4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 /* Define for architectures which deviate from IEEE in not supporting
83 * signaling NaNs (so all NaNs are treated as quiet).
85 #if defined(TARGET_XTENSA)
86 #define NO_SIGNALING_NANS 1
89 /* Define how the architecture discriminates signaling NaNs.
90 * This done with the most significant bit of the fraction.
91 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
92 * the msb must be zero. MIPS is (so far) unique in supporting both the
93 * 2008 revision and backward compatibility with their original choice.
94 * Thus for MIPS we must make the choice at runtime.
96 static inline flag
snan_bit_is_one(float_status
*status
)
98 #if defined(TARGET_MIPS)
99 return status
->snan_bit_is_one
;
100 #elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
107 /*----------------------------------------------------------------------------
108 | For the deconstructed floating-point with fraction FRAC, return true
109 | if the fraction represents a signalling NaN; otherwise false.
110 *----------------------------------------------------------------------------*/
112 static bool parts_is_snan_frac(uint64_t frac
, float_status
*status
)
114 #ifdef NO_SIGNALING_NANS
117 flag msb
= extract64(frac
, DECOMPOSED_BINARY_POINT
- 1, 1);
118 return msb
== snan_bit_is_one(status
);
122 /*----------------------------------------------------------------------------
123 | The pattern for a default generated deconstructed floating-point NaN.
124 *----------------------------------------------------------------------------*/
126 static FloatParts
parts_default_nan(float_status
*status
)
131 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
132 /* !snan_bit_is_one, set all bits */
133 frac
= (1ULL << DECOMPOSED_BINARY_POINT
) - 1;
134 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
135 || defined(TARGET_MICROBLAZE)
136 /* !snan_bit_is_one, set sign and msb */
137 frac
= 1ULL << (DECOMPOSED_BINARY_POINT
- 1);
139 #elif defined(TARGET_HPPA)
140 /* snan_bit_is_one, set msb-1. */
141 frac
= 1ULL << (DECOMPOSED_BINARY_POINT
- 2);
143 /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
144 * S390, SH4, TriCore, and Xtensa. I cannot find documentation
145 * for Unicore32; the choice from the original commit is unchanged.
146 * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
147 * do not have floating-point.
149 if (snan_bit_is_one(status
)) {
150 /* set all bits other than msb */
151 frac
= (1ULL << (DECOMPOSED_BINARY_POINT
- 1)) - 1;
154 frac
= 1ULL << (DECOMPOSED_BINARY_POINT
- 1);
158 return (FloatParts
) {
159 .cls
= float_class_qnan
,
166 /*----------------------------------------------------------------------------
167 | Returns a quiet NaN from a signalling NaN for the deconstructed
168 | floating-point parts.
169 *----------------------------------------------------------------------------*/
171 static FloatParts
parts_silence_nan(FloatParts a
, float_status
*status
)
173 #ifdef NO_SIGNALING_NANS
174 g_assert_not_reached();
175 #elif defined(TARGET_HPPA)
176 a
.frac
&= ~(1ULL << (DECOMPOSED_BINARY_POINT
- 1));
177 a
.frac
|= 1ULL << (DECOMPOSED_BINARY_POINT
- 2);
179 if (snan_bit_is_one(status
)) {
180 return parts_default_nan(status
);
182 a
.frac
|= 1ULL << (DECOMPOSED_BINARY_POINT
- 1);
185 a
.cls
= float_class_qnan
;
189 /*----------------------------------------------------------------------------
190 | The pattern for a default generated extended double-precision NaN.
191 *----------------------------------------------------------------------------*/
192 floatx80
floatx80_default_nan(float_status
*status
)
196 /* None of the targets that have snan_bit_is_one use floatx80. */
197 assert(!snan_bit_is_one(status
));
198 #if defined(TARGET_M68K)
199 r
.low
= LIT64(0xFFFFFFFFFFFFFFFF);
203 r
.low
= LIT64(0xC000000000000000);
209 /*----------------------------------------------------------------------------
210 | The pattern for a default generated extended double-precision inf.
211 *----------------------------------------------------------------------------*/
213 #define floatx80_infinity_high 0x7FFF
214 #if defined(TARGET_M68K)
215 #define floatx80_infinity_low LIT64(0x0000000000000000)
217 #define floatx80_infinity_low LIT64(0x8000000000000000)
220 const floatx80 floatx80_infinity
221 = make_floatx80_init(floatx80_infinity_high
, floatx80_infinity_low
);
223 /*----------------------------------------------------------------------------
224 | Raises the exceptions specified by `flags'. Floating-point traps can be
225 | defined here if desired. It is currently not possible for such a trap
226 | to substitute a result value. If traps are not implemented, this routine
227 | should be simply `float_exception_flags |= flags;'.
228 *----------------------------------------------------------------------------*/
230 void float_raise(uint8_t flags
, float_status
*status
)
232 status
->float_exception_flags
|= flags
;
235 /*----------------------------------------------------------------------------
236 | Internal canonical NaN format.
237 *----------------------------------------------------------------------------*/
243 /*----------------------------------------------------------------------------
244 | Returns 1 if the half-precision floating-point value `a' is a quiet
245 | NaN; otherwise returns 0.
246 *----------------------------------------------------------------------------*/
248 int float16_is_quiet_nan(float16 a_
, float_status
*status
)
250 #ifdef NO_SIGNALING_NANS
251 return float16_is_any_nan(a_
);
253 uint16_t a
= float16_val(a_
);
254 if (snan_bit_is_one(status
)) {
255 return (((a
>> 9) & 0x3F) == 0x3E) && (a
& 0x1FF);
257 return ((a
& ~0x8000) >= 0x7C80);
262 /*----------------------------------------------------------------------------
263 | Returns 1 if the half-precision floating-point value `a' is a signaling
264 | NaN; otherwise returns 0.
265 *----------------------------------------------------------------------------*/
267 int float16_is_signaling_nan(float16 a_
, float_status
*status
)
269 #ifdef NO_SIGNALING_NANS
272 uint16_t a
= float16_val(a_
);
273 if (snan_bit_is_one(status
)) {
274 return ((a
& ~0x8000) >= 0x7C80);
276 return (((a
>> 9) & 0x3F) == 0x3E) && (a
& 0x1FF);
281 /*----------------------------------------------------------------------------
282 | Returns 1 if the single-precision floating-point value `a' is a quiet
283 | NaN; otherwise returns 0.
284 *----------------------------------------------------------------------------*/
286 int float32_is_quiet_nan(float32 a_
, float_status
*status
)
288 #ifdef NO_SIGNALING_NANS
289 return float32_is_any_nan(a_
);
291 uint32_t a
= float32_val(a_
);
292 if (snan_bit_is_one(status
)) {
293 return (((a
>> 22) & 0x1FF) == 0x1FE) && (a
& 0x003FFFFF);
295 return ((uint32_t)(a
<< 1) >= 0xFF800000);
300 /*----------------------------------------------------------------------------
301 | Returns 1 if the single-precision floating-point value `a' is a signaling
302 | NaN; otherwise returns 0.
303 *----------------------------------------------------------------------------*/
305 int float32_is_signaling_nan(float32 a_
, float_status
*status
)
307 #ifdef NO_SIGNALING_NANS
310 uint32_t a
= float32_val(a_
);
311 if (snan_bit_is_one(status
)) {
312 return ((uint32_t)(a
<< 1) >= 0xFF800000);
314 return (((a
>> 22) & 0x1FF) == 0x1FE) && (a
& 0x003FFFFF);
319 /*----------------------------------------------------------------------------
320 | Returns the result of converting the single-precision floating-point NaN
321 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
322 | exception is raised.
323 *----------------------------------------------------------------------------*/
325 static commonNaNT
float32ToCommonNaN(float32 a
, float_status
*status
)
329 if (float32_is_signaling_nan(a
, status
)) {
330 float_raise(float_flag_invalid
, status
);
332 z
.sign
= float32_val(a
) >> 31;
334 z
.high
= ((uint64_t)float32_val(a
)) << 41;
338 /*----------------------------------------------------------------------------
339 | Returns the result of converting the canonical NaN `a' to the single-
340 | precision floating-point format.
341 *----------------------------------------------------------------------------*/
343 static float32
commonNaNToFloat32(commonNaNT a
, float_status
*status
)
345 uint32_t mantissa
= a
.high
>> 41;
347 if (status
->default_nan_mode
) {
348 return float32_default_nan(status
);
353 (((uint32_t)a
.sign
) << 31) | 0x7F800000 | (a
.high
>> 41));
355 return float32_default_nan(status
);
359 /*----------------------------------------------------------------------------
360 | Select which NaN to propagate for a two-input operation.
361 | IEEE754 doesn't specify all the details of this, so the
362 | algorithm is target-specific.
363 | The routine is passed various bits of information about the
364 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
365 | Note that signalling NaNs are always squashed to quiet NaNs
366 | by the caller, by calling floatXX_silence_nan() before
369 | aIsLargerSignificand is only valid if both a and b are NaNs
370 | of some kind, and is true if a has the larger significand,
371 | or if both a and b have the same significand but a is
372 | positive but b is negative. It is only needed for the x87
374 *----------------------------------------------------------------------------*/
376 static int pickNaN(FloatClass a_cls
, FloatClass b_cls
,
377 flag aIsLargerSignificand
)
379 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
380 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
382 * 1. A if it is signaling
383 * 2. B if it is signaling
386 * A signaling NaN is always quietened before returning it.
388 /* According to MIPS specifications, if one of the two operands is
389 * a sNaN, a new qNaN has to be generated. This is done in
390 * floatXX_silence_nan(). For qNaN inputs the specifications
391 * says: "When possible, this QNaN result is one of the operand QNaN
392 * values." In practice it seems that most implementations choose
393 * the first operand if both operands are qNaN. In short this gives
394 * the following rules:
395 * 1. A if it is signaling
396 * 2. B if it is signaling
399 * A signaling NaN is always silenced before returning it.
401 if (is_snan(a_cls
)) {
403 } else if (is_snan(b_cls
)) {
405 } else if (is_qnan(a_cls
)) {
410 #elif defined(TARGET_PPC) || defined(TARGET_XTENSA) || defined(TARGET_M68K)
411 /* PowerPC propagation rules:
412 * 1. A if it sNaN or qNaN
413 * 2. B if it sNaN or qNaN
414 * A signaling NaN is always silenced before returning it.
416 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
417 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
418 * If either operand, but not both operands, of an operation is a
419 * nonsignaling NaN, then that NaN is returned as the result. If both
420 * operands are nonsignaling NaNs, then the destination operand
421 * nonsignaling NaN is returned as the result.
422 * If either operand to an operation is a signaling NaN (SNaN), then the
423 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
424 * is set in the FPCR ENABLE byte, then the exception is taken and the
425 * destination is not modified. If the SNaN exception enable bit is not
426 * set, setting the SNaN bit in the operand to a one converts the SNaN to
427 * a nonsignaling NaN. The operation then continues as described in the
428 * preceding paragraph for nonsignaling NaNs.
436 /* This implements x87 NaN propagation rules:
437 * SNaN + QNaN => return the QNaN
438 * two SNaNs => return the one with the larger significand, silenced
439 * two QNaNs => return the one with the larger significand
440 * SNaN and a non-NaN => return the SNaN, silenced
441 * QNaN and a non-NaN => return the QNaN
443 * If we get down to comparing significands and they are the same,
444 * return the NaN with the positive sign bit (if any).
446 if (is_snan(a_cls
)) {
447 if (is_snan(b_cls
)) {
448 return aIsLargerSignificand
? 0 : 1;
450 return is_qnan(b_cls
) ? 1 : 0;
451 } else if (is_qnan(a_cls
)) {
452 if (is_snan(b_cls
) || !is_qnan(b_cls
)) {
455 return aIsLargerSignificand
? 0 : 1;
463 /*----------------------------------------------------------------------------
464 | Select which NaN to propagate for a three-input operation.
465 | For the moment we assume that no CPU needs the 'larger significand'
467 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
468 *----------------------------------------------------------------------------*/
469 static int pickNaNMulAdd(FloatClass a_cls
, FloatClass b_cls
, FloatClass c_cls
,
470 bool infzero
, float_status
*status
)
472 #if defined(TARGET_ARM)
473 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
476 if (infzero
&& is_qnan(c_cls
)) {
477 float_raise(float_flag_invalid
, status
);
481 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
482 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
484 if (is_snan(c_cls
)) {
486 } else if (is_snan(a_cls
)) {
488 } else if (is_snan(b_cls
)) {
490 } else if (is_qnan(c_cls
)) {
492 } else if (is_qnan(a_cls
)) {
497 #elif defined(TARGET_MIPS)
498 /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
502 float_raise(float_flag_invalid
, status
);
506 if (snan_bit_is_one(status
)) {
507 /* Prefer sNaN over qNaN, in the a, b, c order. */
508 if (is_snan(a_cls
)) {
510 } else if (is_snan(b_cls
)) {
512 } else if (is_snan(c_cls
)) {
514 } else if (is_qnan(a_cls
)) {
516 } else if (is_qnan(b_cls
)) {
522 /* Prefer sNaN over qNaN, in the c, a, b order. */
523 if (is_snan(c_cls
)) {
525 } else if (is_snan(a_cls
)) {
527 } else if (is_snan(b_cls
)) {
529 } else if (is_qnan(c_cls
)) {
531 } else if (is_qnan(a_cls
)) {
537 #elif defined(TARGET_PPC)
538 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
539 * to return an input NaN if we have one (ie c) rather than generating
543 float_raise(float_flag_invalid
, status
);
547 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
548 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
552 } else if (is_nan(c_cls
)) {
558 /* A default implementation: prefer a to b to c.
559 * This is unlikely to actually match any real implementation.
563 } else if (is_nan(b_cls
)) {
571 /*----------------------------------------------------------------------------
572 | Takes two single-precision floating-point values `a' and `b', one of which
573 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
574 | signaling NaN, the invalid exception is raised.
575 *----------------------------------------------------------------------------*/
577 static float32
propagateFloat32NaN(float32 a
, float32 b
, float_status
*status
)
579 flag aIsLargerSignificand
;
581 FloatClass a_cls
, b_cls
;
583 /* This is not complete, but is good enough for pickNaN. */
584 a_cls
= (!float32_is_any_nan(a
)
586 : float32_is_signaling_nan(a
, status
)
589 b_cls
= (!float32_is_any_nan(b
)
591 : float32_is_signaling_nan(b
, status
)
598 if (is_snan(a_cls
) || is_snan(b_cls
)) {
599 float_raise(float_flag_invalid
, status
);
602 if (status
->default_nan_mode
) {
603 return float32_default_nan(status
);
606 if ((uint32_t)(av
<< 1) < (uint32_t)(bv
<< 1)) {
607 aIsLargerSignificand
= 0;
608 } else if ((uint32_t)(bv
<< 1) < (uint32_t)(av
<< 1)) {
609 aIsLargerSignificand
= 1;
611 aIsLargerSignificand
= (av
< bv
) ? 1 : 0;
614 if (pickNaN(a_cls
, b_cls
, aIsLargerSignificand
)) {
615 if (is_snan(b_cls
)) {
616 return float32_silence_nan(b
, status
);
620 if (is_snan(a_cls
)) {
621 return float32_silence_nan(a
, status
);
627 /*----------------------------------------------------------------------------
628 | Returns 1 if the double-precision floating-point value `a' is a quiet
629 | NaN; otherwise returns 0.
630 *----------------------------------------------------------------------------*/
632 int float64_is_quiet_nan(float64 a_
, float_status
*status
)
634 #ifdef NO_SIGNALING_NANS
635 return float64_is_any_nan(a_
);
637 uint64_t a
= float64_val(a_
);
638 if (snan_bit_is_one(status
)) {
639 return (((a
>> 51) & 0xFFF) == 0xFFE)
640 && (a
& 0x0007FFFFFFFFFFFFULL
);
642 return ((a
<< 1) >= 0xFFF0000000000000ULL
);
647 /*----------------------------------------------------------------------------
648 | Returns 1 if the double-precision floating-point value `a' is a signaling
649 | NaN; otherwise returns 0.
650 *----------------------------------------------------------------------------*/
652 int float64_is_signaling_nan(float64 a_
, float_status
*status
)
654 #ifdef NO_SIGNALING_NANS
657 uint64_t a
= float64_val(a_
);
658 if (snan_bit_is_one(status
)) {
659 return ((a
<< 1) >= 0xFFF0000000000000ULL
);
661 return (((a
>> 51) & 0xFFF) == 0xFFE)
662 && (a
& LIT64(0x0007FFFFFFFFFFFF));
667 /*----------------------------------------------------------------------------
668 | Returns the result of converting the double-precision floating-point NaN
669 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
670 | exception is raised.
671 *----------------------------------------------------------------------------*/
673 static commonNaNT
float64ToCommonNaN(float64 a
, float_status
*status
)
677 if (float64_is_signaling_nan(a
, status
)) {
678 float_raise(float_flag_invalid
, status
);
680 z
.sign
= float64_val(a
) >> 63;
682 z
.high
= float64_val(a
) << 12;
686 /*----------------------------------------------------------------------------
687 | Returns the result of converting the canonical NaN `a' to the double-
688 | precision floating-point format.
689 *----------------------------------------------------------------------------*/
691 static float64
commonNaNToFloat64(commonNaNT a
, float_status
*status
)
693 uint64_t mantissa
= a
.high
>> 12;
695 if (status
->default_nan_mode
) {
696 return float64_default_nan(status
);
701 (((uint64_t) a
.sign
) << 63)
702 | LIT64(0x7FF0000000000000)
705 return float64_default_nan(status
);
709 /*----------------------------------------------------------------------------
710 | Takes two double-precision floating-point values `a' and `b', one of which
711 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
712 | signaling NaN, the invalid exception is raised.
713 *----------------------------------------------------------------------------*/
715 static float64
propagateFloat64NaN(float64 a
, float64 b
, float_status
*status
)
717 flag aIsLargerSignificand
;
719 FloatClass a_cls
, b_cls
;
721 /* This is not complete, but is good enough for pickNaN. */
722 a_cls
= (!float64_is_any_nan(a
)
724 : float64_is_signaling_nan(a
, status
)
727 b_cls
= (!float64_is_any_nan(b
)
729 : float64_is_signaling_nan(b
, status
)
736 if (is_snan(a_cls
) || is_snan(b_cls
)) {
737 float_raise(float_flag_invalid
, status
);
740 if (status
->default_nan_mode
) {
741 return float64_default_nan(status
);
744 if ((uint64_t)(av
<< 1) < (uint64_t)(bv
<< 1)) {
745 aIsLargerSignificand
= 0;
746 } else if ((uint64_t)(bv
<< 1) < (uint64_t)(av
<< 1)) {
747 aIsLargerSignificand
= 1;
749 aIsLargerSignificand
= (av
< bv
) ? 1 : 0;
752 if (pickNaN(a_cls
, b_cls
, aIsLargerSignificand
)) {
753 if (is_snan(b_cls
)) {
754 return float64_silence_nan(b
, status
);
758 if (is_snan(a_cls
)) {
759 return float64_silence_nan(a
, status
);
765 /*----------------------------------------------------------------------------
766 | Returns 1 if the extended double-precision floating-point value `a' is a
767 | quiet NaN; otherwise returns 0. This slightly differs from the same
768 | function for other types as floatx80 has an explicit bit.
769 *----------------------------------------------------------------------------*/
771 int floatx80_is_quiet_nan(floatx80 a
, float_status
*status
)
773 #ifdef NO_SIGNALING_NANS
774 return floatx80_is_any_nan(a
);
776 if (snan_bit_is_one(status
)) {
779 aLow
= a
.low
& ~0x4000000000000000ULL
;
780 return ((a
.high
& 0x7FFF) == 0x7FFF)
784 return ((a
.high
& 0x7FFF) == 0x7FFF)
785 && (LIT64(0x8000000000000000) <= ((uint64_t)(a
.low
<< 1)));
790 /*----------------------------------------------------------------------------
791 | Returns 1 if the extended double-precision floating-point value `a' is a
792 | signaling NaN; otherwise returns 0. This slightly differs from the same
793 | function for other types as floatx80 has an explicit bit.
794 *----------------------------------------------------------------------------*/
796 int floatx80_is_signaling_nan(floatx80 a
, float_status
*status
)
798 #ifdef NO_SIGNALING_NANS
801 if (snan_bit_is_one(status
)) {
802 return ((a
.high
& 0x7FFF) == 0x7FFF)
803 && ((a
.low
<< 1) >= 0x8000000000000000ULL
);
807 aLow
= a
.low
& ~LIT64(0x4000000000000000);
808 return ((a
.high
& 0x7FFF) == 0x7FFF)
809 && (uint64_t)(aLow
<< 1)
815 /*----------------------------------------------------------------------------
816 | Returns a quiet NaN from a signalling NaN for the extended double-precision
817 | floating point value `a'.
818 *----------------------------------------------------------------------------*/
820 floatx80
floatx80_silence_nan(floatx80 a
, float_status
*status
)
822 /* None of the targets that have snan_bit_is_one use floatx80. */
823 assert(!snan_bit_is_one(status
));
824 a
.low
|= LIT64(0xC000000000000000);
828 /*----------------------------------------------------------------------------
829 | Returns the result of converting the extended double-precision floating-
830 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
831 | invalid exception is raised.
832 *----------------------------------------------------------------------------*/
834 static commonNaNT
floatx80ToCommonNaN(floatx80 a
, float_status
*status
)
839 if (floatx80_is_signaling_nan(a
, status
)) {
840 float_raise(float_flag_invalid
, status
);
843 z
.sign
= a
.high
>> 15;
847 dflt
= floatx80_default_nan(status
);
848 z
.sign
= dflt
.high
>> 15;
850 z
.high
= dflt
.low
<< 1;
855 /*----------------------------------------------------------------------------
856 | Returns the result of converting the canonical NaN `a' to the extended
857 | double-precision floating-point format.
858 *----------------------------------------------------------------------------*/
860 static floatx80
commonNaNToFloatx80(commonNaNT a
, float_status
*status
)
864 if (status
->default_nan_mode
) {
865 return floatx80_default_nan(status
);
869 z
.low
= LIT64(0x8000000000000000) | a
.high
>> 1;
870 z
.high
= (((uint16_t)a
.sign
) << 15) | 0x7FFF;
872 z
= floatx80_default_nan(status
);
877 /*----------------------------------------------------------------------------
878 | Takes two extended double-precision floating-point values `a' and `b', one
879 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
880 | `b' is a signaling NaN, the invalid exception is raised.
881 *----------------------------------------------------------------------------*/
883 floatx80
propagateFloatx80NaN(floatx80 a
, floatx80 b
, float_status
*status
)
885 flag aIsLargerSignificand
;
886 FloatClass a_cls
, b_cls
;
888 /* This is not complete, but is good enough for pickNaN. */
889 a_cls
= (!floatx80_is_any_nan(a
)
891 : floatx80_is_signaling_nan(a
, status
)
894 b_cls
= (!floatx80_is_any_nan(b
)
896 : floatx80_is_signaling_nan(b
, status
)
900 if (is_snan(a_cls
) || is_snan(b_cls
)) {
901 float_raise(float_flag_invalid
, status
);
904 if (status
->default_nan_mode
) {
905 return floatx80_default_nan(status
);
909 aIsLargerSignificand
= 0;
910 } else if (b
.low
< a
.low
) {
911 aIsLargerSignificand
= 1;
913 aIsLargerSignificand
= (a
.high
< b
.high
) ? 1 : 0;
916 if (pickNaN(a_cls
, b_cls
, aIsLargerSignificand
)) {
917 if (is_snan(b_cls
)) {
918 return floatx80_silence_nan(b
, status
);
922 if (is_snan(a_cls
)) {
923 return floatx80_silence_nan(a
, status
);
929 /*----------------------------------------------------------------------------
930 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
931 | NaN; otherwise returns 0.
932 *----------------------------------------------------------------------------*/
934 int float128_is_quiet_nan(float128 a
, float_status
*status
)
936 #ifdef NO_SIGNALING_NANS
937 return float128_is_any_nan(a
);
939 if (snan_bit_is_one(status
)) {
940 return (((a
.high
>> 47) & 0xFFFF) == 0xFFFE)
941 && (a
.low
|| (a
.high
& 0x00007FFFFFFFFFFFULL
));
943 return ((a
.high
<< 1) >= 0xFFFF000000000000ULL
)
944 && (a
.low
|| (a
.high
& 0x0000FFFFFFFFFFFFULL
));
949 /*----------------------------------------------------------------------------
950 | Returns 1 if the quadruple-precision floating-point value `a' is a
951 | signaling NaN; otherwise returns 0.
952 *----------------------------------------------------------------------------*/
954 int float128_is_signaling_nan(float128 a
, float_status
*status
)
956 #ifdef NO_SIGNALING_NANS
959 if (snan_bit_is_one(status
)) {
960 return ((a
.high
<< 1) >= 0xFFFF000000000000ULL
)
961 && (a
.low
|| (a
.high
& 0x0000FFFFFFFFFFFFULL
));
963 return (((a
.high
>> 47) & 0xFFFF) == 0xFFFE)
964 && (a
.low
|| (a
.high
& LIT64(0x00007FFFFFFFFFFF)));
969 /*----------------------------------------------------------------------------
970 | Returns a quiet NaN from a signalling NaN for the quadruple-precision
971 | floating point value `a'.
972 *----------------------------------------------------------------------------*/
974 float128
float128_silence_nan(float128 a
, float_status
*status
)
976 #ifdef NO_SIGNALING_NANS
977 g_assert_not_reached();
979 if (snan_bit_is_one(status
)) {
980 return float128_default_nan(status
);
982 a
.high
|= LIT64(0x0000800000000000);
988 /*----------------------------------------------------------------------------
989 | Returns the result of converting the quadruple-precision floating-point NaN
990 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
991 | exception is raised.
992 *----------------------------------------------------------------------------*/
994 static commonNaNT
float128ToCommonNaN(float128 a
, float_status
*status
)
998 if (float128_is_signaling_nan(a
, status
)) {
999 float_raise(float_flag_invalid
, status
);
1001 z
.sign
= a
.high
>> 63;
1002 shortShift128Left(a
.high
, a
.low
, 16, &z
.high
, &z
.low
);
1006 /*----------------------------------------------------------------------------
1007 | Returns the result of converting the canonical NaN `a' to the quadruple-
1008 | precision floating-point format.
1009 *----------------------------------------------------------------------------*/
1011 static float128
commonNaNToFloat128(commonNaNT a
, float_status
*status
)
1015 if (status
->default_nan_mode
) {
1016 return float128_default_nan(status
);
1019 shift128Right(a
.high
, a
.low
, 16, &z
.high
, &z
.low
);
1020 z
.high
|= (((uint64_t)a
.sign
) << 63) | LIT64(0x7FFF000000000000);
1024 /*----------------------------------------------------------------------------
1025 | Takes two quadruple-precision floating-point values `a' and `b', one of
1026 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1027 | `b' is a signaling NaN, the invalid exception is raised.
1028 *----------------------------------------------------------------------------*/
1030 static float128
propagateFloat128NaN(float128 a
, float128 b
,
1031 float_status
*status
)
1033 flag aIsLargerSignificand
;
1034 FloatClass a_cls
, b_cls
;
1036 /* This is not complete, but is good enough for pickNaN. */
1037 a_cls
= (!float128_is_any_nan(a
)
1038 ? float_class_normal
1039 : float128_is_signaling_nan(a
, status
)
1041 : float_class_qnan
);
1042 b_cls
= (!float128_is_any_nan(b
)
1043 ? float_class_normal
1044 : float128_is_signaling_nan(b
, status
)
1046 : float_class_qnan
);
1048 if (is_snan(a_cls
) || is_snan(b_cls
)) {
1049 float_raise(float_flag_invalid
, status
);
1052 if (status
->default_nan_mode
) {
1053 return float128_default_nan(status
);
1056 if (lt128(a
.high
<< 1, a
.low
, b
.high
<< 1, b
.low
)) {
1057 aIsLargerSignificand
= 0;
1058 } else if (lt128(b
.high
<< 1, b
.low
, a
.high
<< 1, a
.low
)) {
1059 aIsLargerSignificand
= 1;
1061 aIsLargerSignificand
= (a
.high
< b
.high
) ? 1 : 0;
1064 if (pickNaN(a_cls
, b_cls
, aIsLargerSignificand
)) {
1065 if (is_snan(b_cls
)) {
1066 return float128_silence_nan(b
, status
);
1070 if (is_snan(a_cls
)) {
1071 return float128_silence_nan(a
, status
);