virtio-ccw: check flic->adapter_routes_max_batch
[qemu.git] / target / ppc / fpu_helper.c
blob9f5cafd5ba78e7d0a85af75388ec49241e15b237
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
25 static inline float128 float128_snan_to_qnan(float128 x)
27 float128 r;
29 r.high = x.high | 0x0000800000000000;
30 r.low = x.low;
31 return r;
34 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
35 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
36 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38 /*****************************************************************************/
39 /* Floating point operations helpers */
40 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
42 CPU_FloatU f;
43 CPU_DoubleU d;
45 f.l = arg;
46 d.d = float32_to_float64(f.f, &env->fp_status);
47 return d.ll;
50 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
52 CPU_FloatU f;
53 CPU_DoubleU d;
55 d.ll = arg;
56 f.f = float64_to_float32(d.d, &env->fp_status);
57 return f.l;
60 static inline int ppc_float32_get_unbiased_exp(float32 f)
62 return ((f >> 23) & 0xFF) - 127;
65 static inline int ppc_float64_get_unbiased_exp(float64 f)
67 return ((f >> 52) & 0x7FF) - 1023;
70 #define COMPUTE_FPRF(tp) \
71 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
72 { \
73 int isneg; \
74 int fprf; \
76 isneg = tp##_is_neg(arg); \
77 if (unlikely(tp##_is_any_nan(arg))) { \
78 if (tp##_is_signaling_nan(arg, &env->fp_status)) { \
79 /* Signaling NaN: flags are undefined */ \
80 fprf = 0x00; \
81 } else { \
82 /* Quiet NaN */ \
83 fprf = 0x11; \
84 } \
85 } else if (unlikely(tp##_is_infinity(arg))) { \
86 /* +/- infinity */ \
87 if (isneg) { \
88 fprf = 0x09; \
89 } else { \
90 fprf = 0x05; \
91 } \
92 } else { \
93 if (tp##_is_zero(arg)) { \
94 /* +/- zero */ \
95 if (isneg) { \
96 fprf = 0x12; \
97 } else { \
98 fprf = 0x02; \
99 } \
100 } else { \
101 if (tp##_is_zero_or_denormal(arg)) { \
102 /* Denormalized numbers */ \
103 fprf = 0x10; \
104 } else { \
105 /* Normalized numbers */ \
106 fprf = 0x00; \
108 if (isneg) { \
109 fprf |= 0x08; \
110 } else { \
111 fprf |= 0x04; \
115 /* We update FPSCR_FPRF */ \
116 env->fpscr &= ~(0x1F << FPSCR_FPRF); \
117 env->fpscr |= fprf << FPSCR_FPRF; \
120 COMPUTE_FPRF(float16)
121 COMPUTE_FPRF(float32)
122 COMPUTE_FPRF(float64)
123 COMPUTE_FPRF(float128)
125 /* Floating-point invalid operations exception */
126 static inline __attribute__((__always_inline__))
127 uint64_t float_invalid_op_excp(CPUPPCState *env, int op, int set_fpcc)
129 CPUState *cs = CPU(ppc_env_get_cpu(env));
130 uint64_t ret = 0;
131 int ve;
133 ve = fpscr_ve;
134 switch (op) {
135 case POWERPC_EXCP_FP_VXSNAN:
136 env->fpscr |= 1 << FPSCR_VXSNAN;
137 break;
138 case POWERPC_EXCP_FP_VXSOFT:
139 env->fpscr |= 1 << FPSCR_VXSOFT;
140 break;
141 case POWERPC_EXCP_FP_VXISI:
142 /* Magnitude subtraction of infinities */
143 env->fpscr |= 1 << FPSCR_VXISI;
144 goto update_arith;
145 case POWERPC_EXCP_FP_VXIDI:
146 /* Division of infinity by infinity */
147 env->fpscr |= 1 << FPSCR_VXIDI;
148 goto update_arith;
149 case POWERPC_EXCP_FP_VXZDZ:
150 /* Division of zero by zero */
151 env->fpscr |= 1 << FPSCR_VXZDZ;
152 goto update_arith;
153 case POWERPC_EXCP_FP_VXIMZ:
154 /* Multiplication of zero by infinity */
155 env->fpscr |= 1 << FPSCR_VXIMZ;
156 goto update_arith;
157 case POWERPC_EXCP_FP_VXVC:
158 /* Ordered comparison of NaN */
159 env->fpscr |= 1 << FPSCR_VXVC;
160 if (set_fpcc) {
161 env->fpscr &= ~(0xF << FPSCR_FPCC);
162 env->fpscr |= 0x11 << FPSCR_FPCC;
164 /* We must update the target FPR before raising the exception */
165 if (ve != 0) {
166 cs->exception_index = POWERPC_EXCP_PROGRAM;
167 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
168 /* Update the floating-point enabled exception summary */
169 env->fpscr |= 1 << FPSCR_FEX;
170 /* Exception is differed */
171 ve = 0;
173 break;
174 case POWERPC_EXCP_FP_VXSQRT:
175 /* Square root of a negative number */
176 env->fpscr |= 1 << FPSCR_VXSQRT;
177 update_arith:
178 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
179 if (ve == 0) {
180 /* Set the result to quiet NaN */
181 ret = 0x7FF8000000000000ULL;
182 if (set_fpcc) {
183 env->fpscr &= ~(0xF << FPSCR_FPCC);
184 env->fpscr |= 0x11 << FPSCR_FPCC;
187 break;
188 case POWERPC_EXCP_FP_VXCVI:
189 /* Invalid conversion */
190 env->fpscr |= 1 << FPSCR_VXCVI;
191 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
192 if (ve == 0) {
193 /* Set the result to quiet NaN */
194 ret = 0x7FF8000000000000ULL;
195 if (set_fpcc) {
196 env->fpscr &= ~(0xF << FPSCR_FPCC);
197 env->fpscr |= 0x11 << FPSCR_FPCC;
200 break;
202 /* Update the floating-point invalid operation summary */
203 env->fpscr |= 1 << FPSCR_VX;
204 /* Update the floating-point exception summary */
205 env->fpscr |= FP_FX;
206 if (ve != 0) {
207 /* Update the floating-point enabled exception summary */
208 env->fpscr |= 1 << FPSCR_FEX;
209 if (msr_fe0 != 0 || msr_fe1 != 0) {
210 /* GETPC() works here because this is inline */
211 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
212 POWERPC_EXCP_FP | op, GETPC());
215 return ret;
218 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
220 env->fpscr |= 1 << FPSCR_ZX;
221 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
222 /* Update the floating-point exception summary */
223 env->fpscr |= FP_FX;
224 if (fpscr_ze != 0) {
225 /* Update the floating-point enabled exception summary */
226 env->fpscr |= 1 << FPSCR_FEX;
227 if (msr_fe0 != 0 || msr_fe1 != 0) {
228 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
229 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
230 raddr);
235 static inline void float_overflow_excp(CPUPPCState *env)
237 CPUState *cs = CPU(ppc_env_get_cpu(env));
239 env->fpscr |= 1 << FPSCR_OX;
240 /* Update the floating-point exception summary */
241 env->fpscr |= FP_FX;
242 if (fpscr_oe != 0) {
243 /* XXX: should adjust the result */
244 /* Update the floating-point enabled exception summary */
245 env->fpscr |= 1 << FPSCR_FEX;
246 /* We must update the target FPR before raising the exception */
247 cs->exception_index = POWERPC_EXCP_PROGRAM;
248 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
249 } else {
250 env->fpscr |= 1 << FPSCR_XX;
251 env->fpscr |= 1 << FPSCR_FI;
255 static inline void float_underflow_excp(CPUPPCState *env)
257 CPUState *cs = CPU(ppc_env_get_cpu(env));
259 env->fpscr |= 1 << FPSCR_UX;
260 /* Update the floating-point exception summary */
261 env->fpscr |= FP_FX;
262 if (fpscr_ue != 0) {
263 /* XXX: should adjust the result */
264 /* Update the floating-point enabled exception summary */
265 env->fpscr |= 1 << FPSCR_FEX;
266 /* We must update the target FPR before raising the exception */
267 cs->exception_index = POWERPC_EXCP_PROGRAM;
268 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
272 static inline void float_inexact_excp(CPUPPCState *env)
274 CPUState *cs = CPU(ppc_env_get_cpu(env));
276 env->fpscr |= 1 << FPSCR_XX;
277 /* Update the floating-point exception summary */
278 env->fpscr |= FP_FX;
279 if (fpscr_xe != 0) {
280 /* Update the floating-point enabled exception summary */
281 env->fpscr |= 1 << FPSCR_FEX;
282 /* We must update the target FPR before raising the exception */
283 cs->exception_index = POWERPC_EXCP_PROGRAM;
284 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
288 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
290 int rnd_type;
292 /* Set rounding mode */
293 switch (fpscr_rn) {
294 case 0:
295 /* Best approximation (round to nearest) */
296 rnd_type = float_round_nearest_even;
297 break;
298 case 1:
299 /* Smaller magnitude (round toward zero) */
300 rnd_type = float_round_to_zero;
301 break;
302 case 2:
303 /* Round toward +infinite */
304 rnd_type = float_round_up;
305 break;
306 default:
307 case 3:
308 /* Round toward -infinite */
309 rnd_type = float_round_down;
310 break;
312 set_float_rounding_mode(rnd_type, &env->fp_status);
315 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
317 int prev;
319 prev = (env->fpscr >> bit) & 1;
320 env->fpscr &= ~(1 << bit);
321 if (prev == 1) {
322 switch (bit) {
323 case FPSCR_RN1:
324 case FPSCR_RN:
325 fpscr_set_rounding_mode(env);
326 break;
327 default:
328 break;
333 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
335 CPUState *cs = CPU(ppc_env_get_cpu(env));
336 int prev;
338 prev = (env->fpscr >> bit) & 1;
339 env->fpscr |= 1 << bit;
340 if (prev == 0) {
341 switch (bit) {
342 case FPSCR_VX:
343 env->fpscr |= FP_FX;
344 if (fpscr_ve) {
345 goto raise_ve;
347 break;
348 case FPSCR_OX:
349 env->fpscr |= FP_FX;
350 if (fpscr_oe) {
351 goto raise_oe;
353 break;
354 case FPSCR_UX:
355 env->fpscr |= FP_FX;
356 if (fpscr_ue) {
357 goto raise_ue;
359 break;
360 case FPSCR_ZX:
361 env->fpscr |= FP_FX;
362 if (fpscr_ze) {
363 goto raise_ze;
365 break;
366 case FPSCR_XX:
367 env->fpscr |= FP_FX;
368 if (fpscr_xe) {
369 goto raise_xe;
371 break;
372 case FPSCR_VXSNAN:
373 case FPSCR_VXISI:
374 case FPSCR_VXIDI:
375 case FPSCR_VXZDZ:
376 case FPSCR_VXIMZ:
377 case FPSCR_VXVC:
378 case FPSCR_VXSOFT:
379 case FPSCR_VXSQRT:
380 case FPSCR_VXCVI:
381 env->fpscr |= 1 << FPSCR_VX;
382 env->fpscr |= FP_FX;
383 if (fpscr_ve != 0) {
384 goto raise_ve;
386 break;
387 case FPSCR_VE:
388 if (fpscr_vx != 0) {
389 raise_ve:
390 env->error_code = POWERPC_EXCP_FP;
391 if (fpscr_vxsnan) {
392 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
394 if (fpscr_vxisi) {
395 env->error_code |= POWERPC_EXCP_FP_VXISI;
397 if (fpscr_vxidi) {
398 env->error_code |= POWERPC_EXCP_FP_VXIDI;
400 if (fpscr_vxzdz) {
401 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
403 if (fpscr_vximz) {
404 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
406 if (fpscr_vxvc) {
407 env->error_code |= POWERPC_EXCP_FP_VXVC;
409 if (fpscr_vxsoft) {
410 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
412 if (fpscr_vxsqrt) {
413 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
415 if (fpscr_vxcvi) {
416 env->error_code |= POWERPC_EXCP_FP_VXCVI;
418 goto raise_excp;
420 break;
421 case FPSCR_OE:
422 if (fpscr_ox != 0) {
423 raise_oe:
424 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
425 goto raise_excp;
427 break;
428 case FPSCR_UE:
429 if (fpscr_ux != 0) {
430 raise_ue:
431 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
432 goto raise_excp;
434 break;
435 case FPSCR_ZE:
436 if (fpscr_zx != 0) {
437 raise_ze:
438 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
439 goto raise_excp;
441 break;
442 case FPSCR_XE:
443 if (fpscr_xx != 0) {
444 raise_xe:
445 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
446 goto raise_excp;
448 break;
449 case FPSCR_RN1:
450 case FPSCR_RN:
451 fpscr_set_rounding_mode(env);
452 break;
453 default:
454 break;
455 raise_excp:
456 /* Update the floating-point enabled exception summary */
457 env->fpscr |= 1 << FPSCR_FEX;
458 /* We have to update Rc1 before raising the exception */
459 cs->exception_index = POWERPC_EXCP_PROGRAM;
460 break;
465 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
467 CPUState *cs = CPU(ppc_env_get_cpu(env));
468 target_ulong prev, new;
469 int i;
471 prev = env->fpscr;
472 new = (target_ulong)arg;
473 new &= ~0x60000000LL;
474 new |= prev & 0x60000000LL;
475 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
476 if (mask & (1 << i)) {
477 env->fpscr &= ~(0xFLL << (4 * i));
478 env->fpscr |= new & (0xFLL << (4 * i));
481 /* Update VX and FEX */
482 if (fpscr_ix != 0) {
483 env->fpscr |= 1 << FPSCR_VX;
484 } else {
485 env->fpscr &= ~(1 << FPSCR_VX);
487 if ((fpscr_ex & fpscr_eex) != 0) {
488 env->fpscr |= 1 << FPSCR_FEX;
489 cs->exception_index = POWERPC_EXCP_PROGRAM;
490 /* XXX: we should compute it properly */
491 env->error_code = POWERPC_EXCP_FP;
492 } else {
493 env->fpscr &= ~(1 << FPSCR_FEX);
495 fpscr_set_rounding_mode(env);
498 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
500 helper_store_fpscr(env, arg, mask);
503 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
505 CPUState *cs = CPU(ppc_env_get_cpu(env));
506 int status = get_float_exception_flags(&env->fp_status);
508 if (status & float_flag_divbyzero) {
509 float_zero_divide_excp(env, raddr);
510 } else if (status & float_flag_overflow) {
511 float_overflow_excp(env);
512 } else if (status & float_flag_underflow) {
513 float_underflow_excp(env);
514 } else if (status & float_flag_inexact) {
515 float_inexact_excp(env);
518 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
519 (env->error_code & POWERPC_EXCP_FP)) {
520 /* Differred floating-point exception after target FPR update */
521 if (msr_fe0 != 0 || msr_fe1 != 0) {
522 raise_exception_err_ra(env, cs->exception_index,
523 env->error_code, raddr);
528 static inline __attribute__((__always_inline__))
529 void float_check_status(CPUPPCState *env)
531 /* GETPC() works here because this is inline */
532 do_float_check_status(env, GETPC());
535 void helper_float_check_status(CPUPPCState *env)
537 do_float_check_status(env, GETPC());
540 void helper_reset_fpstatus(CPUPPCState *env)
542 set_float_exception_flags(0, &env->fp_status);
545 /* fadd - fadd. */
546 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
548 CPU_DoubleU farg1, farg2;
550 farg1.ll = arg1;
551 farg2.ll = arg2;
553 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
554 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
555 /* Magnitude subtraction of infinities */
556 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
557 } else {
558 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
559 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
560 /* sNaN addition */
561 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
563 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
566 return farg1.ll;
569 /* fsub - fsub. */
570 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
572 CPU_DoubleU farg1, farg2;
574 farg1.ll = arg1;
575 farg2.ll = arg2;
577 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
578 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
579 /* Magnitude subtraction of infinities */
580 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
581 } else {
582 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
583 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
584 /* sNaN subtraction */
585 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
587 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
590 return farg1.ll;
593 /* fmul - fmul. */
594 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
596 CPU_DoubleU farg1, farg2;
598 farg1.ll = arg1;
599 farg2.ll = arg2;
601 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
602 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
603 /* Multiplication of zero by infinity */
604 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
605 } else {
606 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
607 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
608 /* sNaN multiplication */
609 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
611 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
614 return farg1.ll;
617 /* fdiv - fdiv. */
618 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
620 CPU_DoubleU farg1, farg2;
622 farg1.ll = arg1;
623 farg2.ll = arg2;
625 if (unlikely(float64_is_infinity(farg1.d) &&
626 float64_is_infinity(farg2.d))) {
627 /* Division of infinity by infinity */
628 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
629 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
630 /* Division of zero by zero */
631 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
632 } else {
633 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
634 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
635 /* sNaN division */
636 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
638 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
641 return farg1.ll;
645 #define FPU_FCTI(op, cvt, nanval) \
646 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
648 CPU_DoubleU farg; \
650 farg.ll = arg; \
651 farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \
653 if (unlikely(env->fp_status.float_exception_flags)) { \
654 if (float64_is_any_nan(arg)) { \
655 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
656 if (float64_is_signaling_nan(arg, &env->fp_status)) { \
657 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
659 farg.ll = nanval; \
660 } else if (env->fp_status.float_exception_flags & \
661 float_flag_invalid) { \
662 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
664 float_check_status(env); \
666 return farg.ll; \
669 FPU_FCTI(fctiw, int32, 0x80000000U)
670 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
671 FPU_FCTI(fctiwu, uint32, 0x00000000U)
672 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
673 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
674 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
675 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
676 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
678 #define FPU_FCFI(op, cvtr, is_single) \
679 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
681 CPU_DoubleU farg; \
683 if (is_single) { \
684 float32 tmp = cvtr(arg, &env->fp_status); \
685 farg.d = float32_to_float64(tmp, &env->fp_status); \
686 } else { \
687 farg.d = cvtr(arg, &env->fp_status); \
689 float_check_status(env); \
690 return farg.ll; \
693 FPU_FCFI(fcfid, int64_to_float64, 0)
694 FPU_FCFI(fcfids, int64_to_float32, 1)
695 FPU_FCFI(fcfidu, uint64_to_float64, 0)
696 FPU_FCFI(fcfidus, uint64_to_float32, 1)
698 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
699 int rounding_mode)
701 CPU_DoubleU farg;
703 farg.ll = arg;
705 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
706 /* sNaN round */
707 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
708 farg.ll = arg | 0x0008000000000000ULL;
709 } else {
710 int inexact = get_float_exception_flags(&env->fp_status) &
711 float_flag_inexact;
712 set_float_rounding_mode(rounding_mode, &env->fp_status);
713 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
714 /* Restore rounding mode from FPSCR */
715 fpscr_set_rounding_mode(env);
717 /* fri* does not set FPSCR[XX] */
718 if (!inexact) {
719 env->fp_status.float_exception_flags &= ~float_flag_inexact;
722 float_check_status(env);
723 return farg.ll;
726 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
728 return do_fri(env, arg, float_round_ties_away);
731 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
733 return do_fri(env, arg, float_round_to_zero);
736 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
738 return do_fri(env, arg, float_round_up);
741 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
743 return do_fri(env, arg, float_round_down);
746 /* fmadd - fmadd. */
747 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
748 uint64_t arg3)
750 CPU_DoubleU farg1, farg2, farg3;
752 farg1.ll = arg1;
753 farg2.ll = arg2;
754 farg3.ll = arg3;
756 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
757 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
758 /* Multiplication of zero by infinity */
759 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
760 } else {
761 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
762 float64_is_signaling_nan(farg2.d, &env->fp_status) ||
763 float64_is_signaling_nan(farg3.d, &env->fp_status))) {
764 /* sNaN operation */
765 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
767 /* This is the way the PowerPC specification defines it */
768 float128 ft0_128, ft1_128;
770 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
771 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
772 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
773 if (unlikely(float128_is_infinity(ft0_128) &&
774 float64_is_infinity(farg3.d) &&
775 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
776 /* Magnitude subtraction of infinities */
777 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
778 } else {
779 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
780 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
781 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
785 return farg1.ll;
788 /* fmsub - fmsub. */
789 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
790 uint64_t arg3)
792 CPU_DoubleU farg1, farg2, farg3;
794 farg1.ll = arg1;
795 farg2.ll = arg2;
796 farg3.ll = arg3;
798 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
799 (float64_is_zero(farg1.d) &&
800 float64_is_infinity(farg2.d)))) {
801 /* Multiplication of zero by infinity */
802 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
803 } else {
804 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
805 float64_is_signaling_nan(farg2.d, &env->fp_status) ||
806 float64_is_signaling_nan(farg3.d, &env->fp_status))) {
807 /* sNaN operation */
808 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
810 /* This is the way the PowerPC specification defines it */
811 float128 ft0_128, ft1_128;
813 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
814 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
815 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
816 if (unlikely(float128_is_infinity(ft0_128) &&
817 float64_is_infinity(farg3.d) &&
818 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
819 /* Magnitude subtraction of infinities */
820 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
821 } else {
822 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
823 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
824 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
827 return farg1.ll;
830 /* fnmadd - fnmadd. */
831 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
832 uint64_t arg3)
834 CPU_DoubleU farg1, farg2, farg3;
836 farg1.ll = arg1;
837 farg2.ll = arg2;
838 farg3.ll = arg3;
840 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
841 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
842 /* Multiplication of zero by infinity */
843 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
844 } else {
845 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
846 float64_is_signaling_nan(farg2.d, &env->fp_status) ||
847 float64_is_signaling_nan(farg3.d, &env->fp_status))) {
848 /* sNaN operation */
849 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
851 /* This is the way the PowerPC specification defines it */
852 float128 ft0_128, ft1_128;
854 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
855 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
856 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
857 if (unlikely(float128_is_infinity(ft0_128) &&
858 float64_is_infinity(farg3.d) &&
859 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
860 /* Magnitude subtraction of infinities */
861 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
862 } else {
863 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
864 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
865 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
867 if (likely(!float64_is_any_nan(farg1.d))) {
868 farg1.d = float64_chs(farg1.d);
871 return farg1.ll;
874 /* fnmsub - fnmsub. */
875 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
876 uint64_t arg3)
878 CPU_DoubleU farg1, farg2, farg3;
880 farg1.ll = arg1;
881 farg2.ll = arg2;
882 farg3.ll = arg3;
884 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
885 (float64_is_zero(farg1.d) &&
886 float64_is_infinity(farg2.d)))) {
887 /* Multiplication of zero by infinity */
888 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
889 } else {
890 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
891 float64_is_signaling_nan(farg2.d, &env->fp_status) ||
892 float64_is_signaling_nan(farg3.d, &env->fp_status))) {
893 /* sNaN operation */
894 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
896 /* This is the way the PowerPC specification defines it */
897 float128 ft0_128, ft1_128;
899 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
900 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
901 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
902 if (unlikely(float128_is_infinity(ft0_128) &&
903 float64_is_infinity(farg3.d) &&
904 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
905 /* Magnitude subtraction of infinities */
906 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
907 } else {
908 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
909 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
910 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
912 if (likely(!float64_is_any_nan(farg1.d))) {
913 farg1.d = float64_chs(farg1.d);
916 return farg1.ll;
919 /* frsp - frsp. */
920 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
922 CPU_DoubleU farg;
923 float32 f32;
925 farg.ll = arg;
927 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
928 /* sNaN square root */
929 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
931 f32 = float64_to_float32(farg.d, &env->fp_status);
932 farg.d = float32_to_float64(f32, &env->fp_status);
934 return farg.ll;
937 /* fsqrt - fsqrt. */
938 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
940 CPU_DoubleU farg;
942 farg.ll = arg;
944 if (unlikely(float64_is_any_nan(farg.d))) {
945 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
946 /* sNaN reciprocal square root */
947 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
948 farg.ll = float64_snan_to_qnan(farg.ll);
950 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
951 /* Square root of a negative nonzero number */
952 farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
953 } else {
954 farg.d = float64_sqrt(farg.d, &env->fp_status);
956 return farg.ll;
959 /* fre - fre. */
960 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
962 CPU_DoubleU farg;
964 farg.ll = arg;
966 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
967 /* sNaN reciprocal */
968 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
970 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
971 return farg.d;
974 /* fres - fres. */
975 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
977 CPU_DoubleU farg;
978 float32 f32;
980 farg.ll = arg;
982 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
983 /* sNaN reciprocal */
984 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
986 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
987 f32 = float64_to_float32(farg.d, &env->fp_status);
988 farg.d = float32_to_float64(f32, &env->fp_status);
990 return farg.ll;
993 /* frsqrte - frsqrte. */
994 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
996 CPU_DoubleU farg;
998 farg.ll = arg;
1000 if (unlikely(float64_is_any_nan(farg.d))) {
1001 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
1002 /* sNaN reciprocal square root */
1003 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1004 farg.ll = float64_snan_to_qnan(farg.ll);
1006 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1007 /* Reciprocal square root of a negative nonzero number */
1008 farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
1009 } else {
1010 farg.d = float64_sqrt(farg.d, &env->fp_status);
1011 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1014 return farg.ll;
1017 /* fsel - fsel. */
1018 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1019 uint64_t arg3)
1021 CPU_DoubleU farg1;
1023 farg1.ll = arg1;
1025 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1026 !float64_is_any_nan(farg1.d)) {
1027 return arg2;
1028 } else {
1029 return arg3;
1033 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1035 int fe_flag = 0;
1036 int fg_flag = 0;
1038 if (unlikely(float64_is_infinity(fra) ||
1039 float64_is_infinity(frb) ||
1040 float64_is_zero(frb))) {
1041 fe_flag = 1;
1042 fg_flag = 1;
1043 } else {
1044 int e_a = ppc_float64_get_unbiased_exp(fra);
1045 int e_b = ppc_float64_get_unbiased_exp(frb);
1047 if (unlikely(float64_is_any_nan(fra) ||
1048 float64_is_any_nan(frb))) {
1049 fe_flag = 1;
1050 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1051 fe_flag = 1;
1052 } else if (!float64_is_zero(fra) &&
1053 (((e_a - e_b) >= 1023) ||
1054 ((e_a - e_b) <= -1021) ||
1055 (e_a <= -970))) {
1056 fe_flag = 1;
1059 if (unlikely(float64_is_zero_or_denormal(frb))) {
1060 /* XB is not zero because of the above check and */
1061 /* so must be denormalized. */
1062 fg_flag = 1;
1066 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1069 uint32_t helper_ftsqrt(uint64_t frb)
1071 int fe_flag = 0;
1072 int fg_flag = 0;
1074 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1075 fe_flag = 1;
1076 fg_flag = 1;
1077 } else {
1078 int e_b = ppc_float64_get_unbiased_exp(frb);
1080 if (unlikely(float64_is_any_nan(frb))) {
1081 fe_flag = 1;
1082 } else if (unlikely(float64_is_zero(frb))) {
1083 fe_flag = 1;
1084 } else if (unlikely(float64_is_neg(frb))) {
1085 fe_flag = 1;
1086 } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1087 fe_flag = 1;
1090 if (unlikely(float64_is_zero_or_denormal(frb))) {
1091 /* XB is not zero because of the above check and */
1092 /* therefore must be denormalized. */
1093 fg_flag = 1;
1097 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1100 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1101 uint32_t crfD)
1103 CPU_DoubleU farg1, farg2;
1104 uint32_t ret = 0;
1106 farg1.ll = arg1;
1107 farg2.ll = arg2;
1109 if (unlikely(float64_is_any_nan(farg1.d) ||
1110 float64_is_any_nan(farg2.d))) {
1111 ret = 0x01UL;
1112 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1113 ret = 0x08UL;
1114 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1115 ret = 0x04UL;
1116 } else {
1117 ret = 0x02UL;
1120 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1121 env->fpscr |= ret << FPSCR_FPRF;
1122 env->crf[crfD] = ret;
1123 if (unlikely(ret == 0x01UL
1124 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1125 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1126 /* sNaN comparison */
1127 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1131 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1132 uint32_t crfD)
1134 CPU_DoubleU farg1, farg2;
1135 uint32_t ret = 0;
1137 farg1.ll = arg1;
1138 farg2.ll = arg2;
1140 if (unlikely(float64_is_any_nan(farg1.d) ||
1141 float64_is_any_nan(farg2.d))) {
1142 ret = 0x01UL;
1143 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1144 ret = 0x08UL;
1145 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1146 ret = 0x04UL;
1147 } else {
1148 ret = 0x02UL;
1151 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1152 env->fpscr |= ret << FPSCR_FPRF;
1153 env->crf[crfD] = ret;
1154 if (unlikely(ret == 0x01UL)) {
1155 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1156 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1157 /* sNaN comparison */
1158 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1159 POWERPC_EXCP_FP_VXVC, 1);
1160 } else {
1161 /* qNaN comparison */
1162 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1167 /* Single-precision floating-point conversions */
1168 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1170 CPU_FloatU u;
1172 u.f = int32_to_float32(val, &env->vec_status);
1174 return u.l;
1177 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1179 CPU_FloatU u;
1181 u.f = uint32_to_float32(val, &env->vec_status);
1183 return u.l;
1186 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1188 CPU_FloatU u;
1190 u.l = val;
1191 /* NaN are not treated the same way IEEE 754 does */
1192 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1193 return 0;
1196 return float32_to_int32(u.f, &env->vec_status);
1199 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1201 CPU_FloatU u;
1203 u.l = val;
1204 /* NaN are not treated the same way IEEE 754 does */
1205 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1206 return 0;
1209 return float32_to_uint32(u.f, &env->vec_status);
1212 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1214 CPU_FloatU u;
1216 u.l = val;
1217 /* NaN are not treated the same way IEEE 754 does */
1218 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1219 return 0;
1222 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1225 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1227 CPU_FloatU u;
1229 u.l = val;
1230 /* NaN are not treated the same way IEEE 754 does */
1231 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1232 return 0;
1235 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1238 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1240 CPU_FloatU u;
1241 float32 tmp;
1243 u.f = int32_to_float32(val, &env->vec_status);
1244 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1245 u.f = float32_div(u.f, tmp, &env->vec_status);
1247 return u.l;
1250 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1252 CPU_FloatU u;
1253 float32 tmp;
1255 u.f = uint32_to_float32(val, &env->vec_status);
1256 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1257 u.f = float32_div(u.f, tmp, &env->vec_status);
1259 return u.l;
1262 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1264 CPU_FloatU u;
1265 float32 tmp;
1267 u.l = val;
1268 /* NaN are not treated the same way IEEE 754 does */
1269 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1270 return 0;
1272 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1273 u.f = float32_mul(u.f, tmp, &env->vec_status);
1275 return float32_to_int32(u.f, &env->vec_status);
1278 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1280 CPU_FloatU u;
1281 float32 tmp;
1283 u.l = val;
1284 /* NaN are not treated the same way IEEE 754 does */
1285 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1286 return 0;
1288 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1289 u.f = float32_mul(u.f, tmp, &env->vec_status);
1291 return float32_to_uint32(u.f, &env->vec_status);
1294 #define HELPER_SPE_SINGLE_CONV(name) \
1295 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1297 return e##name(env, val); \
1299 /* efscfsi */
1300 HELPER_SPE_SINGLE_CONV(fscfsi);
1301 /* efscfui */
1302 HELPER_SPE_SINGLE_CONV(fscfui);
1303 /* efscfuf */
1304 HELPER_SPE_SINGLE_CONV(fscfuf);
1305 /* efscfsf */
1306 HELPER_SPE_SINGLE_CONV(fscfsf);
1307 /* efsctsi */
1308 HELPER_SPE_SINGLE_CONV(fsctsi);
1309 /* efsctui */
1310 HELPER_SPE_SINGLE_CONV(fsctui);
1311 /* efsctsiz */
1312 HELPER_SPE_SINGLE_CONV(fsctsiz);
1313 /* efsctuiz */
1314 HELPER_SPE_SINGLE_CONV(fsctuiz);
1315 /* efsctsf */
1316 HELPER_SPE_SINGLE_CONV(fsctsf);
1317 /* efsctuf */
1318 HELPER_SPE_SINGLE_CONV(fsctuf);
1320 #define HELPER_SPE_VECTOR_CONV(name) \
1321 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1323 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1324 (uint64_t)e##name(env, val); \
1326 /* evfscfsi */
1327 HELPER_SPE_VECTOR_CONV(fscfsi);
1328 /* evfscfui */
1329 HELPER_SPE_VECTOR_CONV(fscfui);
1330 /* evfscfuf */
1331 HELPER_SPE_VECTOR_CONV(fscfuf);
1332 /* evfscfsf */
1333 HELPER_SPE_VECTOR_CONV(fscfsf);
1334 /* evfsctsi */
1335 HELPER_SPE_VECTOR_CONV(fsctsi);
1336 /* evfsctui */
1337 HELPER_SPE_VECTOR_CONV(fsctui);
1338 /* evfsctsiz */
1339 HELPER_SPE_VECTOR_CONV(fsctsiz);
1340 /* evfsctuiz */
1341 HELPER_SPE_VECTOR_CONV(fsctuiz);
1342 /* evfsctsf */
1343 HELPER_SPE_VECTOR_CONV(fsctsf);
1344 /* evfsctuf */
1345 HELPER_SPE_VECTOR_CONV(fsctuf);
1347 /* Single-precision floating-point arithmetic */
1348 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1350 CPU_FloatU u1, u2;
1352 u1.l = op1;
1353 u2.l = op2;
1354 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1355 return u1.l;
1358 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1360 CPU_FloatU u1, u2;
1362 u1.l = op1;
1363 u2.l = op2;
1364 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1365 return u1.l;
1368 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1370 CPU_FloatU u1, u2;
1372 u1.l = op1;
1373 u2.l = op2;
1374 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1375 return u1.l;
1378 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1380 CPU_FloatU u1, u2;
1382 u1.l = op1;
1383 u2.l = op2;
1384 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1385 return u1.l;
1388 #define HELPER_SPE_SINGLE_ARITH(name) \
1389 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1391 return e##name(env, op1, op2); \
1393 /* efsadd */
1394 HELPER_SPE_SINGLE_ARITH(fsadd);
1395 /* efssub */
1396 HELPER_SPE_SINGLE_ARITH(fssub);
1397 /* efsmul */
1398 HELPER_SPE_SINGLE_ARITH(fsmul);
1399 /* efsdiv */
1400 HELPER_SPE_SINGLE_ARITH(fsdiv);
1402 #define HELPER_SPE_VECTOR_ARITH(name) \
1403 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1405 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1406 (uint64_t)e##name(env, op1, op2); \
1408 /* evfsadd */
1409 HELPER_SPE_VECTOR_ARITH(fsadd);
1410 /* evfssub */
1411 HELPER_SPE_VECTOR_ARITH(fssub);
1412 /* evfsmul */
1413 HELPER_SPE_VECTOR_ARITH(fsmul);
1414 /* evfsdiv */
1415 HELPER_SPE_VECTOR_ARITH(fsdiv);
1417 /* Single-precision floating-point comparisons */
1418 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1420 CPU_FloatU u1, u2;
1422 u1.l = op1;
1423 u2.l = op2;
1424 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1427 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1429 CPU_FloatU u1, u2;
1431 u1.l = op1;
1432 u2.l = op2;
1433 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1436 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1438 CPU_FloatU u1, u2;
1440 u1.l = op1;
1441 u2.l = op2;
1442 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1445 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1447 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1448 return efscmplt(env, op1, op2);
1451 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1453 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1454 return efscmpgt(env, op1, op2);
1457 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1459 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1460 return efscmpeq(env, op1, op2);
1463 #define HELPER_SINGLE_SPE_CMP(name) \
1464 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1466 return e##name(env, op1, op2); \
1468 /* efststlt */
1469 HELPER_SINGLE_SPE_CMP(fststlt);
1470 /* efststgt */
1471 HELPER_SINGLE_SPE_CMP(fststgt);
1472 /* efststeq */
1473 HELPER_SINGLE_SPE_CMP(fststeq);
1474 /* efscmplt */
1475 HELPER_SINGLE_SPE_CMP(fscmplt);
1476 /* efscmpgt */
1477 HELPER_SINGLE_SPE_CMP(fscmpgt);
1478 /* efscmpeq */
1479 HELPER_SINGLE_SPE_CMP(fscmpeq);
1481 static inline uint32_t evcmp_merge(int t0, int t1)
1483 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1486 #define HELPER_VECTOR_SPE_CMP(name) \
1487 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1489 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1490 e##name(env, op1, op2)); \
1492 /* evfststlt */
1493 HELPER_VECTOR_SPE_CMP(fststlt);
1494 /* evfststgt */
1495 HELPER_VECTOR_SPE_CMP(fststgt);
1496 /* evfststeq */
1497 HELPER_VECTOR_SPE_CMP(fststeq);
1498 /* evfscmplt */
1499 HELPER_VECTOR_SPE_CMP(fscmplt);
1500 /* evfscmpgt */
1501 HELPER_VECTOR_SPE_CMP(fscmpgt);
1502 /* evfscmpeq */
1503 HELPER_VECTOR_SPE_CMP(fscmpeq);
1505 /* Double-precision floating-point conversion */
1506 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1508 CPU_DoubleU u;
1510 u.d = int32_to_float64(val, &env->vec_status);
1512 return u.ll;
1515 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1517 CPU_DoubleU u;
1519 u.d = int64_to_float64(val, &env->vec_status);
1521 return u.ll;
1524 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1526 CPU_DoubleU u;
1528 u.d = uint32_to_float64(val, &env->vec_status);
1530 return u.ll;
1533 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1535 CPU_DoubleU u;
1537 u.d = uint64_to_float64(val, &env->vec_status);
1539 return u.ll;
1542 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1544 CPU_DoubleU u;
1546 u.ll = val;
1547 /* NaN are not treated the same way IEEE 754 does */
1548 if (unlikely(float64_is_any_nan(u.d))) {
1549 return 0;
1552 return float64_to_int32(u.d, &env->vec_status);
1555 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1557 CPU_DoubleU u;
1559 u.ll = val;
1560 /* NaN are not treated the same way IEEE 754 does */
1561 if (unlikely(float64_is_any_nan(u.d))) {
1562 return 0;
1565 return float64_to_uint32(u.d, &env->vec_status);
1568 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1570 CPU_DoubleU u;
1572 u.ll = val;
1573 /* NaN are not treated the same way IEEE 754 does */
1574 if (unlikely(float64_is_any_nan(u.d))) {
1575 return 0;
1578 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1581 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1583 CPU_DoubleU u;
1585 u.ll = val;
1586 /* NaN are not treated the same way IEEE 754 does */
1587 if (unlikely(float64_is_any_nan(u.d))) {
1588 return 0;
1591 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1594 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1596 CPU_DoubleU u;
1598 u.ll = val;
1599 /* NaN are not treated the same way IEEE 754 does */
1600 if (unlikely(float64_is_any_nan(u.d))) {
1601 return 0;
1604 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1607 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1609 CPU_DoubleU u;
1611 u.ll = val;
1612 /* NaN are not treated the same way IEEE 754 does */
1613 if (unlikely(float64_is_any_nan(u.d))) {
1614 return 0;
1617 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1620 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1622 CPU_DoubleU u;
1623 float64 tmp;
1625 u.d = int32_to_float64(val, &env->vec_status);
1626 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1627 u.d = float64_div(u.d, tmp, &env->vec_status);
1629 return u.ll;
1632 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1634 CPU_DoubleU u;
1635 float64 tmp;
1637 u.d = uint32_to_float64(val, &env->vec_status);
1638 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1639 u.d = float64_div(u.d, tmp, &env->vec_status);
1641 return u.ll;
1644 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1646 CPU_DoubleU u;
1647 float64 tmp;
1649 u.ll = val;
1650 /* NaN are not treated the same way IEEE 754 does */
1651 if (unlikely(float64_is_any_nan(u.d))) {
1652 return 0;
1654 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1655 u.d = float64_mul(u.d, tmp, &env->vec_status);
1657 return float64_to_int32(u.d, &env->vec_status);
1660 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1662 CPU_DoubleU u;
1663 float64 tmp;
1665 u.ll = val;
1666 /* NaN are not treated the same way IEEE 754 does */
1667 if (unlikely(float64_is_any_nan(u.d))) {
1668 return 0;
1670 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1671 u.d = float64_mul(u.d, tmp, &env->vec_status);
1673 return float64_to_uint32(u.d, &env->vec_status);
1676 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1678 CPU_DoubleU u1;
1679 CPU_FloatU u2;
1681 u1.ll = val;
1682 u2.f = float64_to_float32(u1.d, &env->vec_status);
1684 return u2.l;
1687 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1689 CPU_DoubleU u2;
1690 CPU_FloatU u1;
1692 u1.l = val;
1693 u2.d = float32_to_float64(u1.f, &env->vec_status);
1695 return u2.ll;
1698 /* Double precision fixed-point arithmetic */
1699 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1701 CPU_DoubleU u1, u2;
1703 u1.ll = op1;
1704 u2.ll = op2;
1705 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1706 return u1.ll;
1709 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1711 CPU_DoubleU u1, u2;
1713 u1.ll = op1;
1714 u2.ll = op2;
1715 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1716 return u1.ll;
1719 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1721 CPU_DoubleU u1, u2;
1723 u1.ll = op1;
1724 u2.ll = op2;
1725 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1726 return u1.ll;
1729 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1731 CPU_DoubleU u1, u2;
1733 u1.ll = op1;
1734 u2.ll = op2;
1735 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1736 return u1.ll;
1739 /* Double precision floating point helpers */
1740 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1742 CPU_DoubleU u1, u2;
1744 u1.ll = op1;
1745 u2.ll = op2;
1746 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1749 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1751 CPU_DoubleU u1, u2;
1753 u1.ll = op1;
1754 u2.ll = op2;
1755 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1758 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1760 CPU_DoubleU u1, u2;
1762 u1.ll = op1;
1763 u2.ll = op2;
1764 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1767 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1769 /* XXX: TODO: test special values (NaN, infinites, ...) */
1770 return helper_efdtstlt(env, op1, op2);
1773 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1775 /* XXX: TODO: test special values (NaN, infinites, ...) */
1776 return helper_efdtstgt(env, op1, op2);
1779 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1781 /* XXX: TODO: test special values (NaN, infinites, ...) */
1782 return helper_efdtsteq(env, op1, op2);
1785 #define float64_to_float64(x, env) x
1788 /* VSX_ADD_SUB - VSX floating point add/subract
1789 * name - instruction mnemonic
1790 * op - operation (add or sub)
1791 * nels - number of elements (1, 2 or 4)
1792 * tp - type (float32 or float64)
1793 * fld - vsr_t field (VsrD(*) or VsrW(*))
1794 * sfprf - set FPRF
1796 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1797 void helper_##name(CPUPPCState *env, uint32_t opcode) \
1799 ppc_vsr_t xt, xa, xb; \
1800 int i; \
1802 getVSR(xA(opcode), &xa, env); \
1803 getVSR(xB(opcode), &xb, env); \
1804 getVSR(xT(opcode), &xt, env); \
1805 helper_reset_fpstatus(env); \
1807 for (i = 0; i < nels; i++) { \
1808 float_status tstat = env->fp_status; \
1809 set_float_exception_flags(0, &tstat); \
1810 xt.fld = tp##_##op(xa.fld, xb.fld, &tstat); \
1811 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1813 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1814 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1815 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
1816 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1817 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1818 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1822 if (r2sp) { \
1823 xt.fld = helper_frsp(env, xt.fld); \
1826 if (sfprf) { \
1827 helper_compute_fprf_float64(env, xt.fld); \
1830 putVSR(xT(opcode), &xt, env); \
1831 float_check_status(env); \
1834 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1835 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1836 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1837 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1838 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1839 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1840 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1841 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1843 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode)
1845 ppc_vsr_t xt, xa, xb;
1846 float_status tstat;
1848 getVSR(rA(opcode) + 32, &xa, env);
1849 getVSR(rB(opcode) + 32, &xb, env);
1850 getVSR(rD(opcode) + 32, &xt, env);
1851 helper_reset_fpstatus(env);
1853 if (unlikely(Rc(opcode) != 0)) {
1854 /* TODO: Support xsadddpo after round-to-odd is implemented */
1855 abort();
1858 tstat = env->fp_status;
1859 set_float_exception_flags(0, &tstat);
1860 xt.f128 = float128_add(xa.f128, xb.f128, &tstat);
1861 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1863 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1864 if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
1865 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
1866 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1867 float128_is_signaling_nan(xb.f128, &tstat)) {
1868 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1872 helper_compute_fprf_float128(env, xt.f128);
1874 putVSR(rD(opcode) + 32, &xt, env);
1875 float_check_status(env);
1878 /* VSX_MUL - VSX floating point multiply
1879 * op - instruction mnemonic
1880 * nels - number of elements (1, 2 or 4)
1881 * tp - type (float32 or float64)
1882 * fld - vsr_t field (VsrD(*) or VsrW(*))
1883 * sfprf - set FPRF
1885 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1886 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1888 ppc_vsr_t xt, xa, xb; \
1889 int i; \
1891 getVSR(xA(opcode), &xa, env); \
1892 getVSR(xB(opcode), &xb, env); \
1893 getVSR(xT(opcode), &xt, env); \
1894 helper_reset_fpstatus(env); \
1896 for (i = 0; i < nels; i++) { \
1897 float_status tstat = env->fp_status; \
1898 set_float_exception_flags(0, &tstat); \
1899 xt.fld = tp##_mul(xa.fld, xb.fld, &tstat); \
1900 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1902 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1903 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) || \
1904 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) { \
1905 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \
1906 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1907 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1908 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1912 if (r2sp) { \
1913 xt.fld = helper_frsp(env, xt.fld); \
1916 if (sfprf) { \
1917 helper_compute_fprf_float64(env, xt.fld); \
1921 putVSR(xT(opcode), &xt, env); \
1922 float_check_status(env); \
1925 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1926 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1927 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1928 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1930 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode)
1932 ppc_vsr_t xt, xa, xb;
1934 getVSR(rA(opcode) + 32, &xa, env);
1935 getVSR(rB(opcode) + 32, &xb, env);
1936 getVSR(rD(opcode) + 32, &xt, env);
1938 if (unlikely(Rc(opcode) != 0)) {
1939 /* TODO: Support xsmulpo after round-to-odd is implemented */
1940 abort();
1943 helper_reset_fpstatus(env);
1945 float_status tstat = env->fp_status;
1946 set_float_exception_flags(0, &tstat);
1947 xt.f128 = float128_mul(xa.f128, xb.f128, &tstat);
1948 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1950 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1951 if ((float128_is_infinity(xa.f128) && float128_is_zero(xb.f128)) ||
1952 (float128_is_infinity(xb.f128) && float128_is_zero(xa.f128))) {
1953 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
1954 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1955 float128_is_signaling_nan(xb.f128, &tstat)) {
1956 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1959 helper_compute_fprf_float128(env, xt.f128);
1961 putVSR(rD(opcode) + 32, &xt, env);
1962 float_check_status(env);
1965 /* VSX_DIV - VSX floating point divide
1966 * op - instruction mnemonic
1967 * nels - number of elements (1, 2 or 4)
1968 * tp - type (float32 or float64)
1969 * fld - vsr_t field (VsrD(*) or VsrW(*))
1970 * sfprf - set FPRF
1972 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1973 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1975 ppc_vsr_t xt, xa, xb; \
1976 int i; \
1978 getVSR(xA(opcode), &xa, env); \
1979 getVSR(xB(opcode), &xb, env); \
1980 getVSR(xT(opcode), &xt, env); \
1981 helper_reset_fpstatus(env); \
1983 for (i = 0; i < nels; i++) { \
1984 float_status tstat = env->fp_status; \
1985 set_float_exception_flags(0, &tstat); \
1986 xt.fld = tp##_div(xa.fld, xb.fld, &tstat); \
1987 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1989 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1990 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1991 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \
1992 } else if (tp##_is_zero(xa.fld) && \
1993 tp##_is_zero(xb.fld)) { \
1994 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \
1995 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1996 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1997 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2001 if (r2sp) { \
2002 xt.fld = helper_frsp(env, xt.fld); \
2005 if (sfprf) { \
2006 helper_compute_fprf_float64(env, xt.fld); \
2010 putVSR(xT(opcode), &xt, env); \
2011 float_check_status(env); \
2014 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
2015 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
2016 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
2017 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
2019 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode)
2021 ppc_vsr_t xt, xa, xb;
2023 getVSR(rA(opcode) + 32, &xa, env);
2024 getVSR(rB(opcode) + 32, &xb, env);
2025 getVSR(rD(opcode) + 32, &xt, env);
2027 if (unlikely(Rc(opcode) != 0)) {
2028 /* TODO: Support xsdivqpo after round-to-odd is implemented */
2029 abort();
2032 helper_reset_fpstatus(env);
2033 float_status tstat = env->fp_status;
2034 set_float_exception_flags(0, &tstat);
2035 xt.f128 = float128_div(xa.f128, xb.f128, &tstat);
2036 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2038 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
2039 if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
2040 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
2041 } else if (float128_is_zero(xa.f128) &&
2042 float128_is_zero(xb.f128)) {
2043 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
2044 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
2045 float128_is_signaling_nan(xb.f128, &tstat)) {
2046 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
2050 helper_compute_fprf_float128(env, xt.f128);
2051 putVSR(rD(opcode) + 32, &xt, env);
2052 float_check_status(env);
2055 /* VSX_RE - VSX floating point reciprocal estimate
2056 * op - instruction mnemonic
2057 * nels - number of elements (1, 2 or 4)
2058 * tp - type (float32 or float64)
2059 * fld - vsr_t field (VsrD(*) or VsrW(*))
2060 * sfprf - set FPRF
2062 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
2063 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2065 ppc_vsr_t xt, xb; \
2066 int i; \
2068 getVSR(xB(opcode), &xb, env); \
2069 getVSR(xT(opcode), &xt, env); \
2070 helper_reset_fpstatus(env); \
2072 for (i = 0; i < nels; i++) { \
2073 if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
2074 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2076 xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status); \
2078 if (r2sp) { \
2079 xt.fld = helper_frsp(env, xt.fld); \
2082 if (sfprf) { \
2083 helper_compute_fprf_float64(env, xt.fld); \
2087 putVSR(xT(opcode), &xt, env); \
2088 float_check_status(env); \
2091 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2092 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2093 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2094 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2096 /* VSX_SQRT - VSX floating point square root
2097 * op - instruction mnemonic
2098 * nels - number of elements (1, 2 or 4)
2099 * tp - type (float32 or float64)
2100 * fld - vsr_t field (VsrD(*) or VsrW(*))
2101 * sfprf - set FPRF
2103 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2104 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2106 ppc_vsr_t xt, xb; \
2107 int i; \
2109 getVSR(xB(opcode), &xb, env); \
2110 getVSR(xT(opcode), &xt, env); \
2111 helper_reset_fpstatus(env); \
2113 for (i = 0; i < nels; i++) { \
2114 float_status tstat = env->fp_status; \
2115 set_float_exception_flags(0, &tstat); \
2116 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2117 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2119 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2120 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2121 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2122 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2123 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2127 if (r2sp) { \
2128 xt.fld = helper_frsp(env, xt.fld); \
2131 if (sfprf) { \
2132 helper_compute_fprf_float64(env, xt.fld); \
2136 putVSR(xT(opcode), &xt, env); \
2137 float_check_status(env); \
2140 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2141 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2142 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2143 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2145 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2146 * op - instruction mnemonic
2147 * nels - number of elements (1, 2 or 4)
2148 * tp - type (float32 or float64)
2149 * fld - vsr_t field (VsrD(*) or VsrW(*))
2150 * sfprf - set FPRF
2152 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2153 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2155 ppc_vsr_t xt, xb; \
2156 int i; \
2158 getVSR(xB(opcode), &xb, env); \
2159 getVSR(xT(opcode), &xt, env); \
2160 helper_reset_fpstatus(env); \
2162 for (i = 0; i < nels; i++) { \
2163 float_status tstat = env->fp_status; \
2164 set_float_exception_flags(0, &tstat); \
2165 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2166 xt.fld = tp##_div(tp##_one, xt.fld, &tstat); \
2167 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2169 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2170 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2171 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2172 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2173 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2177 if (r2sp) { \
2178 xt.fld = helper_frsp(env, xt.fld); \
2181 if (sfprf) { \
2182 helper_compute_fprf_float64(env, xt.fld); \
2186 putVSR(xT(opcode), &xt, env); \
2187 float_check_status(env); \
2190 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2191 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2192 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2193 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2195 /* VSX_TDIV - VSX floating point test for divide
2196 * op - instruction mnemonic
2197 * nels - number of elements (1, 2 or 4)
2198 * tp - type (float32 or float64)
2199 * fld - vsr_t field (VsrD(*) or VsrW(*))
2200 * emin - minimum unbiased exponent
2201 * emax - maximum unbiased exponent
2202 * nbits - number of fraction bits
2204 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2205 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2207 ppc_vsr_t xa, xb; \
2208 int i; \
2209 int fe_flag = 0; \
2210 int fg_flag = 0; \
2212 getVSR(xA(opcode), &xa, env); \
2213 getVSR(xB(opcode), &xb, env); \
2215 for (i = 0; i < nels; i++) { \
2216 if (unlikely(tp##_is_infinity(xa.fld) || \
2217 tp##_is_infinity(xb.fld) || \
2218 tp##_is_zero(xb.fld))) { \
2219 fe_flag = 1; \
2220 fg_flag = 1; \
2221 } else { \
2222 int e_a = ppc_##tp##_get_unbiased_exp(xa.fld); \
2223 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2225 if (unlikely(tp##_is_any_nan(xa.fld) || \
2226 tp##_is_any_nan(xb.fld))) { \
2227 fe_flag = 1; \
2228 } else if ((e_b <= emin) || (e_b >= (emax-2))) { \
2229 fe_flag = 1; \
2230 } else if (!tp##_is_zero(xa.fld) && \
2231 (((e_a - e_b) >= emax) || \
2232 ((e_a - e_b) <= (emin+1)) || \
2233 (e_a <= (emin+nbits)))) { \
2234 fe_flag = 1; \
2237 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2238 /* XB is not zero because of the above check and */ \
2239 /* so must be denormalized. */ \
2240 fg_flag = 1; \
2245 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2248 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2249 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2250 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2252 /* VSX_TSQRT - VSX floating point test for square root
2253 * op - instruction mnemonic
2254 * nels - number of elements (1, 2 or 4)
2255 * tp - type (float32 or float64)
2256 * fld - vsr_t field (VsrD(*) or VsrW(*))
2257 * emin - minimum unbiased exponent
2258 * emax - maximum unbiased exponent
2259 * nbits - number of fraction bits
2261 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2262 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2264 ppc_vsr_t xa, xb; \
2265 int i; \
2266 int fe_flag = 0; \
2267 int fg_flag = 0; \
2269 getVSR(xA(opcode), &xa, env); \
2270 getVSR(xB(opcode), &xb, env); \
2272 for (i = 0; i < nels; i++) { \
2273 if (unlikely(tp##_is_infinity(xb.fld) || \
2274 tp##_is_zero(xb.fld))) { \
2275 fe_flag = 1; \
2276 fg_flag = 1; \
2277 } else { \
2278 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2280 if (unlikely(tp##_is_any_nan(xb.fld))) { \
2281 fe_flag = 1; \
2282 } else if (unlikely(tp##_is_zero(xb.fld))) { \
2283 fe_flag = 1; \
2284 } else if (unlikely(tp##_is_neg(xb.fld))) { \
2285 fe_flag = 1; \
2286 } else if (!tp##_is_zero(xb.fld) && \
2287 (e_b <= (emin+nbits))) { \
2288 fe_flag = 1; \
2291 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2292 /* XB is not zero because of the above check and */ \
2293 /* therefore must be denormalized. */ \
2294 fg_flag = 1; \
2299 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2302 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2303 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2304 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2306 /* VSX_MADD - VSX floating point muliply/add variations
2307 * op - instruction mnemonic
2308 * nels - number of elements (1, 2 or 4)
2309 * tp - type (float32 or float64)
2310 * fld - vsr_t field (VsrD(*) or VsrW(*))
2311 * maddflgs - flags for the float*muladd routine that control the
2312 * various forms (madd, msub, nmadd, nmsub)
2313 * afrm - A form (1=A, 0=M)
2314 * sfprf - set FPRF
2316 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2317 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2319 ppc_vsr_t xt_in, xa, xb, xt_out; \
2320 ppc_vsr_t *b, *c; \
2321 int i; \
2323 if (afrm) { /* AxB + T */ \
2324 b = &xb; \
2325 c = &xt_in; \
2326 } else { /* AxT + B */ \
2327 b = &xt_in; \
2328 c = &xb; \
2331 getVSR(xA(opcode), &xa, env); \
2332 getVSR(xB(opcode), &xb, env); \
2333 getVSR(xT(opcode), &xt_in, env); \
2335 xt_out = xt_in; \
2337 helper_reset_fpstatus(env); \
2339 for (i = 0; i < nels; i++) { \
2340 float_status tstat = env->fp_status; \
2341 set_float_exception_flags(0, &tstat); \
2342 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2343 /* Avoid double rounding errors by rounding the intermediate */ \
2344 /* result to odd. */ \
2345 set_float_rounding_mode(float_round_to_zero, &tstat); \
2346 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2347 maddflgs, &tstat); \
2348 xt_out.fld |= (get_float_exception_flags(&tstat) & \
2349 float_flag_inexact) != 0; \
2350 } else { \
2351 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2352 maddflgs, &tstat); \
2354 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2356 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2357 if (tp##_is_signaling_nan(xa.fld, &tstat) || \
2358 tp##_is_signaling_nan(b->fld, &tstat) || \
2359 tp##_is_signaling_nan(c->fld, &tstat)) { \
2360 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2361 tstat.float_exception_flags &= ~float_flag_invalid; \
2363 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) || \
2364 (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) { \
2365 xt_out.fld = float64_to_##tp(float_invalid_op_excp(env, \
2366 POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status); \
2367 tstat.float_exception_flags &= ~float_flag_invalid; \
2369 if ((tstat.float_exception_flags & float_flag_invalid) && \
2370 ((tp##_is_infinity(xa.fld) || \
2371 tp##_is_infinity(b->fld)) && \
2372 tp##_is_infinity(c->fld))) { \
2373 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
2377 if (r2sp) { \
2378 xt_out.fld = helper_frsp(env, xt_out.fld); \
2381 if (sfprf) { \
2382 helper_compute_fprf_float64(env, xt_out.fld); \
2385 putVSR(xT(opcode), &xt_out, env); \
2386 float_check_status(env); \
2389 #define MADD_FLGS 0
2390 #define MSUB_FLGS float_muladd_negate_c
2391 #define NMADD_FLGS float_muladd_negate_result
2392 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2394 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2395 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2396 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2397 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2398 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2399 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2400 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2401 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2403 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2404 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2405 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2406 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2407 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2408 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2409 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2410 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2412 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2413 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2414 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2415 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2416 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2417 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2418 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2419 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2421 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2422 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2423 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2424 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2425 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2426 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2427 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2428 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2430 /* VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2431 * op - instruction mnemonic
2432 * cmp - comparison operation
2433 * exp - expected result of comparison
2434 * svxvc - set VXVC bit
2436 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2437 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2439 ppc_vsr_t xt, xa, xb; \
2440 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2442 getVSR(xA(opcode), &xa, env); \
2443 getVSR(xB(opcode), &xb, env); \
2444 getVSR(xT(opcode), &xt, env); \
2446 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2447 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2448 vxsnan_flag = true; \
2449 if (fpscr_ve == 0 && svxvc) { \
2450 vxvc_flag = true; \
2452 } else if (svxvc) { \
2453 vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \
2454 float64_is_quiet_nan(xb.VsrD(0), &env->fp_status); \
2456 if (vxsnan_flag) { \
2457 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2459 if (vxvc_flag) { \
2460 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2462 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2464 if (!vex_flag) { \
2465 if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) { \
2466 xt.VsrD(0) = -1; \
2467 xt.VsrD(1) = 0; \
2468 } else { \
2469 xt.VsrD(0) = 0; \
2470 xt.VsrD(1) = 0; \
2473 putVSR(xT(opcode), &xt, env); \
2474 helper_float_check_status(env); \
2477 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2478 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2479 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2480 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2482 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode)
2484 ppc_vsr_t xa, xb;
2485 int64_t exp_a, exp_b;
2486 uint32_t cc;
2488 getVSR(xA(opcode), &xa, env);
2489 getVSR(xB(opcode), &xb, env);
2491 exp_a = extract64(xa.VsrD(0), 52, 11);
2492 exp_b = extract64(xb.VsrD(0), 52, 11);
2494 if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||
2495 float64_is_any_nan(xb.VsrD(0)))) {
2496 cc = CRF_SO;
2497 } else {
2498 if (exp_a < exp_b) {
2499 cc = CRF_LT;
2500 } else if (exp_a > exp_b) {
2501 cc = CRF_GT;
2502 } else {
2503 cc = CRF_EQ;
2507 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2508 env->fpscr |= cc << FPSCR_FPRF;
2509 env->crf[BF(opcode)] = cc;
2511 helper_float_check_status(env);
2514 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode)
2516 ppc_vsr_t xa, xb;
2517 int64_t exp_a, exp_b;
2518 uint32_t cc;
2520 getVSR(rA(opcode) + 32, &xa, env);
2521 getVSR(rB(opcode) + 32, &xb, env);
2523 exp_a = extract64(xa.VsrD(0), 48, 15);
2524 exp_b = extract64(xb.VsrD(0), 48, 15);
2526 if (unlikely(float128_is_any_nan(xa.f128) ||
2527 float128_is_any_nan(xb.f128))) {
2528 cc = CRF_SO;
2529 } else {
2530 if (exp_a < exp_b) {
2531 cc = CRF_LT;
2532 } else if (exp_a > exp_b) {
2533 cc = CRF_GT;
2534 } else {
2535 cc = CRF_EQ;
2539 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2540 env->fpscr |= cc << FPSCR_FPRF;
2541 env->crf[BF(opcode)] = cc;
2543 helper_float_check_status(env);
2546 #define VSX_SCALAR_CMP(op, ordered) \
2547 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2549 ppc_vsr_t xa, xb; \
2550 uint32_t cc = 0; \
2551 bool vxsnan_flag = false, vxvc_flag = false; \
2553 helper_reset_fpstatus(env); \
2554 getVSR(xA(opcode), &xa, env); \
2555 getVSR(xB(opcode), &xb, env); \
2557 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2558 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2559 vxsnan_flag = true; \
2560 cc = CRF_SO; \
2561 if (fpscr_ve == 0 && ordered) { \
2562 vxvc_flag = true; \
2564 } else if (float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \
2565 float64_is_quiet_nan(xb.VsrD(0), &env->fp_status)) { \
2566 cc = CRF_SO; \
2567 if (ordered) { \
2568 vxvc_flag = true; \
2571 if (vxsnan_flag) { \
2572 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2574 if (vxvc_flag) { \
2575 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2578 if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2579 cc |= CRF_LT; \
2580 } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2581 cc |= CRF_GT; \
2582 } else { \
2583 cc |= CRF_EQ; \
2586 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2587 env->fpscr |= cc << FPSCR_FPRF; \
2588 env->crf[BF(opcode)] = cc; \
2590 float_check_status(env); \
2593 VSX_SCALAR_CMP(xscmpodp, 1)
2594 VSX_SCALAR_CMP(xscmpudp, 0)
2596 #define VSX_SCALAR_CMPQ(op, ordered) \
2597 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2599 ppc_vsr_t xa, xb; \
2600 uint32_t cc = 0; \
2601 bool vxsnan_flag = false, vxvc_flag = false; \
2603 helper_reset_fpstatus(env); \
2604 getVSR(rA(opcode) + 32, &xa, env); \
2605 getVSR(rB(opcode) + 32, &xb, env); \
2607 if (float128_is_signaling_nan(xa.f128, &env->fp_status) || \
2608 float128_is_signaling_nan(xb.f128, &env->fp_status)) { \
2609 vxsnan_flag = true; \
2610 cc = CRF_SO; \
2611 if (fpscr_ve == 0 && ordered) { \
2612 vxvc_flag = true; \
2614 } else if (float128_is_quiet_nan(xa.f128, &env->fp_status) || \
2615 float128_is_quiet_nan(xb.f128, &env->fp_status)) { \
2616 cc = CRF_SO; \
2617 if (ordered) { \
2618 vxvc_flag = true; \
2621 if (vxsnan_flag) { \
2622 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2624 if (vxvc_flag) { \
2625 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2628 if (float128_lt(xa.f128, xb.f128, &env->fp_status)) { \
2629 cc |= CRF_LT; \
2630 } else if (!float128_le(xa.f128, xb.f128, &env->fp_status)) { \
2631 cc |= CRF_GT; \
2632 } else { \
2633 cc |= CRF_EQ; \
2636 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2637 env->fpscr |= cc << FPSCR_FPRF; \
2638 env->crf[BF(opcode)] = cc; \
2640 float_check_status(env); \
2643 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2644 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2646 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2647 * name - instruction mnemonic
2648 * op - operation (max or min)
2649 * nels - number of elements (1, 2 or 4)
2650 * tp - type (float32 or float64)
2651 * fld - vsr_t field (VsrD(*) or VsrW(*))
2653 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2654 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2656 ppc_vsr_t xt, xa, xb; \
2657 int i; \
2659 getVSR(xA(opcode), &xa, env); \
2660 getVSR(xB(opcode), &xb, env); \
2661 getVSR(xT(opcode), &xt, env); \
2663 for (i = 0; i < nels; i++) { \
2664 xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status); \
2665 if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2666 tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
2667 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2671 putVSR(xT(opcode), &xt, env); \
2672 float_check_status(env); \
2675 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2676 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2677 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2678 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2679 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2680 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2682 /* VSX_CMP - VSX floating point compare
2683 * op - instruction mnemonic
2684 * nels - number of elements (1, 2 or 4)
2685 * tp - type (float32 or float64)
2686 * fld - vsr_t field (VsrD(*) or VsrW(*))
2687 * cmp - comparison operation
2688 * svxvc - set VXVC bit
2689 * exp - expected result of comparison
2691 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2692 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2694 ppc_vsr_t xt, xa, xb; \
2695 int i; \
2696 int all_true = 1; \
2697 int all_false = 1; \
2699 getVSR(xA(opcode), &xa, env); \
2700 getVSR(xB(opcode), &xb, env); \
2701 getVSR(xT(opcode), &xt, env); \
2703 for (i = 0; i < nels; i++) { \
2704 if (unlikely(tp##_is_any_nan(xa.fld) || \
2705 tp##_is_any_nan(xb.fld))) { \
2706 if (tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2707 tp##_is_signaling_nan(xb.fld, &env->fp_status)) { \
2708 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2710 if (svxvc) { \
2711 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2713 xt.fld = 0; \
2714 all_true = 0; \
2715 } else { \
2716 if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) { \
2717 xt.fld = -1; \
2718 all_false = 0; \
2719 } else { \
2720 xt.fld = 0; \
2721 all_true = 0; \
2726 putVSR(xT(opcode), &xt, env); \
2727 if ((opcode >> (31-21)) & 1) { \
2728 env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2730 float_check_status(env); \
2733 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2734 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2735 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2736 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2737 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2738 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2739 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2740 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2742 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2743 * op - instruction mnemonic
2744 * nels - number of elements (1, 2 or 4)
2745 * stp - source type (float32 or float64)
2746 * ttp - target type (float32 or float64)
2747 * sfld - source vsr_t field
2748 * tfld - target vsr_t field (f32 or f64)
2749 * sfprf - set FPRF
2751 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2752 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2754 ppc_vsr_t xt, xb; \
2755 int i; \
2757 getVSR(xB(opcode), &xb, env); \
2758 getVSR(xT(opcode), &xt, env); \
2760 for (i = 0; i < nels; i++) { \
2761 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2762 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2763 &env->fp_status))) { \
2764 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2765 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2767 if (sfprf) { \
2768 helper_compute_fprf_##ttp(env, xt.tfld); \
2772 putVSR(xT(opcode), &xt, env); \
2773 float_check_status(env); \
2776 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2777 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2778 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2779 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2781 /* VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2782 * op - instruction mnemonic
2783 * nels - number of elements (1, 2 or 4)
2784 * stp - source type (float32 or float64)
2785 * ttp - target type (float32 or float64)
2786 * sfld - source vsr_t field
2787 * tfld - target vsr_t field (f32 or f64)
2788 * sfprf - set FPRF
2790 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2791 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2793 ppc_vsr_t xt, xb; \
2794 int i; \
2796 getVSR(rB(opcode) + 32, &xb, env); \
2797 getVSR(rD(opcode) + 32, &xt, env); \
2799 for (i = 0; i < nels; i++) { \
2800 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2801 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2802 &env->fp_status))) { \
2803 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2804 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2806 if (sfprf) { \
2807 helper_compute_fprf_##ttp(env, xt.tfld); \
2811 putVSR(rD(opcode) + 32, &xt, env); \
2812 float_check_status(env); \
2815 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2817 /* VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2818 * involving one half precision value
2819 * op - instruction mnemonic
2820 * nels - number of elements (1, 2 or 4)
2821 * stp - source type
2822 * ttp - target type
2823 * sfld - source vsr_t field
2824 * tfld - target vsr_t field
2825 * sfprf - set FPRF
2827 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2828 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2830 ppc_vsr_t xt, xb; \
2831 int i; \
2833 getVSR(xB(opcode), &xb, env); \
2834 memset(&xt, 0, sizeof(xt)); \
2836 for (i = 0; i < nels; i++) { \
2837 xt.tfld = stp##_to_##ttp(xb.sfld, 1, &env->fp_status); \
2838 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2839 &env->fp_status))) { \
2840 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2841 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2843 if (sfprf) { \
2844 helper_compute_fprf_##ttp(env, xt.tfld); \
2848 putVSR(xT(opcode), &xt, env); \
2849 float_check_status(env); \
2852 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2853 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2854 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2855 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2858 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2859 * added to this later.
2861 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode)
2863 ppc_vsr_t xt, xb;
2865 getVSR(rB(opcode) + 32, &xb, env);
2866 memset(&xt, 0, sizeof(xt));
2868 if (unlikely(Rc(opcode) != 0)) {
2869 /* TODO: Support xscvqpdpo after round-to-odd is implemented */
2870 abort();
2873 xt.VsrD(0) = float128_to_float64(xb.f128, &env->fp_status);
2874 if (unlikely(float128_is_signaling_nan(xb.f128,
2875 &env->fp_status))) {
2876 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
2877 xt.VsrD(0) = float64_snan_to_qnan(xt.VsrD(0));
2879 helper_compute_fprf_float64(env, xt.VsrD(0));
2881 putVSR(rD(opcode) + 32, &xt, env);
2882 float_check_status(env);
2885 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2887 float_status tstat = env->fp_status;
2888 set_float_exception_flags(0, &tstat);
2890 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2893 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2895 float_status tstat = env->fp_status;
2896 set_float_exception_flags(0, &tstat);
2898 return float32_to_float64(xb >> 32, &tstat);
2901 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2902 * op - instruction mnemonic
2903 * nels - number of elements (1, 2 or 4)
2904 * stp - source type (float32 or float64)
2905 * ttp - target type (int32, uint32, int64 or uint64)
2906 * sfld - source vsr_t field
2907 * tfld - target vsr_t field
2908 * rnan - resulting NaN
2910 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2911 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2913 ppc_vsr_t xt, xb; \
2914 int i; \
2916 getVSR(xB(opcode), &xb, env); \
2917 getVSR(xT(opcode), &xt, env); \
2919 for (i = 0; i < nels; i++) { \
2920 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2921 if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) { \
2922 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2924 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2925 xt.tfld = rnan; \
2926 } else { \
2927 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2928 &env->fp_status); \
2929 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2930 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2935 putVSR(xT(opcode), &xt, env); \
2936 float_check_status(env); \
2939 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2940 0x8000000000000000ULL)
2941 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2942 0x80000000U)
2943 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2944 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2945 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2946 0x8000000000000000ULL)
2947 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2948 0x80000000U)
2949 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2950 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2951 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2952 0x8000000000000000ULL)
2953 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2954 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2955 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2957 /* VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2958 * op - instruction mnemonic
2959 * stp - source type (float32 or float64)
2960 * ttp - target type (int32, uint32, int64 or uint64)
2961 * sfld - source vsr_t field
2962 * tfld - target vsr_t field
2963 * rnan - resulting NaN
2965 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2966 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2968 ppc_vsr_t xt, xb; \
2970 getVSR(rB(opcode) + 32, &xb, env); \
2971 memset(&xt, 0, sizeof(xt)); \
2973 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2974 if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) { \
2975 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2977 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2978 xt.tfld = rnan; \
2979 } else { \
2980 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2981 &env->fp_status); \
2982 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2983 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2987 putVSR(rD(opcode) + 32, &xt, env); \
2988 float_check_status(env); \
2991 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
2992 0x8000000000000000ULL)
2994 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
2995 0xffffffff80000000ULL)
2997 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2998 * op - instruction mnemonic
2999 * nels - number of elements (1, 2 or 4)
3000 * stp - source type (int32, uint32, int64 or uint64)
3001 * ttp - target type (float32 or float64)
3002 * sfld - source vsr_t field
3003 * tfld - target vsr_t field
3004 * jdef - definition of the j index (i or 2*i)
3005 * sfprf - set FPRF
3007 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
3008 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3010 ppc_vsr_t xt, xb; \
3011 int i; \
3013 getVSR(xB(opcode), &xb, env); \
3014 getVSR(xT(opcode), &xt, env); \
3016 for (i = 0; i < nels; i++) { \
3017 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
3018 if (r2sp) { \
3019 xt.tfld = helper_frsp(env, xt.tfld); \
3021 if (sfprf) { \
3022 helper_compute_fprf_float64(env, xt.tfld); \
3026 putVSR(xT(opcode), &xt, env); \
3027 float_check_status(env); \
3030 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3031 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3032 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3033 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3034 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3035 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3036 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
3037 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
3038 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
3039 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
3040 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3041 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3043 /* VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3044 * op - instruction mnemonic
3045 * stp - source type (int32, uint32, int64 or uint64)
3046 * ttp - target type (float32 or float64)
3047 * sfld - source vsr_t field
3048 * tfld - target vsr_t field
3050 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3051 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3053 ppc_vsr_t xt, xb; \
3055 getVSR(rB(opcode) + 32, &xb, env); \
3056 getVSR(rD(opcode) + 32, &xt, env); \
3058 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
3059 helper_compute_fprf_##ttp(env, xt.tfld); \
3061 putVSR(xT(opcode) + 32, &xt, env); \
3062 float_check_status(env); \
3065 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3066 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3068 /* For "use current rounding mode", define a value that will not be one of
3069 * the existing rounding model enums.
3071 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3072 float_round_up + float_round_to_zero)
3074 /* VSX_ROUND - VSX floating point round
3075 * op - instruction mnemonic
3076 * nels - number of elements (1, 2 or 4)
3077 * tp - type (float32 or float64)
3078 * fld - vsr_t field (VsrD(*) or VsrW(*))
3079 * rmode - rounding mode
3080 * sfprf - set FPRF
3082 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
3083 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3085 ppc_vsr_t xt, xb; \
3086 int i; \
3087 getVSR(xB(opcode), &xb, env); \
3088 getVSR(xT(opcode), &xt, env); \
3090 if (rmode != FLOAT_ROUND_CURRENT) { \
3091 set_float_rounding_mode(rmode, &env->fp_status); \
3094 for (i = 0; i < nels; i++) { \
3095 if (unlikely(tp##_is_signaling_nan(xb.fld, \
3096 &env->fp_status))) { \
3097 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
3098 xt.fld = tp##_snan_to_qnan(xb.fld); \
3099 } else { \
3100 xt.fld = tp##_round_to_int(xb.fld, &env->fp_status); \
3102 if (sfprf) { \
3103 helper_compute_fprf_float64(env, xt.fld); \
3107 /* If this is not a "use current rounding mode" instruction, \
3108 * then inhibit setting of the XX bit and restore rounding \
3109 * mode from FPSCR */ \
3110 if (rmode != FLOAT_ROUND_CURRENT) { \
3111 fpscr_set_rounding_mode(env); \
3112 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3115 putVSR(xT(opcode), &xt, env); \
3116 float_check_status(env); \
3119 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3120 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3121 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3122 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3123 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3125 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3126 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3127 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3128 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3129 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3131 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3132 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3133 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3134 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3135 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3137 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3139 helper_reset_fpstatus(env);
3141 uint64_t xt = helper_frsp(env, xb);
3143 helper_compute_fprf_float64(env, xt);
3144 float_check_status(env);
3145 return xt;
3148 #define VSX_XXPERM(op, indexed) \
3149 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3151 ppc_vsr_t xt, xa, pcv, xto; \
3152 int i, idx; \
3154 getVSR(xA(opcode), &xa, env); \
3155 getVSR(xT(opcode), &xt, env); \
3156 getVSR(xB(opcode), &pcv, env); \
3158 for (i = 0; i < 16; i++) { \
3159 idx = pcv.VsrB(i) & 0x1F; \
3160 if (indexed) { \
3161 idx = 31 - idx; \
3163 xto.VsrB(i) = (idx <= 15) ? xa.VsrB(idx) : xt.VsrB(idx - 16); \
3165 putVSR(xT(opcode), &xto, env); \
3168 VSX_XXPERM(xxperm, 0)
3169 VSX_XXPERM(xxpermr, 1)
3171 void helper_xvxsigsp(CPUPPCState *env, uint32_t opcode)
3173 ppc_vsr_t xt, xb;
3174 uint32_t exp, i, fraction;
3176 getVSR(xB(opcode), &xb, env);
3177 memset(&xt, 0, sizeof(xt));
3179 for (i = 0; i < 4; i++) {
3180 exp = (xb.VsrW(i) >> 23) & 0xFF;
3181 fraction = xb.VsrW(i) & 0x7FFFFF;
3182 if (exp != 0 && exp != 255) {
3183 xt.VsrW(i) = fraction | 0x00800000;
3184 } else {
3185 xt.VsrW(i) = fraction;
3188 putVSR(xT(opcode), &xt, env);
3191 /* VSX_TEST_DC - VSX floating point test data class
3192 * op - instruction mnemonic
3193 * nels - number of elements (1, 2 or 4)
3194 * xbn - VSR register number
3195 * tp - type (float32 or float64)
3196 * fld - vsr_t field (VsrD(*) or VsrW(*))
3197 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3198 * fld_max - target field max
3199 * scrf - set result in CR and FPCC
3201 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3202 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3204 ppc_vsr_t xt, xb; \
3205 uint32_t i, sign, dcmx; \
3206 uint32_t cc, match = 0; \
3208 getVSR(xbn, &xb, env); \
3209 if (!scrf) { \
3210 memset(&xt, 0, sizeof(xt)); \
3211 dcmx = DCMX_XV(opcode); \
3212 } else { \
3213 dcmx = DCMX(opcode); \
3216 for (i = 0; i < nels; i++) { \
3217 sign = tp##_is_neg(xb.fld); \
3218 if (tp##_is_any_nan(xb.fld)) { \
3219 match = extract32(dcmx, 6, 1); \
3220 } else if (tp##_is_infinity(xb.fld)) { \
3221 match = extract32(dcmx, 4 + !sign, 1); \
3222 } else if (tp##_is_zero(xb.fld)) { \
3223 match = extract32(dcmx, 2 + !sign, 1); \
3224 } else if (tp##_is_zero_or_denormal(xb.fld)) { \
3225 match = extract32(dcmx, 0 + !sign, 1); \
3228 if (scrf) { \
3229 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3230 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
3231 env->fpscr |= cc << FPSCR_FPRF; \
3232 env->crf[BF(opcode)] = cc; \
3233 } else { \
3234 xt.tfld = match ? fld_max : 0; \
3236 match = 0; \
3238 if (!scrf) { \
3239 putVSR(xT(opcode), &xt, env); \
3243 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3244 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3245 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3246 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3248 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode)
3250 ppc_vsr_t xb;
3251 uint32_t dcmx, sign, exp;
3252 uint32_t cc, match = 0, not_sp = 0;
3254 getVSR(xB(opcode), &xb, env);
3255 dcmx = DCMX(opcode);
3256 exp = (xb.VsrD(0) >> 52) & 0x7FF;
3258 sign = float64_is_neg(xb.VsrD(0));
3259 if (float64_is_any_nan(xb.VsrD(0))) {
3260 match = extract32(dcmx, 6, 1);
3261 } else if (float64_is_infinity(xb.VsrD(0))) {
3262 match = extract32(dcmx, 4 + !sign, 1);
3263 } else if (float64_is_zero(xb.VsrD(0))) {
3264 match = extract32(dcmx, 2 + !sign, 1);
3265 } else if (float64_is_zero_or_denormal(xb.VsrD(0)) ||
3266 (exp > 0 && exp < 0x381)) {
3267 match = extract32(dcmx, 0 + !sign, 1);
3270 not_sp = !float64_eq(xb.VsrD(0),
3271 float32_to_float64(
3272 float64_to_float32(xb.VsrD(0), &env->fp_status),
3273 &env->fp_status), &env->fp_status);
3275 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3276 env->fpscr &= ~(0x0F << FPSCR_FPRF);
3277 env->fpscr |= cc << FPSCR_FPRF;
3278 env->crf[BF(opcode)] = cc;