qom: Split out object and class caches
[qemu.git] / target-arm / helper.c
blob6ebd7dc7bcf77c1c6b9bf55856bf8957ec5aedab
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
9 #ifndef CONFIG_USER_ONLY
10 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
11 int access_type, int is_user,
12 hwaddr *phys_ptr, int *prot,
13 target_ulong *page_size);
14 #endif
16 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
18 int nregs;
20 /* VFP data registers are always little-endian. */
21 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
22 if (reg < nregs) {
23 stfq_le_p(buf, env->vfp.regs[reg]);
24 return 8;
26 if (arm_feature(env, ARM_FEATURE_NEON)) {
27 /* Aliases for Q regs. */
28 nregs += 16;
29 if (reg < nregs) {
30 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
31 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
32 return 16;
35 switch (reg - nregs) {
36 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
37 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
38 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
40 return 0;
43 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
45 int nregs;
47 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
48 if (reg < nregs) {
49 env->vfp.regs[reg] = ldfq_le_p(buf);
50 return 8;
52 if (arm_feature(env, ARM_FEATURE_NEON)) {
53 nregs += 16;
54 if (reg < nregs) {
55 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
56 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
57 return 16;
60 switch (reg - nregs) {
61 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
62 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
63 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
65 return 0;
68 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
70 switch (reg) {
71 case 0 ... 31:
72 /* 128 bit FP register */
73 stfq_le_p(buf, env->vfp.regs[reg * 2]);
74 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
75 return 16;
76 case 32:
77 /* FPSR */
78 stl_p(buf, vfp_get_fpsr(env));
79 return 4;
80 case 33:
81 /* FPCR */
82 stl_p(buf, vfp_get_fpcr(env));
83 return 4;
84 default:
85 return 0;
89 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
91 switch (reg) {
92 case 0 ... 31:
93 /* 128 bit FP register */
94 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
95 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
96 return 16;
97 case 32:
98 /* FPSR */
99 vfp_set_fpsr(env, ldl_p(buf));
100 return 4;
101 case 33:
102 /* FPCR */
103 vfp_set_fpcr(env, ldl_p(buf));
104 return 4;
105 default:
106 return 0;
110 static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
111 uint64_t *value)
113 if (ri->type & ARM_CP_64BIT) {
114 *value = CPREG_FIELD64(env, ri);
115 } else {
116 *value = CPREG_FIELD32(env, ri);
118 return 0;
121 static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
122 uint64_t value)
124 if (ri->type & ARM_CP_64BIT) {
125 CPREG_FIELD64(env, ri) = value;
126 } else {
127 CPREG_FIELD32(env, ri) = value;
129 return 0;
132 static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
133 uint64_t *v)
135 /* Raw read of a coprocessor register (as needed for migration, etc)
136 * return true on success, false if the read is impossible for some reason.
138 if (ri->type & ARM_CP_CONST) {
139 *v = ri->resetvalue;
140 } else if (ri->raw_readfn) {
141 return (ri->raw_readfn(env, ri, v) == 0);
142 } else if (ri->readfn) {
143 return (ri->readfn(env, ri, v) == 0);
144 } else {
145 if (ri->type & ARM_CP_64BIT) {
146 *v = CPREG_FIELD64(env, ri);
147 } else {
148 *v = CPREG_FIELD32(env, ri);
151 return true;
154 static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
155 int64_t v)
157 /* Raw write of a coprocessor register (as needed for migration, etc).
158 * Return true on success, false if the write is impossible for some reason.
159 * Note that constant registers are treated as write-ignored; the
160 * caller should check for success by whether a readback gives the
161 * value written.
163 if (ri->type & ARM_CP_CONST) {
164 return true;
165 } else if (ri->raw_writefn) {
166 return (ri->raw_writefn(env, ri, v) == 0);
167 } else if (ri->writefn) {
168 return (ri->writefn(env, ri, v) == 0);
169 } else {
170 if (ri->type & ARM_CP_64BIT) {
171 CPREG_FIELD64(env, ri) = v;
172 } else {
173 CPREG_FIELD32(env, ri) = v;
176 return true;
179 bool write_cpustate_to_list(ARMCPU *cpu)
181 /* Write the coprocessor state from cpu->env to the (index,value) list. */
182 int i;
183 bool ok = true;
185 for (i = 0; i < cpu->cpreg_array_len; i++) {
186 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
187 const ARMCPRegInfo *ri;
188 uint64_t v;
189 ri = get_arm_cp_reginfo(cpu, regidx);
190 if (!ri) {
191 ok = false;
192 continue;
194 if (ri->type & ARM_CP_NO_MIGRATE) {
195 continue;
197 if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
198 ok = false;
199 continue;
201 cpu->cpreg_values[i] = v;
203 return ok;
206 bool write_list_to_cpustate(ARMCPU *cpu)
208 int i;
209 bool ok = true;
211 for (i = 0; i < cpu->cpreg_array_len; i++) {
212 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
213 uint64_t v = cpu->cpreg_values[i];
214 uint64_t readback;
215 const ARMCPRegInfo *ri;
217 ri = get_arm_cp_reginfo(cpu, regidx);
218 if (!ri) {
219 ok = false;
220 continue;
222 if (ri->type & ARM_CP_NO_MIGRATE) {
223 continue;
225 /* Write value and confirm it reads back as written
226 * (to catch read-only registers and partially read-only
227 * registers where the incoming migration value doesn't match)
229 if (!write_raw_cp_reg(&cpu->env, ri, v) ||
230 !read_raw_cp_reg(&cpu->env, ri, &readback) ||
231 readback != v) {
232 ok = false;
235 return ok;
238 static void add_cpreg_to_list(gpointer key, gpointer opaque)
240 ARMCPU *cpu = opaque;
241 uint64_t regidx;
242 const ARMCPRegInfo *ri;
244 regidx = *(uint32_t *)key;
245 ri = get_arm_cp_reginfo(cpu, regidx);
247 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
248 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
249 /* The value array need not be initialized at this point */
250 cpu->cpreg_array_len++;
254 static void count_cpreg(gpointer key, gpointer opaque)
256 ARMCPU *cpu = opaque;
257 uint64_t regidx;
258 const ARMCPRegInfo *ri;
260 regidx = *(uint32_t *)key;
261 ri = get_arm_cp_reginfo(cpu, regidx);
263 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
264 cpu->cpreg_array_len++;
268 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
270 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
271 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
273 if (aidx > bidx) {
274 return 1;
276 if (aidx < bidx) {
277 return -1;
279 return 0;
282 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
284 GList **plist = udata;
286 *plist = g_list_prepend(*plist, key);
289 void init_cpreg_list(ARMCPU *cpu)
291 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
292 * Note that we require cpreg_tuples[] to be sorted by key ID.
294 GList *keys = NULL;
295 int arraylen;
297 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
299 keys = g_list_sort(keys, cpreg_key_compare);
301 cpu->cpreg_array_len = 0;
303 g_list_foreach(keys, count_cpreg, cpu);
305 arraylen = cpu->cpreg_array_len;
306 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
307 cpu->cpreg_values = g_new(uint64_t, arraylen);
308 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
309 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
310 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
311 cpu->cpreg_array_len = 0;
313 g_list_foreach(keys, add_cpreg_to_list, cpu);
315 assert(cpu->cpreg_array_len == arraylen);
317 g_list_free(keys);
320 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
322 env->cp15.c3 = value;
323 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
324 return 0;
327 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
329 if (env->cp15.c13_fcse != value) {
330 /* Unlike real hardware the qemu TLB uses virtual addresses,
331 * not modified virtual addresses, so this causes a TLB flush.
333 tlb_flush(env, 1);
334 env->cp15.c13_fcse = value;
336 return 0;
338 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
339 uint64_t value)
341 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
342 /* For VMSA (when not using the LPAE long descriptor page table
343 * format) this register includes the ASID, so do a TLB flush.
344 * For PMSA it is purely a process ID and no action is needed.
346 tlb_flush(env, 1);
348 env->cp15.c13_context = value;
349 return 0;
352 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
353 uint64_t value)
355 /* Invalidate all (TLBIALL) */
356 tlb_flush(env, 1);
357 return 0;
360 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
361 uint64_t value)
363 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
364 tlb_flush_page(env, value & TARGET_PAGE_MASK);
365 return 0;
368 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
369 uint64_t value)
371 /* Invalidate by ASID (TLBIASID) */
372 tlb_flush(env, value == 0);
373 return 0;
376 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
377 uint64_t value)
379 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
380 tlb_flush_page(env, value & TARGET_PAGE_MASK);
381 return 0;
384 static const ARMCPRegInfo cp_reginfo[] = {
385 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
386 * version" bits will read as a reserved value, which should cause
387 * Linux to not try to use the debug hardware.
389 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
390 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
391 /* MMU Domain access control / MPU write buffer control */
392 { .name = "DACR", .cp = 15,
393 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
394 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
395 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
396 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
397 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
398 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
399 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
400 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
401 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
402 /* ??? This covers not just the impdef TLB lockdown registers but also
403 * some v7VMSA registers relating to TEX remap, so it is overly broad.
405 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
406 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
407 /* MMU TLB control. Note that the wildcarding means we cover not just
408 * the unified TLB ops but also the dside/iside/inner-shareable variants.
410 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
411 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
412 .type = ARM_CP_NO_MIGRATE },
413 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
414 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
415 .type = ARM_CP_NO_MIGRATE },
416 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
417 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
418 .type = ARM_CP_NO_MIGRATE },
419 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
420 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
421 .type = ARM_CP_NO_MIGRATE },
422 /* Cache maintenance ops; some of this space may be overridden later. */
423 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
424 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
425 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
426 REGINFO_SENTINEL
429 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
430 /* Not all pre-v6 cores implemented this WFI, so this is slightly
431 * over-broad.
433 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
434 .access = PL1_W, .type = ARM_CP_WFI },
435 REGINFO_SENTINEL
438 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
439 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
440 * is UNPREDICTABLE; we choose to NOP as most implementations do).
442 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
443 .access = PL1_W, .type = ARM_CP_WFI },
444 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
445 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
446 * OMAPCP will override this space.
448 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
449 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
450 .resetvalue = 0 },
451 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
452 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
453 .resetvalue = 0 },
454 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
455 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
456 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
457 .resetvalue = 0 },
458 REGINFO_SENTINEL
461 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463 if (env->cp15.c1_coproc != value) {
464 env->cp15.c1_coproc = value;
465 /* ??? Is this safe when called from within a TB? */
466 tb_flush(env);
468 return 0;
471 static const ARMCPRegInfo v6_cp_reginfo[] = {
472 /* prefetch by MVA in v6, NOP in v7 */
473 { .name = "MVA_prefetch",
474 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
475 .access = PL1_W, .type = ARM_CP_NOP },
476 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
477 .access = PL0_W, .type = ARM_CP_NOP },
478 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
479 .access = PL0_W, .type = ARM_CP_NOP },
480 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
481 .access = PL0_W, .type = ARM_CP_NOP },
482 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
483 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
484 .resetvalue = 0, },
485 /* Watchpoint Fault Address Register : should actually only be present
486 * for 1136, 1176, 11MPCore.
488 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
489 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
490 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
491 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
492 .resetvalue = 0, .writefn = cpacr_write },
493 REGINFO_SENTINEL
497 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
498 uint64_t *value)
500 /* Generic performance monitor register read function for where
501 * user access may be allowed by PMUSERENR.
503 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
504 return EXCP_UDEF;
506 *value = CPREG_FIELD32(env, ri);
507 return 0;
510 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
511 uint64_t value)
513 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
514 return EXCP_UDEF;
516 /* only the DP, X, D and E bits are writable */
517 env->cp15.c9_pmcr &= ~0x39;
518 env->cp15.c9_pmcr |= (value & 0x39);
519 return 0;
522 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
523 uint64_t value)
525 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
526 return EXCP_UDEF;
528 value &= (1 << 31);
529 env->cp15.c9_pmcnten |= value;
530 return 0;
533 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
534 uint64_t value)
536 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
537 return EXCP_UDEF;
539 value &= (1 << 31);
540 env->cp15.c9_pmcnten &= ~value;
541 return 0;
544 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
548 return EXCP_UDEF;
550 env->cp15.c9_pmovsr &= ~value;
551 return 0;
554 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
555 uint64_t value)
557 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
558 return EXCP_UDEF;
560 env->cp15.c9_pmxevtyper = value & 0xff;
561 return 0;
564 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
567 env->cp15.c9_pmuserenr = value & 1;
568 return 0;
571 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
572 uint64_t value)
574 /* We have no event counters so only the C bit can be changed */
575 value &= (1 << 31);
576 env->cp15.c9_pminten |= value;
577 return 0;
580 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
581 uint64_t value)
583 value &= (1 << 31);
584 env->cp15.c9_pminten &= ~value;
585 return 0;
588 static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
589 uint64_t value)
591 env->cp15.c12_vbar = value & ~0x1Ful;
592 return 0;
595 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t *value)
598 ARMCPU *cpu = arm_env_get_cpu(env);
599 *value = cpu->ccsidr[env->cp15.c0_cssel];
600 return 0;
603 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
604 uint64_t value)
606 env->cp15.c0_cssel = value & 0xf;
607 return 0;
610 static const ARMCPRegInfo v7_cp_reginfo[] = {
611 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
612 * debug components
614 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
615 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
616 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
617 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
618 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
619 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
620 .access = PL1_W, .type = ARM_CP_NOP },
621 /* Performance monitors are implementation defined in v7,
622 * but with an ARM recommended set of registers, which we
623 * follow (although we don't actually implement any counters)
625 * Performance registers fall into three categories:
626 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
627 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
628 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
629 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
630 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
632 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
633 .access = PL0_RW, .resetvalue = 0,
634 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
635 .readfn = pmreg_read, .writefn = pmcntenset_write,
636 .raw_readfn = raw_read, .raw_writefn = raw_write },
637 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
638 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
639 .readfn = pmreg_read, .writefn = pmcntenclr_write,
640 .type = ARM_CP_NO_MIGRATE },
641 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
642 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
643 .readfn = pmreg_read, .writefn = pmovsr_write,
644 .raw_readfn = raw_read, .raw_writefn = raw_write },
645 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
646 * respect PMUSERENR.
648 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
649 .access = PL0_W, .type = ARM_CP_NOP },
650 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
651 * We choose to RAZ/WI. XXX should respect PMUSERENR.
653 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
654 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
655 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
656 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
657 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
658 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
659 .access = PL0_RW,
660 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
661 .readfn = pmreg_read, .writefn = pmxevtyper_write,
662 .raw_readfn = raw_read, .raw_writefn = raw_write },
663 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
664 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
665 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
666 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
667 .access = PL0_R | PL1_RW,
668 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
669 .resetvalue = 0,
670 .writefn = pmuserenr_write, .raw_writefn = raw_write },
671 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
672 .access = PL1_RW,
673 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
674 .resetvalue = 0,
675 .writefn = pmintenset_write, .raw_writefn = raw_write },
676 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
677 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
678 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
679 .resetvalue = 0, .writefn = pmintenclr_write, },
680 { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
681 .access = PL1_RW, .writefn = vbar_write,
682 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
683 .resetvalue = 0 },
684 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
685 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
686 .resetvalue = 0, },
687 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
688 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
689 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
690 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
691 .writefn = csselr_write, .resetvalue = 0 },
692 /* Auxiliary ID register: this actually has an IMPDEF value but for now
693 * just RAZ for all cores:
695 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
696 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
697 REGINFO_SENTINEL
700 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
702 value &= 1;
703 env->teecr = value;
704 return 0;
707 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
708 uint64_t *value)
710 /* This is a helper function because the user access rights
711 * depend on the value of the TEECR.
713 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
714 return EXCP_UDEF;
716 *value = env->teehbr;
717 return 0;
720 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
721 uint64_t value)
723 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
724 return EXCP_UDEF;
726 env->teehbr = value;
727 return 0;
730 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
731 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
732 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
733 .resetvalue = 0,
734 .writefn = teecr_write },
735 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
736 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
737 .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
738 .readfn = teehbr_read, .writefn = teehbr_write },
739 REGINFO_SENTINEL
742 static const ARMCPRegInfo v6k_cp_reginfo[] = {
743 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
744 .access = PL0_RW,
745 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
746 .resetvalue = 0 },
747 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
748 .access = PL0_R|PL1_W,
749 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
750 .resetvalue = 0 },
751 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
752 .access = PL1_RW,
753 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
754 .resetvalue = 0 },
755 REGINFO_SENTINEL
758 #ifndef CONFIG_USER_ONLY
760 static uint64_t gt_get_countervalue(CPUARMState *env)
762 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
765 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
767 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
769 if (gt->ctl & 1) {
770 /* Timer enabled: calculate and set current ISTATUS, irq, and
771 * reset timer to when ISTATUS next has to change
773 uint64_t count = gt_get_countervalue(&cpu->env);
774 /* Note that this must be unsigned 64 bit arithmetic: */
775 int istatus = count >= gt->cval;
776 uint64_t nexttick;
778 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
779 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
780 (istatus && !(gt->ctl & 2)));
781 if (istatus) {
782 /* Next transition is when count rolls back over to zero */
783 nexttick = UINT64_MAX;
784 } else {
785 /* Next transition is when we hit cval */
786 nexttick = gt->cval;
788 /* Note that the desired next expiry time might be beyond the
789 * signed-64-bit range of a QEMUTimer -- in this case we just
790 * set the timer for as far in the future as possible. When the
791 * timer expires we will reset the timer for any remaining period.
793 if (nexttick > INT64_MAX / GTIMER_SCALE) {
794 nexttick = INT64_MAX / GTIMER_SCALE;
796 timer_mod(cpu->gt_timer[timeridx], nexttick);
797 } else {
798 /* Timer disabled: ISTATUS and timer output always clear */
799 gt->ctl &= ~4;
800 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
801 timer_del(cpu->gt_timer[timeridx]);
805 static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri,
806 uint64_t *value)
808 /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
809 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
810 return EXCP_UDEF;
812 *value = env->cp15.c14_cntfrq;
813 return 0;
816 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
818 ARMCPU *cpu = arm_env_get_cpu(env);
819 int timeridx = ri->opc1 & 1;
821 timer_del(cpu->gt_timer[timeridx]);
824 static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
825 uint64_t *value)
827 int timeridx = ri->opc1 & 1;
829 if (arm_current_pl(env) == 0 &&
830 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
831 return EXCP_UDEF;
833 *value = gt_get_countervalue(env);
834 return 0;
837 static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri,
838 uint64_t *value)
840 int timeridx = ri->opc1 & 1;
842 if (arm_current_pl(env) == 0 &&
843 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
844 return EXCP_UDEF;
846 *value = env->cp15.c14_timer[timeridx].cval;
847 return 0;
850 static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
851 uint64_t value)
853 int timeridx = ri->opc1 & 1;
855 env->cp15.c14_timer[timeridx].cval = value;
856 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
857 return 0;
859 static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
860 uint64_t *value)
862 int timeridx = ri->crm & 1;
864 if (arm_current_pl(env) == 0 &&
865 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
866 return EXCP_UDEF;
868 *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval -
869 gt_get_countervalue(env));
870 return 0;
873 static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
874 uint64_t value)
876 int timeridx = ri->crm & 1;
878 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
879 + sextract64(value, 0, 32);
880 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
881 return 0;
884 static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri,
885 uint64_t *value)
887 int timeridx = ri->crm & 1;
889 if (arm_current_pl(env) == 0 &&
890 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
891 return EXCP_UDEF;
893 *value = env->cp15.c14_timer[timeridx].ctl;
894 return 0;
897 static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
898 uint64_t value)
900 ARMCPU *cpu = arm_env_get_cpu(env);
901 int timeridx = ri->crm & 1;
902 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
904 env->cp15.c14_timer[timeridx].ctl = value & 3;
905 if ((oldval ^ value) & 1) {
906 /* Enable toggled */
907 gt_recalc_timer(cpu, timeridx);
908 } else if ((oldval & value) & 2) {
909 /* IMASK toggled: don't need to recalculate,
910 * just set the interrupt line based on ISTATUS
912 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
913 (oldval & 4) && (value & 2));
915 return 0;
918 void arm_gt_ptimer_cb(void *opaque)
920 ARMCPU *cpu = opaque;
922 gt_recalc_timer(cpu, GTIMER_PHYS);
925 void arm_gt_vtimer_cb(void *opaque)
927 ARMCPU *cpu = opaque;
929 gt_recalc_timer(cpu, GTIMER_VIRT);
932 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
933 /* Note that CNTFRQ is purely reads-as-written for the benefit
934 * of software; writing it doesn't actually change the timer frequency.
935 * Our reset value matches the fixed frequency we implement the timer at.
937 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
938 .access = PL1_RW | PL0_R,
939 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
940 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
941 .readfn = gt_cntfrq_read, .raw_readfn = raw_read,
943 /* overall control: mostly access permissions */
944 { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0,
945 .access = PL1_RW,
946 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
947 .resetvalue = 0,
949 /* per-timer control */
950 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
952 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
953 .resetvalue = 0,
954 .readfn = gt_ctl_read, .writefn = gt_ctl_write,
955 .raw_readfn = raw_read, .raw_writefn = raw_write,
957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
958 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
959 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
960 .resetvalue = 0,
961 .readfn = gt_ctl_read, .writefn = gt_ctl_write,
962 .raw_readfn = raw_read, .raw_writefn = raw_write,
964 /* TimerValue views: a 32 bit downcounting view of the underlying state */
965 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
966 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
967 .readfn = gt_tval_read, .writefn = gt_tval_write,
969 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
970 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
971 .readfn = gt_tval_read, .writefn = gt_tval_write,
973 /* The counter itself */
974 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
975 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
976 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
978 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
979 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
980 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
982 /* Comparison value, indicating when the timer goes off */
983 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
984 .access = PL1_RW | PL0_R,
985 .type = ARM_CP_64BIT | ARM_CP_IO,
986 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
987 .resetvalue = 0,
988 .readfn = gt_cval_read, .writefn = gt_cval_write,
989 .raw_readfn = raw_read, .raw_writefn = raw_write,
991 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
992 .access = PL1_RW | PL0_R,
993 .type = ARM_CP_64BIT | ARM_CP_IO,
994 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
995 .resetvalue = 0,
996 .readfn = gt_cval_read, .writefn = gt_cval_write,
997 .raw_readfn = raw_read, .raw_writefn = raw_write,
999 REGINFO_SENTINEL
1002 #else
1003 /* In user-mode none of the generic timer registers are accessible,
1004 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1005 * so instead just don't register any of them.
1007 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1008 REGINFO_SENTINEL
1011 #endif
1013 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1015 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1016 env->cp15.c7_par = value;
1017 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1018 env->cp15.c7_par = value & 0xfffff6ff;
1019 } else {
1020 env->cp15.c7_par = value & 0xfffff1ff;
1022 return 0;
1025 #ifndef CONFIG_USER_ONLY
1026 /* get_phys_addr() isn't present for user-mode-only targets */
1028 /* Return true if extended addresses are enabled, ie this is an
1029 * LPAE implementation and we are using the long-descriptor translation
1030 * table format because the TTBCR EAE bit is set.
1032 static inline bool extended_addresses_enabled(CPUARMState *env)
1034 return arm_feature(env, ARM_FEATURE_LPAE)
1035 && (env->cp15.c2_control & (1U << 31));
1038 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1040 hwaddr phys_addr;
1041 target_ulong page_size;
1042 int prot;
1043 int ret, is_user = ri->opc2 & 2;
1044 int access_type = ri->opc2 & 1;
1046 if (ri->opc2 & 4) {
1047 /* Other states are only available with TrustZone */
1048 return EXCP_UDEF;
1050 ret = get_phys_addr(env, value, access_type, is_user,
1051 &phys_addr, &prot, &page_size);
1052 if (extended_addresses_enabled(env)) {
1053 /* ret is a DFSR/IFSR value for the long descriptor
1054 * translation table format, but with WnR always clear.
1055 * Convert it to a 64-bit PAR.
1057 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1058 if (ret == 0) {
1059 par64 |= phys_addr & ~0xfffULL;
1060 /* We don't set the ATTR or SH fields in the PAR. */
1061 } else {
1062 par64 |= 1; /* F */
1063 par64 |= (ret & 0x3f) << 1; /* FS */
1064 /* Note that S2WLK and FSTAGE are always zero, because we don't
1065 * implement virtualization and therefore there can't be a stage 2
1066 * fault.
1069 env->cp15.c7_par = par64;
1070 env->cp15.c7_par_hi = par64 >> 32;
1071 } else {
1072 /* ret is a DFSR/IFSR value for the short descriptor
1073 * translation table format (with WnR always clear).
1074 * Convert it to a 32-bit PAR.
1076 if (ret == 0) {
1077 /* We do not set any attribute bits in the PAR */
1078 if (page_size == (1 << 24)
1079 && arm_feature(env, ARM_FEATURE_V7)) {
1080 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1081 } else {
1082 env->cp15.c7_par = phys_addr & 0xfffff000;
1084 } else {
1085 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1086 ((ret & (12 << 1)) >> 6) |
1087 ((ret & 0xf) << 1) | 1;
1089 env->cp15.c7_par_hi = 0;
1091 return 0;
1093 #endif
1095 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1096 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1097 .access = PL1_RW, .resetvalue = 0,
1098 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1099 .writefn = par_write },
1100 #ifndef CONFIG_USER_ONLY
1101 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1102 .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1103 #endif
1104 REGINFO_SENTINEL
1107 /* Return basic MPU access permission bits. */
1108 static uint32_t simple_mpu_ap_bits(uint32_t val)
1110 uint32_t ret;
1111 uint32_t mask;
1112 int i;
1113 ret = 0;
1114 mask = 3;
1115 for (i = 0; i < 16; i += 2) {
1116 ret |= (val >> i) & mask;
1117 mask <<= 2;
1119 return ret;
1122 /* Pad basic MPU access permission bits to extended format. */
1123 static uint32_t extended_mpu_ap_bits(uint32_t val)
1125 uint32_t ret;
1126 uint32_t mask;
1127 int i;
1128 ret = 0;
1129 mask = 3;
1130 for (i = 0; i < 16; i += 2) {
1131 ret |= (val & mask) << i;
1132 mask <<= 2;
1134 return ret;
1137 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138 uint64_t value)
1140 env->cp15.c5_data = extended_mpu_ap_bits(value);
1141 return 0;
1144 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1145 uint64_t *value)
1147 *value = simple_mpu_ap_bits(env->cp15.c5_data);
1148 return 0;
1151 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1152 uint64_t value)
1154 env->cp15.c5_insn = extended_mpu_ap_bits(value);
1155 return 0;
1158 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1159 uint64_t *value)
1161 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
1162 return 0;
1165 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
1166 uint64_t *value)
1168 if (ri->crm >= 8) {
1169 return EXCP_UDEF;
1171 *value = env->cp15.c6_region[ri->crm];
1172 return 0;
1175 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
1176 uint64_t value)
1178 if (ri->crm >= 8) {
1179 return EXCP_UDEF;
1181 env->cp15.c6_region[ri->crm] = value;
1182 return 0;
1185 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1186 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1187 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1188 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1189 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1190 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1191 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1192 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1193 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1194 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1195 .access = PL1_RW,
1196 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1197 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1198 .access = PL1_RW,
1199 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1200 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1201 .access = PL1_RW,
1202 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1203 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1204 .access = PL1_RW,
1205 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1206 /* Protection region base and size registers */
1207 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
1208 .opc2 = CP_ANY, .access = PL1_RW,
1209 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
1210 REGINFO_SENTINEL
1213 static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1214 uint64_t value)
1216 int maskshift = extract32(value, 0, 3);
1218 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1219 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1220 } else {
1221 value &= 7;
1223 /* Note that we always calculate c2_mask and c2_base_mask, but
1224 * they are only used for short-descriptor tables (ie if EAE is 0);
1225 * for long-descriptor tables the TTBCR fields are used differently
1226 * and the c2_mask and c2_base_mask values are meaningless.
1228 env->cp15.c2_control = value;
1229 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1230 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1231 return 0;
1234 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1235 uint64_t value)
1237 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1238 /* With LPAE the TTBCR could result in a change of ASID
1239 * via the TTBCR.A1 bit, so do a TLB flush.
1241 tlb_flush(env, 1);
1243 return vmsa_ttbcr_raw_write(env, ri, value);
1246 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1248 env->cp15.c2_base_mask = 0xffffc000u;
1249 env->cp15.c2_control = 0;
1250 env->cp15.c2_mask = 0;
1253 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1254 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1255 .access = PL1_RW,
1256 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1257 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1258 .access = PL1_RW,
1259 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1260 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1261 .access = PL1_RW,
1262 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
1263 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1264 .access = PL1_RW,
1265 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
1266 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1267 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
1268 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
1269 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1270 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1271 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1272 .resetvalue = 0, },
1273 REGINFO_SENTINEL
1276 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1277 uint64_t value)
1279 env->cp15.c15_ticonfig = value & 0xe7;
1280 /* The OS_TYPE bit in this register changes the reported CPUID! */
1281 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1282 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1283 return 0;
1286 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1287 uint64_t value)
1289 env->cp15.c15_threadid = value & 0xffff;
1290 return 0;
1293 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1294 uint64_t value)
1296 /* Wait-for-interrupt (deprecated) */
1297 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1298 return 0;
1301 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1302 uint64_t value)
1304 /* On OMAP there are registers indicating the max/min index of dcache lines
1305 * containing a dirty line; cache flush operations have to reset these.
1307 env->cp15.c15_i_max = 0x000;
1308 env->cp15.c15_i_min = 0xff0;
1309 return 0;
1312 static const ARMCPRegInfo omap_cp_reginfo[] = {
1313 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1314 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1315 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1316 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1317 .access = PL1_RW, .type = ARM_CP_NOP },
1318 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1319 .access = PL1_RW,
1320 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1321 .writefn = omap_ticonfig_write },
1322 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1323 .access = PL1_RW,
1324 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1325 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1326 .access = PL1_RW, .resetvalue = 0xff0,
1327 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1328 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1329 .access = PL1_RW,
1330 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1331 .writefn = omap_threadid_write },
1332 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1333 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1334 .type = ARM_CP_NO_MIGRATE,
1335 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1336 /* TODO: Peripheral port remap register:
1337 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1338 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1339 * when MMU is off.
1341 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1342 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1343 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1344 .writefn = omap_cachemaint_write },
1345 { .name = "C9", .cp = 15, .crn = 9,
1346 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1347 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1348 REGINFO_SENTINEL
1351 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1352 uint64_t value)
1354 value &= 0x3fff;
1355 if (env->cp15.c15_cpar != value) {
1356 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1357 tb_flush(env);
1358 env->cp15.c15_cpar = value;
1360 return 0;
1363 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1364 { .name = "XSCALE_CPAR",
1365 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1366 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1367 .writefn = xscale_cpar_write, },
1368 { .name = "XSCALE_AUXCR",
1369 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1370 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1371 .resetvalue = 0, },
1372 REGINFO_SENTINEL
1375 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1376 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1377 * implementation of this implementation-defined space.
1378 * Ideally this should eventually disappear in favour of actually
1379 * implementing the correct behaviour for all cores.
1381 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1382 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1383 .access = PL1_RW,
1384 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1385 .resetvalue = 0 },
1386 REGINFO_SENTINEL
1389 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1390 /* Cache status: RAZ because we have no cache so it's always clean */
1391 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1392 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1393 .resetvalue = 0 },
1394 REGINFO_SENTINEL
1397 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1398 /* We never have a a block transfer operation in progress */
1399 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1400 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1401 .resetvalue = 0 },
1402 /* The cache ops themselves: these all NOP for QEMU */
1403 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1404 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1405 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1406 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1407 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1408 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1409 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1410 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1411 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1412 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1413 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1414 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1415 REGINFO_SENTINEL
1418 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1419 /* The cache test-and-clean instructions always return (1 << 30)
1420 * to indicate that there are no dirty cache lines.
1422 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1423 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1424 .resetvalue = (1 << 30) },
1425 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1426 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1427 .resetvalue = (1 << 30) },
1428 REGINFO_SENTINEL
1431 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1432 /* Ignore ReadBuffer accesses */
1433 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1434 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1435 .access = PL1_RW, .resetvalue = 0,
1436 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1437 REGINFO_SENTINEL
1440 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1441 uint64_t *value)
1443 CPUState *cs = CPU(arm_env_get_cpu(env));
1444 uint32_t mpidr = cs->cpu_index;
1445 /* We don't support setting cluster ID ([8..11])
1446 * so these bits always RAZ.
1448 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1449 mpidr |= (1U << 31);
1450 /* Cores which are uniprocessor (non-coherent)
1451 * but still implement the MP extensions set
1452 * bit 30. (For instance, A9UP.) However we do
1453 * not currently model any of those cores.
1456 *value = mpidr;
1457 return 0;
1460 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1461 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1462 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1463 REGINFO_SENTINEL
1466 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1468 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1469 return 0;
1472 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1474 env->cp15.c7_par_hi = value >> 32;
1475 env->cp15.c7_par = value;
1476 return 0;
1479 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1481 env->cp15.c7_par_hi = 0;
1482 env->cp15.c7_par = 0;
1485 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1486 uint64_t *value)
1488 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1489 return 0;
1492 static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1493 uint64_t value)
1495 env->cp15.c2_base0_hi = value >> 32;
1496 env->cp15.c2_base0 = value;
1497 return 0;
1500 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1501 uint64_t value)
1503 /* Writes to the 64 bit format TTBRs may change the ASID */
1504 tlb_flush(env, 1);
1505 return ttbr064_raw_write(env, ri, value);
1508 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1510 env->cp15.c2_base0_hi = 0;
1511 env->cp15.c2_base0 = 0;
1514 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1515 uint64_t *value)
1517 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1518 return 0;
1521 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1522 uint64_t value)
1524 env->cp15.c2_base1_hi = value >> 32;
1525 env->cp15.c2_base1 = value;
1526 return 0;
1529 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1531 env->cp15.c2_base1_hi = 0;
1532 env->cp15.c2_base1 = 0;
1535 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1536 /* NOP AMAIR0/1: the override is because these clash with the rather
1537 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1539 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1540 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1541 .resetvalue = 0 },
1542 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1543 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1544 .resetvalue = 0 },
1545 /* 64 bit access versions of the (dummy) debug registers */
1546 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1547 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1548 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1549 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1550 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1551 .access = PL1_RW, .type = ARM_CP_64BIT,
1552 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1553 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1554 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1555 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1556 .resetfn = ttbr064_reset },
1557 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1558 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1559 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1560 REGINFO_SENTINEL
1563 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1565 env->cp15.c1_sys = value;
1566 /* ??? Lots of these bits are not implemented. */
1567 /* This may enable/disable the MMU, so do a TLB flush. */
1568 tlb_flush(env, 1);
1569 return 0;
1572 void register_cp_regs_for_features(ARMCPU *cpu)
1574 /* Register all the coprocessor registers based on feature bits */
1575 CPUARMState *env = &cpu->env;
1576 if (arm_feature(env, ARM_FEATURE_M)) {
1577 /* M profile has no coprocessor registers */
1578 return;
1581 define_arm_cp_regs(cpu, cp_reginfo);
1582 if (arm_feature(env, ARM_FEATURE_V6)) {
1583 /* The ID registers all have impdef reset values */
1584 ARMCPRegInfo v6_idregs[] = {
1585 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1586 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1587 .resetvalue = cpu->id_pfr0 },
1588 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1589 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1590 .resetvalue = cpu->id_pfr1 },
1591 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1592 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1593 .resetvalue = cpu->id_dfr0 },
1594 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1595 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1596 .resetvalue = cpu->id_afr0 },
1597 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1598 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1599 .resetvalue = cpu->id_mmfr0 },
1600 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1601 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1602 .resetvalue = cpu->id_mmfr1 },
1603 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1604 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1605 .resetvalue = cpu->id_mmfr2 },
1606 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1607 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1608 .resetvalue = cpu->id_mmfr3 },
1609 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1610 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1611 .resetvalue = cpu->id_isar0 },
1612 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1613 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1614 .resetvalue = cpu->id_isar1 },
1615 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1616 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1617 .resetvalue = cpu->id_isar2 },
1618 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1619 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1620 .resetvalue = cpu->id_isar3 },
1621 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1622 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1623 .resetvalue = cpu->id_isar4 },
1624 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1625 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1626 .resetvalue = cpu->id_isar5 },
1627 /* 6..7 are as yet unallocated and must RAZ */
1628 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1629 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1630 .resetvalue = 0 },
1631 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1632 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1633 .resetvalue = 0 },
1634 REGINFO_SENTINEL
1636 define_arm_cp_regs(cpu, v6_idregs);
1637 define_arm_cp_regs(cpu, v6_cp_reginfo);
1638 } else {
1639 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1641 if (arm_feature(env, ARM_FEATURE_V6K)) {
1642 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1644 if (arm_feature(env, ARM_FEATURE_V7)) {
1645 /* v7 performance monitor control register: same implementor
1646 * field as main ID register, and we implement no event counters.
1648 ARMCPRegInfo pmcr = {
1649 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1650 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1651 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1652 .readfn = pmreg_read, .writefn = pmcr_write,
1653 .raw_readfn = raw_read, .raw_writefn = raw_write,
1655 ARMCPRegInfo clidr = {
1656 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1657 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1659 define_one_arm_cp_reg(cpu, &pmcr);
1660 define_one_arm_cp_reg(cpu, &clidr);
1661 define_arm_cp_regs(cpu, v7_cp_reginfo);
1662 } else {
1663 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1665 if (arm_feature(env, ARM_FEATURE_MPU)) {
1666 /* These are the MPU registers prior to PMSAv6. Any new
1667 * PMSA core later than the ARM946 will require that we
1668 * implement the PMSAv6 or PMSAv7 registers, which are
1669 * completely different.
1671 assert(!arm_feature(env, ARM_FEATURE_V6));
1672 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1673 } else {
1674 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1676 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1677 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1679 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1680 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1682 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1683 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1685 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1686 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1688 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1689 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1691 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1692 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1694 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1695 define_arm_cp_regs(cpu, omap_cp_reginfo);
1697 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1698 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1700 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1701 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1703 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1704 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1706 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1707 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1709 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1710 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1711 * be read-only (ie write causes UNDEF exception).
1714 ARMCPRegInfo id_cp_reginfo[] = {
1715 /* Note that the MIDR isn't a simple constant register because
1716 * of the TI925 behaviour where writes to another register can
1717 * cause the MIDR value to change.
1719 * Unimplemented registers in the c15 0 0 0 space default to
1720 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1721 * and friends override accordingly.
1723 { .name = "MIDR",
1724 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1725 .access = PL1_R, .resetvalue = cpu->midr,
1726 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1727 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1728 .type = ARM_CP_OVERRIDE },
1729 { .name = "CTR",
1730 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1731 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1732 { .name = "TCMTR",
1733 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1734 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1735 { .name = "TLBTR",
1736 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1737 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1738 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1739 { .name = "DUMMY",
1740 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1741 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1742 { .name = "DUMMY",
1743 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1744 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1745 { .name = "DUMMY",
1746 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1747 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1748 { .name = "DUMMY",
1749 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1750 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1751 { .name = "DUMMY",
1752 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1753 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1754 REGINFO_SENTINEL
1756 ARMCPRegInfo crn0_wi_reginfo = {
1757 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1758 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1759 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1761 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1762 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1763 ARMCPRegInfo *r;
1764 /* Register the blanket "writes ignored" value first to cover the
1765 * whole space. Then update the specific ID registers to allow write
1766 * access, so that they ignore writes rather than causing them to
1767 * UNDEF.
1769 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1770 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1771 r->access = PL1_RW;
1774 define_arm_cp_regs(cpu, id_cp_reginfo);
1777 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1778 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1781 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1782 ARMCPRegInfo auxcr = {
1783 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1784 .access = PL1_RW, .type = ARM_CP_CONST,
1785 .resetvalue = cpu->reset_auxcr
1787 define_one_arm_cp_reg(cpu, &auxcr);
1790 if (arm_feature(env, ARM_FEATURE_CBAR)) {
1791 ARMCPRegInfo cbar = {
1792 .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
1793 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
1794 .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
1796 define_one_arm_cp_reg(cpu, &cbar);
1799 /* Generic registers whose values depend on the implementation */
1801 ARMCPRegInfo sctlr = {
1802 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1803 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1804 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1805 .raw_writefn = raw_write,
1807 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1808 /* Normally we would always end the TB on an SCTLR write, but Linux
1809 * arch/arm/mach-pxa/sleep.S expects two instructions following
1810 * an MMU enable to execute from cache. Imitate this behaviour.
1812 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1814 define_one_arm_cp_reg(cpu, &sctlr);
1818 ARMCPU *cpu_arm_init(const char *cpu_model)
1820 ARMCPU *cpu;
1821 ObjectClass *oc;
1823 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1824 if (!oc) {
1825 return NULL;
1827 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1829 /* TODO this should be set centrally, once possible */
1830 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1832 return cpu;
1835 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1837 CPUState *cs = CPU(cpu);
1838 CPUARMState *env = &cpu->env;
1840 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1841 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
1842 aarch64_fpu_gdb_set_reg,
1843 34, "aarch64-fpu.xml", 0);
1844 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
1845 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1846 51, "arm-neon.xml", 0);
1847 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1848 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1849 35, "arm-vfp3.xml", 0);
1850 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1851 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1852 19, "arm-vfp.xml", 0);
1856 /* Sort alphabetically by type name, except for "any". */
1857 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1859 ObjectClass *class_a = (ObjectClass *)a;
1860 ObjectClass *class_b = (ObjectClass *)b;
1861 const char *name_a, *name_b;
1863 name_a = object_class_get_name(class_a);
1864 name_b = object_class_get_name(class_b);
1865 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1866 return 1;
1867 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1868 return -1;
1869 } else {
1870 return strcmp(name_a, name_b);
1874 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1876 ObjectClass *oc = data;
1877 CPUListState *s = user_data;
1878 const char *typename;
1879 char *name;
1881 typename = object_class_get_name(oc);
1882 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1883 (*s->cpu_fprintf)(s->file, " %s\n",
1884 name);
1885 g_free(name);
1888 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1890 CPUListState s = {
1891 .file = f,
1892 .cpu_fprintf = cpu_fprintf,
1894 GSList *list;
1896 list = object_class_get_list(TYPE_ARM_CPU, false);
1897 list = g_slist_sort(list, arm_cpu_list_compare);
1898 (*cpu_fprintf)(f, "Available CPUs:\n");
1899 g_slist_foreach(list, arm_cpu_list_entry, &s);
1900 g_slist_free(list);
1901 #ifdef CONFIG_KVM
1902 /* The 'host' CPU type is dynamically registered only if KVM is
1903 * enabled, so we have to special-case it here:
1905 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
1906 #endif
1909 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
1911 ObjectClass *oc = data;
1912 CpuDefinitionInfoList **cpu_list = user_data;
1913 CpuDefinitionInfoList *entry;
1914 CpuDefinitionInfo *info;
1915 const char *typename;
1917 typename = object_class_get_name(oc);
1918 info = g_malloc0(sizeof(*info));
1919 info->name = g_strndup(typename,
1920 strlen(typename) - strlen("-" TYPE_ARM_CPU));
1922 entry = g_malloc0(sizeof(*entry));
1923 entry->value = info;
1924 entry->next = *cpu_list;
1925 *cpu_list = entry;
1928 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
1930 CpuDefinitionInfoList *cpu_list = NULL;
1931 GSList *list;
1933 list = object_class_get_list(TYPE_ARM_CPU, false);
1934 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
1935 g_slist_free(list);
1937 return cpu_list;
1940 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1941 const ARMCPRegInfo *r, void *opaque)
1943 /* Define implementations of coprocessor registers.
1944 * We store these in a hashtable because typically
1945 * there are less than 150 registers in a space which
1946 * is 16*16*16*8*8 = 262144 in size.
1947 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1948 * If a register is defined twice then the second definition is
1949 * used, so this can be used to define some generic registers and
1950 * then override them with implementation specific variations.
1951 * At least one of the original and the second definition should
1952 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1953 * against accidental use.
1955 int crm, opc1, opc2;
1956 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1957 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1958 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1959 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1960 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1961 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1962 /* 64 bit registers have only CRm and Opc1 fields */
1963 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1964 /* Check that the register definition has enough info to handle
1965 * reads and writes if they are permitted.
1967 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1968 if (r->access & PL3_R) {
1969 assert(r->fieldoffset || r->readfn);
1971 if (r->access & PL3_W) {
1972 assert(r->fieldoffset || r->writefn);
1975 /* Bad type field probably means missing sentinel at end of reg list */
1976 assert(cptype_valid(r->type));
1977 for (crm = crmmin; crm <= crmmax; crm++) {
1978 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1979 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1980 uint32_t *key = g_new(uint32_t, 1);
1981 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1982 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1983 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1984 if (opaque) {
1985 r2->opaque = opaque;
1987 /* Make sure reginfo passed to helpers for wildcarded regs
1988 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1990 r2->crm = crm;
1991 r2->opc1 = opc1;
1992 r2->opc2 = opc2;
1993 /* By convention, for wildcarded registers only the first
1994 * entry is used for migration; the others are marked as
1995 * NO_MIGRATE so we don't try to transfer the register
1996 * multiple times. Special registers (ie NOP/WFI) are
1997 * never migratable.
1999 if ((r->type & ARM_CP_SPECIAL) ||
2000 ((r->crm == CP_ANY) && crm != 0) ||
2001 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2002 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2003 r2->type |= ARM_CP_NO_MIGRATE;
2006 /* Overriding of an existing definition must be explicitly
2007 * requested.
2009 if (!(r->type & ARM_CP_OVERRIDE)) {
2010 ARMCPRegInfo *oldreg;
2011 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2012 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2013 fprintf(stderr, "Register redefined: cp=%d %d bit "
2014 "crn=%d crm=%d opc1=%d opc2=%d, "
2015 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2016 r2->crn, r2->crm, r2->opc1, r2->opc2,
2017 oldreg->name, r2->name);
2018 g_assert_not_reached();
2021 g_hash_table_insert(cpu->cp_regs, key, r2);
2027 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2028 const ARMCPRegInfo *regs, void *opaque)
2030 /* Define a whole list of registers */
2031 const ARMCPRegInfo *r;
2032 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2033 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2037 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
2039 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
2042 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2043 uint64_t value)
2045 /* Helper coprocessor write function for write-ignore registers */
2046 return 0;
2049 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
2051 /* Helper coprocessor write function for read-as-zero registers */
2052 *value = 0;
2053 return 0;
2056 static int bad_mode_switch(CPUARMState *env, int mode)
2058 /* Return true if it is not valid for us to switch to
2059 * this CPU mode (ie all the UNPREDICTABLE cases in
2060 * the ARM ARM CPSRWriteByInstr pseudocode).
2062 switch (mode) {
2063 case ARM_CPU_MODE_USR:
2064 case ARM_CPU_MODE_SYS:
2065 case ARM_CPU_MODE_SVC:
2066 case ARM_CPU_MODE_ABT:
2067 case ARM_CPU_MODE_UND:
2068 case ARM_CPU_MODE_IRQ:
2069 case ARM_CPU_MODE_FIQ:
2070 return 0;
2071 default:
2072 return 1;
2076 uint32_t cpsr_read(CPUARMState *env)
2078 int ZF;
2079 ZF = (env->ZF == 0);
2080 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2081 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2082 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2083 | ((env->condexec_bits & 0xfc) << 8)
2084 | (env->GE << 16);
2087 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2089 if (mask & CPSR_NZCV) {
2090 env->ZF = (~val) & CPSR_Z;
2091 env->NF = val;
2092 env->CF = (val >> 29) & 1;
2093 env->VF = (val << 3) & 0x80000000;
2095 if (mask & CPSR_Q)
2096 env->QF = ((val & CPSR_Q) != 0);
2097 if (mask & CPSR_T)
2098 env->thumb = ((val & CPSR_T) != 0);
2099 if (mask & CPSR_IT_0_1) {
2100 env->condexec_bits &= ~3;
2101 env->condexec_bits |= (val >> 25) & 3;
2103 if (mask & CPSR_IT_2_7) {
2104 env->condexec_bits &= 3;
2105 env->condexec_bits |= (val >> 8) & 0xfc;
2107 if (mask & CPSR_GE) {
2108 env->GE = (val >> 16) & 0xf;
2111 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2112 if (bad_mode_switch(env, val & CPSR_M)) {
2113 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2114 * We choose to ignore the attempt and leave the CPSR M field
2115 * untouched.
2117 mask &= ~CPSR_M;
2118 } else {
2119 switch_mode(env, val & CPSR_M);
2122 mask &= ~CACHED_CPSR_BITS;
2123 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2126 /* Sign/zero extend */
2127 uint32_t HELPER(sxtb16)(uint32_t x)
2129 uint32_t res;
2130 res = (uint16_t)(int8_t)x;
2131 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2132 return res;
2135 uint32_t HELPER(uxtb16)(uint32_t x)
2137 uint32_t res;
2138 res = (uint16_t)(uint8_t)x;
2139 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2140 return res;
2143 uint32_t HELPER(clz)(uint32_t x)
2145 return clz32(x);
2148 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2150 if (den == 0)
2151 return 0;
2152 if (num == INT_MIN && den == -1)
2153 return INT_MIN;
2154 return num / den;
2157 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2159 if (den == 0)
2160 return 0;
2161 return num / den;
2164 uint32_t HELPER(rbit)(uint32_t x)
2166 x = ((x & 0xff000000) >> 24)
2167 | ((x & 0x00ff0000) >> 8)
2168 | ((x & 0x0000ff00) << 8)
2169 | ((x & 0x000000ff) << 24);
2170 x = ((x & 0xf0f0f0f0) >> 4)
2171 | ((x & 0x0f0f0f0f) << 4);
2172 x = ((x & 0x88888888) >> 3)
2173 | ((x & 0x44444444) >> 1)
2174 | ((x & 0x22222222) << 1)
2175 | ((x & 0x11111111) << 3);
2176 return x;
2179 #if defined(CONFIG_USER_ONLY)
2181 void arm_cpu_do_interrupt(CPUState *cs)
2183 ARMCPU *cpu = ARM_CPU(cs);
2184 CPUARMState *env = &cpu->env;
2186 env->exception_index = -1;
2189 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2190 int mmu_idx)
2192 if (rw == 2) {
2193 env->exception_index = EXCP_PREFETCH_ABORT;
2194 env->cp15.c6_insn = address;
2195 } else {
2196 env->exception_index = EXCP_DATA_ABORT;
2197 env->cp15.c6_data = address;
2199 return 1;
2202 /* These should probably raise undefined insn exceptions. */
2203 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2205 cpu_abort(env, "v7m_mrs %d\n", reg);
2208 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2210 cpu_abort(env, "v7m_mrs %d\n", reg);
2211 return 0;
2214 void switch_mode(CPUARMState *env, int mode)
2216 if (mode != ARM_CPU_MODE_USR)
2217 cpu_abort(env, "Tried to switch out of user mode\n");
2220 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2222 cpu_abort(env, "banked r13 write\n");
2225 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2227 cpu_abort(env, "banked r13 read\n");
2228 return 0;
2231 #else
2233 /* Map CPU modes onto saved register banks. */
2234 int bank_number(int mode)
2236 switch (mode) {
2237 case ARM_CPU_MODE_USR:
2238 case ARM_CPU_MODE_SYS:
2239 return 0;
2240 case ARM_CPU_MODE_SVC:
2241 return 1;
2242 case ARM_CPU_MODE_ABT:
2243 return 2;
2244 case ARM_CPU_MODE_UND:
2245 return 3;
2246 case ARM_CPU_MODE_IRQ:
2247 return 4;
2248 case ARM_CPU_MODE_FIQ:
2249 return 5;
2251 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2254 void switch_mode(CPUARMState *env, int mode)
2256 int old_mode;
2257 int i;
2259 old_mode = env->uncached_cpsr & CPSR_M;
2260 if (mode == old_mode)
2261 return;
2263 if (old_mode == ARM_CPU_MODE_FIQ) {
2264 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2265 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2266 } else if (mode == ARM_CPU_MODE_FIQ) {
2267 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2268 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2271 i = bank_number(old_mode);
2272 env->banked_r13[i] = env->regs[13];
2273 env->banked_r14[i] = env->regs[14];
2274 env->banked_spsr[i] = env->spsr;
2276 i = bank_number(mode);
2277 env->regs[13] = env->banked_r13[i];
2278 env->regs[14] = env->banked_r14[i];
2279 env->spsr = env->banked_spsr[i];
2282 static void v7m_push(CPUARMState *env, uint32_t val)
2284 env->regs[13] -= 4;
2285 stl_phys(env->regs[13], val);
2288 static uint32_t v7m_pop(CPUARMState *env)
2290 uint32_t val;
2291 val = ldl_phys(env->regs[13]);
2292 env->regs[13] += 4;
2293 return val;
2296 /* Switch to V7M main or process stack pointer. */
2297 static void switch_v7m_sp(CPUARMState *env, int process)
2299 uint32_t tmp;
2300 if (env->v7m.current_sp != process) {
2301 tmp = env->v7m.other_sp;
2302 env->v7m.other_sp = env->regs[13];
2303 env->regs[13] = tmp;
2304 env->v7m.current_sp = process;
2308 static void do_v7m_exception_exit(CPUARMState *env)
2310 uint32_t type;
2311 uint32_t xpsr;
2313 type = env->regs[15];
2314 if (env->v7m.exception != 0)
2315 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2317 /* Switch to the target stack. */
2318 switch_v7m_sp(env, (type & 4) != 0);
2319 /* Pop registers. */
2320 env->regs[0] = v7m_pop(env);
2321 env->regs[1] = v7m_pop(env);
2322 env->regs[2] = v7m_pop(env);
2323 env->regs[3] = v7m_pop(env);
2324 env->regs[12] = v7m_pop(env);
2325 env->regs[14] = v7m_pop(env);
2326 env->regs[15] = v7m_pop(env);
2327 xpsr = v7m_pop(env);
2328 xpsr_write(env, xpsr, 0xfffffdff);
2329 /* Undo stack alignment. */
2330 if (xpsr & 0x200)
2331 env->regs[13] |= 4;
2332 /* ??? The exception return type specifies Thread/Handler mode. However
2333 this is also implied by the xPSR value. Not sure what to do
2334 if there is a mismatch. */
2335 /* ??? Likewise for mismatches between the CONTROL register and the stack
2336 pointer. */
2339 /* Exception names for debug logging; note that not all of these
2340 * precisely correspond to architectural exceptions.
2342 static const char * const excnames[] = {
2343 [EXCP_UDEF] = "Undefined Instruction",
2344 [EXCP_SWI] = "SVC",
2345 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2346 [EXCP_DATA_ABORT] = "Data Abort",
2347 [EXCP_IRQ] = "IRQ",
2348 [EXCP_FIQ] = "FIQ",
2349 [EXCP_BKPT] = "Breakpoint",
2350 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2351 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2352 [EXCP_STREX] = "QEMU intercept of STREX",
2355 static inline void arm_log_exception(int idx)
2357 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2358 const char *exc = NULL;
2360 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2361 exc = excnames[idx];
2363 if (!exc) {
2364 exc = "unknown";
2366 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2370 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2372 ARMCPU *cpu = ARM_CPU(cs);
2373 CPUARMState *env = &cpu->env;
2374 uint32_t xpsr = xpsr_read(env);
2375 uint32_t lr;
2376 uint32_t addr;
2378 arm_log_exception(env->exception_index);
2380 lr = 0xfffffff1;
2381 if (env->v7m.current_sp)
2382 lr |= 4;
2383 if (env->v7m.exception == 0)
2384 lr |= 8;
2386 /* For exceptions we just mark as pending on the NVIC, and let that
2387 handle it. */
2388 /* TODO: Need to escalate if the current priority is higher than the
2389 one we're raising. */
2390 switch (env->exception_index) {
2391 case EXCP_UDEF:
2392 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2393 return;
2394 case EXCP_SWI:
2395 /* The PC already points to the next instruction. */
2396 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2397 return;
2398 case EXCP_PREFETCH_ABORT:
2399 case EXCP_DATA_ABORT:
2400 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2401 return;
2402 case EXCP_BKPT:
2403 if (semihosting_enabled) {
2404 int nr;
2405 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2406 if (nr == 0xab) {
2407 env->regs[15] += 2;
2408 env->regs[0] = do_arm_semihosting(env);
2409 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2410 return;
2413 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2414 return;
2415 case EXCP_IRQ:
2416 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2417 break;
2418 case EXCP_EXCEPTION_EXIT:
2419 do_v7m_exception_exit(env);
2420 return;
2421 default:
2422 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2423 return; /* Never happens. Keep compiler happy. */
2426 /* Align stack pointer. */
2427 /* ??? Should only do this if Configuration Control Register
2428 STACKALIGN bit is set. */
2429 if (env->regs[13] & 4) {
2430 env->regs[13] -= 4;
2431 xpsr |= 0x200;
2433 /* Switch to the handler mode. */
2434 v7m_push(env, xpsr);
2435 v7m_push(env, env->regs[15]);
2436 v7m_push(env, env->regs[14]);
2437 v7m_push(env, env->regs[12]);
2438 v7m_push(env, env->regs[3]);
2439 v7m_push(env, env->regs[2]);
2440 v7m_push(env, env->regs[1]);
2441 v7m_push(env, env->regs[0]);
2442 switch_v7m_sp(env, 0);
2443 /* Clear IT bits */
2444 env->condexec_bits = 0;
2445 env->regs[14] = lr;
2446 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2447 env->regs[15] = addr & 0xfffffffe;
2448 env->thumb = addr & 1;
2451 /* Handle a CPU exception. */
2452 void arm_cpu_do_interrupt(CPUState *cs)
2454 ARMCPU *cpu = ARM_CPU(cs);
2455 CPUARMState *env = &cpu->env;
2456 uint32_t addr;
2457 uint32_t mask;
2458 int new_mode;
2459 uint32_t offset;
2461 assert(!IS_M(env));
2463 arm_log_exception(env->exception_index);
2465 /* TODO: Vectored interrupt controller. */
2466 switch (env->exception_index) {
2467 case EXCP_UDEF:
2468 new_mode = ARM_CPU_MODE_UND;
2469 addr = 0x04;
2470 mask = CPSR_I;
2471 if (env->thumb)
2472 offset = 2;
2473 else
2474 offset = 4;
2475 break;
2476 case EXCP_SWI:
2477 if (semihosting_enabled) {
2478 /* Check for semihosting interrupt. */
2479 if (env->thumb) {
2480 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2481 & 0xff;
2482 } else {
2483 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2484 & 0xffffff;
2486 /* Only intercept calls from privileged modes, to provide some
2487 semblance of security. */
2488 if (((mask == 0x123456 && !env->thumb)
2489 || (mask == 0xab && env->thumb))
2490 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2491 env->regs[0] = do_arm_semihosting(env);
2492 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2493 return;
2496 new_mode = ARM_CPU_MODE_SVC;
2497 addr = 0x08;
2498 mask = CPSR_I;
2499 /* The PC already points to the next instruction. */
2500 offset = 0;
2501 break;
2502 case EXCP_BKPT:
2503 /* See if this is a semihosting syscall. */
2504 if (env->thumb && semihosting_enabled) {
2505 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2506 if (mask == 0xab
2507 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2508 env->regs[15] += 2;
2509 env->regs[0] = do_arm_semihosting(env);
2510 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2511 return;
2514 env->cp15.c5_insn = 2;
2515 /* Fall through to prefetch abort. */
2516 case EXCP_PREFETCH_ABORT:
2517 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
2518 env->cp15.c5_insn, env->cp15.c6_insn);
2519 new_mode = ARM_CPU_MODE_ABT;
2520 addr = 0x0c;
2521 mask = CPSR_A | CPSR_I;
2522 offset = 4;
2523 break;
2524 case EXCP_DATA_ABORT:
2525 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
2526 env->cp15.c5_data, env->cp15.c6_data);
2527 new_mode = ARM_CPU_MODE_ABT;
2528 addr = 0x10;
2529 mask = CPSR_A | CPSR_I;
2530 offset = 8;
2531 break;
2532 case EXCP_IRQ:
2533 new_mode = ARM_CPU_MODE_IRQ;
2534 addr = 0x18;
2535 /* Disable IRQ and imprecise data aborts. */
2536 mask = CPSR_A | CPSR_I;
2537 offset = 4;
2538 break;
2539 case EXCP_FIQ:
2540 new_mode = ARM_CPU_MODE_FIQ;
2541 addr = 0x1c;
2542 /* Disable FIQ, IRQ and imprecise data aborts. */
2543 mask = CPSR_A | CPSR_I | CPSR_F;
2544 offset = 4;
2545 break;
2546 default:
2547 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2548 return; /* Never happens. Keep compiler happy. */
2550 /* High vectors. */
2551 if (env->cp15.c1_sys & (1 << 13)) {
2552 /* when enabled, base address cannot be remapped. */
2553 addr += 0xffff0000;
2554 } else {
2555 /* ARM v7 architectures provide a vector base address register to remap
2556 * the interrupt vector table.
2557 * This register is only followed in non-monitor mode, and has a secure
2558 * and un-secure copy. Since the cpu is always in a un-secure operation
2559 * and is never in monitor mode this feature is always active.
2560 * Note: only bits 31:5 are valid.
2562 addr += env->cp15.c12_vbar;
2564 switch_mode (env, new_mode);
2565 env->spsr = cpsr_read(env);
2566 /* Clear IT bits. */
2567 env->condexec_bits = 0;
2568 /* Switch to the new mode, and to the correct instruction set. */
2569 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2570 env->uncached_cpsr |= mask;
2571 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2572 * and we should just guard the thumb mode on V4 */
2573 if (arm_feature(env, ARM_FEATURE_V4T)) {
2574 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2576 env->regs[14] = env->regs[15] + offset;
2577 env->regs[15] = addr;
2578 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2581 /* Check section/page access permissions.
2582 Returns the page protection flags, or zero if the access is not
2583 permitted. */
2584 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2585 int access_type, int is_user)
2587 int prot_ro;
2589 if (domain_prot == 3) {
2590 return PAGE_READ | PAGE_WRITE;
2593 if (access_type == 1)
2594 prot_ro = 0;
2595 else
2596 prot_ro = PAGE_READ;
2598 switch (ap) {
2599 case 0:
2600 if (access_type == 1)
2601 return 0;
2602 switch ((env->cp15.c1_sys >> 8) & 3) {
2603 case 1:
2604 return is_user ? 0 : PAGE_READ;
2605 case 2:
2606 return PAGE_READ;
2607 default:
2608 return 0;
2610 case 1:
2611 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2612 case 2:
2613 if (is_user)
2614 return prot_ro;
2615 else
2616 return PAGE_READ | PAGE_WRITE;
2617 case 3:
2618 return PAGE_READ | PAGE_WRITE;
2619 case 4: /* Reserved. */
2620 return 0;
2621 case 5:
2622 return is_user ? 0 : prot_ro;
2623 case 6:
2624 return prot_ro;
2625 case 7:
2626 if (!arm_feature (env, ARM_FEATURE_V6K))
2627 return 0;
2628 return prot_ro;
2629 default:
2630 abort();
2634 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2636 uint32_t table;
2638 if (address & env->cp15.c2_mask)
2639 table = env->cp15.c2_base1 & 0xffffc000;
2640 else
2641 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2643 table |= (address >> 18) & 0x3ffc;
2644 return table;
2647 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2648 int is_user, hwaddr *phys_ptr,
2649 int *prot, target_ulong *page_size)
2651 int code;
2652 uint32_t table;
2653 uint32_t desc;
2654 int type;
2655 int ap;
2656 int domain;
2657 int domain_prot;
2658 hwaddr phys_addr;
2660 /* Pagetable walk. */
2661 /* Lookup l1 descriptor. */
2662 table = get_level1_table_address(env, address);
2663 desc = ldl_phys(table);
2664 type = (desc & 3);
2665 domain = (desc >> 5) & 0x0f;
2666 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2667 if (type == 0) {
2668 /* Section translation fault. */
2669 code = 5;
2670 goto do_fault;
2672 if (domain_prot == 0 || domain_prot == 2) {
2673 if (type == 2)
2674 code = 9; /* Section domain fault. */
2675 else
2676 code = 11; /* Page domain fault. */
2677 goto do_fault;
2679 if (type == 2) {
2680 /* 1Mb section. */
2681 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2682 ap = (desc >> 10) & 3;
2683 code = 13;
2684 *page_size = 1024 * 1024;
2685 } else {
2686 /* Lookup l2 entry. */
2687 if (type == 1) {
2688 /* Coarse pagetable. */
2689 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2690 } else {
2691 /* Fine pagetable. */
2692 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2694 desc = ldl_phys(table);
2695 switch (desc & 3) {
2696 case 0: /* Page translation fault. */
2697 code = 7;
2698 goto do_fault;
2699 case 1: /* 64k page. */
2700 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2701 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2702 *page_size = 0x10000;
2703 break;
2704 case 2: /* 4k page. */
2705 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2706 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2707 *page_size = 0x1000;
2708 break;
2709 case 3: /* 1k page. */
2710 if (type == 1) {
2711 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2712 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2713 } else {
2714 /* Page translation fault. */
2715 code = 7;
2716 goto do_fault;
2718 } else {
2719 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2721 ap = (desc >> 4) & 3;
2722 *page_size = 0x400;
2723 break;
2724 default:
2725 /* Never happens, but compiler isn't smart enough to tell. */
2726 abort();
2728 code = 15;
2730 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2731 if (!*prot) {
2732 /* Access permission fault. */
2733 goto do_fault;
2735 *prot |= PAGE_EXEC;
2736 *phys_ptr = phys_addr;
2737 return 0;
2738 do_fault:
2739 return code | (domain << 4);
2742 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2743 int is_user, hwaddr *phys_ptr,
2744 int *prot, target_ulong *page_size)
2746 int code;
2747 uint32_t table;
2748 uint32_t desc;
2749 uint32_t xn;
2750 uint32_t pxn = 0;
2751 int type;
2752 int ap;
2753 int domain = 0;
2754 int domain_prot;
2755 hwaddr phys_addr;
2757 /* Pagetable walk. */
2758 /* Lookup l1 descriptor. */
2759 table = get_level1_table_address(env, address);
2760 desc = ldl_phys(table);
2761 type = (desc & 3);
2762 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2763 /* Section translation fault, or attempt to use the encoding
2764 * which is Reserved on implementations without PXN.
2766 code = 5;
2767 goto do_fault;
2769 if ((type == 1) || !(desc & (1 << 18))) {
2770 /* Page or Section. */
2771 domain = (desc >> 5) & 0x0f;
2773 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2774 if (domain_prot == 0 || domain_prot == 2) {
2775 if (type != 1) {
2776 code = 9; /* Section domain fault. */
2777 } else {
2778 code = 11; /* Page domain fault. */
2780 goto do_fault;
2782 if (type != 1) {
2783 if (desc & (1 << 18)) {
2784 /* Supersection. */
2785 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2786 *page_size = 0x1000000;
2787 } else {
2788 /* Section. */
2789 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2790 *page_size = 0x100000;
2792 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2793 xn = desc & (1 << 4);
2794 pxn = desc & 1;
2795 code = 13;
2796 } else {
2797 if (arm_feature(env, ARM_FEATURE_PXN)) {
2798 pxn = (desc >> 2) & 1;
2800 /* Lookup l2 entry. */
2801 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2802 desc = ldl_phys(table);
2803 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2804 switch (desc & 3) {
2805 case 0: /* Page translation fault. */
2806 code = 7;
2807 goto do_fault;
2808 case 1: /* 64k page. */
2809 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2810 xn = desc & (1 << 15);
2811 *page_size = 0x10000;
2812 break;
2813 case 2: case 3: /* 4k page. */
2814 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2815 xn = desc & 1;
2816 *page_size = 0x1000;
2817 break;
2818 default:
2819 /* Never happens, but compiler isn't smart enough to tell. */
2820 abort();
2822 code = 15;
2824 if (domain_prot == 3) {
2825 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2826 } else {
2827 if (pxn && !is_user) {
2828 xn = 1;
2830 if (xn && access_type == 2)
2831 goto do_fault;
2833 /* The simplified model uses AP[0] as an access control bit. */
2834 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2835 /* Access flag fault. */
2836 code = (code == 15) ? 6 : 3;
2837 goto do_fault;
2839 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2840 if (!*prot) {
2841 /* Access permission fault. */
2842 goto do_fault;
2844 if (!xn) {
2845 *prot |= PAGE_EXEC;
2848 *phys_ptr = phys_addr;
2849 return 0;
2850 do_fault:
2851 return code | (domain << 4);
2854 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2855 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2857 typedef enum {
2858 translation_fault = 1,
2859 access_fault = 2,
2860 permission_fault = 3,
2861 } MMUFaultType;
2863 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2864 int access_type, int is_user,
2865 hwaddr *phys_ptr, int *prot,
2866 target_ulong *page_size_ptr)
2868 /* Read an LPAE long-descriptor translation table. */
2869 MMUFaultType fault_type = translation_fault;
2870 uint32_t level = 1;
2871 uint32_t epd;
2872 uint32_t tsz;
2873 uint64_t ttbr;
2874 int ttbr_select;
2875 int n;
2876 hwaddr descaddr;
2877 uint32_t tableattrs;
2878 target_ulong page_size;
2879 uint32_t attrs;
2881 /* Determine whether this address is in the region controlled by
2882 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2883 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2884 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2886 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2887 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2888 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2889 /* there is a ttbr0 region and we are in it (high bits all zero) */
2890 ttbr_select = 0;
2891 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2892 /* there is a ttbr1 region and we are in it (high bits all one) */
2893 ttbr_select = 1;
2894 } else if (!t0sz) {
2895 /* ttbr0 region is "everything not in the ttbr1 region" */
2896 ttbr_select = 0;
2897 } else if (!t1sz) {
2898 /* ttbr1 region is "everything not in the ttbr0 region" */
2899 ttbr_select = 1;
2900 } else {
2901 /* in the gap between the two regions, this is a Translation fault */
2902 fault_type = translation_fault;
2903 goto do_fault;
2906 /* Note that QEMU ignores shareability and cacheability attributes,
2907 * so we don't need to do anything with the SH, ORGN, IRGN fields
2908 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2909 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2910 * implement any ASID-like capability so we can ignore it (instead
2911 * we will always flush the TLB any time the ASID is changed).
2913 if (ttbr_select == 0) {
2914 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2915 epd = extract32(env->cp15.c2_control, 7, 1);
2916 tsz = t0sz;
2917 } else {
2918 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2919 epd = extract32(env->cp15.c2_control, 23, 1);
2920 tsz = t1sz;
2923 if (epd) {
2924 /* Translation table walk disabled => Translation fault on TLB miss */
2925 goto do_fault;
2928 /* If the region is small enough we will skip straight to a 2nd level
2929 * lookup. This affects the number of bits of the address used in
2930 * combination with the TTBR to find the first descriptor. ('n' here
2931 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2932 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2934 if (tsz > 1) {
2935 level = 2;
2936 n = 14 - tsz;
2937 } else {
2938 n = 5 - tsz;
2941 /* Clear the vaddr bits which aren't part of the within-region address,
2942 * so that we don't have to special case things when calculating the
2943 * first descriptor address.
2945 address &= (0xffffffffU >> tsz);
2947 /* Now we can extract the actual base address from the TTBR */
2948 descaddr = extract64(ttbr, 0, 40);
2949 descaddr &= ~((1ULL << n) - 1);
2951 tableattrs = 0;
2952 for (;;) {
2953 uint64_t descriptor;
2955 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2956 descriptor = ldq_phys(descaddr);
2957 if (!(descriptor & 1) ||
2958 (!(descriptor & 2) && (level == 3))) {
2959 /* Invalid, or the Reserved level 3 encoding */
2960 goto do_fault;
2962 descaddr = descriptor & 0xfffffff000ULL;
2964 if ((descriptor & 2) && (level < 3)) {
2965 /* Table entry. The top five bits are attributes which may
2966 * propagate down through lower levels of the table (and
2967 * which are all arranged so that 0 means "no effect", so
2968 * we can gather them up by ORing in the bits at each level).
2970 tableattrs |= extract64(descriptor, 59, 5);
2971 level++;
2972 continue;
2974 /* Block entry at level 1 or 2, or page entry at level 3.
2975 * These are basically the same thing, although the number
2976 * of bits we pull in from the vaddr varies.
2978 page_size = (1 << (39 - (9 * level)));
2979 descaddr |= (address & (page_size - 1));
2980 /* Extract attributes from the descriptor and merge with table attrs */
2981 attrs = extract64(descriptor, 2, 10)
2982 | (extract64(descriptor, 52, 12) << 10);
2983 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2984 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2985 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2986 * means "force PL1 access only", which means forcing AP[1] to 0.
2988 if (extract32(tableattrs, 2, 1)) {
2989 attrs &= ~(1 << 4);
2991 /* Since we're always in the Non-secure state, NSTable is ignored. */
2992 break;
2994 /* Here descaddr is the final physical address, and attributes
2995 * are all in attrs.
2997 fault_type = access_fault;
2998 if ((attrs & (1 << 8)) == 0) {
2999 /* Access flag */
3000 goto do_fault;
3002 fault_type = permission_fault;
3003 if (is_user && !(attrs & (1 << 4))) {
3004 /* Unprivileged access not enabled */
3005 goto do_fault;
3007 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3008 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
3009 /* XN or PXN */
3010 if (access_type == 2) {
3011 goto do_fault;
3013 *prot &= ~PAGE_EXEC;
3015 if (attrs & (1 << 5)) {
3016 /* Write access forbidden */
3017 if (access_type == 1) {
3018 goto do_fault;
3020 *prot &= ~PAGE_WRITE;
3023 *phys_ptr = descaddr;
3024 *page_size_ptr = page_size;
3025 return 0;
3027 do_fault:
3028 /* Long-descriptor format IFSR/DFSR value */
3029 return (1 << 9) | (fault_type << 2) | level;
3032 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
3033 int access_type, int is_user,
3034 hwaddr *phys_ptr, int *prot)
3036 int n;
3037 uint32_t mask;
3038 uint32_t base;
3040 *phys_ptr = address;
3041 for (n = 7; n >= 0; n--) {
3042 base = env->cp15.c6_region[n];
3043 if ((base & 1) == 0)
3044 continue;
3045 mask = 1 << ((base >> 1) & 0x1f);
3046 /* Keep this shift separate from the above to avoid an
3047 (undefined) << 32. */
3048 mask = (mask << 1) - 1;
3049 if (((base ^ address) & ~mask) == 0)
3050 break;
3052 if (n < 0)
3053 return 2;
3055 if (access_type == 2) {
3056 mask = env->cp15.c5_insn;
3057 } else {
3058 mask = env->cp15.c5_data;
3060 mask = (mask >> (n * 4)) & 0xf;
3061 switch (mask) {
3062 case 0:
3063 return 1;
3064 case 1:
3065 if (is_user)
3066 return 1;
3067 *prot = PAGE_READ | PAGE_WRITE;
3068 break;
3069 case 2:
3070 *prot = PAGE_READ;
3071 if (!is_user)
3072 *prot |= PAGE_WRITE;
3073 break;
3074 case 3:
3075 *prot = PAGE_READ | PAGE_WRITE;
3076 break;
3077 case 5:
3078 if (is_user)
3079 return 1;
3080 *prot = PAGE_READ;
3081 break;
3082 case 6:
3083 *prot = PAGE_READ;
3084 break;
3085 default:
3086 /* Bad permission. */
3087 return 1;
3089 *prot |= PAGE_EXEC;
3090 return 0;
3093 /* get_phys_addr - get the physical address for this virtual address
3095 * Find the physical address corresponding to the given virtual address,
3096 * by doing a translation table walk on MMU based systems or using the
3097 * MPU state on MPU based systems.
3099 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3100 * prot and page_size are not filled in, and the return value provides
3101 * information on why the translation aborted, in the format of a
3102 * DFSR/IFSR fault register, with the following caveats:
3103 * * we honour the short vs long DFSR format differences.
3104 * * the WnR bit is never set (the caller must do this).
3105 * * for MPU based systems we don't bother to return a full FSR format
3106 * value.
3108 * @env: CPUARMState
3109 * @address: virtual address to get physical address for
3110 * @access_type: 0 for read, 1 for write, 2 for execute
3111 * @is_user: 0 for privileged access, 1 for user
3112 * @phys_ptr: set to the physical address corresponding to the virtual address
3113 * @prot: set to the permissions for the page containing phys_ptr
3114 * @page_size: set to the size of the page containing phys_ptr
3116 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3117 int access_type, int is_user,
3118 hwaddr *phys_ptr, int *prot,
3119 target_ulong *page_size)
3121 /* Fast Context Switch Extension. */
3122 if (address < 0x02000000)
3123 address += env->cp15.c13_fcse;
3125 if ((env->cp15.c1_sys & 1) == 0) {
3126 /* MMU/MPU disabled. */
3127 *phys_ptr = address;
3128 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3129 *page_size = TARGET_PAGE_SIZE;
3130 return 0;
3131 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3132 *page_size = TARGET_PAGE_SIZE;
3133 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3134 prot);
3135 } else if (extended_addresses_enabled(env)) {
3136 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3137 prot, page_size);
3138 } else if (env->cp15.c1_sys & (1 << 23)) {
3139 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3140 prot, page_size);
3141 } else {
3142 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3143 prot, page_size);
3147 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3148 int access_type, int mmu_idx)
3150 hwaddr phys_addr;
3151 target_ulong page_size;
3152 int prot;
3153 int ret, is_user;
3155 is_user = mmu_idx == MMU_USER_IDX;
3156 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3157 &page_size);
3158 if (ret == 0) {
3159 /* Map a single [sub]page. */
3160 phys_addr &= ~(hwaddr)0x3ff;
3161 address &= ~(uint32_t)0x3ff;
3162 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
3163 return 0;
3166 if (access_type == 2) {
3167 env->cp15.c5_insn = ret;
3168 env->cp15.c6_insn = address;
3169 env->exception_index = EXCP_PREFETCH_ABORT;
3170 } else {
3171 env->cp15.c5_data = ret;
3172 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3173 env->cp15.c5_data |= (1 << 11);
3174 env->cp15.c6_data = address;
3175 env->exception_index = EXCP_DATA_ABORT;
3177 return 1;
3180 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3182 ARMCPU *cpu = ARM_CPU(cs);
3183 hwaddr phys_addr;
3184 target_ulong page_size;
3185 int prot;
3186 int ret;
3188 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3190 if (ret != 0) {
3191 return -1;
3194 return phys_addr;
3197 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3199 if ((env->uncached_cpsr & CPSR_M) == mode) {
3200 env->regs[13] = val;
3201 } else {
3202 env->banked_r13[bank_number(mode)] = val;
3206 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3208 if ((env->uncached_cpsr & CPSR_M) == mode) {
3209 return env->regs[13];
3210 } else {
3211 return env->banked_r13[bank_number(mode)];
3215 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3217 switch (reg) {
3218 case 0: /* APSR */
3219 return xpsr_read(env) & 0xf8000000;
3220 case 1: /* IAPSR */
3221 return xpsr_read(env) & 0xf80001ff;
3222 case 2: /* EAPSR */
3223 return xpsr_read(env) & 0xff00fc00;
3224 case 3: /* xPSR */
3225 return xpsr_read(env) & 0xff00fdff;
3226 case 5: /* IPSR */
3227 return xpsr_read(env) & 0x000001ff;
3228 case 6: /* EPSR */
3229 return xpsr_read(env) & 0x0700fc00;
3230 case 7: /* IEPSR */
3231 return xpsr_read(env) & 0x0700edff;
3232 case 8: /* MSP */
3233 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3234 case 9: /* PSP */
3235 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3236 case 16: /* PRIMASK */
3237 return (env->uncached_cpsr & CPSR_I) != 0;
3238 case 17: /* BASEPRI */
3239 case 18: /* BASEPRI_MAX */
3240 return env->v7m.basepri;
3241 case 19: /* FAULTMASK */
3242 return (env->uncached_cpsr & CPSR_F) != 0;
3243 case 20: /* CONTROL */
3244 return env->v7m.control;
3245 default:
3246 /* ??? For debugging only. */
3247 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
3248 return 0;
3252 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3254 switch (reg) {
3255 case 0: /* APSR */
3256 xpsr_write(env, val, 0xf8000000);
3257 break;
3258 case 1: /* IAPSR */
3259 xpsr_write(env, val, 0xf8000000);
3260 break;
3261 case 2: /* EAPSR */
3262 xpsr_write(env, val, 0xfe00fc00);
3263 break;
3264 case 3: /* xPSR */
3265 xpsr_write(env, val, 0xfe00fc00);
3266 break;
3267 case 5: /* IPSR */
3268 /* IPSR bits are readonly. */
3269 break;
3270 case 6: /* EPSR */
3271 xpsr_write(env, val, 0x0600fc00);
3272 break;
3273 case 7: /* IEPSR */
3274 xpsr_write(env, val, 0x0600fc00);
3275 break;
3276 case 8: /* MSP */
3277 if (env->v7m.current_sp)
3278 env->v7m.other_sp = val;
3279 else
3280 env->regs[13] = val;
3281 break;
3282 case 9: /* PSP */
3283 if (env->v7m.current_sp)
3284 env->regs[13] = val;
3285 else
3286 env->v7m.other_sp = val;
3287 break;
3288 case 16: /* PRIMASK */
3289 if (val & 1)
3290 env->uncached_cpsr |= CPSR_I;
3291 else
3292 env->uncached_cpsr &= ~CPSR_I;
3293 break;
3294 case 17: /* BASEPRI */
3295 env->v7m.basepri = val & 0xff;
3296 break;
3297 case 18: /* BASEPRI_MAX */
3298 val &= 0xff;
3299 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3300 env->v7m.basepri = val;
3301 break;
3302 case 19: /* FAULTMASK */
3303 if (val & 1)
3304 env->uncached_cpsr |= CPSR_F;
3305 else
3306 env->uncached_cpsr &= ~CPSR_F;
3307 break;
3308 case 20: /* CONTROL */
3309 env->v7m.control = val & 3;
3310 switch_v7m_sp(env, (val & 2) != 0);
3311 break;
3312 default:
3313 /* ??? For debugging only. */
3314 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
3315 return;
3319 #endif
3321 /* Note that signed overflow is undefined in C. The following routines are
3322 careful to use unsigned types where modulo arithmetic is required.
3323 Failure to do so _will_ break on newer gcc. */
3325 /* Signed saturating arithmetic. */
3327 /* Perform 16-bit signed saturating addition. */
3328 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3330 uint16_t res;
3332 res = a + b;
3333 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3334 if (a & 0x8000)
3335 res = 0x8000;
3336 else
3337 res = 0x7fff;
3339 return res;
3342 /* Perform 8-bit signed saturating addition. */
3343 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3345 uint8_t res;
3347 res = a + b;
3348 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3349 if (a & 0x80)
3350 res = 0x80;
3351 else
3352 res = 0x7f;
3354 return res;
3357 /* Perform 16-bit signed saturating subtraction. */
3358 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3360 uint16_t res;
3362 res = a - b;
3363 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3364 if (a & 0x8000)
3365 res = 0x8000;
3366 else
3367 res = 0x7fff;
3369 return res;
3372 /* Perform 8-bit signed saturating subtraction. */
3373 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3375 uint8_t res;
3377 res = a - b;
3378 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3379 if (a & 0x80)
3380 res = 0x80;
3381 else
3382 res = 0x7f;
3384 return res;
3387 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3388 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3389 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3390 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3391 #define PFX q
3393 #include "op_addsub.h"
3395 /* Unsigned saturating arithmetic. */
3396 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3398 uint16_t res;
3399 res = a + b;
3400 if (res < a)
3401 res = 0xffff;
3402 return res;
3405 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3407 if (a > b)
3408 return a - b;
3409 else
3410 return 0;
3413 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3415 uint8_t res;
3416 res = a + b;
3417 if (res < a)
3418 res = 0xff;
3419 return res;
3422 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3424 if (a > b)
3425 return a - b;
3426 else
3427 return 0;
3430 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3431 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3432 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3433 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3434 #define PFX uq
3436 #include "op_addsub.h"
3438 /* Signed modulo arithmetic. */
3439 #define SARITH16(a, b, n, op) do { \
3440 int32_t sum; \
3441 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3442 RESULT(sum, n, 16); \
3443 if (sum >= 0) \
3444 ge |= 3 << (n * 2); \
3445 } while(0)
3447 #define SARITH8(a, b, n, op) do { \
3448 int32_t sum; \
3449 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3450 RESULT(sum, n, 8); \
3451 if (sum >= 0) \
3452 ge |= 1 << n; \
3453 } while(0)
3456 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3457 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3458 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3459 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3460 #define PFX s
3461 #define ARITH_GE
3463 #include "op_addsub.h"
3465 /* Unsigned modulo arithmetic. */
3466 #define ADD16(a, b, n) do { \
3467 uint32_t sum; \
3468 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3469 RESULT(sum, n, 16); \
3470 if ((sum >> 16) == 1) \
3471 ge |= 3 << (n * 2); \
3472 } while(0)
3474 #define ADD8(a, b, n) do { \
3475 uint32_t sum; \
3476 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3477 RESULT(sum, n, 8); \
3478 if ((sum >> 8) == 1) \
3479 ge |= 1 << n; \
3480 } while(0)
3482 #define SUB16(a, b, n) do { \
3483 uint32_t sum; \
3484 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3485 RESULT(sum, n, 16); \
3486 if ((sum >> 16) == 0) \
3487 ge |= 3 << (n * 2); \
3488 } while(0)
3490 #define SUB8(a, b, n) do { \
3491 uint32_t sum; \
3492 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3493 RESULT(sum, n, 8); \
3494 if ((sum >> 8) == 0) \
3495 ge |= 1 << n; \
3496 } while(0)
3498 #define PFX u
3499 #define ARITH_GE
3501 #include "op_addsub.h"
3503 /* Halved signed arithmetic. */
3504 #define ADD16(a, b, n) \
3505 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3506 #define SUB16(a, b, n) \
3507 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3508 #define ADD8(a, b, n) \
3509 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3510 #define SUB8(a, b, n) \
3511 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3512 #define PFX sh
3514 #include "op_addsub.h"
3516 /* Halved unsigned arithmetic. */
3517 #define ADD16(a, b, n) \
3518 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3519 #define SUB16(a, b, n) \
3520 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3521 #define ADD8(a, b, n) \
3522 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3523 #define SUB8(a, b, n) \
3524 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3525 #define PFX uh
3527 #include "op_addsub.h"
3529 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3531 if (a > b)
3532 return a - b;
3533 else
3534 return b - a;
3537 /* Unsigned sum of absolute byte differences. */
3538 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3540 uint32_t sum;
3541 sum = do_usad(a, b);
3542 sum += do_usad(a >> 8, b >> 8);
3543 sum += do_usad(a >> 16, b >>16);
3544 sum += do_usad(a >> 24, b >> 24);
3545 return sum;
3548 /* For ARMv6 SEL instruction. */
3549 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3551 uint32_t mask;
3553 mask = 0;
3554 if (flags & 1)
3555 mask |= 0xff;
3556 if (flags & 2)
3557 mask |= 0xff00;
3558 if (flags & 4)
3559 mask |= 0xff0000;
3560 if (flags & 8)
3561 mask |= 0xff000000;
3562 return (a & mask) | (b & ~mask);
3565 /* VFP support. We follow the convention used for VFP instructions:
3566 Single precision routines have a "s" suffix, double precision a
3567 "d" suffix. */
3569 /* Convert host exception flags to vfp form. */
3570 static inline int vfp_exceptbits_from_host(int host_bits)
3572 int target_bits = 0;
3574 if (host_bits & float_flag_invalid)
3575 target_bits |= 1;
3576 if (host_bits & float_flag_divbyzero)
3577 target_bits |= 2;
3578 if (host_bits & float_flag_overflow)
3579 target_bits |= 4;
3580 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3581 target_bits |= 8;
3582 if (host_bits & float_flag_inexact)
3583 target_bits |= 0x10;
3584 if (host_bits & float_flag_input_denormal)
3585 target_bits |= 0x80;
3586 return target_bits;
3589 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3591 int i;
3592 uint32_t fpscr;
3594 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3595 | (env->vfp.vec_len << 16)
3596 | (env->vfp.vec_stride << 20);
3597 i = get_float_exception_flags(&env->vfp.fp_status);
3598 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3599 fpscr |= vfp_exceptbits_from_host(i);
3600 return fpscr;
3603 uint32_t vfp_get_fpscr(CPUARMState *env)
3605 return HELPER(vfp_get_fpscr)(env);
3608 /* Convert vfp exception flags to target form. */
3609 static inline int vfp_exceptbits_to_host(int target_bits)
3611 int host_bits = 0;
3613 if (target_bits & 1)
3614 host_bits |= float_flag_invalid;
3615 if (target_bits & 2)
3616 host_bits |= float_flag_divbyzero;
3617 if (target_bits & 4)
3618 host_bits |= float_flag_overflow;
3619 if (target_bits & 8)
3620 host_bits |= float_flag_underflow;
3621 if (target_bits & 0x10)
3622 host_bits |= float_flag_inexact;
3623 if (target_bits & 0x80)
3624 host_bits |= float_flag_input_denormal;
3625 return host_bits;
3628 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3630 int i;
3631 uint32_t changed;
3633 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3634 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3635 env->vfp.vec_len = (val >> 16) & 7;
3636 env->vfp.vec_stride = (val >> 20) & 3;
3638 changed ^= val;
3639 if (changed & (3 << 22)) {
3640 i = (val >> 22) & 3;
3641 switch (i) {
3642 case 0:
3643 i = float_round_nearest_even;
3644 break;
3645 case 1:
3646 i = float_round_up;
3647 break;
3648 case 2:
3649 i = float_round_down;
3650 break;
3651 case 3:
3652 i = float_round_to_zero;
3653 break;
3655 set_float_rounding_mode(i, &env->vfp.fp_status);
3657 if (changed & (1 << 24)) {
3658 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3659 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3661 if (changed & (1 << 25))
3662 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3664 i = vfp_exceptbits_to_host(val);
3665 set_float_exception_flags(i, &env->vfp.fp_status);
3666 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3669 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3671 HELPER(vfp_set_fpscr)(env, val);
3674 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3676 #define VFP_BINOP(name) \
3677 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3679 float_status *fpst = fpstp; \
3680 return float32_ ## name(a, b, fpst); \
3682 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3684 float_status *fpst = fpstp; \
3685 return float64_ ## name(a, b, fpst); \
3687 VFP_BINOP(add)
3688 VFP_BINOP(sub)
3689 VFP_BINOP(mul)
3690 VFP_BINOP(div)
3691 #undef VFP_BINOP
3693 float32 VFP_HELPER(neg, s)(float32 a)
3695 return float32_chs(a);
3698 float64 VFP_HELPER(neg, d)(float64 a)
3700 return float64_chs(a);
3703 float32 VFP_HELPER(abs, s)(float32 a)
3705 return float32_abs(a);
3708 float64 VFP_HELPER(abs, d)(float64 a)
3710 return float64_abs(a);
3713 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3715 return float32_sqrt(a, &env->vfp.fp_status);
3718 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3720 return float64_sqrt(a, &env->vfp.fp_status);
3723 /* XXX: check quiet/signaling case */
3724 #define DO_VFP_cmp(p, type) \
3725 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3727 uint32_t flags; \
3728 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3729 case 0: flags = 0x6; break; \
3730 case -1: flags = 0x8; break; \
3731 case 1: flags = 0x2; break; \
3732 default: case 2: flags = 0x3; break; \
3734 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3735 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3737 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3739 uint32_t flags; \
3740 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3741 case 0: flags = 0x6; break; \
3742 case -1: flags = 0x8; break; \
3743 case 1: flags = 0x2; break; \
3744 default: case 2: flags = 0x3; break; \
3746 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3747 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3749 DO_VFP_cmp(s, float32)
3750 DO_VFP_cmp(d, float64)
3751 #undef DO_VFP_cmp
3753 /* Integer to float and float to integer conversions */
3755 #define CONV_ITOF(name, fsz, sign) \
3756 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3758 float_status *fpst = fpstp; \
3759 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3762 #define CONV_FTOI(name, fsz, sign, round) \
3763 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3765 float_status *fpst = fpstp; \
3766 if (float##fsz##_is_any_nan(x)) { \
3767 float_raise(float_flag_invalid, fpst); \
3768 return 0; \
3770 return float##fsz##_to_##sign##int32##round(x, fpst); \
3773 #define FLOAT_CONVS(name, p, fsz, sign) \
3774 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3775 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3776 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3778 FLOAT_CONVS(si, s, 32, )
3779 FLOAT_CONVS(si, d, 64, )
3780 FLOAT_CONVS(ui, s, 32, u)
3781 FLOAT_CONVS(ui, d, 64, u)
3783 #undef CONV_ITOF
3784 #undef CONV_FTOI
3785 #undef FLOAT_CONVS
3787 /* floating point conversion */
3788 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3790 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3791 /* ARM requires that S<->D conversion of any kind of NaN generates
3792 * a quiet NaN by forcing the most significant frac bit to 1.
3794 return float64_maybe_silence_nan(r);
3797 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3799 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3800 /* ARM requires that S<->D conversion of any kind of NaN generates
3801 * a quiet NaN by forcing the most significant frac bit to 1.
3803 return float32_maybe_silence_nan(r);
3806 /* VFP3 fixed point conversion. */
3807 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3808 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3809 void *fpstp) \
3811 float_status *fpst = fpstp; \
3812 float##fsz tmp; \
3813 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3814 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3816 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3817 void *fpstp) \
3819 float_status *fpst = fpstp; \
3820 float##fsz tmp; \
3821 if (float##fsz##_is_any_nan(x)) { \
3822 float_raise(float_flag_invalid, fpst); \
3823 return 0; \
3825 tmp = float##fsz##_scalbn(x, shift, fpst); \
3826 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3829 VFP_CONV_FIX(sh, d, 64, int16, )
3830 VFP_CONV_FIX(sl, d, 64, int32, )
3831 VFP_CONV_FIX(uh, d, 64, uint16, u)
3832 VFP_CONV_FIX(ul, d, 64, uint32, u)
3833 VFP_CONV_FIX(sh, s, 32, int16, )
3834 VFP_CONV_FIX(sl, s, 32, int32, )
3835 VFP_CONV_FIX(uh, s, 32, uint16, u)
3836 VFP_CONV_FIX(ul, s, 32, uint32, u)
3837 #undef VFP_CONV_FIX
3839 /* Half precision conversions. */
3840 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3842 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3843 float32 r = float16_to_float32(make_float16(a), ieee, s);
3844 if (ieee) {
3845 return float32_maybe_silence_nan(r);
3847 return r;
3850 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3852 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3853 float16 r = float32_to_float16(a, ieee, s);
3854 if (ieee) {
3855 r = float16_maybe_silence_nan(r);
3857 return float16_val(r);
3860 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3862 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3865 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3867 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3870 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3872 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3875 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3877 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3880 #define float32_two make_float32(0x40000000)
3881 #define float32_three make_float32(0x40400000)
3882 #define float32_one_point_five make_float32(0x3fc00000)
3884 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3886 float_status *s = &env->vfp.standard_fp_status;
3887 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3888 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3889 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3890 float_raise(float_flag_input_denormal, s);
3892 return float32_two;
3894 return float32_sub(float32_two, float32_mul(a, b, s), s);
3897 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3899 float_status *s = &env->vfp.standard_fp_status;
3900 float32 product;
3901 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3902 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3903 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3904 float_raise(float_flag_input_denormal, s);
3906 return float32_one_point_five;
3908 product = float32_mul(a, b, s);
3909 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3912 /* NEON helpers. */
3914 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3915 * int->float conversions at run-time. */
3916 #define float64_256 make_float64(0x4070000000000000LL)
3917 #define float64_512 make_float64(0x4080000000000000LL)
3919 /* The algorithm that must be used to calculate the estimate
3920 * is specified by the ARM ARM.
3922 static float64 recip_estimate(float64 a, CPUARMState *env)
3924 /* These calculations mustn't set any fp exception flags,
3925 * so we use a local copy of the fp_status.
3927 float_status dummy_status = env->vfp.standard_fp_status;
3928 float_status *s = &dummy_status;
3929 /* q = (int)(a * 512.0) */
3930 float64 q = float64_mul(float64_512, a, s);
3931 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3933 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3934 q = int64_to_float64(q_int, s);
3935 q = float64_add(q, float64_half, s);
3936 q = float64_div(q, float64_512, s);
3937 q = float64_div(float64_one, q, s);
3939 /* s = (int)(256.0 * r + 0.5) */
3940 q = float64_mul(q, float64_256, s);
3941 q = float64_add(q, float64_half, s);
3942 q_int = float64_to_int64_round_to_zero(q, s);
3944 /* return (double)s / 256.0 */
3945 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3948 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3950 float_status *s = &env->vfp.standard_fp_status;
3951 float64 f64;
3952 uint32_t val32 = float32_val(a);
3954 int result_exp;
3955 int a_exp = (val32 & 0x7f800000) >> 23;
3956 int sign = val32 & 0x80000000;
3958 if (float32_is_any_nan(a)) {
3959 if (float32_is_signaling_nan(a)) {
3960 float_raise(float_flag_invalid, s);
3962 return float32_default_nan;
3963 } else if (float32_is_infinity(a)) {
3964 return float32_set_sign(float32_zero, float32_is_neg(a));
3965 } else if (float32_is_zero_or_denormal(a)) {
3966 if (!float32_is_zero(a)) {
3967 float_raise(float_flag_input_denormal, s);
3969 float_raise(float_flag_divbyzero, s);
3970 return float32_set_sign(float32_infinity, float32_is_neg(a));
3971 } else if (a_exp >= 253) {
3972 float_raise(float_flag_underflow, s);
3973 return float32_set_sign(float32_zero, float32_is_neg(a));
3976 f64 = make_float64((0x3feULL << 52)
3977 | ((int64_t)(val32 & 0x7fffff) << 29));
3979 result_exp = 253 - a_exp;
3981 f64 = recip_estimate(f64, env);
3983 val32 = sign
3984 | ((result_exp & 0xff) << 23)
3985 | ((float64_val(f64) >> 29) & 0x7fffff);
3986 return make_float32(val32);
3989 /* The algorithm that must be used to calculate the estimate
3990 * is specified by the ARM ARM.
3992 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3994 /* These calculations mustn't set any fp exception flags,
3995 * so we use a local copy of the fp_status.
3997 float_status dummy_status = env->vfp.standard_fp_status;
3998 float_status *s = &dummy_status;
3999 float64 q;
4000 int64_t q_int;
4002 if (float64_lt(a, float64_half, s)) {
4003 /* range 0.25 <= a < 0.5 */
4005 /* a in units of 1/512 rounded down */
4006 /* q0 = (int)(a * 512.0); */
4007 q = float64_mul(float64_512, a, s);
4008 q_int = float64_to_int64_round_to_zero(q, s);
4010 /* reciprocal root r */
4011 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
4012 q = int64_to_float64(q_int, s);
4013 q = float64_add(q, float64_half, s);
4014 q = float64_div(q, float64_512, s);
4015 q = float64_sqrt(q, s);
4016 q = float64_div(float64_one, q, s);
4017 } else {
4018 /* range 0.5 <= a < 1.0 */
4020 /* a in units of 1/256 rounded down */
4021 /* q1 = (int)(a * 256.0); */
4022 q = float64_mul(float64_256, a, s);
4023 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4025 /* reciprocal root r */
4026 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
4027 q = int64_to_float64(q_int, s);
4028 q = float64_add(q, float64_half, s);
4029 q = float64_div(q, float64_256, s);
4030 q = float64_sqrt(q, s);
4031 q = float64_div(float64_one, q, s);
4033 /* r in units of 1/256 rounded to nearest */
4034 /* s = (int)(256.0 * r + 0.5); */
4036 q = float64_mul(q, float64_256,s );
4037 q = float64_add(q, float64_half, s);
4038 q_int = float64_to_int64_round_to_zero(q, s);
4040 /* return (double)s / 256.0;*/
4041 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4044 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4046 float_status *s = &env->vfp.standard_fp_status;
4047 int result_exp;
4048 float64 f64;
4049 uint32_t val;
4050 uint64_t val64;
4052 val = float32_val(a);
4054 if (float32_is_any_nan(a)) {
4055 if (float32_is_signaling_nan(a)) {
4056 float_raise(float_flag_invalid, s);
4058 return float32_default_nan;
4059 } else if (float32_is_zero_or_denormal(a)) {
4060 if (!float32_is_zero(a)) {
4061 float_raise(float_flag_input_denormal, s);
4063 float_raise(float_flag_divbyzero, s);
4064 return float32_set_sign(float32_infinity, float32_is_neg(a));
4065 } else if (float32_is_neg(a)) {
4066 float_raise(float_flag_invalid, s);
4067 return float32_default_nan;
4068 } else if (float32_is_infinity(a)) {
4069 return float32_zero;
4072 /* Normalize to a double-precision value between 0.25 and 1.0,
4073 * preserving the parity of the exponent. */
4074 if ((val & 0x800000) == 0) {
4075 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4076 | (0x3feULL << 52)
4077 | ((uint64_t)(val & 0x7fffff) << 29));
4078 } else {
4079 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4080 | (0x3fdULL << 52)
4081 | ((uint64_t)(val & 0x7fffff) << 29));
4084 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
4086 f64 = recip_sqrt_estimate(f64, env);
4088 val64 = float64_val(f64);
4090 val = ((result_exp & 0xff) << 23)
4091 | ((val64 >> 29) & 0x7fffff);
4092 return make_float32(val);
4095 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4097 float64 f64;
4099 if ((a & 0x80000000) == 0) {
4100 return 0xffffffff;
4103 f64 = make_float64((0x3feULL << 52)
4104 | ((int64_t)(a & 0x7fffffff) << 21));
4106 f64 = recip_estimate (f64, env);
4108 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4111 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4113 float64 f64;
4115 if ((a & 0xc0000000) == 0) {
4116 return 0xffffffff;
4119 if (a & 0x80000000) {
4120 f64 = make_float64((0x3feULL << 52)
4121 | ((uint64_t)(a & 0x7fffffff) << 21));
4122 } else { /* bits 31-30 == '01' */
4123 f64 = make_float64((0x3fdULL << 52)
4124 | ((uint64_t)(a & 0x3fffffff) << 22));
4127 f64 = recip_sqrt_estimate(f64, env);
4129 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4132 /* VFPv4 fused multiply-accumulate */
4133 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4135 float_status *fpst = fpstp;
4136 return float32_muladd(a, b, c, 0, fpst);
4139 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4141 float_status *fpst = fpstp;
4142 return float64_muladd(a, b, c, 0, fpst);
4145 /* ARMv8 VMAXNM/VMINNM */
4146 float32 VFP_HELPER(maxnm, s)(float32 a, float32 b, void *fpstp)
4148 float_status *fpst = fpstp;
4149 return float32_maxnum(a, b, fpst);
4152 float64 VFP_HELPER(maxnm, d)(float64 a, float64 b, void *fpstp)
4154 float_status *fpst = fpstp;
4155 return float64_maxnum(a, b, fpst);
4158 float32 VFP_HELPER(minnm, s)(float32 a, float32 b, void *fpstp)
4160 float_status *fpst = fpstp;
4161 return float32_minnum(a, b, fpst);
4164 float64 VFP_HELPER(minnm, d)(float64 a, float64 b, void *fpstp)
4166 float_status *fpst = fpstp;
4167 return float64_minnum(a, b, fpst);