hw/vfio/platform: replace g_malloc0_n by g_new0
[qemu.git] / cputlb.c
bloba50608676c7b6209a41b7cc09409cad503d689f0
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "config.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
25 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "tcg/tcg.h"
33 //#define DEBUG_TLB
34 //#define DEBUG_TLB_CHECK
36 /* statistics */
37 int tlb_flush_count;
39 /* NOTE:
40 * If flush_global is true (the usual case), flush all tlb entries.
41 * If flush_global is false, flush (at least) all tlb entries not
42 * marked global.
44 * Since QEMU doesn't currently implement a global/not-global flag
45 * for tlb entries, at the moment tlb_flush() will also flush all
46 * tlb entries in the flush_global == false case. This is OK because
47 * CPU architectures generally permit an implementation to drop
48 * entries from the TLB at any time, so flushing more entries than
49 * required is only an efficiency issue, not a correctness issue.
51 void tlb_flush(CPUState *cpu, int flush_global)
53 CPUArchState *env = cpu->env_ptr;
55 #if defined(DEBUG_TLB)
56 printf("tlb_flush:\n");
57 #endif
58 /* must reset current TB so that interrupts cannot modify the
59 links while we are modifying them */
60 cpu->current_tb = NULL;
62 memset(env->tlb_table, -1, sizeof(env->tlb_table));
63 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
64 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
66 env->vtlb_index = 0;
67 env->tlb_flush_addr = -1;
68 env->tlb_flush_mask = 0;
69 tlb_flush_count++;
72 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
74 if (addr == (tlb_entry->addr_read &
75 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
76 addr == (tlb_entry->addr_write &
77 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
78 addr == (tlb_entry->addr_code &
79 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
80 memset(tlb_entry, -1, sizeof(*tlb_entry));
84 void tlb_flush_page(CPUState *cpu, target_ulong addr)
86 CPUArchState *env = cpu->env_ptr;
87 int i;
88 int mmu_idx;
90 #if defined(DEBUG_TLB)
91 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
92 #endif
93 /* Check if we need to flush due to large pages. */
94 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
95 #if defined(DEBUG_TLB)
96 printf("tlb_flush_page: forced full flush ("
97 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
98 env->tlb_flush_addr, env->tlb_flush_mask);
99 #endif
100 tlb_flush(cpu, 1);
101 return;
103 /* must reset current TB so that interrupts cannot modify the
104 links while we are modifying them */
105 cpu->current_tb = NULL;
107 addr &= TARGET_PAGE_MASK;
108 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
109 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
110 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
113 /* check whether there are entries that need to be flushed in the vtlb */
114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
115 int k;
116 for (k = 0; k < CPU_VTLB_SIZE; k++) {
117 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
121 tb_flush_jmp_cache(cpu, addr);
124 /* update the TLBs so that writes to code in the virtual page 'addr'
125 can be detected */
126 void tlb_protect_code(ram_addr_t ram_addr)
128 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
129 DIRTY_MEMORY_CODE);
132 /* update the TLB so that writes in physical page 'phys_addr' are no longer
133 tested for self modifying code */
134 void tlb_unprotect_code(ram_addr_t ram_addr)
136 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
139 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
141 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
144 void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
145 uintptr_t length)
147 uintptr_t addr;
149 if (tlb_is_dirty_ram(tlb_entry)) {
150 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
151 if ((addr - start) < length) {
152 tlb_entry->addr_write |= TLB_NOTDIRTY;
157 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
159 ram_addr_t ram_addr;
161 if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
162 fprintf(stderr, "Bad ram pointer %p\n", ptr);
163 abort();
165 return ram_addr;
168 void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
170 CPUState *cpu;
171 CPUArchState *env;
173 CPU_FOREACH(cpu) {
174 int mmu_idx;
176 env = cpu->env_ptr;
177 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
178 unsigned int i;
180 for (i = 0; i < CPU_TLB_SIZE; i++) {
181 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
182 start1, length);
185 for (i = 0; i < CPU_VTLB_SIZE; i++) {
186 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
187 start1, length);
193 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
195 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
196 tlb_entry->addr_write = vaddr;
200 /* update the TLB corresponding to virtual page vaddr
201 so that it is no longer dirty */
202 void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
204 int i;
205 int mmu_idx;
207 vaddr &= TARGET_PAGE_MASK;
208 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
209 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
210 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
213 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
214 int k;
215 for (k = 0; k < CPU_VTLB_SIZE; k++) {
216 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
221 /* Our TLB does not support large pages, so remember the area covered by
222 large pages and trigger a full TLB flush if these are invalidated. */
223 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
224 target_ulong size)
226 target_ulong mask = ~(size - 1);
228 if (env->tlb_flush_addr == (target_ulong)-1) {
229 env->tlb_flush_addr = vaddr & mask;
230 env->tlb_flush_mask = mask;
231 return;
233 /* Extend the existing region to include the new page.
234 This is a compromise between unnecessary flushes and the cost
235 of maintaining a full variable size TLB. */
236 mask &= env->tlb_flush_mask;
237 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
238 mask <<= 1;
240 env->tlb_flush_addr &= mask;
241 env->tlb_flush_mask = mask;
244 /* Add a new TLB entry. At most one entry for a given virtual address
245 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
246 * supplied size is only used by tlb_flush_page.
248 * Called from TCG-generated code, which is under an RCU read-side
249 * critical section.
251 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
252 hwaddr paddr, MemTxAttrs attrs, int prot,
253 int mmu_idx, target_ulong size)
255 CPUArchState *env = cpu->env_ptr;
256 MemoryRegionSection *section;
257 unsigned int index;
258 target_ulong address;
259 target_ulong code_address;
260 uintptr_t addend;
261 CPUTLBEntry *te;
262 hwaddr iotlb, xlat, sz;
263 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
265 assert(size >= TARGET_PAGE_SIZE);
266 if (size != TARGET_PAGE_SIZE) {
267 tlb_add_large_page(env, vaddr, size);
270 sz = size;
271 section = address_space_translate_for_iotlb(cpu, paddr, &xlat, &sz);
272 assert(sz >= TARGET_PAGE_SIZE);
274 #if defined(DEBUG_TLB)
275 qemu_log_mask(CPU_LOG_MMU,
276 "tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
277 " prot=%x idx=%d\n",
278 vaddr, paddr, prot, mmu_idx);
279 #endif
281 address = vaddr;
282 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
283 /* IO memory case */
284 address |= TLB_MMIO;
285 addend = 0;
286 } else {
287 /* TLB_MMIO for rom/romd handled below */
288 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
291 code_address = address;
292 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
293 prot, &address);
295 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
296 te = &env->tlb_table[mmu_idx][index];
298 /* do not discard the translation in te, evict it into a victim tlb */
299 env->tlb_v_table[mmu_idx][vidx] = *te;
300 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
302 /* refill the tlb */
303 env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
304 env->iotlb[mmu_idx][index].attrs = attrs;
305 te->addend = addend - vaddr;
306 if (prot & PAGE_READ) {
307 te->addr_read = address;
308 } else {
309 te->addr_read = -1;
312 if (prot & PAGE_EXEC) {
313 te->addr_code = code_address;
314 } else {
315 te->addr_code = -1;
317 if (prot & PAGE_WRITE) {
318 if ((memory_region_is_ram(section->mr) && section->readonly)
319 || memory_region_is_romd(section->mr)) {
320 /* Write access calls the I/O callback. */
321 te->addr_write = address | TLB_MMIO;
322 } else if (memory_region_is_ram(section->mr)
323 && cpu_physical_memory_is_clean(section->mr->ram_addr
324 + xlat)) {
325 te->addr_write = address | TLB_NOTDIRTY;
326 } else {
327 te->addr_write = address;
329 } else {
330 te->addr_write = -1;
334 /* Add a new TLB entry, but without specifying the memory
335 * transaction attributes to be used.
337 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
338 hwaddr paddr, int prot,
339 int mmu_idx, target_ulong size)
341 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
342 prot, mmu_idx, size);
345 /* NOTE: this function can trigger an exception */
346 /* NOTE2: the returned address is not exactly the physical address: it
347 * is actually a ram_addr_t (in system mode; the user mode emulation
348 * version of this function returns a guest virtual address).
350 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
352 int mmu_idx, page_index, pd;
353 void *p;
354 MemoryRegion *mr;
355 CPUState *cpu = ENV_GET_CPU(env1);
357 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
358 mmu_idx = cpu_mmu_index(env1);
359 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
360 (addr & TARGET_PAGE_MASK))) {
361 cpu_ldub_code(env1, addr);
363 pd = env1->iotlb[mmu_idx][page_index].addr & ~TARGET_PAGE_MASK;
364 mr = iotlb_to_region(cpu, pd);
365 if (memory_region_is_unassigned(mr)) {
366 CPUClass *cc = CPU_GET_CLASS(cpu);
368 if (cc->do_unassigned_access) {
369 cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
370 } else {
371 cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
372 TARGET_FMT_lx "\n", addr);
375 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
376 return qemu_ram_addr_from_host_nofail(p);
379 #define MMUSUFFIX _mmu
381 #define SHIFT 0
382 #include "softmmu_template.h"
384 #define SHIFT 1
385 #include "softmmu_template.h"
387 #define SHIFT 2
388 #include "softmmu_template.h"
390 #define SHIFT 3
391 #include "softmmu_template.h"
392 #undef MMUSUFFIX
394 #define MMUSUFFIX _cmmu
395 #undef GETPC_ADJ
396 #define GETPC_ADJ 0
397 #undef GETRA
398 #define GETRA() ((uintptr_t)0)
399 #define SOFTMMU_CODE_ACCESS
401 #define SHIFT 0
402 #include "softmmu_template.h"
404 #define SHIFT 1
405 #include "softmmu_template.h"
407 #define SHIFT 2
408 #include "softmmu_template.h"
410 #define SHIFT 3
411 #include "softmmu_template.h"