hw/core: Add TCGCPUOps.record_sigsegv
[qemu.git] / softmmu / physmem.c
blobb9a8c1d1f4b8a4afaa1f8799af1a0c512a8316b6
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
27 #ifdef CONFIG_TCG
28 #include "hw/core/tcg-cpu-ops.h"
29 #endif /* CONFIG_TCG */
31 #include "exec/exec-all.h"
32 #include "exec/target_page.h"
33 #include "hw/qdev-core.h"
34 #include "hw/qdev-properties.h"
35 #include "hw/boards.h"
36 #include "hw/xen/xen.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "qemu/timer.h"
41 #include "qemu/config-file.h"
42 #include "qemu/error-report.h"
43 #include "qemu/qemu-print.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/hw_accel.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace/trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "exec/translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "qemu/pmem.h"
67 #include "migration/vmstate.h"
69 #include "qemu/range.h"
70 #ifndef _WIN32
71 #include "qemu/mmap-alloc.h"
72 #endif
74 #include "monitor/monitor.h"
76 #ifdef CONFIG_LIBDAXCTL
77 #include <daxctl/libdaxctl.h>
78 #endif
80 //#define DEBUG_SUBPAGE
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
93 static MemoryRegion io_mem_unassigned;
95 typedef struct PhysPageEntry PhysPageEntry;
97 struct PhysPageEntry {
98 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
99 uint32_t skip : 6;
100 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
101 uint32_t ptr : 26;
104 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
106 /* Size of the L2 (and L3, etc) page tables. */
107 #define ADDR_SPACE_BITS 64
109 #define P_L2_BITS 9
110 #define P_L2_SIZE (1 << P_L2_BITS)
112 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
114 typedef PhysPageEntry Node[P_L2_SIZE];
116 typedef struct PhysPageMap {
117 struct rcu_head rcu;
119 unsigned sections_nb;
120 unsigned sections_nb_alloc;
121 unsigned nodes_nb;
122 unsigned nodes_nb_alloc;
123 Node *nodes;
124 MemoryRegionSection *sections;
125 } PhysPageMap;
127 struct AddressSpaceDispatch {
128 MemoryRegionSection *mru_section;
129 /* This is a multi-level map on the physical address space.
130 * The bottom level has pointers to MemoryRegionSections.
132 PhysPageEntry phys_map;
133 PhysPageMap map;
136 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
137 typedef struct subpage_t {
138 MemoryRegion iomem;
139 FlatView *fv;
140 hwaddr base;
141 uint16_t sub_section[];
142 } subpage_t;
144 #define PHYS_SECTION_UNASSIGNED 0
146 static void io_mem_init(void);
147 static void memory_map_init(void);
148 static void tcg_log_global_after_sync(MemoryListener *listener);
149 static void tcg_commit(MemoryListener *listener);
152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
153 * @cpu: the CPU whose AddressSpace this is
154 * @as: the AddressSpace itself
155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
158 struct CPUAddressSpace {
159 CPUState *cpu;
160 AddressSpace *as;
161 struct AddressSpaceDispatch *memory_dispatch;
162 MemoryListener tcg_as_listener;
165 struct DirtyBitmapSnapshot {
166 ram_addr_t start;
167 ram_addr_t end;
168 unsigned long dirty[];
171 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
173 static unsigned alloc_hint = 16;
174 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
175 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
176 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
177 alloc_hint = map->nodes_nb_alloc;
181 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
183 unsigned i;
184 uint32_t ret;
185 PhysPageEntry e;
186 PhysPageEntry *p;
188 ret = map->nodes_nb++;
189 p = map->nodes[ret];
190 assert(ret != PHYS_MAP_NODE_NIL);
191 assert(ret != map->nodes_nb_alloc);
193 e.skip = leaf ? 0 : 1;
194 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
195 for (i = 0; i < P_L2_SIZE; ++i) {
196 memcpy(&p[i], &e, sizeof(e));
198 return ret;
201 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
202 hwaddr *index, uint64_t *nb, uint16_t leaf,
203 int level)
205 PhysPageEntry *p;
206 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
208 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
209 lp->ptr = phys_map_node_alloc(map, level == 0);
211 p = map->nodes[lp->ptr];
212 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
214 while (*nb && lp < &p[P_L2_SIZE]) {
215 if ((*index & (step - 1)) == 0 && *nb >= step) {
216 lp->skip = 0;
217 lp->ptr = leaf;
218 *index += step;
219 *nb -= step;
220 } else {
221 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
223 ++lp;
227 static void phys_page_set(AddressSpaceDispatch *d,
228 hwaddr index, uint64_t nb,
229 uint16_t leaf)
231 /* Wildly overreserve - it doesn't matter much. */
232 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
234 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
237 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
238 * and update our entry so we can skip it and go directly to the destination.
240 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
242 unsigned valid_ptr = P_L2_SIZE;
243 int valid = 0;
244 PhysPageEntry *p;
245 int i;
247 if (lp->ptr == PHYS_MAP_NODE_NIL) {
248 return;
251 p = nodes[lp->ptr];
252 for (i = 0; i < P_L2_SIZE; i++) {
253 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
254 continue;
257 valid_ptr = i;
258 valid++;
259 if (p[i].skip) {
260 phys_page_compact(&p[i], nodes);
264 /* We can only compress if there's only one child. */
265 if (valid != 1) {
266 return;
269 assert(valid_ptr < P_L2_SIZE);
271 /* Don't compress if it won't fit in the # of bits we have. */
272 if (P_L2_LEVELS >= (1 << 6) &&
273 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
274 return;
277 lp->ptr = p[valid_ptr].ptr;
278 if (!p[valid_ptr].skip) {
279 /* If our only child is a leaf, make this a leaf. */
280 /* By design, we should have made this node a leaf to begin with so we
281 * should never reach here.
282 * But since it's so simple to handle this, let's do it just in case we
283 * change this rule.
285 lp->skip = 0;
286 } else {
287 lp->skip += p[valid_ptr].skip;
291 void address_space_dispatch_compact(AddressSpaceDispatch *d)
293 if (d->phys_map.skip) {
294 phys_page_compact(&d->phys_map, d->map.nodes);
298 static inline bool section_covers_addr(const MemoryRegionSection *section,
299 hwaddr addr)
301 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
302 * the section must cover the entire address space.
304 return int128_gethi(section->size) ||
305 range_covers_byte(section->offset_within_address_space,
306 int128_getlo(section->size), addr);
309 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
311 PhysPageEntry lp = d->phys_map, *p;
312 Node *nodes = d->map.nodes;
313 MemoryRegionSection *sections = d->map.sections;
314 hwaddr index = addr >> TARGET_PAGE_BITS;
315 int i;
317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
319 return &sections[PHYS_SECTION_UNASSIGNED];
321 p = nodes[lp.ptr];
322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
325 if (section_covers_addr(&sections[lp.ptr], addr)) {
326 return &sections[lp.ptr];
327 } else {
328 return &sections[PHYS_SECTION_UNASSIGNED];
332 /* Called from RCU critical section */
333 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
334 hwaddr addr,
335 bool resolve_subpage)
337 MemoryRegionSection *section = qatomic_read(&d->mru_section);
338 subpage_t *subpage;
340 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
341 !section_covers_addr(section, addr)) {
342 section = phys_page_find(d, addr);
343 qatomic_set(&d->mru_section, section);
345 if (resolve_subpage && section->mr->subpage) {
346 subpage = container_of(section->mr, subpage_t, iomem);
347 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
349 return section;
352 /* Called from RCU critical section */
353 static MemoryRegionSection *
354 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
355 hwaddr *plen, bool resolve_subpage)
357 MemoryRegionSection *section;
358 MemoryRegion *mr;
359 Int128 diff;
361 section = address_space_lookup_region(d, addr, resolve_subpage);
362 /* Compute offset within MemoryRegionSection */
363 addr -= section->offset_within_address_space;
365 /* Compute offset within MemoryRegion */
366 *xlat = addr + section->offset_within_region;
368 mr = section->mr;
370 /* MMIO registers can be expected to perform full-width accesses based only
371 * on their address, without considering adjacent registers that could
372 * decode to completely different MemoryRegions. When such registers
373 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
374 * regions overlap wildly. For this reason we cannot clamp the accesses
375 * here.
377 * If the length is small (as is the case for address_space_ldl/stl),
378 * everything works fine. If the incoming length is large, however,
379 * the caller really has to do the clamping through memory_access_size.
381 if (memory_region_is_ram(mr)) {
382 diff = int128_sub(section->size, int128_make64(addr));
383 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
385 return section;
389 * address_space_translate_iommu - translate an address through an IOMMU
390 * memory region and then through the target address space.
392 * @iommu_mr: the IOMMU memory region that we start the translation from
393 * @addr: the address to be translated through the MMU
394 * @xlat: the translated address offset within the destination memory region.
395 * It cannot be %NULL.
396 * @plen_out: valid read/write length of the translated address. It
397 * cannot be %NULL.
398 * @page_mask_out: page mask for the translated address. This
399 * should only be meaningful for IOMMU translated
400 * addresses, since there may be huge pages that this bit
401 * would tell. It can be %NULL if we don't care about it.
402 * @is_write: whether the translation operation is for write
403 * @is_mmio: whether this can be MMIO, set true if it can
404 * @target_as: the address space targeted by the IOMMU
405 * @attrs: transaction attributes
407 * This function is called from RCU critical section. It is the common
408 * part of flatview_do_translate and address_space_translate_cached.
410 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
411 hwaddr *xlat,
412 hwaddr *plen_out,
413 hwaddr *page_mask_out,
414 bool is_write,
415 bool is_mmio,
416 AddressSpace **target_as,
417 MemTxAttrs attrs)
419 MemoryRegionSection *section;
420 hwaddr page_mask = (hwaddr)-1;
422 do {
423 hwaddr addr = *xlat;
424 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
425 int iommu_idx = 0;
426 IOMMUTLBEntry iotlb;
428 if (imrc->attrs_to_index) {
429 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
432 iotlb = imrc->translate(iommu_mr, addr, is_write ?
433 IOMMU_WO : IOMMU_RO, iommu_idx);
435 if (!(iotlb.perm & (1 << is_write))) {
436 goto unassigned;
439 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
440 | (addr & iotlb.addr_mask));
441 page_mask &= iotlb.addr_mask;
442 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
443 *target_as = iotlb.target_as;
445 section = address_space_translate_internal(
446 address_space_to_dispatch(iotlb.target_as), addr, xlat,
447 plen_out, is_mmio);
449 iommu_mr = memory_region_get_iommu(section->mr);
450 } while (unlikely(iommu_mr));
452 if (page_mask_out) {
453 *page_mask_out = page_mask;
455 return *section;
457 unassigned:
458 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 * flatview_do_translate - translate an address in FlatView
464 * @fv: the flat view that we want to translate on
465 * @addr: the address to be translated in above address space
466 * @xlat: the translated address offset within memory region. It
467 * cannot be @NULL.
468 * @plen_out: valid read/write length of the translated address. It
469 * can be @NULL when we don't care about it.
470 * @page_mask_out: page mask for the translated address. This
471 * should only be meaningful for IOMMU translated
472 * addresses, since there may be huge pages that this bit
473 * would tell. It can be @NULL if we don't care about it.
474 * @is_write: whether the translation operation is for write
475 * @is_mmio: whether this can be MMIO, set true if it can
476 * @target_as: the address space targeted by the IOMMU
477 * @attrs: memory transaction attributes
479 * This function is called from RCU critical section
481 static MemoryRegionSection flatview_do_translate(FlatView *fv,
482 hwaddr addr,
483 hwaddr *xlat,
484 hwaddr *plen_out,
485 hwaddr *page_mask_out,
486 bool is_write,
487 bool is_mmio,
488 AddressSpace **target_as,
489 MemTxAttrs attrs)
491 MemoryRegionSection *section;
492 IOMMUMemoryRegion *iommu_mr;
493 hwaddr plen = (hwaddr)(-1);
495 if (!plen_out) {
496 plen_out = &plen;
499 section = address_space_translate_internal(
500 flatview_to_dispatch(fv), addr, xlat,
501 plen_out, is_mmio);
503 iommu_mr = memory_region_get_iommu(section->mr);
504 if (unlikely(iommu_mr)) {
505 return address_space_translate_iommu(iommu_mr, xlat,
506 plen_out, page_mask_out,
507 is_write, is_mmio,
508 target_as, attrs);
510 if (page_mask_out) {
511 /* Not behind an IOMMU, use default page size. */
512 *page_mask_out = ~TARGET_PAGE_MASK;
515 return *section;
518 /* Called from RCU critical section */
519 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
520 bool is_write, MemTxAttrs attrs)
522 MemoryRegionSection section;
523 hwaddr xlat, page_mask;
526 * This can never be MMIO, and we don't really care about plen,
527 * but page mask.
529 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
530 NULL, &page_mask, is_write, false, &as,
531 attrs);
533 /* Illegal translation */
534 if (section.mr == &io_mem_unassigned) {
535 goto iotlb_fail;
538 /* Convert memory region offset into address space offset */
539 xlat += section.offset_within_address_space -
540 section.offset_within_region;
542 return (IOMMUTLBEntry) {
543 .target_as = as,
544 .iova = addr & ~page_mask,
545 .translated_addr = xlat & ~page_mask,
546 .addr_mask = page_mask,
547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
548 .perm = IOMMU_RW,
551 iotlb_fail:
552 return (IOMMUTLBEntry) {0};
555 /* Called from RCU critical section */
556 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
557 hwaddr *plen, bool is_write,
558 MemTxAttrs attrs)
560 MemoryRegion *mr;
561 MemoryRegionSection section;
562 AddressSpace *as = NULL;
564 /* This can be MMIO, so setup MMIO bit. */
565 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
566 is_write, true, &as, attrs);
567 mr = section.mr;
569 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
570 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
571 *plen = MIN(page, *plen);
574 return mr;
577 typedef struct TCGIOMMUNotifier {
578 IOMMUNotifier n;
579 MemoryRegion *mr;
580 CPUState *cpu;
581 int iommu_idx;
582 bool active;
583 } TCGIOMMUNotifier;
585 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
587 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
589 if (!notifier->active) {
590 return;
592 tlb_flush(notifier->cpu);
593 notifier->active = false;
594 /* We leave the notifier struct on the list to avoid reallocating it later.
595 * Generally the number of IOMMUs a CPU deals with will be small.
596 * In any case we can't unregister the iommu notifier from a notify
597 * callback.
601 static void tcg_register_iommu_notifier(CPUState *cpu,
602 IOMMUMemoryRegion *iommu_mr,
603 int iommu_idx)
605 /* Make sure this CPU has an IOMMU notifier registered for this
606 * IOMMU/IOMMU index combination, so that we can flush its TLB
607 * when the IOMMU tells us the mappings we've cached have changed.
609 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
610 TCGIOMMUNotifier *notifier = NULL;
611 int i;
613 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
614 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
615 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
616 break;
619 if (i == cpu->iommu_notifiers->len) {
620 /* Not found, add a new entry at the end of the array */
621 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
622 notifier = g_new0(TCGIOMMUNotifier, 1);
623 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
625 notifier->mr = mr;
626 notifier->iommu_idx = iommu_idx;
627 notifier->cpu = cpu;
628 /* Rather than trying to register interest in the specific part
629 * of the iommu's address space that we've accessed and then
630 * expand it later as subsequent accesses touch more of it, we
631 * just register interest in the whole thing, on the assumption
632 * that iommu reconfiguration will be rare.
634 iommu_notifier_init(&notifier->n,
635 tcg_iommu_unmap_notify,
636 IOMMU_NOTIFIER_UNMAP,
638 HWADDR_MAX,
639 iommu_idx);
640 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
641 &error_fatal);
644 if (!notifier->active) {
645 notifier->active = true;
649 void tcg_iommu_free_notifier_list(CPUState *cpu)
651 /* Destroy the CPU's notifier list */
652 int i;
653 TCGIOMMUNotifier *notifier;
655 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
656 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
657 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
658 g_free(notifier);
660 g_array_free(cpu->iommu_notifiers, true);
663 void tcg_iommu_init_notifier_list(CPUState *cpu)
665 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
668 /* Called from RCU critical section */
669 MemoryRegionSection *
670 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
671 hwaddr *xlat, hwaddr *plen,
672 MemTxAttrs attrs, int *prot)
674 MemoryRegionSection *section;
675 IOMMUMemoryRegion *iommu_mr;
676 IOMMUMemoryRegionClass *imrc;
677 IOMMUTLBEntry iotlb;
678 int iommu_idx;
679 AddressSpaceDispatch *d =
680 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
682 for (;;) {
683 section = address_space_translate_internal(d, addr, &addr, plen, false);
685 iommu_mr = memory_region_get_iommu(section->mr);
686 if (!iommu_mr) {
687 break;
690 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
692 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
693 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
694 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
695 * doesn't short-cut its translation table walk.
697 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
698 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
699 | (addr & iotlb.addr_mask));
700 /* Update the caller's prot bits to remove permissions the IOMMU
701 * is giving us a failure response for. If we get down to no
702 * permissions left at all we can give up now.
704 if (!(iotlb.perm & IOMMU_RO)) {
705 *prot &= ~(PAGE_READ | PAGE_EXEC);
707 if (!(iotlb.perm & IOMMU_WO)) {
708 *prot &= ~PAGE_WRITE;
711 if (!*prot) {
712 goto translate_fail;
715 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
718 assert(!memory_region_is_iommu(section->mr));
719 *xlat = addr;
720 return section;
722 translate_fail:
723 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
726 void cpu_address_space_init(CPUState *cpu, int asidx,
727 const char *prefix, MemoryRegion *mr)
729 CPUAddressSpace *newas;
730 AddressSpace *as = g_new0(AddressSpace, 1);
731 char *as_name;
733 assert(mr);
734 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
735 address_space_init(as, mr, as_name);
736 g_free(as_name);
738 /* Target code should have set num_ases before calling us */
739 assert(asidx < cpu->num_ases);
741 if (asidx == 0) {
742 /* address space 0 gets the convenience alias */
743 cpu->as = as;
746 /* KVM cannot currently support multiple address spaces. */
747 assert(asidx == 0 || !kvm_enabled());
749 if (!cpu->cpu_ases) {
750 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
753 newas = &cpu->cpu_ases[asidx];
754 newas->cpu = cpu;
755 newas->as = as;
756 if (tcg_enabled()) {
757 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
758 newas->tcg_as_listener.commit = tcg_commit;
759 newas->tcg_as_listener.name = "tcg";
760 memory_listener_register(&newas->tcg_as_listener, as);
764 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
766 /* Return the AddressSpace corresponding to the specified index */
767 return cpu->cpu_ases[asidx].as;
770 /* Add a watchpoint. */
771 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
772 int flags, CPUWatchpoint **watchpoint)
774 CPUWatchpoint *wp;
775 vaddr in_page;
777 /* forbid ranges which are empty or run off the end of the address space */
778 if (len == 0 || (addr + len - 1) < addr) {
779 error_report("tried to set invalid watchpoint at %"
780 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
781 return -EINVAL;
783 wp = g_malloc(sizeof(*wp));
785 wp->vaddr = addr;
786 wp->len = len;
787 wp->flags = flags;
789 /* keep all GDB-injected watchpoints in front */
790 if (flags & BP_GDB) {
791 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
792 } else {
793 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
796 in_page = -(addr | TARGET_PAGE_MASK);
797 if (len <= in_page) {
798 tlb_flush_page(cpu, addr);
799 } else {
800 tlb_flush(cpu);
803 if (watchpoint)
804 *watchpoint = wp;
805 return 0;
808 /* Remove a specific watchpoint. */
809 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
810 int flags)
812 CPUWatchpoint *wp;
814 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
815 if (addr == wp->vaddr && len == wp->len
816 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
817 cpu_watchpoint_remove_by_ref(cpu, wp);
818 return 0;
821 return -ENOENT;
824 /* Remove a specific watchpoint by reference. */
825 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
827 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
829 tlb_flush_page(cpu, watchpoint->vaddr);
831 g_free(watchpoint);
834 /* Remove all matching watchpoints. */
835 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
837 CPUWatchpoint *wp, *next;
839 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
840 if (wp->flags & mask) {
841 cpu_watchpoint_remove_by_ref(cpu, wp);
846 #ifdef CONFIG_TCG
847 /* Return true if this watchpoint address matches the specified
848 * access (ie the address range covered by the watchpoint overlaps
849 * partially or completely with the address range covered by the
850 * access).
852 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
853 vaddr addr, vaddr len)
855 /* We know the lengths are non-zero, but a little caution is
856 * required to avoid errors in the case where the range ends
857 * exactly at the top of the address space and so addr + len
858 * wraps round to zero.
860 vaddr wpend = wp->vaddr + wp->len - 1;
861 vaddr addrend = addr + len - 1;
863 return !(addr > wpend || wp->vaddr > addrend);
866 /* Return flags for watchpoints that match addr + prot. */
867 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
869 CPUWatchpoint *wp;
870 int ret = 0;
872 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
873 if (watchpoint_address_matches(wp, addr, len)) {
874 ret |= wp->flags;
877 return ret;
880 /* Generate a debug exception if a watchpoint has been hit. */
881 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
882 MemTxAttrs attrs, int flags, uintptr_t ra)
884 CPUClass *cc = CPU_GET_CLASS(cpu);
885 CPUWatchpoint *wp;
887 assert(tcg_enabled());
888 if (cpu->watchpoint_hit) {
890 * We re-entered the check after replacing the TB.
891 * Now raise the debug interrupt so that it will
892 * trigger after the current instruction.
894 qemu_mutex_lock_iothread();
895 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
896 qemu_mutex_unlock_iothread();
897 return;
900 if (cc->tcg_ops->adjust_watchpoint_address) {
901 /* this is currently used only by ARM BE32 */
902 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
904 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
905 if (watchpoint_address_matches(wp, addr, len)
906 && (wp->flags & flags)) {
907 if (replay_running_debug()) {
909 * replay_breakpoint reads icount.
910 * Force recompile to succeed, because icount may
911 * be read only at the end of the block.
913 if (!cpu->can_do_io) {
914 /* Force execution of one insn next time. */
915 cpu->cflags_next_tb = 1 | CF_LAST_IO | curr_cflags(cpu);
916 cpu_loop_exit_restore(cpu, ra);
919 * Don't process the watchpoints when we are
920 * in a reverse debugging operation.
922 replay_breakpoint();
923 return;
925 if (flags == BP_MEM_READ) {
926 wp->flags |= BP_WATCHPOINT_HIT_READ;
927 } else {
928 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
930 wp->hitaddr = MAX(addr, wp->vaddr);
931 wp->hitattrs = attrs;
933 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
934 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
935 wp->flags &= ~BP_WATCHPOINT_HIT;
936 continue;
938 cpu->watchpoint_hit = wp;
940 mmap_lock();
941 /* This call also restores vCPU state */
942 tb_check_watchpoint(cpu, ra);
943 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
944 cpu->exception_index = EXCP_DEBUG;
945 mmap_unlock();
946 cpu_loop_exit(cpu);
947 } else {
948 /* Force execution of one insn next time. */
949 cpu->cflags_next_tb = 1 | CF_LAST_IO | curr_cflags(cpu);
950 mmap_unlock();
951 cpu_loop_exit_noexc(cpu);
953 } else {
954 wp->flags &= ~BP_WATCHPOINT_HIT;
959 #endif /* CONFIG_TCG */
961 /* Called from RCU critical section */
962 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
964 RAMBlock *block;
966 block = qatomic_rcu_read(&ram_list.mru_block);
967 if (block && addr - block->offset < block->max_length) {
968 return block;
970 RAMBLOCK_FOREACH(block) {
971 if (addr - block->offset < block->max_length) {
972 goto found;
976 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
977 abort();
979 found:
980 /* It is safe to write mru_block outside the iothread lock. This
981 * is what happens:
983 * mru_block = xxx
984 * rcu_read_unlock()
985 * xxx removed from list
986 * rcu_read_lock()
987 * read mru_block
988 * mru_block = NULL;
989 * call_rcu(reclaim_ramblock, xxx);
990 * rcu_read_unlock()
992 * qatomic_rcu_set is not needed here. The block was already published
993 * when it was placed into the list. Here we're just making an extra
994 * copy of the pointer.
996 ram_list.mru_block = block;
997 return block;
1000 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1002 CPUState *cpu;
1003 ram_addr_t start1;
1004 RAMBlock *block;
1005 ram_addr_t end;
1007 assert(tcg_enabled());
1008 end = TARGET_PAGE_ALIGN(start + length);
1009 start &= TARGET_PAGE_MASK;
1011 RCU_READ_LOCK_GUARD();
1012 block = qemu_get_ram_block(start);
1013 assert(block == qemu_get_ram_block(end - 1));
1014 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1015 CPU_FOREACH(cpu) {
1016 tlb_reset_dirty(cpu, start1, length);
1020 /* Note: start and end must be within the same ram block. */
1021 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1022 ram_addr_t length,
1023 unsigned client)
1025 DirtyMemoryBlocks *blocks;
1026 unsigned long end, page, start_page;
1027 bool dirty = false;
1028 RAMBlock *ramblock;
1029 uint64_t mr_offset, mr_size;
1031 if (length == 0) {
1032 return false;
1035 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1036 start_page = start >> TARGET_PAGE_BITS;
1037 page = start_page;
1039 WITH_RCU_READ_LOCK_GUARD() {
1040 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1041 ramblock = qemu_get_ram_block(start);
1042 /* Range sanity check on the ramblock */
1043 assert(start >= ramblock->offset &&
1044 start + length <= ramblock->offset + ramblock->used_length);
1046 while (page < end) {
1047 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1048 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1049 unsigned long num = MIN(end - page,
1050 DIRTY_MEMORY_BLOCK_SIZE - offset);
1052 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1053 offset, num);
1054 page += num;
1057 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1058 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1059 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1062 if (dirty && tcg_enabled()) {
1063 tlb_reset_dirty_range_all(start, length);
1066 return dirty;
1069 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1070 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1072 DirtyMemoryBlocks *blocks;
1073 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1074 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1075 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1076 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1077 DirtyBitmapSnapshot *snap;
1078 unsigned long page, end, dest;
1080 snap = g_malloc0(sizeof(*snap) +
1081 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1082 snap->start = first;
1083 snap->end = last;
1085 page = first >> TARGET_PAGE_BITS;
1086 end = last >> TARGET_PAGE_BITS;
1087 dest = 0;
1089 WITH_RCU_READ_LOCK_GUARD() {
1090 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1092 while (page < end) {
1093 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1094 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1095 unsigned long num = MIN(end - page,
1096 DIRTY_MEMORY_BLOCK_SIZE - offset);
1098 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1099 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1100 offset >>= BITS_PER_LEVEL;
1102 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1103 blocks->blocks[idx] + offset,
1104 num);
1105 page += num;
1106 dest += num >> BITS_PER_LEVEL;
1110 if (tcg_enabled()) {
1111 tlb_reset_dirty_range_all(start, length);
1114 memory_region_clear_dirty_bitmap(mr, offset, length);
1116 return snap;
1119 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1120 ram_addr_t start,
1121 ram_addr_t length)
1123 unsigned long page, end;
1125 assert(start >= snap->start);
1126 assert(start + length <= snap->end);
1128 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1129 page = (start - snap->start) >> TARGET_PAGE_BITS;
1131 while (page < end) {
1132 if (test_bit(page, snap->dirty)) {
1133 return true;
1135 page++;
1137 return false;
1140 /* Called from RCU critical section */
1141 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1142 MemoryRegionSection *section)
1144 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1145 return section - d->map.sections;
1148 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1149 uint16_t section);
1150 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1152 static uint16_t phys_section_add(PhysPageMap *map,
1153 MemoryRegionSection *section)
1155 /* The physical section number is ORed with a page-aligned
1156 * pointer to produce the iotlb entries. Thus it should
1157 * never overflow into the page-aligned value.
1159 assert(map->sections_nb < TARGET_PAGE_SIZE);
1161 if (map->sections_nb == map->sections_nb_alloc) {
1162 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1163 map->sections = g_renew(MemoryRegionSection, map->sections,
1164 map->sections_nb_alloc);
1166 map->sections[map->sections_nb] = *section;
1167 memory_region_ref(section->mr);
1168 return map->sections_nb++;
1171 static void phys_section_destroy(MemoryRegion *mr)
1173 bool have_sub_page = mr->subpage;
1175 memory_region_unref(mr);
1177 if (have_sub_page) {
1178 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1179 object_unref(OBJECT(&subpage->iomem));
1180 g_free(subpage);
1184 static void phys_sections_free(PhysPageMap *map)
1186 while (map->sections_nb > 0) {
1187 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1188 phys_section_destroy(section->mr);
1190 g_free(map->sections);
1191 g_free(map->nodes);
1194 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1196 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1197 subpage_t *subpage;
1198 hwaddr base = section->offset_within_address_space
1199 & TARGET_PAGE_MASK;
1200 MemoryRegionSection *existing = phys_page_find(d, base);
1201 MemoryRegionSection subsection = {
1202 .offset_within_address_space = base,
1203 .size = int128_make64(TARGET_PAGE_SIZE),
1205 hwaddr start, end;
1207 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1209 if (!(existing->mr->subpage)) {
1210 subpage = subpage_init(fv, base);
1211 subsection.fv = fv;
1212 subsection.mr = &subpage->iomem;
1213 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1214 phys_section_add(&d->map, &subsection));
1215 } else {
1216 subpage = container_of(existing->mr, subpage_t, iomem);
1218 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1219 end = start + int128_get64(section->size) - 1;
1220 subpage_register(subpage, start, end,
1221 phys_section_add(&d->map, section));
1225 static void register_multipage(FlatView *fv,
1226 MemoryRegionSection *section)
1228 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1229 hwaddr start_addr = section->offset_within_address_space;
1230 uint16_t section_index = phys_section_add(&d->map, section);
1231 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1232 TARGET_PAGE_BITS));
1234 assert(num_pages);
1235 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1239 * The range in *section* may look like this:
1241 * |s|PPPPPPP|s|
1243 * where s stands for subpage and P for page.
1245 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1247 MemoryRegionSection remain = *section;
1248 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1250 /* register first subpage */
1251 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1252 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1253 - remain.offset_within_address_space;
1255 MemoryRegionSection now = remain;
1256 now.size = int128_min(int128_make64(left), now.size);
1257 register_subpage(fv, &now);
1258 if (int128_eq(remain.size, now.size)) {
1259 return;
1261 remain.size = int128_sub(remain.size, now.size);
1262 remain.offset_within_address_space += int128_get64(now.size);
1263 remain.offset_within_region += int128_get64(now.size);
1266 /* register whole pages */
1267 if (int128_ge(remain.size, page_size)) {
1268 MemoryRegionSection now = remain;
1269 now.size = int128_and(now.size, int128_neg(page_size));
1270 register_multipage(fv, &now);
1271 if (int128_eq(remain.size, now.size)) {
1272 return;
1274 remain.size = int128_sub(remain.size, now.size);
1275 remain.offset_within_address_space += int128_get64(now.size);
1276 remain.offset_within_region += int128_get64(now.size);
1279 /* register last subpage */
1280 register_subpage(fv, &remain);
1283 void qemu_flush_coalesced_mmio_buffer(void)
1285 if (kvm_enabled())
1286 kvm_flush_coalesced_mmio_buffer();
1289 void qemu_mutex_lock_ramlist(void)
1291 qemu_mutex_lock(&ram_list.mutex);
1294 void qemu_mutex_unlock_ramlist(void)
1296 qemu_mutex_unlock(&ram_list.mutex);
1299 void ram_block_dump(Monitor *mon)
1301 RAMBlock *block;
1302 char *psize;
1304 RCU_READ_LOCK_GUARD();
1305 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1306 "Block Name", "PSize", "Offset", "Used", "Total");
1307 RAMBLOCK_FOREACH(block) {
1308 psize = size_to_str(block->page_size);
1309 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1310 " 0x%016" PRIx64 "\n", block->idstr, psize,
1311 (uint64_t)block->offset,
1312 (uint64_t)block->used_length,
1313 (uint64_t)block->max_length);
1314 g_free(psize);
1318 #ifdef __linux__
1320 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1321 * may or may not name the same files / on the same filesystem now as
1322 * when we actually open and map them. Iterate over the file
1323 * descriptors instead, and use qemu_fd_getpagesize().
1325 static int find_min_backend_pagesize(Object *obj, void *opaque)
1327 long *hpsize_min = opaque;
1329 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1330 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1331 long hpsize = host_memory_backend_pagesize(backend);
1333 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1334 *hpsize_min = hpsize;
1338 return 0;
1341 static int find_max_backend_pagesize(Object *obj, void *opaque)
1343 long *hpsize_max = opaque;
1345 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1346 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1347 long hpsize = host_memory_backend_pagesize(backend);
1349 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1350 *hpsize_max = hpsize;
1354 return 0;
1358 * TODO: We assume right now that all mapped host memory backends are
1359 * used as RAM, however some might be used for different purposes.
1361 long qemu_minrampagesize(void)
1363 long hpsize = LONG_MAX;
1364 Object *memdev_root = object_resolve_path("/objects", NULL);
1366 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1367 return hpsize;
1370 long qemu_maxrampagesize(void)
1372 long pagesize = 0;
1373 Object *memdev_root = object_resolve_path("/objects", NULL);
1375 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1376 return pagesize;
1378 #else
1379 long qemu_minrampagesize(void)
1381 return qemu_real_host_page_size;
1383 long qemu_maxrampagesize(void)
1385 return qemu_real_host_page_size;
1387 #endif
1389 #ifdef CONFIG_POSIX
1390 static int64_t get_file_size(int fd)
1392 int64_t size;
1393 #if defined(__linux__)
1394 struct stat st;
1396 if (fstat(fd, &st) < 0) {
1397 return -errno;
1400 /* Special handling for devdax character devices */
1401 if (S_ISCHR(st.st_mode)) {
1402 g_autofree char *subsystem_path = NULL;
1403 g_autofree char *subsystem = NULL;
1405 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1406 major(st.st_rdev), minor(st.st_rdev));
1407 subsystem = g_file_read_link(subsystem_path, NULL);
1409 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1410 g_autofree char *size_path = NULL;
1411 g_autofree char *size_str = NULL;
1413 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1414 major(st.st_rdev), minor(st.st_rdev));
1416 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1417 return g_ascii_strtoll(size_str, NULL, 0);
1421 #endif /* defined(__linux__) */
1423 /* st.st_size may be zero for special files yet lseek(2) works */
1424 size = lseek(fd, 0, SEEK_END);
1425 if (size < 0) {
1426 return -errno;
1428 return size;
1431 static int64_t get_file_align(int fd)
1433 int64_t align = -1;
1434 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1435 struct stat st;
1437 if (fstat(fd, &st) < 0) {
1438 return -errno;
1441 /* Special handling for devdax character devices */
1442 if (S_ISCHR(st.st_mode)) {
1443 g_autofree char *path = NULL;
1444 g_autofree char *rpath = NULL;
1445 struct daxctl_ctx *ctx;
1446 struct daxctl_region *region;
1447 int rc = 0;
1449 path = g_strdup_printf("/sys/dev/char/%d:%d",
1450 major(st.st_rdev), minor(st.st_rdev));
1451 rpath = realpath(path, NULL);
1452 if (!rpath) {
1453 return -errno;
1456 rc = daxctl_new(&ctx);
1457 if (rc) {
1458 return -1;
1461 daxctl_region_foreach(ctx, region) {
1462 if (strstr(rpath, daxctl_region_get_path(region))) {
1463 align = daxctl_region_get_align(region);
1464 break;
1467 daxctl_unref(ctx);
1469 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1471 return align;
1474 static int file_ram_open(const char *path,
1475 const char *region_name,
1476 bool readonly,
1477 bool *created,
1478 Error **errp)
1480 char *filename;
1481 char *sanitized_name;
1482 char *c;
1483 int fd = -1;
1485 *created = false;
1486 for (;;) {
1487 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1488 if (fd >= 0) {
1489 /* @path names an existing file, use it */
1490 break;
1492 if (errno == ENOENT) {
1493 /* @path names a file that doesn't exist, create it */
1494 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1495 if (fd >= 0) {
1496 *created = true;
1497 break;
1499 } else if (errno == EISDIR) {
1500 /* @path names a directory, create a file there */
1501 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1502 sanitized_name = g_strdup(region_name);
1503 for (c = sanitized_name; *c != '\0'; c++) {
1504 if (*c == '/') {
1505 *c = '_';
1509 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1510 sanitized_name);
1511 g_free(sanitized_name);
1513 fd = mkstemp(filename);
1514 if (fd >= 0) {
1515 unlink(filename);
1516 g_free(filename);
1517 break;
1519 g_free(filename);
1521 if (errno != EEXIST && errno != EINTR) {
1522 error_setg_errno(errp, errno,
1523 "can't open backing store %s for guest RAM",
1524 path);
1525 return -1;
1528 * Try again on EINTR and EEXIST. The latter happens when
1529 * something else creates the file between our two open().
1533 return fd;
1536 static void *file_ram_alloc(RAMBlock *block,
1537 ram_addr_t memory,
1538 int fd,
1539 bool readonly,
1540 bool truncate,
1541 off_t offset,
1542 Error **errp)
1544 uint32_t qemu_map_flags;
1545 void *area;
1547 block->page_size = qemu_fd_getpagesize(fd);
1548 if (block->mr->align % block->page_size) {
1549 error_setg(errp, "alignment 0x%" PRIx64
1550 " must be multiples of page size 0x%zx",
1551 block->mr->align, block->page_size);
1552 return NULL;
1553 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1554 error_setg(errp, "alignment 0x%" PRIx64
1555 " must be a power of two", block->mr->align);
1556 return NULL;
1558 block->mr->align = MAX(block->page_size, block->mr->align);
1559 #if defined(__s390x__)
1560 if (kvm_enabled()) {
1561 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1563 #endif
1565 if (memory < block->page_size) {
1566 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1567 "or larger than page size 0x%zx",
1568 memory, block->page_size);
1569 return NULL;
1572 memory = ROUND_UP(memory, block->page_size);
1575 * ftruncate is not supported by hugetlbfs in older
1576 * hosts, so don't bother bailing out on errors.
1577 * If anything goes wrong with it under other filesystems,
1578 * mmap will fail.
1580 * Do not truncate the non-empty backend file to avoid corrupting
1581 * the existing data in the file. Disabling shrinking is not
1582 * enough. For example, the current vNVDIMM implementation stores
1583 * the guest NVDIMM labels at the end of the backend file. If the
1584 * backend file is later extended, QEMU will not be able to find
1585 * those labels. Therefore, extending the non-empty backend file
1586 * is disabled as well.
1588 if (truncate && ftruncate(fd, memory)) {
1589 perror("ftruncate");
1592 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1593 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1594 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1595 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1596 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1597 if (area == MAP_FAILED) {
1598 error_setg_errno(errp, errno,
1599 "unable to map backing store for guest RAM");
1600 return NULL;
1603 block->fd = fd;
1604 return area;
1606 #endif
1608 /* Allocate space within the ram_addr_t space that governs the
1609 * dirty bitmaps.
1610 * Called with the ramlist lock held.
1612 static ram_addr_t find_ram_offset(ram_addr_t size)
1614 RAMBlock *block, *next_block;
1615 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1617 assert(size != 0); /* it would hand out same offset multiple times */
1619 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1620 return 0;
1623 RAMBLOCK_FOREACH(block) {
1624 ram_addr_t candidate, next = RAM_ADDR_MAX;
1626 /* Align blocks to start on a 'long' in the bitmap
1627 * which makes the bitmap sync'ing take the fast path.
1629 candidate = block->offset + block->max_length;
1630 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1632 /* Search for the closest following block
1633 * and find the gap.
1635 RAMBLOCK_FOREACH(next_block) {
1636 if (next_block->offset >= candidate) {
1637 next = MIN(next, next_block->offset);
1641 /* If it fits remember our place and remember the size
1642 * of gap, but keep going so that we might find a smaller
1643 * gap to fill so avoiding fragmentation.
1645 if (next - candidate >= size && next - candidate < mingap) {
1646 offset = candidate;
1647 mingap = next - candidate;
1650 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1653 if (offset == RAM_ADDR_MAX) {
1654 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1655 (uint64_t)size);
1656 abort();
1659 trace_find_ram_offset(size, offset);
1661 return offset;
1664 static unsigned long last_ram_page(void)
1666 RAMBlock *block;
1667 ram_addr_t last = 0;
1669 RCU_READ_LOCK_GUARD();
1670 RAMBLOCK_FOREACH(block) {
1671 last = MAX(last, block->offset + block->max_length);
1673 return last >> TARGET_PAGE_BITS;
1676 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1678 int ret;
1680 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1681 if (!machine_dump_guest_core(current_machine)) {
1682 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1683 if (ret) {
1684 perror("qemu_madvise");
1685 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1686 "but dump_guest_core=off specified\n");
1691 const char *qemu_ram_get_idstr(RAMBlock *rb)
1693 return rb->idstr;
1696 void *qemu_ram_get_host_addr(RAMBlock *rb)
1698 return rb->host;
1701 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1703 return rb->offset;
1706 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1708 return rb->used_length;
1711 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1713 return rb->max_length;
1716 bool qemu_ram_is_shared(RAMBlock *rb)
1718 return rb->flags & RAM_SHARED;
1721 bool qemu_ram_is_noreserve(RAMBlock *rb)
1723 return rb->flags & RAM_NORESERVE;
1726 /* Note: Only set at the start of postcopy */
1727 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1729 return rb->flags & RAM_UF_ZEROPAGE;
1732 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1734 rb->flags |= RAM_UF_ZEROPAGE;
1737 bool qemu_ram_is_migratable(RAMBlock *rb)
1739 return rb->flags & RAM_MIGRATABLE;
1742 void qemu_ram_set_migratable(RAMBlock *rb)
1744 rb->flags |= RAM_MIGRATABLE;
1747 void qemu_ram_unset_migratable(RAMBlock *rb)
1749 rb->flags &= ~RAM_MIGRATABLE;
1752 /* Called with iothread lock held. */
1753 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1755 RAMBlock *block;
1757 assert(new_block);
1758 assert(!new_block->idstr[0]);
1760 if (dev) {
1761 char *id = qdev_get_dev_path(dev);
1762 if (id) {
1763 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1764 g_free(id);
1767 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1769 RCU_READ_LOCK_GUARD();
1770 RAMBLOCK_FOREACH(block) {
1771 if (block != new_block &&
1772 !strcmp(block->idstr, new_block->idstr)) {
1773 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1774 new_block->idstr);
1775 abort();
1780 /* Called with iothread lock held. */
1781 void qemu_ram_unset_idstr(RAMBlock *block)
1783 /* FIXME: arch_init.c assumes that this is not called throughout
1784 * migration. Ignore the problem since hot-unplug during migration
1785 * does not work anyway.
1787 if (block) {
1788 memset(block->idstr, 0, sizeof(block->idstr));
1792 size_t qemu_ram_pagesize(RAMBlock *rb)
1794 return rb->page_size;
1797 /* Returns the largest size of page in use */
1798 size_t qemu_ram_pagesize_largest(void)
1800 RAMBlock *block;
1801 size_t largest = 0;
1803 RAMBLOCK_FOREACH(block) {
1804 largest = MAX(largest, qemu_ram_pagesize(block));
1807 return largest;
1810 static int memory_try_enable_merging(void *addr, size_t len)
1812 if (!machine_mem_merge(current_machine)) {
1813 /* disabled by the user */
1814 return 0;
1817 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1821 * Resizing RAM while migrating can result in the migration being canceled.
1822 * Care has to be taken if the guest might have already detected the memory.
1824 * As memory core doesn't know how is memory accessed, it is up to
1825 * resize callback to update device state and/or add assertions to detect
1826 * misuse, if necessary.
1828 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1830 const ram_addr_t oldsize = block->used_length;
1831 const ram_addr_t unaligned_size = newsize;
1833 assert(block);
1835 newsize = HOST_PAGE_ALIGN(newsize);
1837 if (block->used_length == newsize) {
1839 * We don't have to resize the ram block (which only knows aligned
1840 * sizes), however, we have to notify if the unaligned size changed.
1842 if (unaligned_size != memory_region_size(block->mr)) {
1843 memory_region_set_size(block->mr, unaligned_size);
1844 if (block->resized) {
1845 block->resized(block->idstr, unaligned_size, block->host);
1848 return 0;
1851 if (!(block->flags & RAM_RESIZEABLE)) {
1852 error_setg_errno(errp, EINVAL,
1853 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1854 " != 0x" RAM_ADDR_FMT, block->idstr,
1855 newsize, block->used_length);
1856 return -EINVAL;
1859 if (block->max_length < newsize) {
1860 error_setg_errno(errp, EINVAL,
1861 "Size too large: %s: 0x" RAM_ADDR_FMT
1862 " > 0x" RAM_ADDR_FMT, block->idstr,
1863 newsize, block->max_length);
1864 return -EINVAL;
1867 /* Notify before modifying the ram block and touching the bitmaps. */
1868 if (block->host) {
1869 ram_block_notify_resize(block->host, oldsize, newsize);
1872 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1873 block->used_length = newsize;
1874 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1875 DIRTY_CLIENTS_ALL);
1876 memory_region_set_size(block->mr, unaligned_size);
1877 if (block->resized) {
1878 block->resized(block->idstr, unaligned_size, block->host);
1880 return 0;
1884 * Trigger sync on the given ram block for range [start, start + length]
1885 * with the backing store if one is available.
1886 * Otherwise no-op.
1887 * @Note: this is supposed to be a synchronous op.
1889 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1891 /* The requested range should fit in within the block range */
1892 g_assert((start + length) <= block->used_length);
1894 #ifdef CONFIG_LIBPMEM
1895 /* The lack of support for pmem should not block the sync */
1896 if (ramblock_is_pmem(block)) {
1897 void *addr = ramblock_ptr(block, start);
1898 pmem_persist(addr, length);
1899 return;
1901 #endif
1902 if (block->fd >= 0) {
1904 * Case there is no support for PMEM or the memory has not been
1905 * specified as persistent (or is not one) - use the msync.
1906 * Less optimal but still achieves the same goal
1908 void *addr = ramblock_ptr(block, start);
1909 if (qemu_msync(addr, length, block->fd)) {
1910 warn_report("%s: failed to sync memory range: start: "
1911 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1912 __func__, start, length);
1917 /* Called with ram_list.mutex held */
1918 static void dirty_memory_extend(ram_addr_t old_ram_size,
1919 ram_addr_t new_ram_size)
1921 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1922 DIRTY_MEMORY_BLOCK_SIZE);
1923 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1924 DIRTY_MEMORY_BLOCK_SIZE);
1925 int i;
1927 /* Only need to extend if block count increased */
1928 if (new_num_blocks <= old_num_blocks) {
1929 return;
1932 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1933 DirtyMemoryBlocks *old_blocks;
1934 DirtyMemoryBlocks *new_blocks;
1935 int j;
1937 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1938 new_blocks = g_malloc(sizeof(*new_blocks) +
1939 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1941 if (old_num_blocks) {
1942 memcpy(new_blocks->blocks, old_blocks->blocks,
1943 old_num_blocks * sizeof(old_blocks->blocks[0]));
1946 for (j = old_num_blocks; j < new_num_blocks; j++) {
1947 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1950 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1952 if (old_blocks) {
1953 g_free_rcu(old_blocks, rcu);
1958 static void ram_block_add(RAMBlock *new_block, Error **errp)
1960 const bool noreserve = qemu_ram_is_noreserve(new_block);
1961 const bool shared = qemu_ram_is_shared(new_block);
1962 RAMBlock *block;
1963 RAMBlock *last_block = NULL;
1964 ram_addr_t old_ram_size, new_ram_size;
1965 Error *err = NULL;
1967 old_ram_size = last_ram_page();
1969 qemu_mutex_lock_ramlist();
1970 new_block->offset = find_ram_offset(new_block->max_length);
1972 if (!new_block->host) {
1973 if (xen_enabled()) {
1974 xen_ram_alloc(new_block->offset, new_block->max_length,
1975 new_block->mr, &err);
1976 if (err) {
1977 error_propagate(errp, err);
1978 qemu_mutex_unlock_ramlist();
1979 return;
1981 } else {
1982 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1983 &new_block->mr->align,
1984 shared, noreserve);
1985 if (!new_block->host) {
1986 error_setg_errno(errp, errno,
1987 "cannot set up guest memory '%s'",
1988 memory_region_name(new_block->mr));
1989 qemu_mutex_unlock_ramlist();
1990 return;
1992 memory_try_enable_merging(new_block->host, new_block->max_length);
1996 new_ram_size = MAX(old_ram_size,
1997 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1998 if (new_ram_size > old_ram_size) {
1999 dirty_memory_extend(old_ram_size, new_ram_size);
2001 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2002 * QLIST (which has an RCU-friendly variant) does not have insertion at
2003 * tail, so save the last element in last_block.
2005 RAMBLOCK_FOREACH(block) {
2006 last_block = block;
2007 if (block->max_length < new_block->max_length) {
2008 break;
2011 if (block) {
2012 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2013 } else if (last_block) {
2014 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2015 } else { /* list is empty */
2016 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2018 ram_list.mru_block = NULL;
2020 /* Write list before version */
2021 smp_wmb();
2022 ram_list.version++;
2023 qemu_mutex_unlock_ramlist();
2025 cpu_physical_memory_set_dirty_range(new_block->offset,
2026 new_block->used_length,
2027 DIRTY_CLIENTS_ALL);
2029 if (new_block->host) {
2030 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2031 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2033 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2034 * Configure it unless the machine is a qtest server, in which case
2035 * KVM is not used and it may be forked (eg for fuzzing purposes).
2037 if (!qtest_enabled()) {
2038 qemu_madvise(new_block->host, new_block->max_length,
2039 QEMU_MADV_DONTFORK);
2041 ram_block_notify_add(new_block->host, new_block->used_length,
2042 new_block->max_length);
2046 #ifdef CONFIG_POSIX
2047 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2048 uint32_t ram_flags, int fd, off_t offset,
2049 bool readonly, Error **errp)
2051 RAMBlock *new_block;
2052 Error *local_err = NULL;
2053 int64_t file_size, file_align;
2055 /* Just support these ram flags by now. */
2056 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2057 RAM_PROTECTED)) == 0);
2059 if (xen_enabled()) {
2060 error_setg(errp, "-mem-path not supported with Xen");
2061 return NULL;
2064 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2065 error_setg(errp,
2066 "host lacks kvm mmu notifiers, -mem-path unsupported");
2067 return NULL;
2070 size = HOST_PAGE_ALIGN(size);
2071 file_size = get_file_size(fd);
2072 if (file_size > 0 && file_size < size) {
2073 error_setg(errp, "backing store size 0x%" PRIx64
2074 " does not match 'size' option 0x" RAM_ADDR_FMT,
2075 file_size, size);
2076 return NULL;
2079 file_align = get_file_align(fd);
2080 if (file_align > 0 && file_align > mr->align) {
2081 error_setg(errp, "backing store align 0x%" PRIx64
2082 " is larger than 'align' option 0x%" PRIx64,
2083 file_align, mr->align);
2084 return NULL;
2087 new_block = g_malloc0(sizeof(*new_block));
2088 new_block->mr = mr;
2089 new_block->used_length = size;
2090 new_block->max_length = size;
2091 new_block->flags = ram_flags;
2092 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2093 !file_size, offset, errp);
2094 if (!new_block->host) {
2095 g_free(new_block);
2096 return NULL;
2099 ram_block_add(new_block, &local_err);
2100 if (local_err) {
2101 g_free(new_block);
2102 error_propagate(errp, local_err);
2103 return NULL;
2105 return new_block;
2110 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2111 uint32_t ram_flags, const char *mem_path,
2112 bool readonly, Error **errp)
2114 int fd;
2115 bool created;
2116 RAMBlock *block;
2118 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2119 errp);
2120 if (fd < 0) {
2121 return NULL;
2124 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2125 if (!block) {
2126 if (created) {
2127 unlink(mem_path);
2129 close(fd);
2130 return NULL;
2133 return block;
2135 #endif
2137 static
2138 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2139 void (*resized)(const char*,
2140 uint64_t length,
2141 void *host),
2142 void *host, uint32_t ram_flags,
2143 MemoryRegion *mr, Error **errp)
2145 RAMBlock *new_block;
2146 Error *local_err = NULL;
2148 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2149 RAM_NORESERVE)) == 0);
2150 assert(!host ^ (ram_flags & RAM_PREALLOC));
2152 size = HOST_PAGE_ALIGN(size);
2153 max_size = HOST_PAGE_ALIGN(max_size);
2154 new_block = g_malloc0(sizeof(*new_block));
2155 new_block->mr = mr;
2156 new_block->resized = resized;
2157 new_block->used_length = size;
2158 new_block->max_length = max_size;
2159 assert(max_size >= size);
2160 new_block->fd = -1;
2161 new_block->page_size = qemu_real_host_page_size;
2162 new_block->host = host;
2163 new_block->flags = ram_flags;
2164 ram_block_add(new_block, &local_err);
2165 if (local_err) {
2166 g_free(new_block);
2167 error_propagate(errp, local_err);
2168 return NULL;
2170 return new_block;
2173 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2174 MemoryRegion *mr, Error **errp)
2176 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2177 errp);
2180 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2181 MemoryRegion *mr, Error **errp)
2183 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2184 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2187 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2188 void (*resized)(const char*,
2189 uint64_t length,
2190 void *host),
2191 MemoryRegion *mr, Error **errp)
2193 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2194 RAM_RESIZEABLE, mr, errp);
2197 static void reclaim_ramblock(RAMBlock *block)
2199 if (block->flags & RAM_PREALLOC) {
2201 } else if (xen_enabled()) {
2202 xen_invalidate_map_cache_entry(block->host);
2203 #ifndef _WIN32
2204 } else if (block->fd >= 0) {
2205 qemu_ram_munmap(block->fd, block->host, block->max_length);
2206 close(block->fd);
2207 #endif
2208 } else {
2209 qemu_anon_ram_free(block->host, block->max_length);
2211 g_free(block);
2214 void qemu_ram_free(RAMBlock *block)
2216 if (!block) {
2217 return;
2220 if (block->host) {
2221 ram_block_notify_remove(block->host, block->used_length,
2222 block->max_length);
2225 qemu_mutex_lock_ramlist();
2226 QLIST_REMOVE_RCU(block, next);
2227 ram_list.mru_block = NULL;
2228 /* Write list before version */
2229 smp_wmb();
2230 ram_list.version++;
2231 call_rcu(block, reclaim_ramblock, rcu);
2232 qemu_mutex_unlock_ramlist();
2235 #ifndef _WIN32
2236 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2238 RAMBlock *block;
2239 ram_addr_t offset;
2240 int flags;
2241 void *area, *vaddr;
2243 RAMBLOCK_FOREACH(block) {
2244 offset = addr - block->offset;
2245 if (offset < block->max_length) {
2246 vaddr = ramblock_ptr(block, offset);
2247 if (block->flags & RAM_PREALLOC) {
2249 } else if (xen_enabled()) {
2250 abort();
2251 } else {
2252 flags = MAP_FIXED;
2253 flags |= block->flags & RAM_SHARED ?
2254 MAP_SHARED : MAP_PRIVATE;
2255 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2256 if (block->fd >= 0) {
2257 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2258 flags, block->fd, offset);
2259 } else {
2260 flags |= MAP_ANONYMOUS;
2261 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2262 flags, -1, 0);
2264 if (area != vaddr) {
2265 error_report("Could not remap addr: "
2266 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2267 length, addr);
2268 exit(1);
2270 memory_try_enable_merging(vaddr, length);
2271 qemu_ram_setup_dump(vaddr, length);
2276 #endif /* !_WIN32 */
2278 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2279 * This should not be used for general purpose DMA. Use address_space_map
2280 * or address_space_rw instead. For local memory (e.g. video ram) that the
2281 * device owns, use memory_region_get_ram_ptr.
2283 * Called within RCU critical section.
2285 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2287 RAMBlock *block = ram_block;
2289 if (block == NULL) {
2290 block = qemu_get_ram_block(addr);
2291 addr -= block->offset;
2294 if (xen_enabled() && block->host == NULL) {
2295 /* We need to check if the requested address is in the RAM
2296 * because we don't want to map the entire memory in QEMU.
2297 * In that case just map until the end of the page.
2299 if (block->offset == 0) {
2300 return xen_map_cache(addr, 0, 0, false);
2303 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2305 return ramblock_ptr(block, addr);
2308 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2309 * but takes a size argument.
2311 * Called within RCU critical section.
2313 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2314 hwaddr *size, bool lock)
2316 RAMBlock *block = ram_block;
2317 if (*size == 0) {
2318 return NULL;
2321 if (block == NULL) {
2322 block = qemu_get_ram_block(addr);
2323 addr -= block->offset;
2325 *size = MIN(*size, block->max_length - addr);
2327 if (xen_enabled() && block->host == NULL) {
2328 /* We need to check if the requested address is in the RAM
2329 * because we don't want to map the entire memory in QEMU.
2330 * In that case just map the requested area.
2332 if (block->offset == 0) {
2333 return xen_map_cache(addr, *size, lock, lock);
2336 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2339 return ramblock_ptr(block, addr);
2342 /* Return the offset of a hostpointer within a ramblock */
2343 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2345 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2346 assert((uintptr_t)host >= (uintptr_t)rb->host);
2347 assert(res < rb->max_length);
2349 return res;
2353 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2354 * in that RAMBlock.
2356 * ptr: Host pointer to look up
2357 * round_offset: If true round the result offset down to a page boundary
2358 * *ram_addr: set to result ram_addr
2359 * *offset: set to result offset within the RAMBlock
2361 * Returns: RAMBlock (or NULL if not found)
2363 * By the time this function returns, the returned pointer is not protected
2364 * by RCU anymore. If the caller is not within an RCU critical section and
2365 * does not hold the iothread lock, it must have other means of protecting the
2366 * pointer, such as a reference to the region that includes the incoming
2367 * ram_addr_t.
2369 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2370 ram_addr_t *offset)
2372 RAMBlock *block;
2373 uint8_t *host = ptr;
2375 if (xen_enabled()) {
2376 ram_addr_t ram_addr;
2377 RCU_READ_LOCK_GUARD();
2378 ram_addr = xen_ram_addr_from_mapcache(ptr);
2379 block = qemu_get_ram_block(ram_addr);
2380 if (block) {
2381 *offset = ram_addr - block->offset;
2383 return block;
2386 RCU_READ_LOCK_GUARD();
2387 block = qatomic_rcu_read(&ram_list.mru_block);
2388 if (block && block->host && host - block->host < block->max_length) {
2389 goto found;
2392 RAMBLOCK_FOREACH(block) {
2393 /* This case append when the block is not mapped. */
2394 if (block->host == NULL) {
2395 continue;
2397 if (host - block->host < block->max_length) {
2398 goto found;
2402 return NULL;
2404 found:
2405 *offset = (host - block->host);
2406 if (round_offset) {
2407 *offset &= TARGET_PAGE_MASK;
2409 return block;
2413 * Finds the named RAMBlock
2415 * name: The name of RAMBlock to find
2417 * Returns: RAMBlock (or NULL if not found)
2419 RAMBlock *qemu_ram_block_by_name(const char *name)
2421 RAMBlock *block;
2423 RAMBLOCK_FOREACH(block) {
2424 if (!strcmp(name, block->idstr)) {
2425 return block;
2429 return NULL;
2432 /* Some of the softmmu routines need to translate from a host pointer
2433 (typically a TLB entry) back to a ram offset. */
2434 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2436 RAMBlock *block;
2437 ram_addr_t offset;
2439 block = qemu_ram_block_from_host(ptr, false, &offset);
2440 if (!block) {
2441 return RAM_ADDR_INVALID;
2444 return block->offset + offset;
2447 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2448 MemTxAttrs attrs, void *buf, hwaddr len);
2449 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2450 const void *buf, hwaddr len);
2451 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2452 bool is_write, MemTxAttrs attrs);
2454 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2455 unsigned len, MemTxAttrs attrs)
2457 subpage_t *subpage = opaque;
2458 uint8_t buf[8];
2459 MemTxResult res;
2461 #if defined(DEBUG_SUBPAGE)
2462 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2463 subpage, len, addr);
2464 #endif
2465 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2466 if (res) {
2467 return res;
2469 *data = ldn_p(buf, len);
2470 return MEMTX_OK;
2473 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2474 uint64_t value, unsigned len, MemTxAttrs attrs)
2476 subpage_t *subpage = opaque;
2477 uint8_t buf[8];
2479 #if defined(DEBUG_SUBPAGE)
2480 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2481 " value %"PRIx64"\n",
2482 __func__, subpage, len, addr, value);
2483 #endif
2484 stn_p(buf, len, value);
2485 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2488 static bool subpage_accepts(void *opaque, hwaddr addr,
2489 unsigned len, bool is_write,
2490 MemTxAttrs attrs)
2492 subpage_t *subpage = opaque;
2493 #if defined(DEBUG_SUBPAGE)
2494 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2495 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2496 #endif
2498 return flatview_access_valid(subpage->fv, addr + subpage->base,
2499 len, is_write, attrs);
2502 static const MemoryRegionOps subpage_ops = {
2503 .read_with_attrs = subpage_read,
2504 .write_with_attrs = subpage_write,
2505 .impl.min_access_size = 1,
2506 .impl.max_access_size = 8,
2507 .valid.min_access_size = 1,
2508 .valid.max_access_size = 8,
2509 .valid.accepts = subpage_accepts,
2510 .endianness = DEVICE_NATIVE_ENDIAN,
2513 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2514 uint16_t section)
2516 int idx, eidx;
2518 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2519 return -1;
2520 idx = SUBPAGE_IDX(start);
2521 eidx = SUBPAGE_IDX(end);
2522 #if defined(DEBUG_SUBPAGE)
2523 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2524 __func__, mmio, start, end, idx, eidx, section);
2525 #endif
2526 for (; idx <= eidx; idx++) {
2527 mmio->sub_section[idx] = section;
2530 return 0;
2533 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2535 subpage_t *mmio;
2537 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2538 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2539 mmio->fv = fv;
2540 mmio->base = base;
2541 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2542 NULL, TARGET_PAGE_SIZE);
2543 mmio->iomem.subpage = true;
2544 #if defined(DEBUG_SUBPAGE)
2545 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2546 mmio, base, TARGET_PAGE_SIZE);
2547 #endif
2549 return mmio;
2552 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2554 assert(fv);
2555 MemoryRegionSection section = {
2556 .fv = fv,
2557 .mr = mr,
2558 .offset_within_address_space = 0,
2559 .offset_within_region = 0,
2560 .size = int128_2_64(),
2563 return phys_section_add(map, &section);
2566 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2567 hwaddr index, MemTxAttrs attrs)
2569 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2570 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2571 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2572 MemoryRegionSection *sections = d->map.sections;
2574 return &sections[index & ~TARGET_PAGE_MASK];
2577 static void io_mem_init(void)
2579 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2580 NULL, UINT64_MAX);
2583 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2585 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2586 uint16_t n;
2588 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2589 assert(n == PHYS_SECTION_UNASSIGNED);
2591 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2593 return d;
2596 void address_space_dispatch_free(AddressSpaceDispatch *d)
2598 phys_sections_free(&d->map);
2599 g_free(d);
2602 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2606 static void tcg_log_global_after_sync(MemoryListener *listener)
2608 CPUAddressSpace *cpuas;
2610 /* Wait for the CPU to end the current TB. This avoids the following
2611 * incorrect race:
2613 * vCPU migration
2614 * ---------------------- -------------------------
2615 * TLB check -> slow path
2616 * notdirty_mem_write
2617 * write to RAM
2618 * mark dirty
2619 * clear dirty flag
2620 * TLB check -> fast path
2621 * read memory
2622 * write to RAM
2624 * by pushing the migration thread's memory read after the vCPU thread has
2625 * written the memory.
2627 if (replay_mode == REPLAY_MODE_NONE) {
2629 * VGA can make calls to this function while updating the screen.
2630 * In record/replay mode this causes a deadlock, because
2631 * run_on_cpu waits for rr mutex. Therefore no races are possible
2632 * in this case and no need for making run_on_cpu when
2633 * record/replay is enabled.
2635 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2636 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2640 static void tcg_commit(MemoryListener *listener)
2642 CPUAddressSpace *cpuas;
2643 AddressSpaceDispatch *d;
2645 assert(tcg_enabled());
2646 /* since each CPU stores ram addresses in its TLB cache, we must
2647 reset the modified entries */
2648 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2649 cpu_reloading_memory_map();
2650 /* The CPU and TLB are protected by the iothread lock.
2651 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2652 * may have split the RCU critical section.
2654 d = address_space_to_dispatch(cpuas->as);
2655 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2656 tlb_flush(cpuas->cpu);
2659 static void memory_map_init(void)
2661 system_memory = g_malloc(sizeof(*system_memory));
2663 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2664 address_space_init(&address_space_memory, system_memory, "memory");
2666 system_io = g_malloc(sizeof(*system_io));
2667 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2668 65536);
2669 address_space_init(&address_space_io, system_io, "I/O");
2672 MemoryRegion *get_system_memory(void)
2674 return system_memory;
2677 MemoryRegion *get_system_io(void)
2679 return system_io;
2682 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2683 hwaddr length)
2685 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2686 addr += memory_region_get_ram_addr(mr);
2688 /* No early return if dirty_log_mask is or becomes 0, because
2689 * cpu_physical_memory_set_dirty_range will still call
2690 * xen_modified_memory.
2692 if (dirty_log_mask) {
2693 dirty_log_mask =
2694 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2696 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2697 assert(tcg_enabled());
2698 tb_invalidate_phys_range(addr, addr + length);
2699 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2701 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2704 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2707 * In principle this function would work on other memory region types too,
2708 * but the ROM device use case is the only one where this operation is
2709 * necessary. Other memory regions should use the
2710 * address_space_read/write() APIs.
2712 assert(memory_region_is_romd(mr));
2714 invalidate_and_set_dirty(mr, addr, size);
2717 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2719 unsigned access_size_max = mr->ops->valid.max_access_size;
2721 /* Regions are assumed to support 1-4 byte accesses unless
2722 otherwise specified. */
2723 if (access_size_max == 0) {
2724 access_size_max = 4;
2727 /* Bound the maximum access by the alignment of the address. */
2728 if (!mr->ops->impl.unaligned) {
2729 unsigned align_size_max = addr & -addr;
2730 if (align_size_max != 0 && align_size_max < access_size_max) {
2731 access_size_max = align_size_max;
2735 /* Don't attempt accesses larger than the maximum. */
2736 if (l > access_size_max) {
2737 l = access_size_max;
2739 l = pow2floor(l);
2741 return l;
2744 static bool prepare_mmio_access(MemoryRegion *mr)
2746 bool release_lock = false;
2748 if (!qemu_mutex_iothread_locked()) {
2749 qemu_mutex_lock_iothread();
2750 release_lock = true;
2752 if (mr->flush_coalesced_mmio) {
2753 qemu_flush_coalesced_mmio_buffer();
2756 return release_lock;
2759 /* Called within RCU critical section. */
2760 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2761 MemTxAttrs attrs,
2762 const void *ptr,
2763 hwaddr len, hwaddr addr1,
2764 hwaddr l, MemoryRegion *mr)
2766 uint8_t *ram_ptr;
2767 uint64_t val;
2768 MemTxResult result = MEMTX_OK;
2769 bool release_lock = false;
2770 const uint8_t *buf = ptr;
2772 for (;;) {
2773 if (!memory_access_is_direct(mr, true)) {
2774 release_lock |= prepare_mmio_access(mr);
2775 l = memory_access_size(mr, l, addr1);
2776 /* XXX: could force current_cpu to NULL to avoid
2777 potential bugs */
2778 val = ldn_he_p(buf, l);
2779 result |= memory_region_dispatch_write(mr, addr1, val,
2780 size_memop(l), attrs);
2781 } else {
2782 /* RAM case */
2783 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2784 memcpy(ram_ptr, buf, l);
2785 invalidate_and_set_dirty(mr, addr1, l);
2788 if (release_lock) {
2789 qemu_mutex_unlock_iothread();
2790 release_lock = false;
2793 len -= l;
2794 buf += l;
2795 addr += l;
2797 if (!len) {
2798 break;
2801 l = len;
2802 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2805 return result;
2808 /* Called from RCU critical section. */
2809 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2810 const void *buf, hwaddr len)
2812 hwaddr l;
2813 hwaddr addr1;
2814 MemoryRegion *mr;
2815 MemTxResult result = MEMTX_OK;
2817 l = len;
2818 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2819 result = flatview_write_continue(fv, addr, attrs, buf, len,
2820 addr1, l, mr);
2822 return result;
2825 /* Called within RCU critical section. */
2826 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2827 MemTxAttrs attrs, void *ptr,
2828 hwaddr len, hwaddr addr1, hwaddr l,
2829 MemoryRegion *mr)
2831 uint8_t *ram_ptr;
2832 uint64_t val;
2833 MemTxResult result = MEMTX_OK;
2834 bool release_lock = false;
2835 uint8_t *buf = ptr;
2837 fuzz_dma_read_cb(addr, len, mr);
2838 for (;;) {
2839 if (!memory_access_is_direct(mr, false)) {
2840 /* I/O case */
2841 release_lock |= prepare_mmio_access(mr);
2842 l = memory_access_size(mr, l, addr1);
2843 result |= memory_region_dispatch_read(mr, addr1, &val,
2844 size_memop(l), attrs);
2845 stn_he_p(buf, l, val);
2846 } else {
2847 /* RAM case */
2848 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2849 memcpy(buf, ram_ptr, l);
2852 if (release_lock) {
2853 qemu_mutex_unlock_iothread();
2854 release_lock = false;
2857 len -= l;
2858 buf += l;
2859 addr += l;
2861 if (!len) {
2862 break;
2865 l = len;
2866 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2869 return result;
2872 /* Called from RCU critical section. */
2873 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2874 MemTxAttrs attrs, void *buf, hwaddr len)
2876 hwaddr l;
2877 hwaddr addr1;
2878 MemoryRegion *mr;
2880 l = len;
2881 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2882 return flatview_read_continue(fv, addr, attrs, buf, len,
2883 addr1, l, mr);
2886 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2887 MemTxAttrs attrs, void *buf, hwaddr len)
2889 MemTxResult result = MEMTX_OK;
2890 FlatView *fv;
2892 if (len > 0) {
2893 RCU_READ_LOCK_GUARD();
2894 fv = address_space_to_flatview(as);
2895 result = flatview_read(fv, addr, attrs, buf, len);
2898 return result;
2901 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2902 MemTxAttrs attrs,
2903 const void *buf, hwaddr len)
2905 MemTxResult result = MEMTX_OK;
2906 FlatView *fv;
2908 if (len > 0) {
2909 RCU_READ_LOCK_GUARD();
2910 fv = address_space_to_flatview(as);
2911 result = flatview_write(fv, addr, attrs, buf, len);
2914 return result;
2917 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2918 void *buf, hwaddr len, bool is_write)
2920 if (is_write) {
2921 return address_space_write(as, addr, attrs, buf, len);
2922 } else {
2923 return address_space_read_full(as, addr, attrs, buf, len);
2927 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2928 hwaddr len, bool is_write)
2930 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2931 buf, len, is_write);
2934 enum write_rom_type {
2935 WRITE_DATA,
2936 FLUSH_CACHE,
2939 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2940 hwaddr addr,
2941 MemTxAttrs attrs,
2942 const void *ptr,
2943 hwaddr len,
2944 enum write_rom_type type)
2946 hwaddr l;
2947 uint8_t *ram_ptr;
2948 hwaddr addr1;
2949 MemoryRegion *mr;
2950 const uint8_t *buf = ptr;
2952 RCU_READ_LOCK_GUARD();
2953 while (len > 0) {
2954 l = len;
2955 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2957 if (!(memory_region_is_ram(mr) ||
2958 memory_region_is_romd(mr))) {
2959 l = memory_access_size(mr, l, addr1);
2960 } else {
2961 /* ROM/RAM case */
2962 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2963 switch (type) {
2964 case WRITE_DATA:
2965 memcpy(ram_ptr, buf, l);
2966 invalidate_and_set_dirty(mr, addr1, l);
2967 break;
2968 case FLUSH_CACHE:
2969 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2970 break;
2973 len -= l;
2974 buf += l;
2975 addr += l;
2977 return MEMTX_OK;
2980 /* used for ROM loading : can write in RAM and ROM */
2981 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2982 MemTxAttrs attrs,
2983 const void *buf, hwaddr len)
2985 return address_space_write_rom_internal(as, addr, attrs,
2986 buf, len, WRITE_DATA);
2989 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2992 * This function should do the same thing as an icache flush that was
2993 * triggered from within the guest. For TCG we are always cache coherent,
2994 * so there is no need to flush anything. For KVM / Xen we need to flush
2995 * the host's instruction cache at least.
2997 if (tcg_enabled()) {
2998 return;
3001 address_space_write_rom_internal(&address_space_memory,
3002 start, MEMTXATTRS_UNSPECIFIED,
3003 NULL, len, FLUSH_CACHE);
3006 typedef struct {
3007 MemoryRegion *mr;
3008 void *buffer;
3009 hwaddr addr;
3010 hwaddr len;
3011 bool in_use;
3012 } BounceBuffer;
3014 static BounceBuffer bounce;
3016 typedef struct MapClient {
3017 QEMUBH *bh;
3018 QLIST_ENTRY(MapClient) link;
3019 } MapClient;
3021 QemuMutex map_client_list_lock;
3022 static QLIST_HEAD(, MapClient) map_client_list
3023 = QLIST_HEAD_INITIALIZER(map_client_list);
3025 static void cpu_unregister_map_client_do(MapClient *client)
3027 QLIST_REMOVE(client, link);
3028 g_free(client);
3031 static void cpu_notify_map_clients_locked(void)
3033 MapClient *client;
3035 while (!QLIST_EMPTY(&map_client_list)) {
3036 client = QLIST_FIRST(&map_client_list);
3037 qemu_bh_schedule(client->bh);
3038 cpu_unregister_map_client_do(client);
3042 void cpu_register_map_client(QEMUBH *bh)
3044 MapClient *client = g_malloc(sizeof(*client));
3046 qemu_mutex_lock(&map_client_list_lock);
3047 client->bh = bh;
3048 QLIST_INSERT_HEAD(&map_client_list, client, link);
3049 if (!qatomic_read(&bounce.in_use)) {
3050 cpu_notify_map_clients_locked();
3052 qemu_mutex_unlock(&map_client_list_lock);
3055 void cpu_exec_init_all(void)
3057 qemu_mutex_init(&ram_list.mutex);
3058 /* The data structures we set up here depend on knowing the page size,
3059 * so no more changes can be made after this point.
3060 * In an ideal world, nothing we did before we had finished the
3061 * machine setup would care about the target page size, and we could
3062 * do this much later, rather than requiring board models to state
3063 * up front what their requirements are.
3065 finalize_target_page_bits();
3066 io_mem_init();
3067 memory_map_init();
3068 qemu_mutex_init(&map_client_list_lock);
3071 void cpu_unregister_map_client(QEMUBH *bh)
3073 MapClient *client;
3075 qemu_mutex_lock(&map_client_list_lock);
3076 QLIST_FOREACH(client, &map_client_list, link) {
3077 if (client->bh == bh) {
3078 cpu_unregister_map_client_do(client);
3079 break;
3082 qemu_mutex_unlock(&map_client_list_lock);
3085 static void cpu_notify_map_clients(void)
3087 qemu_mutex_lock(&map_client_list_lock);
3088 cpu_notify_map_clients_locked();
3089 qemu_mutex_unlock(&map_client_list_lock);
3092 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3093 bool is_write, MemTxAttrs attrs)
3095 MemoryRegion *mr;
3096 hwaddr l, xlat;
3098 while (len > 0) {
3099 l = len;
3100 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3101 if (!memory_access_is_direct(mr, is_write)) {
3102 l = memory_access_size(mr, l, addr);
3103 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3104 return false;
3108 len -= l;
3109 addr += l;
3111 return true;
3114 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3115 hwaddr len, bool is_write,
3116 MemTxAttrs attrs)
3118 FlatView *fv;
3119 bool result;
3121 RCU_READ_LOCK_GUARD();
3122 fv = address_space_to_flatview(as);
3123 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3124 return result;
3127 static hwaddr
3128 flatview_extend_translation(FlatView *fv, hwaddr addr,
3129 hwaddr target_len,
3130 MemoryRegion *mr, hwaddr base, hwaddr len,
3131 bool is_write, MemTxAttrs attrs)
3133 hwaddr done = 0;
3134 hwaddr xlat;
3135 MemoryRegion *this_mr;
3137 for (;;) {
3138 target_len -= len;
3139 addr += len;
3140 done += len;
3141 if (target_len == 0) {
3142 return done;
3145 len = target_len;
3146 this_mr = flatview_translate(fv, addr, &xlat,
3147 &len, is_write, attrs);
3148 if (this_mr != mr || xlat != base + done) {
3149 return done;
3154 /* Map a physical memory region into a host virtual address.
3155 * May map a subset of the requested range, given by and returned in *plen.
3156 * May return NULL if resources needed to perform the mapping are exhausted.
3157 * Use only for reads OR writes - not for read-modify-write operations.
3158 * Use cpu_register_map_client() to know when retrying the map operation is
3159 * likely to succeed.
3161 void *address_space_map(AddressSpace *as,
3162 hwaddr addr,
3163 hwaddr *plen,
3164 bool is_write,
3165 MemTxAttrs attrs)
3167 hwaddr len = *plen;
3168 hwaddr l, xlat;
3169 MemoryRegion *mr;
3170 void *ptr;
3171 FlatView *fv;
3173 if (len == 0) {
3174 return NULL;
3177 l = len;
3178 RCU_READ_LOCK_GUARD();
3179 fv = address_space_to_flatview(as);
3180 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3182 if (!memory_access_is_direct(mr, is_write)) {
3183 if (qatomic_xchg(&bounce.in_use, true)) {
3184 *plen = 0;
3185 return NULL;
3187 /* Avoid unbounded allocations */
3188 l = MIN(l, TARGET_PAGE_SIZE);
3189 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3190 bounce.addr = addr;
3191 bounce.len = l;
3193 memory_region_ref(mr);
3194 bounce.mr = mr;
3195 if (!is_write) {
3196 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3197 bounce.buffer, l);
3200 *plen = l;
3201 return bounce.buffer;
3205 memory_region_ref(mr);
3206 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3207 l, is_write, attrs);
3208 fuzz_dma_read_cb(addr, *plen, mr);
3209 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3211 return ptr;
3214 /* Unmaps a memory region previously mapped by address_space_map().
3215 * Will also mark the memory as dirty if is_write is true. access_len gives
3216 * the amount of memory that was actually read or written by the caller.
3218 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3219 bool is_write, hwaddr access_len)
3221 if (buffer != bounce.buffer) {
3222 MemoryRegion *mr;
3223 ram_addr_t addr1;
3225 mr = memory_region_from_host(buffer, &addr1);
3226 assert(mr != NULL);
3227 if (is_write) {
3228 invalidate_and_set_dirty(mr, addr1, access_len);
3230 if (xen_enabled()) {
3231 xen_invalidate_map_cache_entry(buffer);
3233 memory_region_unref(mr);
3234 return;
3236 if (is_write) {
3237 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3238 bounce.buffer, access_len);
3240 qemu_vfree(bounce.buffer);
3241 bounce.buffer = NULL;
3242 memory_region_unref(bounce.mr);
3243 qatomic_mb_set(&bounce.in_use, false);
3244 cpu_notify_map_clients();
3247 void *cpu_physical_memory_map(hwaddr addr,
3248 hwaddr *plen,
3249 bool is_write)
3251 return address_space_map(&address_space_memory, addr, plen, is_write,
3252 MEMTXATTRS_UNSPECIFIED);
3255 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3256 bool is_write, hwaddr access_len)
3258 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3261 #define ARG1_DECL AddressSpace *as
3262 #define ARG1 as
3263 #define SUFFIX
3264 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3265 #define RCU_READ_LOCK(...) rcu_read_lock()
3266 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3267 #include "memory_ldst.c.inc"
3269 int64_t address_space_cache_init(MemoryRegionCache *cache,
3270 AddressSpace *as,
3271 hwaddr addr,
3272 hwaddr len,
3273 bool is_write)
3275 AddressSpaceDispatch *d;
3276 hwaddr l;
3277 MemoryRegion *mr;
3278 Int128 diff;
3280 assert(len > 0);
3282 l = len;
3283 cache->fv = address_space_get_flatview(as);
3284 d = flatview_to_dispatch(cache->fv);
3285 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3288 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3289 * Take that into account to compute how many bytes are there between
3290 * cache->xlat and the end of the section.
3292 diff = int128_sub(cache->mrs.size,
3293 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3294 l = int128_get64(int128_min(diff, int128_make64(l)));
3296 mr = cache->mrs.mr;
3297 memory_region_ref(mr);
3298 if (memory_access_is_direct(mr, is_write)) {
3299 /* We don't care about the memory attributes here as we're only
3300 * doing this if we found actual RAM, which behaves the same
3301 * regardless of attributes; so UNSPECIFIED is fine.
3303 l = flatview_extend_translation(cache->fv, addr, len, mr,
3304 cache->xlat, l, is_write,
3305 MEMTXATTRS_UNSPECIFIED);
3306 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3307 } else {
3308 cache->ptr = NULL;
3311 cache->len = l;
3312 cache->is_write = is_write;
3313 return l;
3316 void address_space_cache_invalidate(MemoryRegionCache *cache,
3317 hwaddr addr,
3318 hwaddr access_len)
3320 assert(cache->is_write);
3321 if (likely(cache->ptr)) {
3322 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3326 void address_space_cache_destroy(MemoryRegionCache *cache)
3328 if (!cache->mrs.mr) {
3329 return;
3332 if (xen_enabled()) {
3333 xen_invalidate_map_cache_entry(cache->ptr);
3335 memory_region_unref(cache->mrs.mr);
3336 flatview_unref(cache->fv);
3337 cache->mrs.mr = NULL;
3338 cache->fv = NULL;
3341 /* Called from RCU critical section. This function has the same
3342 * semantics as address_space_translate, but it only works on a
3343 * predefined range of a MemoryRegion that was mapped with
3344 * address_space_cache_init.
3346 static inline MemoryRegion *address_space_translate_cached(
3347 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3348 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3350 MemoryRegionSection section;
3351 MemoryRegion *mr;
3352 IOMMUMemoryRegion *iommu_mr;
3353 AddressSpace *target_as;
3355 assert(!cache->ptr);
3356 *xlat = addr + cache->xlat;
3358 mr = cache->mrs.mr;
3359 iommu_mr = memory_region_get_iommu(mr);
3360 if (!iommu_mr) {
3361 /* MMIO region. */
3362 return mr;
3365 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3366 NULL, is_write, true,
3367 &target_as, attrs);
3368 return section.mr;
3371 /* Called from RCU critical section. address_space_read_cached uses this
3372 * out of line function when the target is an MMIO or IOMMU region.
3374 MemTxResult
3375 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3376 void *buf, hwaddr len)
3378 hwaddr addr1, l;
3379 MemoryRegion *mr;
3381 l = len;
3382 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3383 MEMTXATTRS_UNSPECIFIED);
3384 return flatview_read_continue(cache->fv,
3385 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3386 addr1, l, mr);
3389 /* Called from RCU critical section. address_space_write_cached uses this
3390 * out of line function when the target is an MMIO or IOMMU region.
3392 MemTxResult
3393 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3394 const void *buf, hwaddr len)
3396 hwaddr addr1, l;
3397 MemoryRegion *mr;
3399 l = len;
3400 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3401 MEMTXATTRS_UNSPECIFIED);
3402 return flatview_write_continue(cache->fv,
3403 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3404 addr1, l, mr);
3407 #define ARG1_DECL MemoryRegionCache *cache
3408 #define ARG1 cache
3409 #define SUFFIX _cached_slow
3410 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3411 #define RCU_READ_LOCK() ((void)0)
3412 #define RCU_READ_UNLOCK() ((void)0)
3413 #include "memory_ldst.c.inc"
3415 /* virtual memory access for debug (includes writing to ROM) */
3416 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3417 void *ptr, target_ulong len, bool is_write)
3419 hwaddr phys_addr;
3420 target_ulong l, page;
3421 uint8_t *buf = ptr;
3423 cpu_synchronize_state(cpu);
3424 while (len > 0) {
3425 int asidx;
3426 MemTxAttrs attrs;
3427 MemTxResult res;
3429 page = addr & TARGET_PAGE_MASK;
3430 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3431 asidx = cpu_asidx_from_attrs(cpu, attrs);
3432 /* if no physical page mapped, return an error */
3433 if (phys_addr == -1)
3434 return -1;
3435 l = (page + TARGET_PAGE_SIZE) - addr;
3436 if (l > len)
3437 l = len;
3438 phys_addr += (addr & ~TARGET_PAGE_MASK);
3439 if (is_write) {
3440 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3441 attrs, buf, l);
3442 } else {
3443 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3444 attrs, buf, l);
3446 if (res != MEMTX_OK) {
3447 return -1;
3449 len -= l;
3450 buf += l;
3451 addr += l;
3453 return 0;
3457 * Allows code that needs to deal with migration bitmaps etc to still be built
3458 * target independent.
3460 size_t qemu_target_page_size(void)
3462 return TARGET_PAGE_SIZE;
3465 int qemu_target_page_bits(void)
3467 return TARGET_PAGE_BITS;
3470 int qemu_target_page_bits_min(void)
3472 return TARGET_PAGE_BITS_MIN;
3475 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3477 MemoryRegion*mr;
3478 hwaddr l = 1;
3479 bool res;
3481 RCU_READ_LOCK_GUARD();
3482 mr = address_space_translate(&address_space_memory,
3483 phys_addr, &phys_addr, &l, false,
3484 MEMTXATTRS_UNSPECIFIED);
3486 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3487 return res;
3490 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3492 RAMBlock *block;
3493 int ret = 0;
3495 RCU_READ_LOCK_GUARD();
3496 RAMBLOCK_FOREACH(block) {
3497 ret = func(block, opaque);
3498 if (ret) {
3499 break;
3502 return ret;
3506 * Unmap pages of memory from start to start+length such that
3507 * they a) read as 0, b) Trigger whatever fault mechanism
3508 * the OS provides for postcopy.
3509 * The pages must be unmapped by the end of the function.
3510 * Returns: 0 on success, none-0 on failure
3513 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3515 int ret = -1;
3517 uint8_t *host_startaddr = rb->host + start;
3519 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3520 error_report("ram_block_discard_range: Unaligned start address: %p",
3521 host_startaddr);
3522 goto err;
3525 if ((start + length) <= rb->max_length) {
3526 bool need_madvise, need_fallocate;
3527 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3528 error_report("ram_block_discard_range: Unaligned length: %zx",
3529 length);
3530 goto err;
3533 errno = ENOTSUP; /* If we are missing MADVISE etc */
3535 /* The logic here is messy;
3536 * madvise DONTNEED fails for hugepages
3537 * fallocate works on hugepages and shmem
3538 * shared anonymous memory requires madvise REMOVE
3540 need_madvise = (rb->page_size == qemu_host_page_size);
3541 need_fallocate = rb->fd != -1;
3542 if (need_fallocate) {
3543 /* For a file, this causes the area of the file to be zero'd
3544 * if read, and for hugetlbfs also causes it to be unmapped
3545 * so a userfault will trigger.
3547 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3548 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3549 start, length);
3550 if (ret) {
3551 ret = -errno;
3552 error_report("ram_block_discard_range: Failed to fallocate "
3553 "%s:%" PRIx64 " +%zx (%d)",
3554 rb->idstr, start, length, ret);
3555 goto err;
3557 #else
3558 ret = -ENOSYS;
3559 error_report("ram_block_discard_range: fallocate not available/file"
3560 "%s:%" PRIx64 " +%zx (%d)",
3561 rb->idstr, start, length, ret);
3562 goto err;
3563 #endif
3565 if (need_madvise) {
3566 /* For normal RAM this causes it to be unmapped,
3567 * for shared memory it causes the local mapping to disappear
3568 * and to fall back on the file contents (which we just
3569 * fallocate'd away).
3571 #if defined(CONFIG_MADVISE)
3572 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3573 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3574 } else {
3575 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3577 if (ret) {
3578 ret = -errno;
3579 error_report("ram_block_discard_range: Failed to discard range "
3580 "%s:%" PRIx64 " +%zx (%d)",
3581 rb->idstr, start, length, ret);
3582 goto err;
3584 #else
3585 ret = -ENOSYS;
3586 error_report("ram_block_discard_range: MADVISE not available"
3587 "%s:%" PRIx64 " +%zx (%d)",
3588 rb->idstr, start, length, ret);
3589 goto err;
3590 #endif
3592 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3593 need_madvise, need_fallocate, ret);
3594 } else {
3595 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3596 "/%zx/" RAM_ADDR_FMT")",
3597 rb->idstr, start, length, rb->max_length);
3600 err:
3601 return ret;
3604 bool ramblock_is_pmem(RAMBlock *rb)
3606 return rb->flags & RAM_PMEM;
3609 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3611 if (start == end - 1) {
3612 qemu_printf("\t%3d ", start);
3613 } else {
3614 qemu_printf("\t%3d..%-3d ", start, end - 1);
3616 qemu_printf(" skip=%d ", skip);
3617 if (ptr == PHYS_MAP_NODE_NIL) {
3618 qemu_printf(" ptr=NIL");
3619 } else if (!skip) {
3620 qemu_printf(" ptr=#%d", ptr);
3621 } else {
3622 qemu_printf(" ptr=[%d]", ptr);
3624 qemu_printf("\n");
3627 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3628 int128_sub((size), int128_one())) : 0)
3630 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3632 int i;
3634 qemu_printf(" Dispatch\n");
3635 qemu_printf(" Physical sections\n");
3637 for (i = 0; i < d->map.sections_nb; ++i) {
3638 MemoryRegionSection *s = d->map.sections + i;
3639 const char *names[] = { " [unassigned]", " [not dirty]",
3640 " [ROM]", " [watch]" };
3642 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3643 " %s%s%s%s%s",
3645 s->offset_within_address_space,
3646 s->offset_within_address_space + MR_SIZE(s->mr->size),
3647 s->mr->name ? s->mr->name : "(noname)",
3648 i < ARRAY_SIZE(names) ? names[i] : "",
3649 s->mr == root ? " [ROOT]" : "",
3650 s == d->mru_section ? " [MRU]" : "",
3651 s->mr->is_iommu ? " [iommu]" : "");
3653 if (s->mr->alias) {
3654 qemu_printf(" alias=%s", s->mr->alias->name ?
3655 s->mr->alias->name : "noname");
3657 qemu_printf("\n");
3660 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3661 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3662 for (i = 0; i < d->map.nodes_nb; ++i) {
3663 int j, jprev;
3664 PhysPageEntry prev;
3665 Node *n = d->map.nodes + i;
3667 qemu_printf(" [%d]\n", i);
3669 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3670 PhysPageEntry *pe = *n + j;
3672 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3673 continue;
3676 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3678 jprev = j;
3679 prev = *pe;
3682 if (jprev != ARRAY_SIZE(*n)) {
3683 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3688 /* Require any discards to work. */
3689 static unsigned int ram_block_discard_required_cnt;
3690 /* Require only coordinated discards to work. */
3691 static unsigned int ram_block_coordinated_discard_required_cnt;
3692 /* Disable any discards. */
3693 static unsigned int ram_block_discard_disabled_cnt;
3694 /* Disable only uncoordinated discards. */
3695 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3696 static QemuMutex ram_block_discard_disable_mutex;
3698 static void ram_block_discard_disable_mutex_lock(void)
3700 static gsize initialized;
3702 if (g_once_init_enter(&initialized)) {
3703 qemu_mutex_init(&ram_block_discard_disable_mutex);
3704 g_once_init_leave(&initialized, 1);
3706 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3709 static void ram_block_discard_disable_mutex_unlock(void)
3711 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3714 int ram_block_discard_disable(bool state)
3716 int ret = 0;
3718 ram_block_discard_disable_mutex_lock();
3719 if (!state) {
3720 ram_block_discard_disabled_cnt--;
3721 } else if (ram_block_discard_required_cnt ||
3722 ram_block_coordinated_discard_required_cnt) {
3723 ret = -EBUSY;
3724 } else {
3725 ram_block_discard_disabled_cnt++;
3727 ram_block_discard_disable_mutex_unlock();
3728 return ret;
3731 int ram_block_uncoordinated_discard_disable(bool state)
3733 int ret = 0;
3735 ram_block_discard_disable_mutex_lock();
3736 if (!state) {
3737 ram_block_uncoordinated_discard_disabled_cnt--;
3738 } else if (ram_block_discard_required_cnt) {
3739 ret = -EBUSY;
3740 } else {
3741 ram_block_uncoordinated_discard_disabled_cnt++;
3743 ram_block_discard_disable_mutex_unlock();
3744 return ret;
3747 int ram_block_discard_require(bool state)
3749 int ret = 0;
3751 ram_block_discard_disable_mutex_lock();
3752 if (!state) {
3753 ram_block_discard_required_cnt--;
3754 } else if (ram_block_discard_disabled_cnt ||
3755 ram_block_uncoordinated_discard_disabled_cnt) {
3756 ret = -EBUSY;
3757 } else {
3758 ram_block_discard_required_cnt++;
3760 ram_block_discard_disable_mutex_unlock();
3761 return ret;
3764 int ram_block_coordinated_discard_require(bool state)
3766 int ret = 0;
3768 ram_block_discard_disable_mutex_lock();
3769 if (!state) {
3770 ram_block_coordinated_discard_required_cnt--;
3771 } else if (ram_block_discard_disabled_cnt) {
3772 ret = -EBUSY;
3773 } else {
3774 ram_block_coordinated_discard_required_cnt++;
3776 ram_block_discard_disable_mutex_unlock();
3777 return ret;
3780 bool ram_block_discard_is_disabled(void)
3782 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3783 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3786 bool ram_block_discard_is_required(void)
3788 return qatomic_read(&ram_block_discard_required_cnt) ||
3789 qatomic_read(&ram_block_coordinated_discard_required_cnt);