2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/gdbstub.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/host-utils.h"
26 #include "sysemu/sysemu.h"
27 #include "qemu/bitops.h"
28 #include "internals.h"
29 #include "qemu/crc32c.h"
30 #include <zlib.h> /* For crc32 */
32 /* C2.4.7 Multiply and divide */
33 /* special cases for 0 and LLONG_MIN are mandated by the standard */
34 uint64_t HELPER(udiv64
)(uint64_t num
, uint64_t den
)
42 int64_t HELPER(sdiv64
)(int64_t num
, int64_t den
)
47 if (num
== LLONG_MIN
&& den
== -1) {
53 uint64_t HELPER(clz64
)(uint64_t x
)
58 uint64_t HELPER(cls64
)(uint64_t x
)
63 uint32_t HELPER(cls32
)(uint32_t x
)
68 uint32_t HELPER(clz32
)(uint32_t x
)
73 uint64_t HELPER(rbit64
)(uint64_t x
)
78 /* Convert a softfloat float_relation_ (as returned by
79 * the float*_compare functions) to the correct ARM
82 static inline uint32_t float_rel_to_flags(int res
)
86 case float_relation_equal
:
87 flags
= PSTATE_Z
| PSTATE_C
;
89 case float_relation_less
:
92 case float_relation_greater
:
95 case float_relation_unordered
:
97 flags
= PSTATE_C
| PSTATE_V
;
103 uint64_t HELPER(vfp_cmps_a64
)(float32 x
, float32 y
, void *fp_status
)
105 return float_rel_to_flags(float32_compare_quiet(x
, y
, fp_status
));
108 uint64_t HELPER(vfp_cmpes_a64
)(float32 x
, float32 y
, void *fp_status
)
110 return float_rel_to_flags(float32_compare(x
, y
, fp_status
));
113 uint64_t HELPER(vfp_cmpd_a64
)(float64 x
, float64 y
, void *fp_status
)
115 return float_rel_to_flags(float64_compare_quiet(x
, y
, fp_status
));
118 uint64_t HELPER(vfp_cmped_a64
)(float64 x
, float64 y
, void *fp_status
)
120 return float_rel_to_flags(float64_compare(x
, y
, fp_status
));
123 float32
HELPER(vfp_mulxs
)(float32 a
, float32 b
, void *fpstp
)
125 float_status
*fpst
= fpstp
;
127 a
= float32_squash_input_denormal(a
, fpst
);
128 b
= float32_squash_input_denormal(b
, fpst
);
130 if ((float32_is_zero(a
) && float32_is_infinity(b
)) ||
131 (float32_is_infinity(a
) && float32_is_zero(b
))) {
132 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
133 return make_float32((1U << 30) |
134 ((float32_val(a
) ^ float32_val(b
)) & (1U << 31)));
136 return float32_mul(a
, b
, fpst
);
139 float64
HELPER(vfp_mulxd
)(float64 a
, float64 b
, void *fpstp
)
141 float_status
*fpst
= fpstp
;
143 a
= float64_squash_input_denormal(a
, fpst
);
144 b
= float64_squash_input_denormal(b
, fpst
);
146 if ((float64_is_zero(a
) && float64_is_infinity(b
)) ||
147 (float64_is_infinity(a
) && float64_is_zero(b
))) {
148 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
149 return make_float64((1ULL << 62) |
150 ((float64_val(a
) ^ float64_val(b
)) & (1ULL << 63)));
152 return float64_mul(a
, b
, fpst
);
155 uint64_t HELPER(simd_tbl
)(CPUARMState
*env
, uint64_t result
, uint64_t indices
,
156 uint32_t rn
, uint32_t numregs
)
158 /* Helper function for SIMD TBL and TBX. We have to do the table
159 * lookup part for the 64 bits worth of indices we're passed in.
160 * result is the initial results vector (either zeroes for TBL
161 * or some guest values for TBX), rn the register number where
162 * the table starts, and numregs the number of registers in the table.
163 * We return the results of the lookups.
167 for (shift
= 0; shift
< 64; shift
+= 8) {
168 int index
= extract64(indices
, shift
, 8);
169 if (index
< 16 * numregs
) {
170 /* Convert index (a byte offset into the virtual table
171 * which is a series of 128-bit vectors concatenated)
172 * into the correct vfp.regs[] element plus a bit offset
173 * into that element, bearing in mind that the table
174 * can wrap around from V31 to V0.
176 int elt
= (rn
* 2 + (index
>> 3)) % 64;
177 int bitidx
= (index
& 7) * 8;
178 uint64_t val
= extract64(env
->vfp
.regs
[elt
], bitidx
, 8);
180 result
= deposit64(result
, shift
, 8, val
);
186 /* 64bit/double versions of the neon float compare functions */
187 uint64_t HELPER(neon_ceq_f64
)(float64 a
, float64 b
, void *fpstp
)
189 float_status
*fpst
= fpstp
;
190 return -float64_eq_quiet(a
, b
, fpst
);
193 uint64_t HELPER(neon_cge_f64
)(float64 a
, float64 b
, void *fpstp
)
195 float_status
*fpst
= fpstp
;
196 return -float64_le(b
, a
, fpst
);
199 uint64_t HELPER(neon_cgt_f64
)(float64 a
, float64 b
, void *fpstp
)
201 float_status
*fpst
= fpstp
;
202 return -float64_lt(b
, a
, fpst
);
205 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
206 * versions, these do a fully fused multiply-add or
207 * multiply-add-and-halve.
209 #define float32_two make_float32(0x40000000)
210 #define float32_three make_float32(0x40400000)
211 #define float32_one_point_five make_float32(0x3fc00000)
213 #define float64_two make_float64(0x4000000000000000ULL)
214 #define float64_three make_float64(0x4008000000000000ULL)
215 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
217 float32
HELPER(recpsf_f32
)(float32 a
, float32 b
, void *fpstp
)
219 float_status
*fpst
= fpstp
;
221 a
= float32_squash_input_denormal(a
, fpst
);
222 b
= float32_squash_input_denormal(b
, fpst
);
225 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
226 (float32_is_infinity(b
) && float32_is_zero(a
))) {
229 return float32_muladd(a
, b
, float32_two
, 0, fpst
);
232 float64
HELPER(recpsf_f64
)(float64 a
, float64 b
, void *fpstp
)
234 float_status
*fpst
= fpstp
;
236 a
= float64_squash_input_denormal(a
, fpst
);
237 b
= float64_squash_input_denormal(b
, fpst
);
240 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
241 (float64_is_infinity(b
) && float64_is_zero(a
))) {
244 return float64_muladd(a
, b
, float64_two
, 0, fpst
);
247 float32
HELPER(rsqrtsf_f32
)(float32 a
, float32 b
, void *fpstp
)
249 float_status
*fpst
= fpstp
;
251 a
= float32_squash_input_denormal(a
, fpst
);
252 b
= float32_squash_input_denormal(b
, fpst
);
255 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
256 (float32_is_infinity(b
) && float32_is_zero(a
))) {
257 return float32_one_point_five
;
259 return float32_muladd(a
, b
, float32_three
, float_muladd_halve_result
, fpst
);
262 float64
HELPER(rsqrtsf_f64
)(float64 a
, float64 b
, void *fpstp
)
264 float_status
*fpst
= fpstp
;
266 a
= float64_squash_input_denormal(a
, fpst
);
267 b
= float64_squash_input_denormal(b
, fpst
);
270 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
271 (float64_is_infinity(b
) && float64_is_zero(a
))) {
272 return float64_one_point_five
;
274 return float64_muladd(a
, b
, float64_three
, float_muladd_halve_result
, fpst
);
277 /* Pairwise long add: add pairs of adjacent elements into
278 * double-width elements in the result (eg _s8 is an 8x8->16 op)
280 uint64_t HELPER(neon_addlp_s8
)(uint64_t a
)
282 uint64_t nsignmask
= 0x0080008000800080ULL
;
283 uint64_t wsignmask
= 0x8000800080008000ULL
;
284 uint64_t elementmask
= 0x00ff00ff00ff00ffULL
;
286 uint64_t res
, signres
;
288 /* Extract odd elements, sign extend each to a 16 bit field */
289 tmp1
= a
& elementmask
;
292 tmp1
= (tmp1
- nsignmask
) ^ wsignmask
;
293 /* Ditto for the even elements */
294 tmp2
= (a
>> 8) & elementmask
;
297 tmp2
= (tmp2
- nsignmask
) ^ wsignmask
;
299 /* calculate the result by summing bits 0..14, 16..22, etc,
300 * and then adjusting the sign bits 15, 23, etc manually.
301 * This ensures the addition can't overflow the 16 bit field.
303 signres
= (tmp1
^ tmp2
) & wsignmask
;
304 res
= (tmp1
& ~wsignmask
) + (tmp2
& ~wsignmask
);
310 uint64_t HELPER(neon_addlp_u8
)(uint64_t a
)
314 tmp
= a
& 0x00ff00ff00ff00ffULL
;
315 tmp
+= (a
>> 8) & 0x00ff00ff00ff00ffULL
;
319 uint64_t HELPER(neon_addlp_s16
)(uint64_t a
)
321 int32_t reslo
, reshi
;
323 reslo
= (int32_t)(int16_t)a
+ (int32_t)(int16_t)(a
>> 16);
324 reshi
= (int32_t)(int16_t)(a
>> 32) + (int32_t)(int16_t)(a
>> 48);
326 return (uint32_t)reslo
| (((uint64_t)reshi
) << 32);
329 uint64_t HELPER(neon_addlp_u16
)(uint64_t a
)
333 tmp
= a
& 0x0000ffff0000ffffULL
;
334 tmp
+= (a
>> 16) & 0x0000ffff0000ffffULL
;
338 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
339 float32
HELPER(frecpx_f32
)(float32 a
, void *fpstp
)
341 float_status
*fpst
= fpstp
;
342 uint32_t val32
, sbit
;
345 if (float32_is_any_nan(a
)) {
347 if (float32_is_signaling_nan(a
, fpst
)) {
348 float_raise(float_flag_invalid
, fpst
);
349 nan
= float32_maybe_silence_nan(a
, fpst
);
351 if (fpst
->default_nan_mode
) {
352 nan
= float32_default_nan(fpst
);
357 val32
= float32_val(a
);
358 sbit
= 0x80000000ULL
& val32
;
359 exp
= extract32(val32
, 23, 8);
362 return make_float32(sbit
| (0xfe << 23));
364 return make_float32(sbit
| (~exp
& 0xff) << 23);
368 float64
HELPER(frecpx_f64
)(float64 a
, void *fpstp
)
370 float_status
*fpst
= fpstp
;
371 uint64_t val64
, sbit
;
374 if (float64_is_any_nan(a
)) {
376 if (float64_is_signaling_nan(a
, fpst
)) {
377 float_raise(float_flag_invalid
, fpst
);
378 nan
= float64_maybe_silence_nan(a
, fpst
);
380 if (fpst
->default_nan_mode
) {
381 nan
= float64_default_nan(fpst
);
386 val64
= float64_val(a
);
387 sbit
= 0x8000000000000000ULL
& val64
;
388 exp
= extract64(float64_val(a
), 52, 11);
391 return make_float64(sbit
| (0x7feULL
<< 52));
393 return make_float64(sbit
| (~exp
& 0x7ffULL
) << 52);
397 float32
HELPER(fcvtx_f64_to_f32
)(float64 a
, CPUARMState
*env
)
399 /* Von Neumann rounding is implemented by using round-to-zero
400 * and then setting the LSB of the result if Inexact was raised.
403 float_status
*fpst
= &env
->vfp
.fp_status
;
404 float_status tstat
= *fpst
;
407 set_float_rounding_mode(float_round_to_zero
, &tstat
);
408 set_float_exception_flags(0, &tstat
);
409 r
= float64_to_float32(a
, &tstat
);
410 r
= float32_maybe_silence_nan(r
, &tstat
);
411 exflags
= get_float_exception_flags(&tstat
);
412 if (exflags
& float_flag_inexact
) {
413 r
= make_float32(float32_val(r
) | 1);
415 exflags
|= get_float_exception_flags(fpst
);
416 set_float_exception_flags(exflags
, fpst
);
420 /* 64-bit versions of the CRC helpers. Note that although the operation
421 * (and the prototypes of crc32c() and crc32() mean that only the bottom
422 * 32 bits of the accumulator and result are used, we pass and return
423 * uint64_t for convenience of the generated code. Unlike the 32-bit
424 * instruction set versions, val may genuinely have 64 bits of data in it.
425 * The upper bytes of val (above the number specified by 'bytes') must have
426 * been zeroed out by the caller.
428 uint64_t HELPER(crc32_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
434 /* zlib crc32 converts the accumulator and output to one's complement. */
435 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
438 uint64_t HELPER(crc32c_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
444 /* Linux crc32c converts the output to one's complement. */
445 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;