posix-aio-compat: Plug memory leak on paio_init() error path
[qemu.git] / exec.c
blob6b92198e622dd2da214ff3aa56b9ef384d1efc33
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
60 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_FLUSH
62 //#define DEBUG_TLB
63 //#define DEBUG_UNASSIGNED
65 /* make various TB consistency checks */
66 //#define DEBUG_TB_CHECK
67 //#define DEBUG_TLB_CHECK
69 //#define DEBUG_IOPORT
70 //#define DEBUG_SUBPAGE
72 #if !defined(CONFIG_USER_ONLY)
73 /* TB consistency checks only implemented for usermode emulation. */
74 #undef DEBUG_TB_CHECK
75 #endif
77 #define SMC_BITMAP_USE_THRESHOLD 10
79 static TranslationBlock *tbs;
80 static int code_gen_max_blocks;
81 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
82 static int nb_tbs;
83 /* any access to the tbs or the page table must use this lock */
84 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
86 #if defined(__arm__) || defined(__sparc_v9__)
87 /* The prologue must be reachable with a direct jump. ARM and Sparc64
88 have limited branch ranges (possibly also PPC) so place it in a
89 section close to code segment. */
90 #define code_gen_section \
91 __attribute__((__section__(".gen_code"))) \
92 __attribute__((aligned (32)))
93 #elif defined(_WIN32)
94 /* Maximum alignment for Win32 is 16. */
95 #define code_gen_section \
96 __attribute__((aligned (16)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 static uint8_t *code_gen_ptr;
109 #if !defined(CONFIG_USER_ONLY)
110 int phys_ram_fd;
111 static int in_migration;
113 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
115 static MemoryRegion *system_memory;
116 static MemoryRegion *system_io;
118 #endif
120 CPUState *first_cpu;
121 /* current CPU in the current thread. It is only valid inside
122 cpu_exec() */
123 DEFINE_TLS(CPUState *,cpu_single_env);
124 /* 0 = Do not count executed instructions.
125 1 = Precise instruction counting.
126 2 = Adaptive rate instruction counting. */
127 int use_icount = 0;
129 typedef struct PageDesc {
130 /* list of TBs intersecting this ram page */
131 TranslationBlock *first_tb;
132 /* in order to optimize self modifying code, we count the number
133 of lookups we do to a given page to use a bitmap */
134 unsigned int code_write_count;
135 uint8_t *code_bitmap;
136 #if defined(CONFIG_USER_ONLY)
137 unsigned long flags;
138 #endif
139 } PageDesc;
141 /* In system mode we want L1_MAP to be based on ram offsets,
142 while in user mode we want it to be based on virtual addresses. */
143 #if !defined(CONFIG_USER_ONLY)
144 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
145 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
146 #else
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
148 #endif
149 #else
150 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
151 #endif
153 /* Size of the L2 (and L3, etc) page tables. */
154 #define L2_BITS 10
155 #define L2_SIZE (1 << L2_BITS)
157 /* The bits remaining after N lower levels of page tables. */
158 #define P_L1_BITS_REM \
159 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160 #define V_L1_BITS_REM \
161 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
163 /* Size of the L1 page table. Avoid silly small sizes. */
164 #if P_L1_BITS_REM < 4
165 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
166 #else
167 #define P_L1_BITS P_L1_BITS_REM
168 #endif
170 #if V_L1_BITS_REM < 4
171 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172 #else
173 #define V_L1_BITS V_L1_BITS_REM
174 #endif
176 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
177 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
179 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
180 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
182 unsigned long qemu_real_host_page_size;
183 unsigned long qemu_host_page_size;
184 unsigned long qemu_host_page_mask;
186 /* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188 static void *l1_map[V_L1_SIZE];
190 #if !defined(CONFIG_USER_ONLY)
191 typedef struct PhysPageDesc {
192 /* offset in host memory of the page + io_index in the low bits */
193 ram_addr_t phys_offset;
194 ram_addr_t region_offset;
195 } PhysPageDesc;
197 /* This is a multi-level map on the physical address space.
198 The bottom level has pointers to PhysPageDesc. */
199 static void *l1_phys_map[P_L1_SIZE];
201 static void io_mem_init(void);
202 static void memory_map_init(void);
204 /* io memory support */
205 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
207 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
208 static char io_mem_used[IO_MEM_NB_ENTRIES];
209 static int io_mem_watch;
210 #endif
212 /* log support */
213 #ifdef WIN32
214 static const char *logfilename = "qemu.log";
215 #else
216 static const char *logfilename = "/tmp/qemu.log";
217 #endif
218 FILE *logfile;
219 int loglevel;
220 static int log_append = 0;
222 /* statistics */
223 #if !defined(CONFIG_USER_ONLY)
224 static int tlb_flush_count;
225 #endif
226 static int tb_flush_count;
227 static int tb_phys_invalidate_count;
229 #ifdef _WIN32
230 static void map_exec(void *addr, long size)
232 DWORD old_protect;
233 VirtualProtect(addr, size,
234 PAGE_EXECUTE_READWRITE, &old_protect);
237 #else
238 static void map_exec(void *addr, long size)
240 unsigned long start, end, page_size;
242 page_size = getpagesize();
243 start = (unsigned long)addr;
244 start &= ~(page_size - 1);
246 end = (unsigned long)addr + size;
247 end += page_size - 1;
248 end &= ~(page_size - 1);
250 mprotect((void *)start, end - start,
251 PROT_READ | PROT_WRITE | PROT_EXEC);
253 #endif
255 static void page_init(void)
257 /* NOTE: we can always suppose that qemu_host_page_size >=
258 TARGET_PAGE_SIZE */
259 #ifdef _WIN32
261 SYSTEM_INFO system_info;
263 GetSystemInfo(&system_info);
264 qemu_real_host_page_size = system_info.dwPageSize;
266 #else
267 qemu_real_host_page_size = getpagesize();
268 #endif
269 if (qemu_host_page_size == 0)
270 qemu_host_page_size = qemu_real_host_page_size;
271 if (qemu_host_page_size < TARGET_PAGE_SIZE)
272 qemu_host_page_size = TARGET_PAGE_SIZE;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
275 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
277 #ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
295 } else {
296 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
299 #endif
303 free(freep);
304 mmap_unlock();
306 #else
307 FILE *f;
309 last_brk = (unsigned long)sbrk(0);
311 f = fopen("/compat/linux/proc/self/maps", "r");
312 if (f) {
313 mmap_lock();
315 do {
316 unsigned long startaddr, endaddr;
317 int n;
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
331 } while (!feof(f));
333 fclose(f);
334 mmap_unlock();
336 #endif
338 #endif
341 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
343 PageDesc *pd;
344 void **lp;
345 int i;
347 #if defined(CONFIG_USER_ONLY)
348 /* We can't use g_malloc because it may recurse into a locked mutex. */
349 # define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 } while (0)
354 #else
355 # define ALLOC(P, SIZE) \
356 do { P = g_malloc0(SIZE); } while (0)
357 #endif
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
386 #undef ALLOC
388 return pd + (index & (L2_SIZE - 1));
391 static inline PageDesc *page_find(tb_page_addr_t index)
393 return page_find_alloc(index, 0);
396 #if !defined(CONFIG_USER_ONLY)
397 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
399 PhysPageDesc *pd;
400 void **lp;
401 int i;
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
413 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
418 pd = *lp;
419 if (pd == NULL) {
420 int i;
422 if (!alloc) {
423 return NULL;
426 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
428 for (i = 0; i < L2_SIZE; i++) {
429 pd[i].phys_offset = IO_MEM_UNASSIGNED;
430 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
434 return pd + (index & (L2_SIZE - 1));
437 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
439 return phys_page_find_alloc(index, 0);
442 static void tlb_protect_code(ram_addr_t ram_addr);
443 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
444 target_ulong vaddr);
445 #define mmap_lock() do { } while(0)
446 #define mmap_unlock() do { } while(0)
447 #endif
449 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
451 #if defined(CONFIG_USER_ONLY)
452 /* Currently it is not recommended to allocate big chunks of data in
453 user mode. It will change when a dedicated libc will be used */
454 #define USE_STATIC_CODE_GEN_BUFFER
455 #endif
457 #ifdef USE_STATIC_CODE_GEN_BUFFER
458 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
459 __attribute__((aligned (CODE_GEN_ALIGN)));
460 #endif
462 static void code_gen_alloc(unsigned long tb_size)
464 #ifdef USE_STATIC_CODE_GEN_BUFFER
465 code_gen_buffer = static_code_gen_buffer;
466 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
467 map_exec(code_gen_buffer, code_gen_buffer_size);
468 #else
469 code_gen_buffer_size = tb_size;
470 if (code_gen_buffer_size == 0) {
471 #if defined(CONFIG_USER_ONLY)
472 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
473 #else
474 /* XXX: needs adjustments */
475 code_gen_buffer_size = (unsigned long)(ram_size / 4);
476 #endif
478 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
479 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
480 /* The code gen buffer location may have constraints depending on
481 the host cpu and OS */
482 #if defined(__linux__)
484 int flags;
485 void *start = NULL;
487 flags = MAP_PRIVATE | MAP_ANONYMOUS;
488 #if defined(__x86_64__)
489 flags |= MAP_32BIT;
490 /* Cannot map more than that */
491 if (code_gen_buffer_size > (800 * 1024 * 1024))
492 code_gen_buffer_size = (800 * 1024 * 1024);
493 #elif defined(__sparc_v9__)
494 // Map the buffer below 2G, so we can use direct calls and branches
495 flags |= MAP_FIXED;
496 start = (void *) 0x60000000UL;
497 if (code_gen_buffer_size > (512 * 1024 * 1024))
498 code_gen_buffer_size = (512 * 1024 * 1024);
499 #elif defined(__arm__)
500 /* Map the buffer below 32M, so we can use direct calls and branches */
501 flags |= MAP_FIXED;
502 start = (void *) 0x01000000UL;
503 if (code_gen_buffer_size > 16 * 1024 * 1024)
504 code_gen_buffer_size = 16 * 1024 * 1024;
505 #elif defined(__s390x__)
506 /* Map the buffer so that we can use direct calls and branches. */
507 /* We have a +- 4GB range on the branches; leave some slop. */
508 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
509 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
511 start = (void *)0x90000000UL;
512 #endif
513 code_gen_buffer = mmap(start, code_gen_buffer_size,
514 PROT_WRITE | PROT_READ | PROT_EXEC,
515 flags, -1, 0);
516 if (code_gen_buffer == MAP_FAILED) {
517 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
518 exit(1);
521 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
522 || defined(__DragonFly__) || defined(__OpenBSD__) \
523 || defined(__NetBSD__)
525 int flags;
526 void *addr = NULL;
527 flags = MAP_PRIVATE | MAP_ANONYMOUS;
528 #if defined(__x86_64__)
529 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
530 * 0x40000000 is free */
531 flags |= MAP_FIXED;
532 addr = (void *)0x40000000;
533 /* Cannot map more than that */
534 if (code_gen_buffer_size > (800 * 1024 * 1024))
535 code_gen_buffer_size = (800 * 1024 * 1024);
536 #elif defined(__sparc_v9__)
537 // Map the buffer below 2G, so we can use direct calls and branches
538 flags |= MAP_FIXED;
539 addr = (void *) 0x60000000UL;
540 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
541 code_gen_buffer_size = (512 * 1024 * 1024);
543 #endif
544 code_gen_buffer = mmap(addr, code_gen_buffer_size,
545 PROT_WRITE | PROT_READ | PROT_EXEC,
546 flags, -1, 0);
547 if (code_gen_buffer == MAP_FAILED) {
548 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
549 exit(1);
552 #else
553 code_gen_buffer = g_malloc(code_gen_buffer_size);
554 map_exec(code_gen_buffer, code_gen_buffer_size);
555 #endif
556 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
557 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
558 code_gen_buffer_max_size = code_gen_buffer_size -
559 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
560 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
561 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
564 /* Must be called before using the QEMU cpus. 'tb_size' is the size
565 (in bytes) allocated to the translation buffer. Zero means default
566 size. */
567 void tcg_exec_init(unsigned long tb_size)
569 cpu_gen_init();
570 code_gen_alloc(tb_size);
571 code_gen_ptr = code_gen_buffer;
572 page_init();
573 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
574 /* There's no guest base to take into account, so go ahead and
575 initialize the prologue now. */
576 tcg_prologue_init(&tcg_ctx);
577 #endif
580 bool tcg_enabled(void)
582 return code_gen_buffer != NULL;
585 void cpu_exec_init_all(void)
587 #if !defined(CONFIG_USER_ONLY)
588 memory_map_init();
589 io_mem_init();
590 #endif
593 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
595 static int cpu_common_post_load(void *opaque, int version_id)
597 CPUState *env = opaque;
599 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
600 version_id is increased. */
601 env->interrupt_request &= ~0x01;
602 tlb_flush(env, 1);
604 return 0;
607 static const VMStateDescription vmstate_cpu_common = {
608 .name = "cpu_common",
609 .version_id = 1,
610 .minimum_version_id = 1,
611 .minimum_version_id_old = 1,
612 .post_load = cpu_common_post_load,
613 .fields = (VMStateField []) {
614 VMSTATE_UINT32(halted, CPUState),
615 VMSTATE_UINT32(interrupt_request, CPUState),
616 VMSTATE_END_OF_LIST()
619 #endif
621 CPUState *qemu_get_cpu(int cpu)
623 CPUState *env = first_cpu;
625 while (env) {
626 if (env->cpu_index == cpu)
627 break;
628 env = env->next_cpu;
631 return env;
634 void cpu_exec_init(CPUState *env)
636 CPUState **penv;
637 int cpu_index;
639 #if defined(CONFIG_USER_ONLY)
640 cpu_list_lock();
641 #endif
642 env->next_cpu = NULL;
643 penv = &first_cpu;
644 cpu_index = 0;
645 while (*penv != NULL) {
646 penv = &(*penv)->next_cpu;
647 cpu_index++;
649 env->cpu_index = cpu_index;
650 env->numa_node = 0;
651 QTAILQ_INIT(&env->breakpoints);
652 QTAILQ_INIT(&env->watchpoints);
653 #ifndef CONFIG_USER_ONLY
654 env->thread_id = qemu_get_thread_id();
655 #endif
656 *penv = env;
657 #if defined(CONFIG_USER_ONLY)
658 cpu_list_unlock();
659 #endif
660 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
661 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
662 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
663 cpu_save, cpu_load, env);
664 #endif
667 /* Allocate a new translation block. Flush the translation buffer if
668 too many translation blocks or too much generated code. */
669 static TranslationBlock *tb_alloc(target_ulong pc)
671 TranslationBlock *tb;
673 if (nb_tbs >= code_gen_max_blocks ||
674 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
675 return NULL;
676 tb = &tbs[nb_tbs++];
677 tb->pc = pc;
678 tb->cflags = 0;
679 return tb;
682 void tb_free(TranslationBlock *tb)
684 /* In practice this is mostly used for single use temporary TB
685 Ignore the hard cases and just back up if this TB happens to
686 be the last one generated. */
687 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
688 code_gen_ptr = tb->tc_ptr;
689 nb_tbs--;
693 static inline void invalidate_page_bitmap(PageDesc *p)
695 if (p->code_bitmap) {
696 g_free(p->code_bitmap);
697 p->code_bitmap = NULL;
699 p->code_write_count = 0;
702 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
704 static void page_flush_tb_1 (int level, void **lp)
706 int i;
708 if (*lp == NULL) {
709 return;
711 if (level == 0) {
712 PageDesc *pd = *lp;
713 for (i = 0; i < L2_SIZE; ++i) {
714 pd[i].first_tb = NULL;
715 invalidate_page_bitmap(pd + i);
717 } else {
718 void **pp = *lp;
719 for (i = 0; i < L2_SIZE; ++i) {
720 page_flush_tb_1 (level - 1, pp + i);
725 static void page_flush_tb(void)
727 int i;
728 for (i = 0; i < V_L1_SIZE; i++) {
729 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
733 /* flush all the translation blocks */
734 /* XXX: tb_flush is currently not thread safe */
735 void tb_flush(CPUState *env1)
737 CPUState *env;
738 #if defined(DEBUG_FLUSH)
739 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
740 (unsigned long)(code_gen_ptr - code_gen_buffer),
741 nb_tbs, nb_tbs > 0 ?
742 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
743 #endif
744 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
745 cpu_abort(env1, "Internal error: code buffer overflow\n");
747 nb_tbs = 0;
749 for(env = first_cpu; env != NULL; env = env->next_cpu) {
750 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
753 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
754 page_flush_tb();
756 code_gen_ptr = code_gen_buffer;
757 /* XXX: flush processor icache at this point if cache flush is
758 expensive */
759 tb_flush_count++;
762 #ifdef DEBUG_TB_CHECK
764 static void tb_invalidate_check(target_ulong address)
766 TranslationBlock *tb;
767 int i;
768 address &= TARGET_PAGE_MASK;
769 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
770 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
771 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
772 address >= tb->pc + tb->size)) {
773 printf("ERROR invalidate: address=" TARGET_FMT_lx
774 " PC=%08lx size=%04x\n",
775 address, (long)tb->pc, tb->size);
781 /* verify that all the pages have correct rights for code */
782 static void tb_page_check(void)
784 TranslationBlock *tb;
785 int i, flags1, flags2;
787 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
788 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
789 flags1 = page_get_flags(tb->pc);
790 flags2 = page_get_flags(tb->pc + tb->size - 1);
791 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
792 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
793 (long)tb->pc, tb->size, flags1, flags2);
799 #endif
801 /* invalidate one TB */
802 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
803 int next_offset)
805 TranslationBlock *tb1;
806 for(;;) {
807 tb1 = *ptb;
808 if (tb1 == tb) {
809 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
810 break;
812 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
816 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
818 TranslationBlock *tb1;
819 unsigned int n1;
821 for(;;) {
822 tb1 = *ptb;
823 n1 = (long)tb1 & 3;
824 tb1 = (TranslationBlock *)((long)tb1 & ~3);
825 if (tb1 == tb) {
826 *ptb = tb1->page_next[n1];
827 break;
829 ptb = &tb1->page_next[n1];
833 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
835 TranslationBlock *tb1, **ptb;
836 unsigned int n1;
838 ptb = &tb->jmp_next[n];
839 tb1 = *ptb;
840 if (tb1) {
841 /* find tb(n) in circular list */
842 for(;;) {
843 tb1 = *ptb;
844 n1 = (long)tb1 & 3;
845 tb1 = (TranslationBlock *)((long)tb1 & ~3);
846 if (n1 == n && tb1 == tb)
847 break;
848 if (n1 == 2) {
849 ptb = &tb1->jmp_first;
850 } else {
851 ptb = &tb1->jmp_next[n1];
854 /* now we can suppress tb(n) from the list */
855 *ptb = tb->jmp_next[n];
857 tb->jmp_next[n] = NULL;
861 /* reset the jump entry 'n' of a TB so that it is not chained to
862 another TB */
863 static inline void tb_reset_jump(TranslationBlock *tb, int n)
865 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
868 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
870 CPUState *env;
871 PageDesc *p;
872 unsigned int h, n1;
873 tb_page_addr_t phys_pc;
874 TranslationBlock *tb1, *tb2;
876 /* remove the TB from the hash list */
877 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
878 h = tb_phys_hash_func(phys_pc);
879 tb_remove(&tb_phys_hash[h], tb,
880 offsetof(TranslationBlock, phys_hash_next));
882 /* remove the TB from the page list */
883 if (tb->page_addr[0] != page_addr) {
884 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
885 tb_page_remove(&p->first_tb, tb);
886 invalidate_page_bitmap(p);
888 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
889 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
890 tb_page_remove(&p->first_tb, tb);
891 invalidate_page_bitmap(p);
894 tb_invalidated_flag = 1;
896 /* remove the TB from the hash list */
897 h = tb_jmp_cache_hash_func(tb->pc);
898 for(env = first_cpu; env != NULL; env = env->next_cpu) {
899 if (env->tb_jmp_cache[h] == tb)
900 env->tb_jmp_cache[h] = NULL;
903 /* suppress this TB from the two jump lists */
904 tb_jmp_remove(tb, 0);
905 tb_jmp_remove(tb, 1);
907 /* suppress any remaining jumps to this TB */
908 tb1 = tb->jmp_first;
909 for(;;) {
910 n1 = (long)tb1 & 3;
911 if (n1 == 2)
912 break;
913 tb1 = (TranslationBlock *)((long)tb1 & ~3);
914 tb2 = tb1->jmp_next[n1];
915 tb_reset_jump(tb1, n1);
916 tb1->jmp_next[n1] = NULL;
917 tb1 = tb2;
919 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
921 tb_phys_invalidate_count++;
924 static inline void set_bits(uint8_t *tab, int start, int len)
926 int end, mask, end1;
928 end = start + len;
929 tab += start >> 3;
930 mask = 0xff << (start & 7);
931 if ((start & ~7) == (end & ~7)) {
932 if (start < end) {
933 mask &= ~(0xff << (end & 7));
934 *tab |= mask;
936 } else {
937 *tab++ |= mask;
938 start = (start + 8) & ~7;
939 end1 = end & ~7;
940 while (start < end1) {
941 *tab++ = 0xff;
942 start += 8;
944 if (start < end) {
945 mask = ~(0xff << (end & 7));
946 *tab |= mask;
951 static void build_page_bitmap(PageDesc *p)
953 int n, tb_start, tb_end;
954 TranslationBlock *tb;
956 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
958 tb = p->first_tb;
959 while (tb != NULL) {
960 n = (long)tb & 3;
961 tb = (TranslationBlock *)((long)tb & ~3);
962 /* NOTE: this is subtle as a TB may span two physical pages */
963 if (n == 0) {
964 /* NOTE: tb_end may be after the end of the page, but
965 it is not a problem */
966 tb_start = tb->pc & ~TARGET_PAGE_MASK;
967 tb_end = tb_start + tb->size;
968 if (tb_end > TARGET_PAGE_SIZE)
969 tb_end = TARGET_PAGE_SIZE;
970 } else {
971 tb_start = 0;
972 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
974 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
975 tb = tb->page_next[n];
979 TranslationBlock *tb_gen_code(CPUState *env,
980 target_ulong pc, target_ulong cs_base,
981 int flags, int cflags)
983 TranslationBlock *tb;
984 uint8_t *tc_ptr;
985 tb_page_addr_t phys_pc, phys_page2;
986 target_ulong virt_page2;
987 int code_gen_size;
989 phys_pc = get_page_addr_code(env, pc);
990 tb = tb_alloc(pc);
991 if (!tb) {
992 /* flush must be done */
993 tb_flush(env);
994 /* cannot fail at this point */
995 tb = tb_alloc(pc);
996 /* Don't forget to invalidate previous TB info. */
997 tb_invalidated_flag = 1;
999 tc_ptr = code_gen_ptr;
1000 tb->tc_ptr = tc_ptr;
1001 tb->cs_base = cs_base;
1002 tb->flags = flags;
1003 tb->cflags = cflags;
1004 cpu_gen_code(env, tb, &code_gen_size);
1005 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1007 /* check next page if needed */
1008 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1009 phys_page2 = -1;
1010 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1011 phys_page2 = get_page_addr_code(env, virt_page2);
1013 tb_link_page(tb, phys_pc, phys_page2);
1014 return tb;
1017 /* invalidate all TBs which intersect with the target physical page
1018 starting in range [start;end[. NOTE: start and end must refer to
1019 the same physical page. 'is_cpu_write_access' should be true if called
1020 from a real cpu write access: the virtual CPU will exit the current
1021 TB if code is modified inside this TB. */
1022 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1023 int is_cpu_write_access)
1025 TranslationBlock *tb, *tb_next, *saved_tb;
1026 CPUState *env = cpu_single_env;
1027 tb_page_addr_t tb_start, tb_end;
1028 PageDesc *p;
1029 int n;
1030 #ifdef TARGET_HAS_PRECISE_SMC
1031 int current_tb_not_found = is_cpu_write_access;
1032 TranslationBlock *current_tb = NULL;
1033 int current_tb_modified = 0;
1034 target_ulong current_pc = 0;
1035 target_ulong current_cs_base = 0;
1036 int current_flags = 0;
1037 #endif /* TARGET_HAS_PRECISE_SMC */
1039 p = page_find(start >> TARGET_PAGE_BITS);
1040 if (!p)
1041 return;
1042 if (!p->code_bitmap &&
1043 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1044 is_cpu_write_access) {
1045 /* build code bitmap */
1046 build_page_bitmap(p);
1049 /* we remove all the TBs in the range [start, end[ */
1050 /* XXX: see if in some cases it could be faster to invalidate all the code */
1051 tb = p->first_tb;
1052 while (tb != NULL) {
1053 n = (long)tb & 3;
1054 tb = (TranslationBlock *)((long)tb & ~3);
1055 tb_next = tb->page_next[n];
1056 /* NOTE: this is subtle as a TB may span two physical pages */
1057 if (n == 0) {
1058 /* NOTE: tb_end may be after the end of the page, but
1059 it is not a problem */
1060 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1061 tb_end = tb_start + tb->size;
1062 } else {
1063 tb_start = tb->page_addr[1];
1064 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1066 if (!(tb_end <= start || tb_start >= end)) {
1067 #ifdef TARGET_HAS_PRECISE_SMC
1068 if (current_tb_not_found) {
1069 current_tb_not_found = 0;
1070 current_tb = NULL;
1071 if (env->mem_io_pc) {
1072 /* now we have a real cpu fault */
1073 current_tb = tb_find_pc(env->mem_io_pc);
1076 if (current_tb == tb &&
1077 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1078 /* If we are modifying the current TB, we must stop
1079 its execution. We could be more precise by checking
1080 that the modification is after the current PC, but it
1081 would require a specialized function to partially
1082 restore the CPU state */
1084 current_tb_modified = 1;
1085 cpu_restore_state(current_tb, env, env->mem_io_pc);
1086 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1087 &current_flags);
1089 #endif /* TARGET_HAS_PRECISE_SMC */
1090 /* we need to do that to handle the case where a signal
1091 occurs while doing tb_phys_invalidate() */
1092 saved_tb = NULL;
1093 if (env) {
1094 saved_tb = env->current_tb;
1095 env->current_tb = NULL;
1097 tb_phys_invalidate(tb, -1);
1098 if (env) {
1099 env->current_tb = saved_tb;
1100 if (env->interrupt_request && env->current_tb)
1101 cpu_interrupt(env, env->interrupt_request);
1104 tb = tb_next;
1106 #if !defined(CONFIG_USER_ONLY)
1107 /* if no code remaining, no need to continue to use slow writes */
1108 if (!p->first_tb) {
1109 invalidate_page_bitmap(p);
1110 if (is_cpu_write_access) {
1111 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1114 #endif
1115 #ifdef TARGET_HAS_PRECISE_SMC
1116 if (current_tb_modified) {
1117 /* we generate a block containing just the instruction
1118 modifying the memory. It will ensure that it cannot modify
1119 itself */
1120 env->current_tb = NULL;
1121 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1122 cpu_resume_from_signal(env, NULL);
1124 #endif
1127 /* len must be <= 8 and start must be a multiple of len */
1128 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1130 PageDesc *p;
1131 int offset, b;
1132 #if 0
1133 if (1) {
1134 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1135 cpu_single_env->mem_io_vaddr, len,
1136 cpu_single_env->eip,
1137 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1139 #endif
1140 p = page_find(start >> TARGET_PAGE_BITS);
1141 if (!p)
1142 return;
1143 if (p->code_bitmap) {
1144 offset = start & ~TARGET_PAGE_MASK;
1145 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1146 if (b & ((1 << len) - 1))
1147 goto do_invalidate;
1148 } else {
1149 do_invalidate:
1150 tb_invalidate_phys_page_range(start, start + len, 1);
1154 #if !defined(CONFIG_SOFTMMU)
1155 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1156 unsigned long pc, void *puc)
1158 TranslationBlock *tb;
1159 PageDesc *p;
1160 int n;
1161 #ifdef TARGET_HAS_PRECISE_SMC
1162 TranslationBlock *current_tb = NULL;
1163 CPUState *env = cpu_single_env;
1164 int current_tb_modified = 0;
1165 target_ulong current_pc = 0;
1166 target_ulong current_cs_base = 0;
1167 int current_flags = 0;
1168 #endif
1170 addr &= TARGET_PAGE_MASK;
1171 p = page_find(addr >> TARGET_PAGE_BITS);
1172 if (!p)
1173 return;
1174 tb = p->first_tb;
1175 #ifdef TARGET_HAS_PRECISE_SMC
1176 if (tb && pc != 0) {
1177 current_tb = tb_find_pc(pc);
1179 #endif
1180 while (tb != NULL) {
1181 n = (long)tb & 3;
1182 tb = (TranslationBlock *)((long)tb & ~3);
1183 #ifdef TARGET_HAS_PRECISE_SMC
1184 if (current_tb == tb &&
1185 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1186 /* If we are modifying the current TB, we must stop
1187 its execution. We could be more precise by checking
1188 that the modification is after the current PC, but it
1189 would require a specialized function to partially
1190 restore the CPU state */
1192 current_tb_modified = 1;
1193 cpu_restore_state(current_tb, env, pc);
1194 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1195 &current_flags);
1197 #endif /* TARGET_HAS_PRECISE_SMC */
1198 tb_phys_invalidate(tb, addr);
1199 tb = tb->page_next[n];
1201 p->first_tb = NULL;
1202 #ifdef TARGET_HAS_PRECISE_SMC
1203 if (current_tb_modified) {
1204 /* we generate a block containing just the instruction
1205 modifying the memory. It will ensure that it cannot modify
1206 itself */
1207 env->current_tb = NULL;
1208 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1209 cpu_resume_from_signal(env, puc);
1211 #endif
1213 #endif
1215 /* add the tb in the target page and protect it if necessary */
1216 static inline void tb_alloc_page(TranslationBlock *tb,
1217 unsigned int n, tb_page_addr_t page_addr)
1219 PageDesc *p;
1220 #ifndef CONFIG_USER_ONLY
1221 bool page_already_protected;
1222 #endif
1224 tb->page_addr[n] = page_addr;
1225 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1226 tb->page_next[n] = p->first_tb;
1227 #ifndef CONFIG_USER_ONLY
1228 page_already_protected = p->first_tb != NULL;
1229 #endif
1230 p->first_tb = (TranslationBlock *)((long)tb | n);
1231 invalidate_page_bitmap(p);
1233 #if defined(TARGET_HAS_SMC) || 1
1235 #if defined(CONFIG_USER_ONLY)
1236 if (p->flags & PAGE_WRITE) {
1237 target_ulong addr;
1238 PageDesc *p2;
1239 int prot;
1241 /* force the host page as non writable (writes will have a
1242 page fault + mprotect overhead) */
1243 page_addr &= qemu_host_page_mask;
1244 prot = 0;
1245 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1246 addr += TARGET_PAGE_SIZE) {
1248 p2 = page_find (addr >> TARGET_PAGE_BITS);
1249 if (!p2)
1250 continue;
1251 prot |= p2->flags;
1252 p2->flags &= ~PAGE_WRITE;
1254 mprotect(g2h(page_addr), qemu_host_page_size,
1255 (prot & PAGE_BITS) & ~PAGE_WRITE);
1256 #ifdef DEBUG_TB_INVALIDATE
1257 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1258 page_addr);
1259 #endif
1261 #else
1262 /* if some code is already present, then the pages are already
1263 protected. So we handle the case where only the first TB is
1264 allocated in a physical page */
1265 if (!page_already_protected) {
1266 tlb_protect_code(page_addr);
1268 #endif
1270 #endif /* TARGET_HAS_SMC */
1273 /* add a new TB and link it to the physical page tables. phys_page2 is
1274 (-1) to indicate that only one page contains the TB. */
1275 void tb_link_page(TranslationBlock *tb,
1276 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1278 unsigned int h;
1279 TranslationBlock **ptb;
1281 /* Grab the mmap lock to stop another thread invalidating this TB
1282 before we are done. */
1283 mmap_lock();
1284 /* add in the physical hash table */
1285 h = tb_phys_hash_func(phys_pc);
1286 ptb = &tb_phys_hash[h];
1287 tb->phys_hash_next = *ptb;
1288 *ptb = tb;
1290 /* add in the page list */
1291 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1292 if (phys_page2 != -1)
1293 tb_alloc_page(tb, 1, phys_page2);
1294 else
1295 tb->page_addr[1] = -1;
1297 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1298 tb->jmp_next[0] = NULL;
1299 tb->jmp_next[1] = NULL;
1301 /* init original jump addresses */
1302 if (tb->tb_next_offset[0] != 0xffff)
1303 tb_reset_jump(tb, 0);
1304 if (tb->tb_next_offset[1] != 0xffff)
1305 tb_reset_jump(tb, 1);
1307 #ifdef DEBUG_TB_CHECK
1308 tb_page_check();
1309 #endif
1310 mmap_unlock();
1313 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1314 tb[1].tc_ptr. Return NULL if not found */
1315 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1317 int m_min, m_max, m;
1318 unsigned long v;
1319 TranslationBlock *tb;
1321 if (nb_tbs <= 0)
1322 return NULL;
1323 if (tc_ptr < (unsigned long)code_gen_buffer ||
1324 tc_ptr >= (unsigned long)code_gen_ptr)
1325 return NULL;
1326 /* binary search (cf Knuth) */
1327 m_min = 0;
1328 m_max = nb_tbs - 1;
1329 while (m_min <= m_max) {
1330 m = (m_min + m_max) >> 1;
1331 tb = &tbs[m];
1332 v = (unsigned long)tb->tc_ptr;
1333 if (v == tc_ptr)
1334 return tb;
1335 else if (tc_ptr < v) {
1336 m_max = m - 1;
1337 } else {
1338 m_min = m + 1;
1341 return &tbs[m_max];
1344 static void tb_reset_jump_recursive(TranslationBlock *tb);
1346 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1348 TranslationBlock *tb1, *tb_next, **ptb;
1349 unsigned int n1;
1351 tb1 = tb->jmp_next[n];
1352 if (tb1 != NULL) {
1353 /* find head of list */
1354 for(;;) {
1355 n1 = (long)tb1 & 3;
1356 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1357 if (n1 == 2)
1358 break;
1359 tb1 = tb1->jmp_next[n1];
1361 /* we are now sure now that tb jumps to tb1 */
1362 tb_next = tb1;
1364 /* remove tb from the jmp_first list */
1365 ptb = &tb_next->jmp_first;
1366 for(;;) {
1367 tb1 = *ptb;
1368 n1 = (long)tb1 & 3;
1369 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1370 if (n1 == n && tb1 == tb)
1371 break;
1372 ptb = &tb1->jmp_next[n1];
1374 *ptb = tb->jmp_next[n];
1375 tb->jmp_next[n] = NULL;
1377 /* suppress the jump to next tb in generated code */
1378 tb_reset_jump(tb, n);
1380 /* suppress jumps in the tb on which we could have jumped */
1381 tb_reset_jump_recursive(tb_next);
1385 static void tb_reset_jump_recursive(TranslationBlock *tb)
1387 tb_reset_jump_recursive2(tb, 0);
1388 tb_reset_jump_recursive2(tb, 1);
1391 #if defined(TARGET_HAS_ICE)
1392 #if defined(CONFIG_USER_ONLY)
1393 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1395 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1397 #else
1398 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1400 target_phys_addr_t addr;
1401 target_ulong pd;
1402 ram_addr_t ram_addr;
1403 PhysPageDesc *p;
1405 addr = cpu_get_phys_page_debug(env, pc);
1406 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1407 if (!p) {
1408 pd = IO_MEM_UNASSIGNED;
1409 } else {
1410 pd = p->phys_offset;
1412 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1413 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1415 #endif
1416 #endif /* TARGET_HAS_ICE */
1418 #if defined(CONFIG_USER_ONLY)
1419 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1424 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1425 int flags, CPUWatchpoint **watchpoint)
1427 return -ENOSYS;
1429 #else
1430 /* Add a watchpoint. */
1431 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1432 int flags, CPUWatchpoint **watchpoint)
1434 target_ulong len_mask = ~(len - 1);
1435 CPUWatchpoint *wp;
1437 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1438 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1439 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1440 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1441 return -EINVAL;
1443 wp = g_malloc(sizeof(*wp));
1445 wp->vaddr = addr;
1446 wp->len_mask = len_mask;
1447 wp->flags = flags;
1449 /* keep all GDB-injected watchpoints in front */
1450 if (flags & BP_GDB)
1451 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1452 else
1453 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1455 tlb_flush_page(env, addr);
1457 if (watchpoint)
1458 *watchpoint = wp;
1459 return 0;
1462 /* Remove a specific watchpoint. */
1463 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1464 int flags)
1466 target_ulong len_mask = ~(len - 1);
1467 CPUWatchpoint *wp;
1469 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1470 if (addr == wp->vaddr && len_mask == wp->len_mask
1471 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1472 cpu_watchpoint_remove_by_ref(env, wp);
1473 return 0;
1476 return -ENOENT;
1479 /* Remove a specific watchpoint by reference. */
1480 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1482 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1484 tlb_flush_page(env, watchpoint->vaddr);
1486 g_free(watchpoint);
1489 /* Remove all matching watchpoints. */
1490 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1492 CPUWatchpoint *wp, *next;
1494 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1495 if (wp->flags & mask)
1496 cpu_watchpoint_remove_by_ref(env, wp);
1499 #endif
1501 /* Add a breakpoint. */
1502 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1503 CPUBreakpoint **breakpoint)
1505 #if defined(TARGET_HAS_ICE)
1506 CPUBreakpoint *bp;
1508 bp = g_malloc(sizeof(*bp));
1510 bp->pc = pc;
1511 bp->flags = flags;
1513 /* keep all GDB-injected breakpoints in front */
1514 if (flags & BP_GDB)
1515 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1516 else
1517 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1519 breakpoint_invalidate(env, pc);
1521 if (breakpoint)
1522 *breakpoint = bp;
1523 return 0;
1524 #else
1525 return -ENOSYS;
1526 #endif
1529 /* Remove a specific breakpoint. */
1530 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1532 #if defined(TARGET_HAS_ICE)
1533 CPUBreakpoint *bp;
1535 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1536 if (bp->pc == pc && bp->flags == flags) {
1537 cpu_breakpoint_remove_by_ref(env, bp);
1538 return 0;
1541 return -ENOENT;
1542 #else
1543 return -ENOSYS;
1544 #endif
1547 /* Remove a specific breakpoint by reference. */
1548 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1550 #if defined(TARGET_HAS_ICE)
1551 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1553 breakpoint_invalidate(env, breakpoint->pc);
1555 g_free(breakpoint);
1556 #endif
1559 /* Remove all matching breakpoints. */
1560 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1562 #if defined(TARGET_HAS_ICE)
1563 CPUBreakpoint *bp, *next;
1565 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1566 if (bp->flags & mask)
1567 cpu_breakpoint_remove_by_ref(env, bp);
1569 #endif
1572 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1573 CPU loop after each instruction */
1574 void cpu_single_step(CPUState *env, int enabled)
1576 #if defined(TARGET_HAS_ICE)
1577 if (env->singlestep_enabled != enabled) {
1578 env->singlestep_enabled = enabled;
1579 if (kvm_enabled())
1580 kvm_update_guest_debug(env, 0);
1581 else {
1582 /* must flush all the translated code to avoid inconsistencies */
1583 /* XXX: only flush what is necessary */
1584 tb_flush(env);
1587 #endif
1590 /* enable or disable low levels log */
1591 void cpu_set_log(int log_flags)
1593 loglevel = log_flags;
1594 if (loglevel && !logfile) {
1595 logfile = fopen(logfilename, log_append ? "a" : "w");
1596 if (!logfile) {
1597 perror(logfilename);
1598 _exit(1);
1600 #if !defined(CONFIG_SOFTMMU)
1601 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1603 static char logfile_buf[4096];
1604 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1606 #elif !defined(_WIN32)
1607 /* Win32 doesn't support line-buffering and requires size >= 2 */
1608 setvbuf(logfile, NULL, _IOLBF, 0);
1609 #endif
1610 log_append = 1;
1612 if (!loglevel && logfile) {
1613 fclose(logfile);
1614 logfile = NULL;
1618 void cpu_set_log_filename(const char *filename)
1620 logfilename = strdup(filename);
1621 if (logfile) {
1622 fclose(logfile);
1623 logfile = NULL;
1625 cpu_set_log(loglevel);
1628 static void cpu_unlink_tb(CPUState *env)
1630 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1631 problem and hope the cpu will stop of its own accord. For userspace
1632 emulation this often isn't actually as bad as it sounds. Often
1633 signals are used primarily to interrupt blocking syscalls. */
1634 TranslationBlock *tb;
1635 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1637 spin_lock(&interrupt_lock);
1638 tb = env->current_tb;
1639 /* if the cpu is currently executing code, we must unlink it and
1640 all the potentially executing TB */
1641 if (tb) {
1642 env->current_tb = NULL;
1643 tb_reset_jump_recursive(tb);
1645 spin_unlock(&interrupt_lock);
1648 #ifndef CONFIG_USER_ONLY
1649 /* mask must never be zero, except for A20 change call */
1650 static void tcg_handle_interrupt(CPUState *env, int mask)
1652 int old_mask;
1654 old_mask = env->interrupt_request;
1655 env->interrupt_request |= mask;
1658 * If called from iothread context, wake the target cpu in
1659 * case its halted.
1661 if (!qemu_cpu_is_self(env)) {
1662 qemu_cpu_kick(env);
1663 return;
1666 if (use_icount) {
1667 env->icount_decr.u16.high = 0xffff;
1668 if (!can_do_io(env)
1669 && (mask & ~old_mask) != 0) {
1670 cpu_abort(env, "Raised interrupt while not in I/O function");
1672 } else {
1673 cpu_unlink_tb(env);
1677 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1679 #else /* CONFIG_USER_ONLY */
1681 void cpu_interrupt(CPUState *env, int mask)
1683 env->interrupt_request |= mask;
1684 cpu_unlink_tb(env);
1686 #endif /* CONFIG_USER_ONLY */
1688 void cpu_reset_interrupt(CPUState *env, int mask)
1690 env->interrupt_request &= ~mask;
1693 void cpu_exit(CPUState *env)
1695 env->exit_request = 1;
1696 cpu_unlink_tb(env);
1699 const CPULogItem cpu_log_items[] = {
1700 { CPU_LOG_TB_OUT_ASM, "out_asm",
1701 "show generated host assembly code for each compiled TB" },
1702 { CPU_LOG_TB_IN_ASM, "in_asm",
1703 "show target assembly code for each compiled TB" },
1704 { CPU_LOG_TB_OP, "op",
1705 "show micro ops for each compiled TB" },
1706 { CPU_LOG_TB_OP_OPT, "op_opt",
1707 "show micro ops "
1708 #ifdef TARGET_I386
1709 "before eflags optimization and "
1710 #endif
1711 "after liveness analysis" },
1712 { CPU_LOG_INT, "int",
1713 "show interrupts/exceptions in short format" },
1714 { CPU_LOG_EXEC, "exec",
1715 "show trace before each executed TB (lots of logs)" },
1716 { CPU_LOG_TB_CPU, "cpu",
1717 "show CPU state before block translation" },
1718 #ifdef TARGET_I386
1719 { CPU_LOG_PCALL, "pcall",
1720 "show protected mode far calls/returns/exceptions" },
1721 { CPU_LOG_RESET, "cpu_reset",
1722 "show CPU state before CPU resets" },
1723 #endif
1724 #ifdef DEBUG_IOPORT
1725 { CPU_LOG_IOPORT, "ioport",
1726 "show all i/o ports accesses" },
1727 #endif
1728 { 0, NULL, NULL },
1731 #ifndef CONFIG_USER_ONLY
1732 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1733 = QLIST_HEAD_INITIALIZER(memory_client_list);
1735 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1736 ram_addr_t size,
1737 ram_addr_t phys_offset,
1738 bool log_dirty)
1740 CPUPhysMemoryClient *client;
1741 QLIST_FOREACH(client, &memory_client_list, list) {
1742 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
1746 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1747 target_phys_addr_t end)
1749 CPUPhysMemoryClient *client;
1750 QLIST_FOREACH(client, &memory_client_list, list) {
1751 int r = client->sync_dirty_bitmap(client, start, end);
1752 if (r < 0)
1753 return r;
1755 return 0;
1758 static int cpu_notify_migration_log(int enable)
1760 CPUPhysMemoryClient *client;
1761 QLIST_FOREACH(client, &memory_client_list, list) {
1762 int r = client->migration_log(client, enable);
1763 if (r < 0)
1764 return r;
1766 return 0;
1769 struct last_map {
1770 target_phys_addr_t start_addr;
1771 ram_addr_t size;
1772 ram_addr_t phys_offset;
1775 /* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1776 * address. Each intermediate table provides the next L2_BITs of guest
1777 * physical address space. The number of levels vary based on host and
1778 * guest configuration, making it efficient to build the final guest
1779 * physical address by seeding the L1 offset and shifting and adding in
1780 * each L2 offset as we recurse through them. */
1781 static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1782 void **lp, target_phys_addr_t addr,
1783 struct last_map *map)
1785 int i;
1787 if (*lp == NULL) {
1788 return;
1790 if (level == 0) {
1791 PhysPageDesc *pd = *lp;
1792 addr <<= L2_BITS + TARGET_PAGE_BITS;
1793 for (i = 0; i < L2_SIZE; ++i) {
1794 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1795 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1797 if (map->size &&
1798 start_addr == map->start_addr + map->size &&
1799 pd[i].phys_offset == map->phys_offset + map->size) {
1801 map->size += TARGET_PAGE_SIZE;
1802 continue;
1803 } else if (map->size) {
1804 client->set_memory(client, map->start_addr,
1805 map->size, map->phys_offset, false);
1808 map->start_addr = start_addr;
1809 map->size = TARGET_PAGE_SIZE;
1810 map->phys_offset = pd[i].phys_offset;
1813 } else {
1814 void **pp = *lp;
1815 for (i = 0; i < L2_SIZE; ++i) {
1816 phys_page_for_each_1(client, level - 1, pp + i,
1817 (addr << L2_BITS) | i, map);
1822 static void phys_page_for_each(CPUPhysMemoryClient *client)
1824 int i;
1825 struct last_map map = { };
1827 for (i = 0; i < P_L1_SIZE; ++i) {
1828 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1829 l1_phys_map + i, i, &map);
1831 if (map.size) {
1832 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1833 false);
1837 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1839 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1840 phys_page_for_each(client);
1843 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1845 QLIST_REMOVE(client, list);
1847 #endif
1849 static int cmp1(const char *s1, int n, const char *s2)
1851 if (strlen(s2) != n)
1852 return 0;
1853 return memcmp(s1, s2, n) == 0;
1856 /* takes a comma separated list of log masks. Return 0 if error. */
1857 int cpu_str_to_log_mask(const char *str)
1859 const CPULogItem *item;
1860 int mask;
1861 const char *p, *p1;
1863 p = str;
1864 mask = 0;
1865 for(;;) {
1866 p1 = strchr(p, ',');
1867 if (!p1)
1868 p1 = p + strlen(p);
1869 if(cmp1(p,p1-p,"all")) {
1870 for(item = cpu_log_items; item->mask != 0; item++) {
1871 mask |= item->mask;
1873 } else {
1874 for(item = cpu_log_items; item->mask != 0; item++) {
1875 if (cmp1(p, p1 - p, item->name))
1876 goto found;
1878 return 0;
1880 found:
1881 mask |= item->mask;
1882 if (*p1 != ',')
1883 break;
1884 p = p1 + 1;
1886 return mask;
1889 void cpu_abort(CPUState *env, const char *fmt, ...)
1891 va_list ap;
1892 va_list ap2;
1894 va_start(ap, fmt);
1895 va_copy(ap2, ap);
1896 fprintf(stderr, "qemu: fatal: ");
1897 vfprintf(stderr, fmt, ap);
1898 fprintf(stderr, "\n");
1899 #ifdef TARGET_I386
1900 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1901 #else
1902 cpu_dump_state(env, stderr, fprintf, 0);
1903 #endif
1904 if (qemu_log_enabled()) {
1905 qemu_log("qemu: fatal: ");
1906 qemu_log_vprintf(fmt, ap2);
1907 qemu_log("\n");
1908 #ifdef TARGET_I386
1909 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1910 #else
1911 log_cpu_state(env, 0);
1912 #endif
1913 qemu_log_flush();
1914 qemu_log_close();
1916 va_end(ap2);
1917 va_end(ap);
1918 #if defined(CONFIG_USER_ONLY)
1920 struct sigaction act;
1921 sigfillset(&act.sa_mask);
1922 act.sa_handler = SIG_DFL;
1923 sigaction(SIGABRT, &act, NULL);
1925 #endif
1926 abort();
1929 CPUState *cpu_copy(CPUState *env)
1931 CPUState *new_env = cpu_init(env->cpu_model_str);
1932 CPUState *next_cpu = new_env->next_cpu;
1933 int cpu_index = new_env->cpu_index;
1934 #if defined(TARGET_HAS_ICE)
1935 CPUBreakpoint *bp;
1936 CPUWatchpoint *wp;
1937 #endif
1939 memcpy(new_env, env, sizeof(CPUState));
1941 /* Preserve chaining and index. */
1942 new_env->next_cpu = next_cpu;
1943 new_env->cpu_index = cpu_index;
1945 /* Clone all break/watchpoints.
1946 Note: Once we support ptrace with hw-debug register access, make sure
1947 BP_CPU break/watchpoints are handled correctly on clone. */
1948 QTAILQ_INIT(&env->breakpoints);
1949 QTAILQ_INIT(&env->watchpoints);
1950 #if defined(TARGET_HAS_ICE)
1951 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1952 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1954 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1955 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1956 wp->flags, NULL);
1958 #endif
1960 return new_env;
1963 #if !defined(CONFIG_USER_ONLY)
1965 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1967 unsigned int i;
1969 /* Discard jump cache entries for any tb which might potentially
1970 overlap the flushed page. */
1971 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1972 memset (&env->tb_jmp_cache[i], 0,
1973 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1975 i = tb_jmp_cache_hash_page(addr);
1976 memset (&env->tb_jmp_cache[i], 0,
1977 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1980 static CPUTLBEntry s_cputlb_empty_entry = {
1981 .addr_read = -1,
1982 .addr_write = -1,
1983 .addr_code = -1,
1984 .addend = -1,
1987 /* NOTE: if flush_global is true, also flush global entries (not
1988 implemented yet) */
1989 void tlb_flush(CPUState *env, int flush_global)
1991 int i;
1993 #if defined(DEBUG_TLB)
1994 printf("tlb_flush:\n");
1995 #endif
1996 /* must reset current TB so that interrupts cannot modify the
1997 links while we are modifying them */
1998 env->current_tb = NULL;
2000 for(i = 0; i < CPU_TLB_SIZE; i++) {
2001 int mmu_idx;
2002 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2003 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
2007 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
2009 env->tlb_flush_addr = -1;
2010 env->tlb_flush_mask = 0;
2011 tlb_flush_count++;
2014 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
2016 if (addr == (tlb_entry->addr_read &
2017 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2018 addr == (tlb_entry->addr_write &
2019 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2020 addr == (tlb_entry->addr_code &
2021 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
2022 *tlb_entry = s_cputlb_empty_entry;
2026 void tlb_flush_page(CPUState *env, target_ulong addr)
2028 int i;
2029 int mmu_idx;
2031 #if defined(DEBUG_TLB)
2032 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
2033 #endif
2034 /* Check if we need to flush due to large pages. */
2035 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2036 #if defined(DEBUG_TLB)
2037 printf("tlb_flush_page: forced full flush ("
2038 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2039 env->tlb_flush_addr, env->tlb_flush_mask);
2040 #endif
2041 tlb_flush(env, 1);
2042 return;
2044 /* must reset current TB so that interrupts cannot modify the
2045 links while we are modifying them */
2046 env->current_tb = NULL;
2048 addr &= TARGET_PAGE_MASK;
2049 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2051 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2053 tlb_flush_jmp_cache(env, addr);
2056 /* update the TLBs so that writes to code in the virtual page 'addr'
2057 can be detected */
2058 static void tlb_protect_code(ram_addr_t ram_addr)
2060 cpu_physical_memory_reset_dirty(ram_addr,
2061 ram_addr + TARGET_PAGE_SIZE,
2062 CODE_DIRTY_FLAG);
2065 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2066 tested for self modifying code */
2067 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2068 target_ulong vaddr)
2070 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2073 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2074 unsigned long start, unsigned long length)
2076 unsigned long addr;
2077 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2078 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2079 if ((addr - start) < length) {
2080 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2085 /* Note: start and end must be within the same ram block. */
2086 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2087 int dirty_flags)
2089 CPUState *env;
2090 unsigned long length, start1;
2091 int i;
2093 start &= TARGET_PAGE_MASK;
2094 end = TARGET_PAGE_ALIGN(end);
2096 length = end - start;
2097 if (length == 0)
2098 return;
2099 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2101 /* we modify the TLB cache so that the dirty bit will be set again
2102 when accessing the range */
2103 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2104 /* Check that we don't span multiple blocks - this breaks the
2105 address comparisons below. */
2106 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2107 != (end - 1) - start) {
2108 abort();
2111 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2112 int mmu_idx;
2113 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2114 for(i = 0; i < CPU_TLB_SIZE; i++)
2115 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2116 start1, length);
2121 int cpu_physical_memory_set_dirty_tracking(int enable)
2123 int ret = 0;
2124 in_migration = enable;
2125 ret = cpu_notify_migration_log(!!enable);
2126 return ret;
2129 int cpu_physical_memory_get_dirty_tracking(void)
2131 return in_migration;
2134 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2135 target_phys_addr_t end_addr)
2137 int ret;
2139 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2140 return ret;
2143 int cpu_physical_log_start(target_phys_addr_t start_addr,
2144 ram_addr_t size)
2146 CPUPhysMemoryClient *client;
2147 QLIST_FOREACH(client, &memory_client_list, list) {
2148 if (client->log_start) {
2149 int r = client->log_start(client, start_addr, size);
2150 if (r < 0) {
2151 return r;
2155 return 0;
2158 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2159 ram_addr_t size)
2161 CPUPhysMemoryClient *client;
2162 QLIST_FOREACH(client, &memory_client_list, list) {
2163 if (client->log_stop) {
2164 int r = client->log_stop(client, start_addr, size);
2165 if (r < 0) {
2166 return r;
2170 return 0;
2173 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2175 ram_addr_t ram_addr;
2176 void *p;
2178 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2179 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2180 + tlb_entry->addend);
2181 ram_addr = qemu_ram_addr_from_host_nofail(p);
2182 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2183 tlb_entry->addr_write |= TLB_NOTDIRTY;
2188 /* update the TLB according to the current state of the dirty bits */
2189 void cpu_tlb_update_dirty(CPUState *env)
2191 int i;
2192 int mmu_idx;
2193 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2194 for(i = 0; i < CPU_TLB_SIZE; i++)
2195 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2199 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2201 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2202 tlb_entry->addr_write = vaddr;
2205 /* update the TLB corresponding to virtual page vaddr
2206 so that it is no longer dirty */
2207 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2209 int i;
2210 int mmu_idx;
2212 vaddr &= TARGET_PAGE_MASK;
2213 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2214 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2215 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2218 /* Our TLB does not support large pages, so remember the area covered by
2219 large pages and trigger a full TLB flush if these are invalidated. */
2220 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2221 target_ulong size)
2223 target_ulong mask = ~(size - 1);
2225 if (env->tlb_flush_addr == (target_ulong)-1) {
2226 env->tlb_flush_addr = vaddr & mask;
2227 env->tlb_flush_mask = mask;
2228 return;
2230 /* Extend the existing region to include the new page.
2231 This is a compromise between unnecessary flushes and the cost
2232 of maintaining a full variable size TLB. */
2233 mask &= env->tlb_flush_mask;
2234 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2235 mask <<= 1;
2237 env->tlb_flush_addr &= mask;
2238 env->tlb_flush_mask = mask;
2241 /* Add a new TLB entry. At most one entry for a given virtual address
2242 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2243 supplied size is only used by tlb_flush_page. */
2244 void tlb_set_page(CPUState *env, target_ulong vaddr,
2245 target_phys_addr_t paddr, int prot,
2246 int mmu_idx, target_ulong size)
2248 PhysPageDesc *p;
2249 unsigned long pd;
2250 unsigned int index;
2251 target_ulong address;
2252 target_ulong code_address;
2253 unsigned long addend;
2254 CPUTLBEntry *te;
2255 CPUWatchpoint *wp;
2256 target_phys_addr_t iotlb;
2258 assert(size >= TARGET_PAGE_SIZE);
2259 if (size != TARGET_PAGE_SIZE) {
2260 tlb_add_large_page(env, vaddr, size);
2262 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2263 if (!p) {
2264 pd = IO_MEM_UNASSIGNED;
2265 } else {
2266 pd = p->phys_offset;
2268 #if defined(DEBUG_TLB)
2269 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2270 " prot=%x idx=%d pd=0x%08lx\n",
2271 vaddr, paddr, prot, mmu_idx, pd);
2272 #endif
2274 address = vaddr;
2275 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2276 /* IO memory case (romd handled later) */
2277 address |= TLB_MMIO;
2279 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2280 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2281 /* Normal RAM. */
2282 iotlb = pd & TARGET_PAGE_MASK;
2283 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2284 iotlb |= IO_MEM_NOTDIRTY;
2285 else
2286 iotlb |= IO_MEM_ROM;
2287 } else {
2288 /* IO handlers are currently passed a physical address.
2289 It would be nice to pass an offset from the base address
2290 of that region. This would avoid having to special case RAM,
2291 and avoid full address decoding in every device.
2292 We can't use the high bits of pd for this because
2293 IO_MEM_ROMD uses these as a ram address. */
2294 iotlb = (pd & ~TARGET_PAGE_MASK);
2295 if (p) {
2296 iotlb += p->region_offset;
2297 } else {
2298 iotlb += paddr;
2302 code_address = address;
2303 /* Make accesses to pages with watchpoints go via the
2304 watchpoint trap routines. */
2305 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2306 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2307 /* Avoid trapping reads of pages with a write breakpoint. */
2308 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2309 iotlb = io_mem_watch + paddr;
2310 address |= TLB_MMIO;
2311 break;
2316 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2317 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2318 te = &env->tlb_table[mmu_idx][index];
2319 te->addend = addend - vaddr;
2320 if (prot & PAGE_READ) {
2321 te->addr_read = address;
2322 } else {
2323 te->addr_read = -1;
2326 if (prot & PAGE_EXEC) {
2327 te->addr_code = code_address;
2328 } else {
2329 te->addr_code = -1;
2331 if (prot & PAGE_WRITE) {
2332 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2333 (pd & IO_MEM_ROMD)) {
2334 /* Write access calls the I/O callback. */
2335 te->addr_write = address | TLB_MMIO;
2336 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2337 !cpu_physical_memory_is_dirty(pd)) {
2338 te->addr_write = address | TLB_NOTDIRTY;
2339 } else {
2340 te->addr_write = address;
2342 } else {
2343 te->addr_write = -1;
2347 #else
2349 void tlb_flush(CPUState *env, int flush_global)
2353 void tlb_flush_page(CPUState *env, target_ulong addr)
2358 * Walks guest process memory "regions" one by one
2359 * and calls callback function 'fn' for each region.
2362 struct walk_memory_regions_data
2364 walk_memory_regions_fn fn;
2365 void *priv;
2366 unsigned long start;
2367 int prot;
2370 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2371 abi_ulong end, int new_prot)
2373 if (data->start != -1ul) {
2374 int rc = data->fn(data->priv, data->start, end, data->prot);
2375 if (rc != 0) {
2376 return rc;
2380 data->start = (new_prot ? end : -1ul);
2381 data->prot = new_prot;
2383 return 0;
2386 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2387 abi_ulong base, int level, void **lp)
2389 abi_ulong pa;
2390 int i, rc;
2392 if (*lp == NULL) {
2393 return walk_memory_regions_end(data, base, 0);
2396 if (level == 0) {
2397 PageDesc *pd = *lp;
2398 for (i = 0; i < L2_SIZE; ++i) {
2399 int prot = pd[i].flags;
2401 pa = base | (i << TARGET_PAGE_BITS);
2402 if (prot != data->prot) {
2403 rc = walk_memory_regions_end(data, pa, prot);
2404 if (rc != 0) {
2405 return rc;
2409 } else {
2410 void **pp = *lp;
2411 for (i = 0; i < L2_SIZE; ++i) {
2412 pa = base | ((abi_ulong)i <<
2413 (TARGET_PAGE_BITS + L2_BITS * level));
2414 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2415 if (rc != 0) {
2416 return rc;
2421 return 0;
2424 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2426 struct walk_memory_regions_data data;
2427 unsigned long i;
2429 data.fn = fn;
2430 data.priv = priv;
2431 data.start = -1ul;
2432 data.prot = 0;
2434 for (i = 0; i < V_L1_SIZE; i++) {
2435 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2436 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2437 if (rc != 0) {
2438 return rc;
2442 return walk_memory_regions_end(&data, 0, 0);
2445 static int dump_region(void *priv, abi_ulong start,
2446 abi_ulong end, unsigned long prot)
2448 FILE *f = (FILE *)priv;
2450 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2451 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2452 start, end, end - start,
2453 ((prot & PAGE_READ) ? 'r' : '-'),
2454 ((prot & PAGE_WRITE) ? 'w' : '-'),
2455 ((prot & PAGE_EXEC) ? 'x' : '-'));
2457 return (0);
2460 /* dump memory mappings */
2461 void page_dump(FILE *f)
2463 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2464 "start", "end", "size", "prot");
2465 walk_memory_regions(f, dump_region);
2468 int page_get_flags(target_ulong address)
2470 PageDesc *p;
2472 p = page_find(address >> TARGET_PAGE_BITS);
2473 if (!p)
2474 return 0;
2475 return p->flags;
2478 /* Modify the flags of a page and invalidate the code if necessary.
2479 The flag PAGE_WRITE_ORG is positioned automatically depending
2480 on PAGE_WRITE. The mmap_lock should already be held. */
2481 void page_set_flags(target_ulong start, target_ulong end, int flags)
2483 target_ulong addr, len;
2485 /* This function should never be called with addresses outside the
2486 guest address space. If this assert fires, it probably indicates
2487 a missing call to h2g_valid. */
2488 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2489 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2490 #endif
2491 assert(start < end);
2493 start = start & TARGET_PAGE_MASK;
2494 end = TARGET_PAGE_ALIGN(end);
2496 if (flags & PAGE_WRITE) {
2497 flags |= PAGE_WRITE_ORG;
2500 for (addr = start, len = end - start;
2501 len != 0;
2502 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2503 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2505 /* If the write protection bit is set, then we invalidate
2506 the code inside. */
2507 if (!(p->flags & PAGE_WRITE) &&
2508 (flags & PAGE_WRITE) &&
2509 p->first_tb) {
2510 tb_invalidate_phys_page(addr, 0, NULL);
2512 p->flags = flags;
2516 int page_check_range(target_ulong start, target_ulong len, int flags)
2518 PageDesc *p;
2519 target_ulong end;
2520 target_ulong addr;
2522 /* This function should never be called with addresses outside the
2523 guest address space. If this assert fires, it probably indicates
2524 a missing call to h2g_valid. */
2525 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2526 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2527 #endif
2529 if (len == 0) {
2530 return 0;
2532 if (start + len - 1 < start) {
2533 /* We've wrapped around. */
2534 return -1;
2537 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2538 start = start & TARGET_PAGE_MASK;
2540 for (addr = start, len = end - start;
2541 len != 0;
2542 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2543 p = page_find(addr >> TARGET_PAGE_BITS);
2544 if( !p )
2545 return -1;
2546 if( !(p->flags & PAGE_VALID) )
2547 return -1;
2549 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2550 return -1;
2551 if (flags & PAGE_WRITE) {
2552 if (!(p->flags & PAGE_WRITE_ORG))
2553 return -1;
2554 /* unprotect the page if it was put read-only because it
2555 contains translated code */
2556 if (!(p->flags & PAGE_WRITE)) {
2557 if (!page_unprotect(addr, 0, NULL))
2558 return -1;
2560 return 0;
2563 return 0;
2566 /* called from signal handler: invalidate the code and unprotect the
2567 page. Return TRUE if the fault was successfully handled. */
2568 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2570 unsigned int prot;
2571 PageDesc *p;
2572 target_ulong host_start, host_end, addr;
2574 /* Technically this isn't safe inside a signal handler. However we
2575 know this only ever happens in a synchronous SEGV handler, so in
2576 practice it seems to be ok. */
2577 mmap_lock();
2579 p = page_find(address >> TARGET_PAGE_BITS);
2580 if (!p) {
2581 mmap_unlock();
2582 return 0;
2585 /* if the page was really writable, then we change its
2586 protection back to writable */
2587 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2588 host_start = address & qemu_host_page_mask;
2589 host_end = host_start + qemu_host_page_size;
2591 prot = 0;
2592 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2593 p = page_find(addr >> TARGET_PAGE_BITS);
2594 p->flags |= PAGE_WRITE;
2595 prot |= p->flags;
2597 /* and since the content will be modified, we must invalidate
2598 the corresponding translated code. */
2599 tb_invalidate_phys_page(addr, pc, puc);
2600 #ifdef DEBUG_TB_CHECK
2601 tb_invalidate_check(addr);
2602 #endif
2604 mprotect((void *)g2h(host_start), qemu_host_page_size,
2605 prot & PAGE_BITS);
2607 mmap_unlock();
2608 return 1;
2610 mmap_unlock();
2611 return 0;
2614 static inline void tlb_set_dirty(CPUState *env,
2615 unsigned long addr, target_ulong vaddr)
2618 #endif /* defined(CONFIG_USER_ONLY) */
2620 #if !defined(CONFIG_USER_ONLY)
2622 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2623 typedef struct subpage_t {
2624 target_phys_addr_t base;
2625 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2626 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2627 } subpage_t;
2629 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2630 ram_addr_t memory, ram_addr_t region_offset);
2631 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2632 ram_addr_t orig_memory,
2633 ram_addr_t region_offset);
2634 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2635 need_subpage) \
2636 do { \
2637 if (addr > start_addr) \
2638 start_addr2 = 0; \
2639 else { \
2640 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2641 if (start_addr2 > 0) \
2642 need_subpage = 1; \
2645 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2646 end_addr2 = TARGET_PAGE_SIZE - 1; \
2647 else { \
2648 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2649 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2650 need_subpage = 1; \
2652 } while (0)
2654 /* register physical memory.
2655 For RAM, 'size' must be a multiple of the target page size.
2656 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2657 io memory page. The address used when calling the IO function is
2658 the offset from the start of the region, plus region_offset. Both
2659 start_addr and region_offset are rounded down to a page boundary
2660 before calculating this offset. This should not be a problem unless
2661 the low bits of start_addr and region_offset differ. */
2662 void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
2663 ram_addr_t size,
2664 ram_addr_t phys_offset,
2665 ram_addr_t region_offset,
2666 bool log_dirty)
2668 target_phys_addr_t addr, end_addr;
2669 PhysPageDesc *p;
2670 CPUState *env;
2671 ram_addr_t orig_size = size;
2672 subpage_t *subpage;
2674 assert(size);
2675 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
2677 if (phys_offset == IO_MEM_UNASSIGNED) {
2678 region_offset = start_addr;
2680 region_offset &= TARGET_PAGE_MASK;
2681 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2682 end_addr = start_addr + (target_phys_addr_t)size;
2684 addr = start_addr;
2685 do {
2686 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2687 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2688 ram_addr_t orig_memory = p->phys_offset;
2689 target_phys_addr_t start_addr2, end_addr2;
2690 int need_subpage = 0;
2692 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2693 need_subpage);
2694 if (need_subpage) {
2695 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2696 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2697 &p->phys_offset, orig_memory,
2698 p->region_offset);
2699 } else {
2700 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2701 >> IO_MEM_SHIFT];
2703 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2704 region_offset);
2705 p->region_offset = 0;
2706 } else {
2707 p->phys_offset = phys_offset;
2708 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2709 (phys_offset & IO_MEM_ROMD))
2710 phys_offset += TARGET_PAGE_SIZE;
2712 } else {
2713 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2714 p->phys_offset = phys_offset;
2715 p->region_offset = region_offset;
2716 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2717 (phys_offset & IO_MEM_ROMD)) {
2718 phys_offset += TARGET_PAGE_SIZE;
2719 } else {
2720 target_phys_addr_t start_addr2, end_addr2;
2721 int need_subpage = 0;
2723 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2724 end_addr2, need_subpage);
2726 if (need_subpage) {
2727 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2728 &p->phys_offset, IO_MEM_UNASSIGNED,
2729 addr & TARGET_PAGE_MASK);
2730 subpage_register(subpage, start_addr2, end_addr2,
2731 phys_offset, region_offset);
2732 p->region_offset = 0;
2736 region_offset += TARGET_PAGE_SIZE;
2737 addr += TARGET_PAGE_SIZE;
2738 } while (addr != end_addr);
2740 /* since each CPU stores ram addresses in its TLB cache, we must
2741 reset the modified entries */
2742 /* XXX: slow ! */
2743 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2744 tlb_flush(env, 1);
2748 /* XXX: temporary until new memory mapping API */
2749 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2751 PhysPageDesc *p;
2753 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2754 if (!p)
2755 return IO_MEM_UNASSIGNED;
2756 return p->phys_offset;
2759 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2761 if (kvm_enabled())
2762 kvm_coalesce_mmio_region(addr, size);
2765 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2767 if (kvm_enabled())
2768 kvm_uncoalesce_mmio_region(addr, size);
2771 void qemu_flush_coalesced_mmio_buffer(void)
2773 if (kvm_enabled())
2774 kvm_flush_coalesced_mmio_buffer();
2777 #if defined(__linux__) && !defined(TARGET_S390X)
2779 #include <sys/vfs.h>
2781 #define HUGETLBFS_MAGIC 0x958458f6
2783 static long gethugepagesize(const char *path)
2785 struct statfs fs;
2786 int ret;
2788 do {
2789 ret = statfs(path, &fs);
2790 } while (ret != 0 && errno == EINTR);
2792 if (ret != 0) {
2793 perror(path);
2794 return 0;
2797 if (fs.f_type != HUGETLBFS_MAGIC)
2798 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2800 return fs.f_bsize;
2803 static void *file_ram_alloc(RAMBlock *block,
2804 ram_addr_t memory,
2805 const char *path)
2807 char *filename;
2808 void *area;
2809 int fd;
2810 #ifdef MAP_POPULATE
2811 int flags;
2812 #endif
2813 unsigned long hpagesize;
2815 hpagesize = gethugepagesize(path);
2816 if (!hpagesize) {
2817 return NULL;
2820 if (memory < hpagesize) {
2821 return NULL;
2824 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2825 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2826 return NULL;
2829 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2830 return NULL;
2833 fd = mkstemp(filename);
2834 if (fd < 0) {
2835 perror("unable to create backing store for hugepages");
2836 free(filename);
2837 return NULL;
2839 unlink(filename);
2840 free(filename);
2842 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2845 * ftruncate is not supported by hugetlbfs in older
2846 * hosts, so don't bother bailing out on errors.
2847 * If anything goes wrong with it under other filesystems,
2848 * mmap will fail.
2850 if (ftruncate(fd, memory))
2851 perror("ftruncate");
2853 #ifdef MAP_POPULATE
2854 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2855 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2856 * to sidestep this quirk.
2858 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2859 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2860 #else
2861 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2862 #endif
2863 if (area == MAP_FAILED) {
2864 perror("file_ram_alloc: can't mmap RAM pages");
2865 close(fd);
2866 return (NULL);
2868 block->fd = fd;
2869 return area;
2871 #endif
2873 static ram_addr_t find_ram_offset(ram_addr_t size)
2875 RAMBlock *block, *next_block;
2876 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2878 if (QLIST_EMPTY(&ram_list.blocks))
2879 return 0;
2881 QLIST_FOREACH(block, &ram_list.blocks, next) {
2882 ram_addr_t end, next = RAM_ADDR_MAX;
2884 end = block->offset + block->length;
2886 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2887 if (next_block->offset >= end) {
2888 next = MIN(next, next_block->offset);
2891 if (next - end >= size && next - end < mingap) {
2892 offset = end;
2893 mingap = next - end;
2897 if (offset == RAM_ADDR_MAX) {
2898 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2899 (uint64_t)size);
2900 abort();
2903 return offset;
2906 static ram_addr_t last_ram_offset(void)
2908 RAMBlock *block;
2909 ram_addr_t last = 0;
2911 QLIST_FOREACH(block, &ram_list.blocks, next)
2912 last = MAX(last, block->offset + block->length);
2914 return last;
2917 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2918 ram_addr_t size, void *host)
2920 RAMBlock *new_block, *block;
2922 size = TARGET_PAGE_ALIGN(size);
2923 new_block = g_malloc0(sizeof(*new_block));
2925 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2926 char *id = dev->parent_bus->info->get_dev_path(dev);
2927 if (id) {
2928 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2929 g_free(id);
2932 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2934 QLIST_FOREACH(block, &ram_list.blocks, next) {
2935 if (!strcmp(block->idstr, new_block->idstr)) {
2936 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2937 new_block->idstr);
2938 abort();
2942 new_block->offset = find_ram_offset(size);
2943 if (host) {
2944 new_block->host = host;
2945 new_block->flags |= RAM_PREALLOC_MASK;
2946 } else {
2947 if (mem_path) {
2948 #if defined (__linux__) && !defined(TARGET_S390X)
2949 new_block->host = file_ram_alloc(new_block, size, mem_path);
2950 if (!new_block->host) {
2951 new_block->host = qemu_vmalloc(size);
2952 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2954 #else
2955 fprintf(stderr, "-mem-path option unsupported\n");
2956 exit(1);
2957 #endif
2958 } else {
2959 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2960 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2961 an system defined value, which is at least 256GB. Larger systems
2962 have larger values. We put the guest between the end of data
2963 segment (system break) and this value. We use 32GB as a base to
2964 have enough room for the system break to grow. */
2965 new_block->host = mmap((void*)0x800000000, size,
2966 PROT_EXEC|PROT_READ|PROT_WRITE,
2967 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2968 if (new_block->host == MAP_FAILED) {
2969 fprintf(stderr, "Allocating RAM failed\n");
2970 abort();
2972 #else
2973 if (xen_enabled()) {
2974 xen_ram_alloc(new_block->offset, size);
2975 } else {
2976 new_block->host = qemu_vmalloc(size);
2978 #endif
2979 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2982 new_block->length = size;
2984 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2986 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2987 last_ram_offset() >> TARGET_PAGE_BITS);
2988 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2989 0xff, size >> TARGET_PAGE_BITS);
2991 if (kvm_enabled())
2992 kvm_setup_guest_memory(new_block->host, size);
2994 return new_block->offset;
2997 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2999 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
3002 void qemu_ram_free_from_ptr(ram_addr_t addr)
3004 RAMBlock *block;
3006 QLIST_FOREACH(block, &ram_list.blocks, next) {
3007 if (addr == block->offset) {
3008 QLIST_REMOVE(block, next);
3009 g_free(block);
3010 return;
3015 void qemu_ram_free(ram_addr_t addr)
3017 RAMBlock *block;
3019 QLIST_FOREACH(block, &ram_list.blocks, next) {
3020 if (addr == block->offset) {
3021 QLIST_REMOVE(block, next);
3022 if (block->flags & RAM_PREALLOC_MASK) {
3024 } else if (mem_path) {
3025 #if defined (__linux__) && !defined(TARGET_S390X)
3026 if (block->fd) {
3027 munmap(block->host, block->length);
3028 close(block->fd);
3029 } else {
3030 qemu_vfree(block->host);
3032 #else
3033 abort();
3034 #endif
3035 } else {
3036 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3037 munmap(block->host, block->length);
3038 #else
3039 if (xen_enabled()) {
3040 xen_invalidate_map_cache_entry(block->host);
3041 } else {
3042 qemu_vfree(block->host);
3044 #endif
3046 g_free(block);
3047 return;
3053 #ifndef _WIN32
3054 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3056 RAMBlock *block;
3057 ram_addr_t offset;
3058 int flags;
3059 void *area, *vaddr;
3061 QLIST_FOREACH(block, &ram_list.blocks, next) {
3062 offset = addr - block->offset;
3063 if (offset < block->length) {
3064 vaddr = block->host + offset;
3065 if (block->flags & RAM_PREALLOC_MASK) {
3067 } else {
3068 flags = MAP_FIXED;
3069 munmap(vaddr, length);
3070 if (mem_path) {
3071 #if defined(__linux__) && !defined(TARGET_S390X)
3072 if (block->fd) {
3073 #ifdef MAP_POPULATE
3074 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3075 MAP_PRIVATE;
3076 #else
3077 flags |= MAP_PRIVATE;
3078 #endif
3079 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3080 flags, block->fd, offset);
3081 } else {
3082 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3083 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3084 flags, -1, 0);
3086 #else
3087 abort();
3088 #endif
3089 } else {
3090 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3091 flags |= MAP_SHARED | MAP_ANONYMOUS;
3092 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3093 flags, -1, 0);
3094 #else
3095 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3096 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3097 flags, -1, 0);
3098 #endif
3100 if (area != vaddr) {
3101 fprintf(stderr, "Could not remap addr: "
3102 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
3103 length, addr);
3104 exit(1);
3106 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3108 return;
3112 #endif /* !_WIN32 */
3114 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3115 With the exception of the softmmu code in this file, this should
3116 only be used for local memory (e.g. video ram) that the device owns,
3117 and knows it isn't going to access beyond the end of the block.
3119 It should not be used for general purpose DMA.
3120 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3122 void *qemu_get_ram_ptr(ram_addr_t addr)
3124 RAMBlock *block;
3126 QLIST_FOREACH(block, &ram_list.blocks, next) {
3127 if (addr - block->offset < block->length) {
3128 /* Move this entry to to start of the list. */
3129 if (block != QLIST_FIRST(&ram_list.blocks)) {
3130 QLIST_REMOVE(block, next);
3131 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3133 if (xen_enabled()) {
3134 /* We need to check if the requested address is in the RAM
3135 * because we don't want to map the entire memory in QEMU.
3136 * In that case just map until the end of the page.
3138 if (block->offset == 0) {
3139 return xen_map_cache(addr, 0, 0);
3140 } else if (block->host == NULL) {
3141 block->host =
3142 xen_map_cache(block->offset, block->length, 1);
3145 return block->host + (addr - block->offset);
3149 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3150 abort();
3152 return NULL;
3155 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3156 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3158 void *qemu_safe_ram_ptr(ram_addr_t addr)
3160 RAMBlock *block;
3162 QLIST_FOREACH(block, &ram_list.blocks, next) {
3163 if (addr - block->offset < block->length) {
3164 if (xen_enabled()) {
3165 /* We need to check if the requested address is in the RAM
3166 * because we don't want to map the entire memory in QEMU.
3167 * In that case just map until the end of the page.
3169 if (block->offset == 0) {
3170 return xen_map_cache(addr, 0, 0);
3171 } else if (block->host == NULL) {
3172 block->host =
3173 xen_map_cache(block->offset, block->length, 1);
3176 return block->host + (addr - block->offset);
3180 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3181 abort();
3183 return NULL;
3186 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3187 * but takes a size argument */
3188 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3190 if (*size == 0) {
3191 return NULL;
3193 if (xen_enabled()) {
3194 return xen_map_cache(addr, *size, 1);
3195 } else {
3196 RAMBlock *block;
3198 QLIST_FOREACH(block, &ram_list.blocks, next) {
3199 if (addr - block->offset < block->length) {
3200 if (addr - block->offset + *size > block->length)
3201 *size = block->length - addr + block->offset;
3202 return block->host + (addr - block->offset);
3206 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3207 abort();
3211 void qemu_put_ram_ptr(void *addr)
3213 trace_qemu_put_ram_ptr(addr);
3216 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3218 RAMBlock *block;
3219 uint8_t *host = ptr;
3221 if (xen_enabled()) {
3222 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3223 return 0;
3226 QLIST_FOREACH(block, &ram_list.blocks, next) {
3227 /* This case append when the block is not mapped. */
3228 if (block->host == NULL) {
3229 continue;
3231 if (host - block->host < block->length) {
3232 *ram_addr = block->offset + (host - block->host);
3233 return 0;
3237 return -1;
3240 /* Some of the softmmu routines need to translate from a host pointer
3241 (typically a TLB entry) back to a ram offset. */
3242 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3244 ram_addr_t ram_addr;
3246 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3247 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3248 abort();
3250 return ram_addr;
3253 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3255 #ifdef DEBUG_UNASSIGNED
3256 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3257 #endif
3258 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3259 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
3260 #endif
3261 return 0;
3264 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3266 #ifdef DEBUG_UNASSIGNED
3267 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3268 #endif
3269 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3270 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
3271 #endif
3272 return 0;
3275 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3277 #ifdef DEBUG_UNASSIGNED
3278 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3279 #endif
3280 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3281 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
3282 #endif
3283 return 0;
3286 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3288 #ifdef DEBUG_UNASSIGNED
3289 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3290 #endif
3291 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3292 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
3293 #endif
3296 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3298 #ifdef DEBUG_UNASSIGNED
3299 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3300 #endif
3301 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3302 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
3303 #endif
3306 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3308 #ifdef DEBUG_UNASSIGNED
3309 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3310 #endif
3311 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3312 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
3313 #endif
3316 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3317 unassigned_mem_readb,
3318 unassigned_mem_readw,
3319 unassigned_mem_readl,
3322 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3323 unassigned_mem_writeb,
3324 unassigned_mem_writew,
3325 unassigned_mem_writel,
3328 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3329 uint32_t val)
3331 int dirty_flags;
3332 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3333 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3334 #if !defined(CONFIG_USER_ONLY)
3335 tb_invalidate_phys_page_fast(ram_addr, 1);
3336 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3337 #endif
3339 stb_p(qemu_get_ram_ptr(ram_addr), val);
3340 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3341 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3342 /* we remove the notdirty callback only if the code has been
3343 flushed */
3344 if (dirty_flags == 0xff)
3345 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3348 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3349 uint32_t val)
3351 int dirty_flags;
3352 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3353 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3354 #if !defined(CONFIG_USER_ONLY)
3355 tb_invalidate_phys_page_fast(ram_addr, 2);
3356 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3357 #endif
3359 stw_p(qemu_get_ram_ptr(ram_addr), val);
3360 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3361 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3362 /* we remove the notdirty callback only if the code has been
3363 flushed */
3364 if (dirty_flags == 0xff)
3365 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3368 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3369 uint32_t val)
3371 int dirty_flags;
3372 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3373 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3374 #if !defined(CONFIG_USER_ONLY)
3375 tb_invalidate_phys_page_fast(ram_addr, 4);
3376 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3377 #endif
3379 stl_p(qemu_get_ram_ptr(ram_addr), val);
3380 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3381 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3382 /* we remove the notdirty callback only if the code has been
3383 flushed */
3384 if (dirty_flags == 0xff)
3385 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3388 static CPUReadMemoryFunc * const error_mem_read[3] = {
3389 NULL, /* never used */
3390 NULL, /* never used */
3391 NULL, /* never used */
3394 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3395 notdirty_mem_writeb,
3396 notdirty_mem_writew,
3397 notdirty_mem_writel,
3400 /* Generate a debug exception if a watchpoint has been hit. */
3401 static void check_watchpoint(int offset, int len_mask, int flags)
3403 CPUState *env = cpu_single_env;
3404 target_ulong pc, cs_base;
3405 TranslationBlock *tb;
3406 target_ulong vaddr;
3407 CPUWatchpoint *wp;
3408 int cpu_flags;
3410 if (env->watchpoint_hit) {
3411 /* We re-entered the check after replacing the TB. Now raise
3412 * the debug interrupt so that is will trigger after the
3413 * current instruction. */
3414 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3415 return;
3417 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3418 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3419 if ((vaddr == (wp->vaddr & len_mask) ||
3420 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3421 wp->flags |= BP_WATCHPOINT_HIT;
3422 if (!env->watchpoint_hit) {
3423 env->watchpoint_hit = wp;
3424 tb = tb_find_pc(env->mem_io_pc);
3425 if (!tb) {
3426 cpu_abort(env, "check_watchpoint: could not find TB for "
3427 "pc=%p", (void *)env->mem_io_pc);
3429 cpu_restore_state(tb, env, env->mem_io_pc);
3430 tb_phys_invalidate(tb, -1);
3431 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3432 env->exception_index = EXCP_DEBUG;
3433 } else {
3434 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3435 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3437 cpu_resume_from_signal(env, NULL);
3439 } else {
3440 wp->flags &= ~BP_WATCHPOINT_HIT;
3445 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3446 so these check for a hit then pass through to the normal out-of-line
3447 phys routines. */
3448 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3450 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3451 return ldub_phys(addr);
3454 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3456 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3457 return lduw_phys(addr);
3460 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3462 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3463 return ldl_phys(addr);
3466 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3467 uint32_t val)
3469 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3470 stb_phys(addr, val);
3473 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3474 uint32_t val)
3476 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3477 stw_phys(addr, val);
3480 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3481 uint32_t val)
3483 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3484 stl_phys(addr, val);
3487 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3488 watch_mem_readb,
3489 watch_mem_readw,
3490 watch_mem_readl,
3493 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3494 watch_mem_writeb,
3495 watch_mem_writew,
3496 watch_mem_writel,
3499 static inline uint32_t subpage_readlen (subpage_t *mmio,
3500 target_phys_addr_t addr,
3501 unsigned int len)
3503 unsigned int idx = SUBPAGE_IDX(addr);
3504 #if defined(DEBUG_SUBPAGE)
3505 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3506 mmio, len, addr, idx);
3507 #endif
3509 addr += mmio->region_offset[idx];
3510 idx = mmio->sub_io_index[idx];
3511 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3514 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3515 uint32_t value, unsigned int len)
3517 unsigned int idx = SUBPAGE_IDX(addr);
3518 #if defined(DEBUG_SUBPAGE)
3519 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3520 __func__, mmio, len, addr, idx, value);
3521 #endif
3523 addr += mmio->region_offset[idx];
3524 idx = mmio->sub_io_index[idx];
3525 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3528 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3530 return subpage_readlen(opaque, addr, 0);
3533 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3534 uint32_t value)
3536 subpage_writelen(opaque, addr, value, 0);
3539 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3541 return subpage_readlen(opaque, addr, 1);
3544 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3545 uint32_t value)
3547 subpage_writelen(opaque, addr, value, 1);
3550 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3552 return subpage_readlen(opaque, addr, 2);
3555 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3556 uint32_t value)
3558 subpage_writelen(opaque, addr, value, 2);
3561 static CPUReadMemoryFunc * const subpage_read[] = {
3562 &subpage_readb,
3563 &subpage_readw,
3564 &subpage_readl,
3567 static CPUWriteMemoryFunc * const subpage_write[] = {
3568 &subpage_writeb,
3569 &subpage_writew,
3570 &subpage_writel,
3573 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3574 ram_addr_t memory, ram_addr_t region_offset)
3576 int idx, eidx;
3578 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3579 return -1;
3580 idx = SUBPAGE_IDX(start);
3581 eidx = SUBPAGE_IDX(end);
3582 #if defined(DEBUG_SUBPAGE)
3583 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3584 mmio, start, end, idx, eidx, memory);
3585 #endif
3586 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3587 memory = IO_MEM_UNASSIGNED;
3588 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3589 for (; idx <= eidx; idx++) {
3590 mmio->sub_io_index[idx] = memory;
3591 mmio->region_offset[idx] = region_offset;
3594 return 0;
3597 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3598 ram_addr_t orig_memory,
3599 ram_addr_t region_offset)
3601 subpage_t *mmio;
3602 int subpage_memory;
3604 mmio = g_malloc0(sizeof(subpage_t));
3606 mmio->base = base;
3607 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3608 DEVICE_NATIVE_ENDIAN);
3609 #if defined(DEBUG_SUBPAGE)
3610 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3611 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3612 #endif
3613 *phys = subpage_memory | IO_MEM_SUBPAGE;
3614 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3616 return mmio;
3619 static int get_free_io_mem_idx(void)
3621 int i;
3623 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3624 if (!io_mem_used[i]) {
3625 io_mem_used[i] = 1;
3626 return i;
3628 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3629 return -1;
3633 * Usually, devices operate in little endian mode. There are devices out
3634 * there that operate in big endian too. Each device gets byte swapped
3635 * mmio if plugged onto a CPU that does the other endianness.
3637 * CPU Device swap?
3639 * little little no
3640 * little big yes
3641 * big little yes
3642 * big big no
3645 typedef struct SwapEndianContainer {
3646 CPUReadMemoryFunc *read[3];
3647 CPUWriteMemoryFunc *write[3];
3648 void *opaque;
3649 } SwapEndianContainer;
3651 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3653 uint32_t val;
3654 SwapEndianContainer *c = opaque;
3655 val = c->read[0](c->opaque, addr);
3656 return val;
3659 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3661 uint32_t val;
3662 SwapEndianContainer *c = opaque;
3663 val = bswap16(c->read[1](c->opaque, addr));
3664 return val;
3667 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3669 uint32_t val;
3670 SwapEndianContainer *c = opaque;
3671 val = bswap32(c->read[2](c->opaque, addr));
3672 return val;
3675 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3676 swapendian_mem_readb,
3677 swapendian_mem_readw,
3678 swapendian_mem_readl
3681 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3682 uint32_t val)
3684 SwapEndianContainer *c = opaque;
3685 c->write[0](c->opaque, addr, val);
3688 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3689 uint32_t val)
3691 SwapEndianContainer *c = opaque;
3692 c->write[1](c->opaque, addr, bswap16(val));
3695 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3696 uint32_t val)
3698 SwapEndianContainer *c = opaque;
3699 c->write[2](c->opaque, addr, bswap32(val));
3702 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3703 swapendian_mem_writeb,
3704 swapendian_mem_writew,
3705 swapendian_mem_writel
3708 static void swapendian_init(int io_index)
3710 SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
3711 int i;
3713 /* Swap mmio for big endian targets */
3714 c->opaque = io_mem_opaque[io_index];
3715 for (i = 0; i < 3; i++) {
3716 c->read[i] = io_mem_read[io_index][i];
3717 c->write[i] = io_mem_write[io_index][i];
3719 io_mem_read[io_index][i] = swapendian_readfn[i];
3720 io_mem_write[io_index][i] = swapendian_writefn[i];
3722 io_mem_opaque[io_index] = c;
3725 static void swapendian_del(int io_index)
3727 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3728 g_free(io_mem_opaque[io_index]);
3732 /* mem_read and mem_write are arrays of functions containing the
3733 function to access byte (index 0), word (index 1) and dword (index
3734 2). Functions can be omitted with a NULL function pointer.
3735 If io_index is non zero, the corresponding io zone is
3736 modified. If it is zero, a new io zone is allocated. The return
3737 value can be used with cpu_register_physical_memory(). (-1) is
3738 returned if error. */
3739 static int cpu_register_io_memory_fixed(int io_index,
3740 CPUReadMemoryFunc * const *mem_read,
3741 CPUWriteMemoryFunc * const *mem_write,
3742 void *opaque, enum device_endian endian)
3744 int i;
3746 if (io_index <= 0) {
3747 io_index = get_free_io_mem_idx();
3748 if (io_index == -1)
3749 return io_index;
3750 } else {
3751 io_index >>= IO_MEM_SHIFT;
3752 if (io_index >= IO_MEM_NB_ENTRIES)
3753 return -1;
3756 for (i = 0; i < 3; ++i) {
3757 io_mem_read[io_index][i]
3758 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3760 for (i = 0; i < 3; ++i) {
3761 io_mem_write[io_index][i]
3762 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3764 io_mem_opaque[io_index] = opaque;
3766 switch (endian) {
3767 case DEVICE_BIG_ENDIAN:
3768 #ifndef TARGET_WORDS_BIGENDIAN
3769 swapendian_init(io_index);
3770 #endif
3771 break;
3772 case DEVICE_LITTLE_ENDIAN:
3773 #ifdef TARGET_WORDS_BIGENDIAN
3774 swapendian_init(io_index);
3775 #endif
3776 break;
3777 case DEVICE_NATIVE_ENDIAN:
3778 default:
3779 break;
3782 return (io_index << IO_MEM_SHIFT);
3785 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3786 CPUWriteMemoryFunc * const *mem_write,
3787 void *opaque, enum device_endian endian)
3789 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3792 void cpu_unregister_io_memory(int io_table_address)
3794 int i;
3795 int io_index = io_table_address >> IO_MEM_SHIFT;
3797 swapendian_del(io_index);
3799 for (i=0;i < 3; i++) {
3800 io_mem_read[io_index][i] = unassigned_mem_read[i];
3801 io_mem_write[io_index][i] = unassigned_mem_write[i];
3803 io_mem_opaque[io_index] = NULL;
3804 io_mem_used[io_index] = 0;
3807 static void io_mem_init(void)
3809 int i;
3811 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3812 unassigned_mem_write, NULL,
3813 DEVICE_NATIVE_ENDIAN);
3814 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3815 unassigned_mem_write, NULL,
3816 DEVICE_NATIVE_ENDIAN);
3817 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3818 notdirty_mem_write, NULL,
3819 DEVICE_NATIVE_ENDIAN);
3820 for (i=0; i<5; i++)
3821 io_mem_used[i] = 1;
3823 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3824 watch_mem_write, NULL,
3825 DEVICE_NATIVE_ENDIAN);
3828 static void memory_map_init(void)
3830 system_memory = g_malloc(sizeof(*system_memory));
3831 memory_region_init(system_memory, "system", INT64_MAX);
3832 set_system_memory_map(system_memory);
3834 system_io = g_malloc(sizeof(*system_io));
3835 memory_region_init(system_io, "io", 65536);
3836 set_system_io_map(system_io);
3839 MemoryRegion *get_system_memory(void)
3841 return system_memory;
3844 MemoryRegion *get_system_io(void)
3846 return system_io;
3849 #endif /* !defined(CONFIG_USER_ONLY) */
3851 /* physical memory access (slow version, mainly for debug) */
3852 #if defined(CONFIG_USER_ONLY)
3853 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3854 uint8_t *buf, int len, int is_write)
3856 int l, flags;
3857 target_ulong page;
3858 void * p;
3860 while (len > 0) {
3861 page = addr & TARGET_PAGE_MASK;
3862 l = (page + TARGET_PAGE_SIZE) - addr;
3863 if (l > len)
3864 l = len;
3865 flags = page_get_flags(page);
3866 if (!(flags & PAGE_VALID))
3867 return -1;
3868 if (is_write) {
3869 if (!(flags & PAGE_WRITE))
3870 return -1;
3871 /* XXX: this code should not depend on lock_user */
3872 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3873 return -1;
3874 memcpy(p, buf, l);
3875 unlock_user(p, addr, l);
3876 } else {
3877 if (!(flags & PAGE_READ))
3878 return -1;
3879 /* XXX: this code should not depend on lock_user */
3880 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3881 return -1;
3882 memcpy(buf, p, l);
3883 unlock_user(p, addr, 0);
3885 len -= l;
3886 buf += l;
3887 addr += l;
3889 return 0;
3892 #else
3893 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3894 int len, int is_write)
3896 int l, io_index;
3897 uint8_t *ptr;
3898 uint32_t val;
3899 target_phys_addr_t page;
3900 ram_addr_t pd;
3901 PhysPageDesc *p;
3903 while (len > 0) {
3904 page = addr & TARGET_PAGE_MASK;
3905 l = (page + TARGET_PAGE_SIZE) - addr;
3906 if (l > len)
3907 l = len;
3908 p = phys_page_find(page >> TARGET_PAGE_BITS);
3909 if (!p) {
3910 pd = IO_MEM_UNASSIGNED;
3911 } else {
3912 pd = p->phys_offset;
3915 if (is_write) {
3916 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3917 target_phys_addr_t addr1 = addr;
3918 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3919 if (p)
3920 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3921 /* XXX: could force cpu_single_env to NULL to avoid
3922 potential bugs */
3923 if (l >= 4 && ((addr1 & 3) == 0)) {
3924 /* 32 bit write access */
3925 val = ldl_p(buf);
3926 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3927 l = 4;
3928 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3929 /* 16 bit write access */
3930 val = lduw_p(buf);
3931 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3932 l = 2;
3933 } else {
3934 /* 8 bit write access */
3935 val = ldub_p(buf);
3936 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3937 l = 1;
3939 } else {
3940 ram_addr_t addr1;
3941 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3942 /* RAM case */
3943 ptr = qemu_get_ram_ptr(addr1);
3944 memcpy(ptr, buf, l);
3945 if (!cpu_physical_memory_is_dirty(addr1)) {
3946 /* invalidate code */
3947 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3948 /* set dirty bit */
3949 cpu_physical_memory_set_dirty_flags(
3950 addr1, (0xff & ~CODE_DIRTY_FLAG));
3952 qemu_put_ram_ptr(ptr);
3954 } else {
3955 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3956 !(pd & IO_MEM_ROMD)) {
3957 target_phys_addr_t addr1 = addr;
3958 /* I/O case */
3959 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3960 if (p)
3961 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3962 if (l >= 4 && ((addr1 & 3) == 0)) {
3963 /* 32 bit read access */
3964 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3965 stl_p(buf, val);
3966 l = 4;
3967 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3968 /* 16 bit read access */
3969 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3970 stw_p(buf, val);
3971 l = 2;
3972 } else {
3973 /* 8 bit read access */
3974 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3975 stb_p(buf, val);
3976 l = 1;
3978 } else {
3979 /* RAM case */
3980 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3981 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3982 qemu_put_ram_ptr(ptr);
3985 len -= l;
3986 buf += l;
3987 addr += l;
3991 /* used for ROM loading : can write in RAM and ROM */
3992 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3993 const uint8_t *buf, int len)
3995 int l;
3996 uint8_t *ptr;
3997 target_phys_addr_t page;
3998 unsigned long pd;
3999 PhysPageDesc *p;
4001 while (len > 0) {
4002 page = addr & TARGET_PAGE_MASK;
4003 l = (page + TARGET_PAGE_SIZE) - addr;
4004 if (l > len)
4005 l = len;
4006 p = phys_page_find(page >> TARGET_PAGE_BITS);
4007 if (!p) {
4008 pd = IO_MEM_UNASSIGNED;
4009 } else {
4010 pd = p->phys_offset;
4013 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
4014 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
4015 !(pd & IO_MEM_ROMD)) {
4016 /* do nothing */
4017 } else {
4018 unsigned long addr1;
4019 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4020 /* ROM/RAM case */
4021 ptr = qemu_get_ram_ptr(addr1);
4022 memcpy(ptr, buf, l);
4023 qemu_put_ram_ptr(ptr);
4025 len -= l;
4026 buf += l;
4027 addr += l;
4031 typedef struct {
4032 void *buffer;
4033 target_phys_addr_t addr;
4034 target_phys_addr_t len;
4035 } BounceBuffer;
4037 static BounceBuffer bounce;
4039 typedef struct MapClient {
4040 void *opaque;
4041 void (*callback)(void *opaque);
4042 QLIST_ENTRY(MapClient) link;
4043 } MapClient;
4045 static QLIST_HEAD(map_client_list, MapClient) map_client_list
4046 = QLIST_HEAD_INITIALIZER(map_client_list);
4048 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4050 MapClient *client = g_malloc(sizeof(*client));
4052 client->opaque = opaque;
4053 client->callback = callback;
4054 QLIST_INSERT_HEAD(&map_client_list, client, link);
4055 return client;
4058 void cpu_unregister_map_client(void *_client)
4060 MapClient *client = (MapClient *)_client;
4062 QLIST_REMOVE(client, link);
4063 g_free(client);
4066 static void cpu_notify_map_clients(void)
4068 MapClient *client;
4070 while (!QLIST_EMPTY(&map_client_list)) {
4071 client = QLIST_FIRST(&map_client_list);
4072 client->callback(client->opaque);
4073 cpu_unregister_map_client(client);
4077 /* Map a physical memory region into a host virtual address.
4078 * May map a subset of the requested range, given by and returned in *plen.
4079 * May return NULL if resources needed to perform the mapping are exhausted.
4080 * Use only for reads OR writes - not for read-modify-write operations.
4081 * Use cpu_register_map_client() to know when retrying the map operation is
4082 * likely to succeed.
4084 void *cpu_physical_memory_map(target_phys_addr_t addr,
4085 target_phys_addr_t *plen,
4086 int is_write)
4088 target_phys_addr_t len = *plen;
4089 target_phys_addr_t todo = 0;
4090 int l;
4091 target_phys_addr_t page;
4092 unsigned long pd;
4093 PhysPageDesc *p;
4094 ram_addr_t raddr = RAM_ADDR_MAX;
4095 ram_addr_t rlen;
4096 void *ret;
4098 while (len > 0) {
4099 page = addr & TARGET_PAGE_MASK;
4100 l = (page + TARGET_PAGE_SIZE) - addr;
4101 if (l > len)
4102 l = len;
4103 p = phys_page_find(page >> TARGET_PAGE_BITS);
4104 if (!p) {
4105 pd = IO_MEM_UNASSIGNED;
4106 } else {
4107 pd = p->phys_offset;
4110 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4111 if (todo || bounce.buffer) {
4112 break;
4114 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4115 bounce.addr = addr;
4116 bounce.len = l;
4117 if (!is_write) {
4118 cpu_physical_memory_read(addr, bounce.buffer, l);
4121 *plen = l;
4122 return bounce.buffer;
4124 if (!todo) {
4125 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4128 len -= l;
4129 addr += l;
4130 todo += l;
4132 rlen = todo;
4133 ret = qemu_ram_ptr_length(raddr, &rlen);
4134 *plen = rlen;
4135 return ret;
4138 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4139 * Will also mark the memory as dirty if is_write == 1. access_len gives
4140 * the amount of memory that was actually read or written by the caller.
4142 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4143 int is_write, target_phys_addr_t access_len)
4145 if (buffer != bounce.buffer) {
4146 if (is_write) {
4147 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4148 while (access_len) {
4149 unsigned l;
4150 l = TARGET_PAGE_SIZE;
4151 if (l > access_len)
4152 l = access_len;
4153 if (!cpu_physical_memory_is_dirty(addr1)) {
4154 /* invalidate code */
4155 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4156 /* set dirty bit */
4157 cpu_physical_memory_set_dirty_flags(
4158 addr1, (0xff & ~CODE_DIRTY_FLAG));
4160 addr1 += l;
4161 access_len -= l;
4164 if (xen_enabled()) {
4165 xen_invalidate_map_cache_entry(buffer);
4167 return;
4169 if (is_write) {
4170 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4172 qemu_vfree(bounce.buffer);
4173 bounce.buffer = NULL;
4174 cpu_notify_map_clients();
4177 /* warning: addr must be aligned */
4178 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4179 enum device_endian endian)
4181 int io_index;
4182 uint8_t *ptr;
4183 uint32_t val;
4184 unsigned long pd;
4185 PhysPageDesc *p;
4187 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4188 if (!p) {
4189 pd = IO_MEM_UNASSIGNED;
4190 } else {
4191 pd = p->phys_offset;
4194 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4195 !(pd & IO_MEM_ROMD)) {
4196 /* I/O case */
4197 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4198 if (p)
4199 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4200 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4201 #if defined(TARGET_WORDS_BIGENDIAN)
4202 if (endian == DEVICE_LITTLE_ENDIAN) {
4203 val = bswap32(val);
4205 #else
4206 if (endian == DEVICE_BIG_ENDIAN) {
4207 val = bswap32(val);
4209 #endif
4210 } else {
4211 /* RAM case */
4212 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4213 (addr & ~TARGET_PAGE_MASK);
4214 switch (endian) {
4215 case DEVICE_LITTLE_ENDIAN:
4216 val = ldl_le_p(ptr);
4217 break;
4218 case DEVICE_BIG_ENDIAN:
4219 val = ldl_be_p(ptr);
4220 break;
4221 default:
4222 val = ldl_p(ptr);
4223 break;
4226 return val;
4229 uint32_t ldl_phys(target_phys_addr_t addr)
4231 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4234 uint32_t ldl_le_phys(target_phys_addr_t addr)
4236 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4239 uint32_t ldl_be_phys(target_phys_addr_t addr)
4241 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4244 /* warning: addr must be aligned */
4245 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4246 enum device_endian endian)
4248 int io_index;
4249 uint8_t *ptr;
4250 uint64_t val;
4251 unsigned long pd;
4252 PhysPageDesc *p;
4254 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4255 if (!p) {
4256 pd = IO_MEM_UNASSIGNED;
4257 } else {
4258 pd = p->phys_offset;
4261 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4262 !(pd & IO_MEM_ROMD)) {
4263 /* I/O case */
4264 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4265 if (p)
4266 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4268 /* XXX This is broken when device endian != cpu endian.
4269 Fix and add "endian" variable check */
4270 #ifdef TARGET_WORDS_BIGENDIAN
4271 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4272 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4273 #else
4274 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4275 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4276 #endif
4277 } else {
4278 /* RAM case */
4279 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4280 (addr & ~TARGET_PAGE_MASK);
4281 switch (endian) {
4282 case DEVICE_LITTLE_ENDIAN:
4283 val = ldq_le_p(ptr);
4284 break;
4285 case DEVICE_BIG_ENDIAN:
4286 val = ldq_be_p(ptr);
4287 break;
4288 default:
4289 val = ldq_p(ptr);
4290 break;
4293 return val;
4296 uint64_t ldq_phys(target_phys_addr_t addr)
4298 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4301 uint64_t ldq_le_phys(target_phys_addr_t addr)
4303 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4306 uint64_t ldq_be_phys(target_phys_addr_t addr)
4308 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4311 /* XXX: optimize */
4312 uint32_t ldub_phys(target_phys_addr_t addr)
4314 uint8_t val;
4315 cpu_physical_memory_read(addr, &val, 1);
4316 return val;
4319 /* warning: addr must be aligned */
4320 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4321 enum device_endian endian)
4323 int io_index;
4324 uint8_t *ptr;
4325 uint64_t val;
4326 unsigned long pd;
4327 PhysPageDesc *p;
4329 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4330 if (!p) {
4331 pd = IO_MEM_UNASSIGNED;
4332 } else {
4333 pd = p->phys_offset;
4336 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4337 !(pd & IO_MEM_ROMD)) {
4338 /* I/O case */
4339 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4340 if (p)
4341 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4342 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4343 #if defined(TARGET_WORDS_BIGENDIAN)
4344 if (endian == DEVICE_LITTLE_ENDIAN) {
4345 val = bswap16(val);
4347 #else
4348 if (endian == DEVICE_BIG_ENDIAN) {
4349 val = bswap16(val);
4351 #endif
4352 } else {
4353 /* RAM case */
4354 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4355 (addr & ~TARGET_PAGE_MASK);
4356 switch (endian) {
4357 case DEVICE_LITTLE_ENDIAN:
4358 val = lduw_le_p(ptr);
4359 break;
4360 case DEVICE_BIG_ENDIAN:
4361 val = lduw_be_p(ptr);
4362 break;
4363 default:
4364 val = lduw_p(ptr);
4365 break;
4368 return val;
4371 uint32_t lduw_phys(target_phys_addr_t addr)
4373 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4376 uint32_t lduw_le_phys(target_phys_addr_t addr)
4378 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4381 uint32_t lduw_be_phys(target_phys_addr_t addr)
4383 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4386 /* warning: addr must be aligned. The ram page is not masked as dirty
4387 and the code inside is not invalidated. It is useful if the dirty
4388 bits are used to track modified PTEs */
4389 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4391 int io_index;
4392 uint8_t *ptr;
4393 unsigned long pd;
4394 PhysPageDesc *p;
4396 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4397 if (!p) {
4398 pd = IO_MEM_UNASSIGNED;
4399 } else {
4400 pd = p->phys_offset;
4403 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4404 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4405 if (p)
4406 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4407 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4408 } else {
4409 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4410 ptr = qemu_get_ram_ptr(addr1);
4411 stl_p(ptr, val);
4413 if (unlikely(in_migration)) {
4414 if (!cpu_physical_memory_is_dirty(addr1)) {
4415 /* invalidate code */
4416 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4417 /* set dirty bit */
4418 cpu_physical_memory_set_dirty_flags(
4419 addr1, (0xff & ~CODE_DIRTY_FLAG));
4425 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4427 int io_index;
4428 uint8_t *ptr;
4429 unsigned long pd;
4430 PhysPageDesc *p;
4432 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4433 if (!p) {
4434 pd = IO_MEM_UNASSIGNED;
4435 } else {
4436 pd = p->phys_offset;
4439 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4440 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4441 if (p)
4442 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4443 #ifdef TARGET_WORDS_BIGENDIAN
4444 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4445 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4446 #else
4447 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4448 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4449 #endif
4450 } else {
4451 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4452 (addr & ~TARGET_PAGE_MASK);
4453 stq_p(ptr, val);
4457 /* warning: addr must be aligned */
4458 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4459 enum device_endian endian)
4461 int io_index;
4462 uint8_t *ptr;
4463 unsigned long pd;
4464 PhysPageDesc *p;
4466 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4467 if (!p) {
4468 pd = IO_MEM_UNASSIGNED;
4469 } else {
4470 pd = p->phys_offset;
4473 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4474 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4475 if (p)
4476 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4477 #if defined(TARGET_WORDS_BIGENDIAN)
4478 if (endian == DEVICE_LITTLE_ENDIAN) {
4479 val = bswap32(val);
4481 #else
4482 if (endian == DEVICE_BIG_ENDIAN) {
4483 val = bswap32(val);
4485 #endif
4486 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4487 } else {
4488 unsigned long addr1;
4489 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4490 /* RAM case */
4491 ptr = qemu_get_ram_ptr(addr1);
4492 switch (endian) {
4493 case DEVICE_LITTLE_ENDIAN:
4494 stl_le_p(ptr, val);
4495 break;
4496 case DEVICE_BIG_ENDIAN:
4497 stl_be_p(ptr, val);
4498 break;
4499 default:
4500 stl_p(ptr, val);
4501 break;
4503 if (!cpu_physical_memory_is_dirty(addr1)) {
4504 /* invalidate code */
4505 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4506 /* set dirty bit */
4507 cpu_physical_memory_set_dirty_flags(addr1,
4508 (0xff & ~CODE_DIRTY_FLAG));
4513 void stl_phys(target_phys_addr_t addr, uint32_t val)
4515 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4518 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4520 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4523 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4525 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4528 /* XXX: optimize */
4529 void stb_phys(target_phys_addr_t addr, uint32_t val)
4531 uint8_t v = val;
4532 cpu_physical_memory_write(addr, &v, 1);
4535 /* warning: addr must be aligned */
4536 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4537 enum device_endian endian)
4539 int io_index;
4540 uint8_t *ptr;
4541 unsigned long pd;
4542 PhysPageDesc *p;
4544 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4545 if (!p) {
4546 pd = IO_MEM_UNASSIGNED;
4547 } else {
4548 pd = p->phys_offset;
4551 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4552 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4553 if (p)
4554 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4555 #if defined(TARGET_WORDS_BIGENDIAN)
4556 if (endian == DEVICE_LITTLE_ENDIAN) {
4557 val = bswap16(val);
4559 #else
4560 if (endian == DEVICE_BIG_ENDIAN) {
4561 val = bswap16(val);
4563 #endif
4564 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4565 } else {
4566 unsigned long addr1;
4567 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4568 /* RAM case */
4569 ptr = qemu_get_ram_ptr(addr1);
4570 switch (endian) {
4571 case DEVICE_LITTLE_ENDIAN:
4572 stw_le_p(ptr, val);
4573 break;
4574 case DEVICE_BIG_ENDIAN:
4575 stw_be_p(ptr, val);
4576 break;
4577 default:
4578 stw_p(ptr, val);
4579 break;
4581 if (!cpu_physical_memory_is_dirty(addr1)) {
4582 /* invalidate code */
4583 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4584 /* set dirty bit */
4585 cpu_physical_memory_set_dirty_flags(addr1,
4586 (0xff & ~CODE_DIRTY_FLAG));
4591 void stw_phys(target_phys_addr_t addr, uint32_t val)
4593 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4596 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4598 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4601 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4603 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4606 /* XXX: optimize */
4607 void stq_phys(target_phys_addr_t addr, uint64_t val)
4609 val = tswap64(val);
4610 cpu_physical_memory_write(addr, &val, 8);
4613 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4615 val = cpu_to_le64(val);
4616 cpu_physical_memory_write(addr, &val, 8);
4619 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4621 val = cpu_to_be64(val);
4622 cpu_physical_memory_write(addr, &val, 8);
4625 /* virtual memory access for debug (includes writing to ROM) */
4626 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4627 uint8_t *buf, int len, int is_write)
4629 int l;
4630 target_phys_addr_t phys_addr;
4631 target_ulong page;
4633 while (len > 0) {
4634 page = addr & TARGET_PAGE_MASK;
4635 phys_addr = cpu_get_phys_page_debug(env, page);
4636 /* if no physical page mapped, return an error */
4637 if (phys_addr == -1)
4638 return -1;
4639 l = (page + TARGET_PAGE_SIZE) - addr;
4640 if (l > len)
4641 l = len;
4642 phys_addr += (addr & ~TARGET_PAGE_MASK);
4643 if (is_write)
4644 cpu_physical_memory_write_rom(phys_addr, buf, l);
4645 else
4646 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4647 len -= l;
4648 buf += l;
4649 addr += l;
4651 return 0;
4653 #endif
4655 /* in deterministic execution mode, instructions doing device I/Os
4656 must be at the end of the TB */
4657 void cpu_io_recompile(CPUState *env, void *retaddr)
4659 TranslationBlock *tb;
4660 uint32_t n, cflags;
4661 target_ulong pc, cs_base;
4662 uint64_t flags;
4664 tb = tb_find_pc((unsigned long)retaddr);
4665 if (!tb) {
4666 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4667 retaddr);
4669 n = env->icount_decr.u16.low + tb->icount;
4670 cpu_restore_state(tb, env, (unsigned long)retaddr);
4671 /* Calculate how many instructions had been executed before the fault
4672 occurred. */
4673 n = n - env->icount_decr.u16.low;
4674 /* Generate a new TB ending on the I/O insn. */
4675 n++;
4676 /* On MIPS and SH, delay slot instructions can only be restarted if
4677 they were already the first instruction in the TB. If this is not
4678 the first instruction in a TB then re-execute the preceding
4679 branch. */
4680 #if defined(TARGET_MIPS)
4681 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4682 env->active_tc.PC -= 4;
4683 env->icount_decr.u16.low++;
4684 env->hflags &= ~MIPS_HFLAG_BMASK;
4686 #elif defined(TARGET_SH4)
4687 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4688 && n > 1) {
4689 env->pc -= 2;
4690 env->icount_decr.u16.low++;
4691 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4693 #endif
4694 /* This should never happen. */
4695 if (n > CF_COUNT_MASK)
4696 cpu_abort(env, "TB too big during recompile");
4698 cflags = n | CF_LAST_IO;
4699 pc = tb->pc;
4700 cs_base = tb->cs_base;
4701 flags = tb->flags;
4702 tb_phys_invalidate(tb, -1);
4703 /* FIXME: In theory this could raise an exception. In practice
4704 we have already translated the block once so it's probably ok. */
4705 tb_gen_code(env, pc, cs_base, flags, cflags);
4706 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4707 the first in the TB) then we end up generating a whole new TB and
4708 repeating the fault, which is horribly inefficient.
4709 Better would be to execute just this insn uncached, or generate a
4710 second new TB. */
4711 cpu_resume_from_signal(env, NULL);
4714 #if !defined(CONFIG_USER_ONLY)
4716 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4718 int i, target_code_size, max_target_code_size;
4719 int direct_jmp_count, direct_jmp2_count, cross_page;
4720 TranslationBlock *tb;
4722 target_code_size = 0;
4723 max_target_code_size = 0;
4724 cross_page = 0;
4725 direct_jmp_count = 0;
4726 direct_jmp2_count = 0;
4727 for(i = 0; i < nb_tbs; i++) {
4728 tb = &tbs[i];
4729 target_code_size += tb->size;
4730 if (tb->size > max_target_code_size)
4731 max_target_code_size = tb->size;
4732 if (tb->page_addr[1] != -1)
4733 cross_page++;
4734 if (tb->tb_next_offset[0] != 0xffff) {
4735 direct_jmp_count++;
4736 if (tb->tb_next_offset[1] != 0xffff) {
4737 direct_jmp2_count++;
4741 /* XXX: avoid using doubles ? */
4742 cpu_fprintf(f, "Translation buffer state:\n");
4743 cpu_fprintf(f, "gen code size %td/%ld\n",
4744 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4745 cpu_fprintf(f, "TB count %d/%d\n",
4746 nb_tbs, code_gen_max_blocks);
4747 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4748 nb_tbs ? target_code_size / nb_tbs : 0,
4749 max_target_code_size);
4750 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4751 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4752 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4753 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4754 cross_page,
4755 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4756 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4757 direct_jmp_count,
4758 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4759 direct_jmp2_count,
4760 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4761 cpu_fprintf(f, "\nStatistics:\n");
4762 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4763 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4764 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4765 tcg_dump_info(f, cpu_fprintf);
4768 #define MMUSUFFIX _cmmu
4769 #undef GETPC
4770 #define GETPC() NULL
4771 #define env cpu_single_env
4772 #define SOFTMMU_CODE_ACCESS
4774 #define SHIFT 0
4775 #include "softmmu_template.h"
4777 #define SHIFT 1
4778 #include "softmmu_template.h"
4780 #define SHIFT 2
4781 #include "softmmu_template.h"
4783 #define SHIFT 3
4784 #include "softmmu_template.h"
4786 #undef env
4788 #endif