offset + 1] = value;
424 } else {
425 p[offset] = value;
426 p[offset + 1] = value >> 8;
428 break;
429 case 4:
430 if (be) {
431 p[offset] = value >> 24;
432 p[offset + 1] = value >> 16;
433 p[offset + 2] = value >> 8;
434 p[offset + 3] = value;
435 } else {
436 p[offset] = value;
437 p[offset + 1] = value >> 8;
438 p[offset + 2] = value >> 16;
439 p[offset + 3] = value >> 24;
441 break;
446 static void pflash_write(pflash_t *pfl, hwaddr offset,
447 uint32_t value, int width, int be)
449 uint8_t *p;
450 uint8_t cmd;
452 cmd = value;
454 DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n",
455 __func__, offset, value, width, pfl->wcycle);
457 if (!pfl->wcycle) {
458 /* Set the device in I/O access mode */
459 memory_region_rom_device_set_romd(&pfl->mem, false);
462 switch (pfl->wcycle) {
463 case 0:
464 /* read mode */
465 switch (cmd) {
466 case 0x00: /* ??? */
467 goto reset_flash;
468 case 0x10: /* Single Byte Program */
469 case 0x40: /* Single Byte Program */
470 DPRINTF("%s: Single Byte Program\n", __func__);
471 break;
472 case 0x20: /* Block erase */
473 p = pfl->storage;
474 offset &= ~(pfl->sector_len - 1);
476 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
477 __func__, offset, (unsigned)pfl->sector_len);
479 if (!pfl->ro) {
480 memset(p + offset, 0xff, pfl->sector_len);
481 pflash_update(pfl, offset, pfl->sector_len);
482 } else {
483 pfl->status |= 0x20; /* Block erase error */
485 pfl->status |= 0x80; /* Ready! */
486 break;
487 case 0x50: /* Clear status bits */
488 DPRINTF("%s: Clear status bits\n", __func__);
489 pfl->status = 0x0;
490 goto reset_flash;
491 case 0x60: /* Block (un)lock */
492 DPRINTF("%s: Block unlock\n", __func__);
493 break;
494 case 0x70: /* Status Register */
495 DPRINTF("%s: Read status register\n", __func__);
496 pfl->cmd = cmd;
497 return;
498 case 0x90: /* Read Device ID */
499 DPRINTF("%s: Read Device information\n", __func__);
500 pfl->cmd = cmd;
501 return;
502 case 0x98: /* CFI query */
503 DPRINTF("%s: CFI query\n", __func__);
504 break;
505 case 0xe8: /* Write to buffer */
506 DPRINTF("%s: Write to buffer\n", __func__);
507 pfl->status |= 0x80; /* Ready! */
508 break;
509 case 0xf0: /* Probe for AMD flash */
510 DPRINTF("%s: Probe for AMD flash\n", __func__);
511 goto reset_flash;
512 case 0xff: /* Read array mode */
513 DPRINTF("%s: Read array mode\n", __func__);
514 goto reset_flash;
515 default:
516 goto error_flash;
518 pfl->wcycle++;
519 pfl->cmd = cmd;
520 break;
521 case 1:
522 switch (pfl->cmd) {
523 case 0x10: /* Single Byte Program */
524 case 0x40: /* Single Byte Program */
525 DPRINTF("%s: Single Byte Program\n", __func__);
526 if (!pfl->ro) {
527 pflash_data_write(pfl, offset, value, width, be);
528 pflash_update(pfl, offset, width);
529 } else {
530 pfl->status |= 0x10; /* Programming error */
532 pfl->status |= 0x80; /* Ready! */
533 pfl->wcycle = 0;
534 break;
535 case 0x20: /* Block erase */
536 case 0x28:
537 if (cmd == 0xd0) { /* confirm */
538 pfl->wcycle = 0;
539 pfl->status |= 0x80;
540 } else if (cmd == 0xff) { /* read array mode */
541 goto reset_flash;
542 } else
543 goto error_flash;
545 break;
546 case 0xe8:
547 /* Mask writeblock size based on device width, or bank width if
548 * device width not specified.
550 if (pfl->device_width) {
551 value = extract32(value, 0, pfl->device_width * 8);
552 } else {
553 value = extract32(value, 0, pfl->bank_width * 8);
555 DPRINTF("%s: block write of %x bytes\n", __func__, value);
556 pfl->counter = value;
557 pfl->wcycle++;
558 break;
559 case 0x60:
560 if (cmd == 0xd0) {
561 pfl->wcycle = 0;
562 pfl->status |= 0x80;
563 } else if (cmd == 0x01) {
564 pfl->wcycle = 0;
565 pfl->status |= 0x80;
566 } else if (cmd == 0xff) {
567 goto reset_flash;
568 } else {
569 DPRINTF("%s: Unknown (un)locking command\n", __func__);
570 goto reset_flash;
572 break;
573 case 0x98:
574 if (cmd == 0xff) {
575 goto reset_flash;
576 } else {
577 DPRINTF("%s: leaving query mode\n", __func__);
579 break;
580 default:
581 goto error_flash;
583 break;
584 case 2:
585 switch (pfl->cmd) {
586 case 0xe8: /* Block write */
587 if (!pfl->ro) {
588 pflash_data_write(pfl, offset, value, width, be);
589 } else {
590 pfl->status |= 0x10; /* Programming error */
593 pfl->status |= 0x80;
595 if (!pfl->counter) {
596 hwaddr mask = pfl->writeblock_size - 1;
597 mask = ~mask;
599 DPRINTF("%s: block write finished\n", __func__);
600 pfl->wcycle++;
601 if (!pfl->ro) {
602 /* Flush the entire write buffer onto backing storage. */
603 pflash_update(pfl, offset & mask, pfl->writeblock_size);
604 } else {
605 pfl->status |= 0x10; /* Programming error */
609 pfl->counter--;
610 break;
611 default:
612 goto error_flash;
614 break;
615 case 3: /* Confirm mode */
616 switch (pfl->cmd) {
617 case 0xe8: /* Block write */
618 if (cmd == 0xd0) {
619 pfl->wcycle = 0;
620 pfl->status |= 0x80;
621 } else {
622 DPRINTF("%s: unknown command for \"write block\"\n", __func__);
623 PFLASH_BUG("Write block confirm");
624 goto reset_flash;
626 break;
627 default:
628 goto error_flash;
630 break;
631 default:
632 /* Should never happen */
633 DPRINTF("%s: invalid write state\n", __func__);
634 goto reset_flash;
636 return;
638 error_flash:
639 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
640 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
641 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
643 reset_flash:
644 memory_region_rom_device_set_romd(&pfl->mem, true);
646 pfl->wcycle = 0;
647 pfl->cmd = 0;
651 static uint32_t pflash_readb_be(void *opaque, hwaddr addr)
653 return pflash_read(opaque, addr, 1, 1);
656 static uint32_t pflash_readb_le(void *opaque, hwaddr addr)
658 return pflash_read(opaque, addr, 1, 0);
661 static uint32_t pflash_readw_be(void *opaque, hwaddr addr)
663 pflash_t *pfl = opaque;
665 return pflash_read(pfl, addr, 2, 1);
668 static uint32_t pflash_readw_le(void *opaque, hwaddr addr)
670 pflash_t *pfl = opaque;
672 return pflash_read(pfl, addr, 2, 0);
675 static uint32_t pflash_readl_be(void *opaque, hwaddr addr)
677 pflash_t *pfl = opaque;
679 return pflash_read(pfl, addr, 4, 1);
682 static uint32_t pflash_readl_le(void *opaque, hwaddr addr)
684 pflash_t *pfl = opaque;
686 return pflash_read(pfl, addr, 4, 0);
689 static void pflash_writeb_be(void *opaque, hwaddr addr,
690 uint32_t value)
692 pflash_write(opaque, addr, value, 1, 1);
695 static void pflash_writeb_le(void *opaque, hwaddr addr,
696 uint32_t value)
698 pflash_write(opaque, addr, value, 1, 0);
701 static void pflash_writew_be(void *opaque, hwaddr addr,
702 uint32_t value)
704 pflash_t *pfl = opaque;
706 pflash_write(pfl, addr, value, 2, 1);
709 static void pflash_writew_le(void *opaque, hwaddr addr,
710 uint32_t value)
712 pflash_t *pfl = opaque;
714 pflash_write(pfl, addr, value, 2, 0);
717 static void pflash_writel_be(void *opaque, hwaddr addr,
718 uint32_t value)
720 pflash_t *pfl = opaque;
722 pflash_write(pfl, addr, value, 4, 1);
725 static void pflash_writel_le(void *opaque, hwaddr addr,
726 uint32_t value)
728 pflash_t *pfl = opaque;
730 pflash_write(pfl, addr, value, 4, 0);
733 static const MemoryRegionOps pflash_cfi01_ops_be = {
734 .old_mmio = {
735 .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, },
736 .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, },
738 .endianness = DEVICE_NATIVE_ENDIAN,
741 static const MemoryRegionOps pflash_cfi01_ops_le = {
742 .old_mmio = {
743 .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, },
744 .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, },
746 .endianness = DEVICE_NATIVE_ENDIAN,
749 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
751 pflash_t *pfl = CFI_PFLASH01(dev);
752 uint64_t total_len;
753 int ret;
754 uint64_t blocks_per_device, device_len;
755 int num_devices;
756 Error *local_err = NULL;
758 total_len = pfl->sector_len * pfl->nb_blocs;
760 /* These are only used to expose the parameters of each device
761 * in the cfi_table[].
763 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
764 blocks_per_device = pfl->nb_blocs / num_devices;
765 device_len = pfl->sector_len * blocks_per_device;
767 /* XXX: to be fixed */
768 #if 0
769 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
770 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
771 return NULL;
772 #endif
774 memory_region_init_rom_device(
775 &pfl->mem, OBJECT(dev),
776 pfl->be ? &pflash_cfi01_ops_be : &pflash_cfi01_ops_le, pfl,
777 pfl->name, total_len, &local_err);
778 if (local_err) {
779 error_propagate(errp, local_err);
780 return;
783 vmstate_register_ram(&pfl->mem, DEVICE(pfl));
784 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
785 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
787 if (pfl->blk) {
788 /* read the initial flash content */
789 ret = blk_read(pfl->blk, 0, pfl->storage, total_len >> 9);
791 if (ret < 0) {
792 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
793 error_setg(errp, "failed to read the initial flash content");
794 return;
798 if (pfl->blk) {
799 pfl->ro = blk_is_read_only(pfl->blk);
800 } else {
801 pfl->ro = 0;
804 /* Default to devices being used at their maximum device width. This was
805 * assumed before the device_width support was added.
807 if (!pfl->max_device_width) {
808 pfl->max_device_width = pfl->device_width;
811 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
812 pfl->wcycle = 0;
813 pfl->cmd = 0;
814 pfl->status = 0;
815 /* Hardcoded CFI table */
816 pfl->cfi_len = 0x52;
817 /* Standard "QRY" string */
818 pfl->cfi_table[0x10] = 'Q';
819 pfl->cfi_table[0x11] = 'R';
820 pfl->cfi_table[0x12] = 'Y';
821 /* Command set (Intel) */
822 pfl->cfi_table[0x13] = 0x01;
823 pfl->cfi_table[0x14] = 0x00;
824 /* Primary extended table address (none) */
825 pfl->cfi_table[0x15] = 0x31;
826 pfl->cfi_table[0x16] = 0x00;
827 /* Alternate command set (none) */
828 pfl->cfi_table[0x17] = 0x00;
829 pfl->cfi_table[0x18] = 0x00;
830 /* Alternate extended table (none) */
831 pfl->cfi_table[0x19] = 0x00;
832 pfl->cfi_table[0x1A] = 0x00;
833 /* Vcc min */
834 pfl->cfi_table[0x1B] = 0x45;
835 /* Vcc max */
836 pfl->cfi_table[0x1C] = 0x55;
837 /* Vpp min (no Vpp pin) */
838 pfl->cfi_table[0x1D] = 0x00;
839 /* Vpp max (no Vpp pin) */
840 pfl->cfi_table[0x1E] = 0x00;
841 /* Reserved */
842 pfl->cfi_table[0x1F] = 0x07;
843 /* Timeout for min size buffer write */
844 pfl->cfi_table[0x20] = 0x07;
845 /* Typical timeout for block erase */
846 pfl->cfi_table[0x21] = 0x0a;
847 /* Typical timeout for full chip erase (4096 ms) */
848 pfl->cfi_table[0x22] = 0x00;
849 /* Reserved */
850 pfl->cfi_table[0x23] = 0x04;
851 /* Max timeout for buffer write */
852 pfl->cfi_table[0x24] = 0x04;
853 /* Max timeout for block erase */
854 pfl->cfi_table[0x25] = 0x04;
855 /* Max timeout for chip erase */
856 pfl->cfi_table[0x26] = 0x00;
857 /* Device size */
858 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
859 /* Flash device interface (8 & 16 bits) */
860 pfl->cfi_table[0x28] = 0x02;
861 pfl->cfi_table[0x29] = 0x00;
862 /* Max number of bytes in multi-bytes write */
863 if (pfl->bank_width == 1) {
864 pfl->cfi_table[0x2A] = 0x08;
865 } else {
866 pfl->cfi_table[0x2A] = 0x0B;
868 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
870 pfl->cfi_table[0x2B] = 0x00;
871 /* Number of erase block regions (uniform) */
872 pfl->cfi_table[0x2C] = 0x01;
873 /* Erase block region 1 */
874 pfl->cfi_table[0x2D] = blocks_per_device - 1;
875 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
876 pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
877 pfl->cfi_table[0x30] = pfl->sector_len >> 16;
879 /* Extended */
880 pfl->cfi_table[0x31] = 'P';
881 pfl->cfi_table[0x32] = 'R';
882 pfl->cfi_table[0x33] = 'I';
884 pfl->cfi_table[0x34] = '1';
885 pfl->cfi_table[0x35] = '0';
887 pfl->cfi_table[0x36] = 0x00;
888 pfl->cfi_table[0x37] = 0x00;
889 pfl->cfi_table[0x38] = 0x00;
890 pfl->cfi_table[0x39] = 0x00;
892 pfl->cfi_table[0x3a] = 0x00;
894 pfl->cfi_table[0x3b] = 0x00;
895 pfl->cfi_table[0x3c] = 0x00;
897 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
900 static Property pflash_cfi01_properties[] = {
901 DEFINE_PROP_DRIVE("drive", struct pflash_t, blk),
902 /* num-blocks is the number of blocks actually visible to the guest,
903 * ie the total size of the device divided by the sector length.
904 * If we're emulating flash devices wired in parallel the actual
905 * number of blocks per indvidual device will differ.
907 DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
908 DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0),
909 /* width here is the overall width of this QEMU device in bytes.
910 * The QEMU device may be emulating a number of flash devices
911 * wired up in parallel; the width of each individual flash
912 * device should be specified via device-width. If the individual
913 * devices have a maximum width which is greater than the width
914 * they are being used for, this maximum width should be set via
915 * max-device-width (which otherwise defaults to device-width).
916 * So for instance a 32-bit wide QEMU flash device made from four
917 * 16-bit flash devices used in 8-bit wide mode would be configured
918 * with width = 4, device-width = 1, max-device-width = 2.
920 * If device-width is not specified we default to backwards
921 * compatible behaviour which is a bad emulation of two
922 * 16 bit devices making up a 32 bit wide QEMU device. This
923 * is deprecated for new uses of this device.
925 DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0),
926 DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0),
927 DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0),
928 DEFINE_PROP_UINT8("big-endian", struct pflash_t, be, 0),
929 DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
930 DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
931 DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
932 DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
933 DEFINE_PROP_STRING("name", struct pflash_t, name),
934 DEFINE_PROP_END_OF_LIST(),
937 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
939 DeviceClass *dc = DEVICE_CLASS(klass);
941 dc->realize = pflash_cfi01_realize;
942 dc->props = pflash_cfi01_properties;
943 dc->vmsd = &vmstate_pflash;
944 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
948 static const TypeInfo pflash_cfi01_info = {
949 .name = TYPE_CFI_PFLASH01,
950 .parent = TYPE_SYS_BUS_DEVICE,
951 .instance_size = sizeof(struct pflash_t),
952 .class_init = pflash_cfi01_class_init,
955 static void pflash_cfi01_register_types(void)
957 type_register_static(&pflash_cfi01_info);
960 type_init(pflash_cfi01_register_types)
962 pflash_t *pflash_cfi01_register(hwaddr base,
963 DeviceState *qdev, const char *name,
964 hwaddr size,
965 BlockBackend *blk,
966 uint32_t sector_len, int nb_blocs,
967 int bank_width, uint16_t id0, uint16_t id1,
968 uint16_t id2, uint16_t id3, int be)
970 DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01);
972 if (blk && qdev_prop_set_drive(dev, "drive", blk)) {
973 abort();
975 qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
976 qdev_prop_set_uint64(dev, "sector-length", sector_len);
977 qdev_prop_set_uint8(dev, "width", bank_width);
978 qdev_prop_set_uint8(dev, "big-endian", !!be);
979 qdev_prop_set_uint16(dev, "id0", id0);
980 qdev_prop_set_uint16(dev, "id1", id1);
981 qdev_prop_set_uint16(dev, "id2", id2);
982 qdev_prop_set_uint16(dev, "id3", id3);
983 qdev_prop_set_string(dev, "name", name);
984 qdev_init_nofail(dev);
986 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
987 return CFI_PFLASH01(dev);
990 MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl)
992 return &fl->mem;
995 static int pflash_post_load(void *opaque, int version_id)
997 pflash_t *pfl = opaque;
999 if (!pfl->ro) {
1000 DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
1001 pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
1003 return 0;