pc-bios/s390-ccw/virtio: Beautify the code for reading virtqueue configuration
[qemu.git] / softmmu / physmem.c
blobdc3c3e5f2e7071eb21e77f3d95c2f30f2f034b73
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/madvise.h"
28 #ifdef CONFIG_TCG
29 #include "hw/core/tcg-cpu-ops.h"
30 #endif /* CONFIG_TCG */
32 #include "exec/exec-all.h"
33 #include "exec/target_page.h"
34 #include "hw/qdev-core.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/boards.h"
37 #include "hw/xen/xen.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/tcg.h"
40 #include "sysemu/qtest.h"
41 #include "qemu/timer.h"
42 #include "qemu/config-file.h"
43 #include "qemu/error-report.h"
44 #include "qemu/qemu-print.h"
45 #include "qemu/log.h"
46 #include "qemu/memalign.h"
47 #include "exec/memory.h"
48 #include "exec/ioport.h"
49 #include "sysemu/dma.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/hw_accel.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace/trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "exec/translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
67 #include "qemu/pmem.h"
69 #include "migration/vmstate.h"
71 #include "qemu/range.h"
72 #ifndef _WIN32
73 #include "qemu/mmap-alloc.h"
74 #endif
76 #include "monitor/monitor.h"
78 #ifdef CONFIG_LIBDAXCTL
79 #include <daxctl/libdaxctl.h>
80 #endif
82 //#define DEBUG_SUBPAGE
84 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
85 * are protected by the ramlist lock.
87 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89 static MemoryRegion *system_memory;
90 static MemoryRegion *system_io;
92 AddressSpace address_space_io;
93 AddressSpace address_space_memory;
95 static MemoryRegion io_mem_unassigned;
97 typedef struct PhysPageEntry PhysPageEntry;
99 struct PhysPageEntry {
100 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
101 uint32_t skip : 6;
102 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
103 uint32_t ptr : 26;
106 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108 /* Size of the L2 (and L3, etc) page tables. */
109 #define ADDR_SPACE_BITS 64
111 #define P_L2_BITS 9
112 #define P_L2_SIZE (1 << P_L2_BITS)
114 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116 typedef PhysPageEntry Node[P_L2_SIZE];
118 typedef struct PhysPageMap {
119 struct rcu_head rcu;
121 unsigned sections_nb;
122 unsigned sections_nb_alloc;
123 unsigned nodes_nb;
124 unsigned nodes_nb_alloc;
125 Node *nodes;
126 MemoryRegionSection *sections;
127 } PhysPageMap;
129 struct AddressSpaceDispatch {
130 MemoryRegionSection *mru_section;
131 /* This is a multi-level map on the physical address space.
132 * The bottom level has pointers to MemoryRegionSections.
134 PhysPageEntry phys_map;
135 PhysPageMap map;
138 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
139 typedef struct subpage_t {
140 MemoryRegion iomem;
141 FlatView *fv;
142 hwaddr base;
143 uint16_t sub_section[];
144 } subpage_t;
146 #define PHYS_SECTION_UNASSIGNED 0
148 static void io_mem_init(void);
149 static void memory_map_init(void);
150 static void tcg_log_global_after_sync(MemoryListener *listener);
151 static void tcg_commit(MemoryListener *listener);
154 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
155 * @cpu: the CPU whose AddressSpace this is
156 * @as: the AddressSpace itself
157 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
158 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 struct CPUAddressSpace {
161 CPUState *cpu;
162 AddressSpace *as;
163 struct AddressSpaceDispatch *memory_dispatch;
164 MemoryListener tcg_as_listener;
167 struct DirtyBitmapSnapshot {
168 ram_addr_t start;
169 ram_addr_t end;
170 unsigned long dirty[];
173 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 static unsigned alloc_hint = 16;
176 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
177 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
178 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
179 alloc_hint = map->nodes_nb_alloc;
183 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 unsigned i;
186 uint32_t ret;
187 PhysPageEntry e;
188 PhysPageEntry *p;
190 ret = map->nodes_nb++;
191 p = map->nodes[ret];
192 assert(ret != PHYS_MAP_NODE_NIL);
193 assert(ret != map->nodes_nb_alloc);
195 e.skip = leaf ? 0 : 1;
196 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
197 for (i = 0; i < P_L2_SIZE; ++i) {
198 memcpy(&p[i], &e, sizeof(e));
200 return ret;
203 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
204 hwaddr *index, uint64_t *nb, uint16_t leaf,
205 int level)
207 PhysPageEntry *p;
208 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
211 lp->ptr = phys_map_node_alloc(map, level == 0);
213 p = map->nodes[lp->ptr];
214 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216 while (*nb && lp < &p[P_L2_SIZE]) {
217 if ((*index & (step - 1)) == 0 && *nb >= step) {
218 lp->skip = 0;
219 lp->ptr = leaf;
220 *index += step;
221 *nb -= step;
222 } else {
223 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225 ++lp;
229 static void phys_page_set(AddressSpaceDispatch *d,
230 hwaddr index, uint64_t nb,
231 uint16_t leaf)
233 /* Wildly overreserve - it doesn't matter much. */
234 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
239 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
240 * and update our entry so we can skip it and go directly to the destination.
242 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 unsigned valid_ptr = P_L2_SIZE;
245 int valid = 0;
246 PhysPageEntry *p;
247 int i;
249 if (lp->ptr == PHYS_MAP_NODE_NIL) {
250 return;
253 p = nodes[lp->ptr];
254 for (i = 0; i < P_L2_SIZE; i++) {
255 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
256 continue;
259 valid_ptr = i;
260 valid++;
261 if (p[i].skip) {
262 phys_page_compact(&p[i], nodes);
266 /* We can only compress if there's only one child. */
267 if (valid != 1) {
268 return;
271 assert(valid_ptr < P_L2_SIZE);
273 /* Don't compress if it won't fit in the # of bits we have. */
274 if (P_L2_LEVELS >= (1 << 6) &&
275 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
276 return;
279 lp->ptr = p[valid_ptr].ptr;
280 if (!p[valid_ptr].skip) {
281 /* If our only child is a leaf, make this a leaf. */
282 /* By design, we should have made this node a leaf to begin with so we
283 * should never reach here.
284 * But since it's so simple to handle this, let's do it just in case we
285 * change this rule.
287 lp->skip = 0;
288 } else {
289 lp->skip += p[valid_ptr].skip;
293 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 if (d->phys_map.skip) {
296 phys_page_compact(&d->phys_map, d->map.nodes);
300 static inline bool section_covers_addr(const MemoryRegionSection *section,
301 hwaddr addr)
303 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
304 * the section must cover the entire address space.
306 return int128_gethi(section->size) ||
307 range_covers_byte(section->offset_within_address_space,
308 int128_getlo(section->size), addr);
311 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 PhysPageEntry lp = d->phys_map, *p;
314 Node *nodes = d->map.nodes;
315 MemoryRegionSection *sections = d->map.sections;
316 hwaddr index = addr >> TARGET_PAGE_BITS;
317 int i;
319 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
320 if (lp.ptr == PHYS_MAP_NODE_NIL) {
321 return &sections[PHYS_SECTION_UNASSIGNED];
323 p = nodes[lp.ptr];
324 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
327 if (section_covers_addr(&sections[lp.ptr], addr)) {
328 return &sections[lp.ptr];
329 } else {
330 return &sections[PHYS_SECTION_UNASSIGNED];
334 /* Called from RCU critical section */
335 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
336 hwaddr addr,
337 bool resolve_subpage)
339 MemoryRegionSection *section = qatomic_read(&d->mru_section);
340 subpage_t *subpage;
342 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
343 !section_covers_addr(section, addr)) {
344 section = phys_page_find(d, addr);
345 qatomic_set(&d->mru_section, section);
347 if (resolve_subpage && section->mr->subpage) {
348 subpage = container_of(section->mr, subpage_t, iomem);
349 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351 return section;
354 /* Called from RCU critical section */
355 static MemoryRegionSection *
356 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
357 hwaddr *plen, bool resolve_subpage)
359 MemoryRegionSection *section;
360 MemoryRegion *mr;
361 Int128 diff;
363 section = address_space_lookup_region(d, addr, resolve_subpage);
364 /* Compute offset within MemoryRegionSection */
365 addr -= section->offset_within_address_space;
367 /* Compute offset within MemoryRegion */
368 *xlat = addr + section->offset_within_region;
370 mr = section->mr;
372 /* MMIO registers can be expected to perform full-width accesses based only
373 * on their address, without considering adjacent registers that could
374 * decode to completely different MemoryRegions. When such registers
375 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
376 * regions overlap wildly. For this reason we cannot clamp the accesses
377 * here.
379 * If the length is small (as is the case for address_space_ldl/stl),
380 * everything works fine. If the incoming length is large, however,
381 * the caller really has to do the clamping through memory_access_size.
383 if (memory_region_is_ram(mr)) {
384 diff = int128_sub(section->size, int128_make64(addr));
385 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387 return section;
391 * address_space_translate_iommu - translate an address through an IOMMU
392 * memory region and then through the target address space.
394 * @iommu_mr: the IOMMU memory region that we start the translation from
395 * @addr: the address to be translated through the MMU
396 * @xlat: the translated address offset within the destination memory region.
397 * It cannot be %NULL.
398 * @plen_out: valid read/write length of the translated address. It
399 * cannot be %NULL.
400 * @page_mask_out: page mask for the translated address. This
401 * should only be meaningful for IOMMU translated
402 * addresses, since there may be huge pages that this bit
403 * would tell. It can be %NULL if we don't care about it.
404 * @is_write: whether the translation operation is for write
405 * @is_mmio: whether this can be MMIO, set true if it can
406 * @target_as: the address space targeted by the IOMMU
407 * @attrs: transaction attributes
409 * This function is called from RCU critical section. It is the common
410 * part of flatview_do_translate and address_space_translate_cached.
412 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
413 hwaddr *xlat,
414 hwaddr *plen_out,
415 hwaddr *page_mask_out,
416 bool is_write,
417 bool is_mmio,
418 AddressSpace **target_as,
419 MemTxAttrs attrs)
421 MemoryRegionSection *section;
422 hwaddr page_mask = (hwaddr)-1;
424 do {
425 hwaddr addr = *xlat;
426 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
427 int iommu_idx = 0;
428 IOMMUTLBEntry iotlb;
430 if (imrc->attrs_to_index) {
431 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
434 iotlb = imrc->translate(iommu_mr, addr, is_write ?
435 IOMMU_WO : IOMMU_RO, iommu_idx);
437 if (!(iotlb.perm & (1 << is_write))) {
438 goto unassigned;
441 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
442 | (addr & iotlb.addr_mask));
443 page_mask &= iotlb.addr_mask;
444 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
445 *target_as = iotlb.target_as;
447 section = address_space_translate_internal(
448 address_space_to_dispatch(iotlb.target_as), addr, xlat,
449 plen_out, is_mmio);
451 iommu_mr = memory_region_get_iommu(section->mr);
452 } while (unlikely(iommu_mr));
454 if (page_mask_out) {
455 *page_mask_out = page_mask;
457 return *section;
459 unassigned:
460 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
464 * flatview_do_translate - translate an address in FlatView
466 * @fv: the flat view that we want to translate on
467 * @addr: the address to be translated in above address space
468 * @xlat: the translated address offset within memory region. It
469 * cannot be @NULL.
470 * @plen_out: valid read/write length of the translated address. It
471 * can be @NULL when we don't care about it.
472 * @page_mask_out: page mask for the translated address. This
473 * should only be meaningful for IOMMU translated
474 * addresses, since there may be huge pages that this bit
475 * would tell. It can be @NULL if we don't care about it.
476 * @is_write: whether the translation operation is for write
477 * @is_mmio: whether this can be MMIO, set true if it can
478 * @target_as: the address space targeted by the IOMMU
479 * @attrs: memory transaction attributes
481 * This function is called from RCU critical section
483 static MemoryRegionSection flatview_do_translate(FlatView *fv,
484 hwaddr addr,
485 hwaddr *xlat,
486 hwaddr *plen_out,
487 hwaddr *page_mask_out,
488 bool is_write,
489 bool is_mmio,
490 AddressSpace **target_as,
491 MemTxAttrs attrs)
493 MemoryRegionSection *section;
494 IOMMUMemoryRegion *iommu_mr;
495 hwaddr plen = (hwaddr)(-1);
497 if (!plen_out) {
498 plen_out = &plen;
501 section = address_space_translate_internal(
502 flatview_to_dispatch(fv), addr, xlat,
503 plen_out, is_mmio);
505 iommu_mr = memory_region_get_iommu(section->mr);
506 if (unlikely(iommu_mr)) {
507 return address_space_translate_iommu(iommu_mr, xlat,
508 plen_out, page_mask_out,
509 is_write, is_mmio,
510 target_as, attrs);
512 if (page_mask_out) {
513 /* Not behind an IOMMU, use default page size. */
514 *page_mask_out = ~TARGET_PAGE_MASK;
517 return *section;
520 /* Called from RCU critical section */
521 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
522 bool is_write, MemTxAttrs attrs)
524 MemoryRegionSection section;
525 hwaddr xlat, page_mask;
528 * This can never be MMIO, and we don't really care about plen,
529 * but page mask.
531 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
532 NULL, &page_mask, is_write, false, &as,
533 attrs);
535 /* Illegal translation */
536 if (section.mr == &io_mem_unassigned) {
537 goto iotlb_fail;
540 /* Convert memory region offset into address space offset */
541 xlat += section.offset_within_address_space -
542 section.offset_within_region;
544 return (IOMMUTLBEntry) {
545 .target_as = as,
546 .iova = addr & ~page_mask,
547 .translated_addr = xlat & ~page_mask,
548 .addr_mask = page_mask,
549 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
550 .perm = IOMMU_RW,
553 iotlb_fail:
554 return (IOMMUTLBEntry) {0};
557 /* Called from RCU critical section */
558 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
559 hwaddr *plen, bool is_write,
560 MemTxAttrs attrs)
562 MemoryRegion *mr;
563 MemoryRegionSection section;
564 AddressSpace *as = NULL;
566 /* This can be MMIO, so setup MMIO bit. */
567 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
568 is_write, true, &as, attrs);
569 mr = section.mr;
571 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
572 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
573 *plen = MIN(page, *plen);
576 return mr;
579 typedef struct TCGIOMMUNotifier {
580 IOMMUNotifier n;
581 MemoryRegion *mr;
582 CPUState *cpu;
583 int iommu_idx;
584 bool active;
585 } TCGIOMMUNotifier;
587 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591 if (!notifier->active) {
592 return;
594 tlb_flush(notifier->cpu);
595 notifier->active = false;
596 /* We leave the notifier struct on the list to avoid reallocating it later.
597 * Generally the number of IOMMUs a CPU deals with will be small.
598 * In any case we can't unregister the iommu notifier from a notify
599 * callback.
603 static void tcg_register_iommu_notifier(CPUState *cpu,
604 IOMMUMemoryRegion *iommu_mr,
605 int iommu_idx)
607 /* Make sure this CPU has an IOMMU notifier registered for this
608 * IOMMU/IOMMU index combination, so that we can flush its TLB
609 * when the IOMMU tells us the mappings we've cached have changed.
611 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
612 TCGIOMMUNotifier *notifier = NULL;
613 int i;
615 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
616 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
617 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
618 break;
621 if (i == cpu->iommu_notifiers->len) {
622 /* Not found, add a new entry at the end of the array */
623 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
624 notifier = g_new0(TCGIOMMUNotifier, 1);
625 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627 notifier->mr = mr;
628 notifier->iommu_idx = iommu_idx;
629 notifier->cpu = cpu;
630 /* Rather than trying to register interest in the specific part
631 * of the iommu's address space that we've accessed and then
632 * expand it later as subsequent accesses touch more of it, we
633 * just register interest in the whole thing, on the assumption
634 * that iommu reconfiguration will be rare.
636 iommu_notifier_init(&notifier->n,
637 tcg_iommu_unmap_notify,
638 IOMMU_NOTIFIER_UNMAP,
640 HWADDR_MAX,
641 iommu_idx);
642 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
643 &error_fatal);
646 if (!notifier->active) {
647 notifier->active = true;
651 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 /* Destroy the CPU's notifier list */
654 int i;
655 TCGIOMMUNotifier *notifier;
657 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
658 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
659 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
660 g_free(notifier);
662 g_array_free(cpu->iommu_notifiers, true);
665 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
670 /* Called from RCU critical section */
671 MemoryRegionSection *
672 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
673 hwaddr *xlat, hwaddr *plen,
674 MemTxAttrs attrs, int *prot)
676 MemoryRegionSection *section;
677 IOMMUMemoryRegion *iommu_mr;
678 IOMMUMemoryRegionClass *imrc;
679 IOMMUTLBEntry iotlb;
680 int iommu_idx;
681 hwaddr addr = orig_addr;
682 AddressSpaceDispatch *d =
683 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
685 for (;;) {
686 section = address_space_translate_internal(d, addr, &addr, plen, false);
688 iommu_mr = memory_region_get_iommu(section->mr);
689 if (!iommu_mr) {
690 break;
693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698 * doesn't short-cut its translation table walk.
700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702 | (addr & iotlb.addr_mask));
703 /* Update the caller's prot bits to remove permissions the IOMMU
704 * is giving us a failure response for. If we get down to no
705 * permissions left at all we can give up now.
707 if (!(iotlb.perm & IOMMU_RO)) {
708 *prot &= ~(PAGE_READ | PAGE_EXEC);
710 if (!(iotlb.perm & IOMMU_WO)) {
711 *prot &= ~PAGE_WRITE;
714 if (!*prot) {
715 goto translate_fail;
718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721 assert(!memory_region_is_iommu(section->mr));
722 *xlat = addr;
723 return section;
725 translate_fail:
727 * We should be given a page-aligned address -- certainly
728 * tlb_set_page_with_attrs() does so. The page offset of xlat
729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730 * The page portion of xlat will be logged by memory_region_access_valid()
731 * when this memory access is rejected, so use the original untranslated
732 * physical address.
734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735 *xlat = orig_addr;
736 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740 const char *prefix, MemoryRegion *mr)
742 CPUAddressSpace *newas;
743 AddressSpace *as = g_new0(AddressSpace, 1);
744 char *as_name;
746 assert(mr);
747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748 address_space_init(as, mr, as_name);
749 g_free(as_name);
751 /* Target code should have set num_ases before calling us */
752 assert(asidx < cpu->num_ases);
754 if (asidx == 0) {
755 /* address space 0 gets the convenience alias */
756 cpu->as = as;
759 /* KVM cannot currently support multiple address spaces. */
760 assert(asidx == 0 || !kvm_enabled());
762 if (!cpu->cpu_ases) {
763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766 newas = &cpu->cpu_ases[asidx];
767 newas->cpu = cpu;
768 newas->as = as;
769 if (tcg_enabled()) {
770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771 newas->tcg_as_listener.commit = tcg_commit;
772 newas->tcg_as_listener.name = "tcg";
773 memory_listener_register(&newas->tcg_as_listener, as);
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779 /* Return the AddressSpace corresponding to the specified index */
780 return cpu->cpu_ases[asidx].as;
783 /* Add a watchpoint. */
784 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
785 int flags, CPUWatchpoint **watchpoint)
787 CPUWatchpoint *wp;
788 vaddr in_page;
790 /* forbid ranges which are empty or run off the end of the address space */
791 if (len == 0 || (addr + len - 1) < addr) {
792 error_report("tried to set invalid watchpoint at %"
793 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
794 return -EINVAL;
796 wp = g_malloc(sizeof(*wp));
798 wp->vaddr = addr;
799 wp->len = len;
800 wp->flags = flags;
802 /* keep all GDB-injected watchpoints in front */
803 if (flags & BP_GDB) {
804 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
805 } else {
806 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
809 in_page = -(addr | TARGET_PAGE_MASK);
810 if (len <= in_page) {
811 tlb_flush_page(cpu, addr);
812 } else {
813 tlb_flush(cpu);
816 if (watchpoint)
817 *watchpoint = wp;
818 return 0;
821 /* Remove a specific watchpoint. */
822 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
823 int flags)
825 CPUWatchpoint *wp;
827 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
828 if (addr == wp->vaddr && len == wp->len
829 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
830 cpu_watchpoint_remove_by_ref(cpu, wp);
831 return 0;
834 return -ENOENT;
837 /* Remove a specific watchpoint by reference. */
838 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
840 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
842 tlb_flush_page(cpu, watchpoint->vaddr);
844 g_free(watchpoint);
847 /* Remove all matching watchpoints. */
848 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
850 CPUWatchpoint *wp, *next;
852 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
853 if (wp->flags & mask) {
854 cpu_watchpoint_remove_by_ref(cpu, wp);
859 #ifdef CONFIG_TCG
860 /* Return true if this watchpoint address matches the specified
861 * access (ie the address range covered by the watchpoint overlaps
862 * partially or completely with the address range covered by the
863 * access).
865 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
866 vaddr addr, vaddr len)
868 /* We know the lengths are non-zero, but a little caution is
869 * required to avoid errors in the case where the range ends
870 * exactly at the top of the address space and so addr + len
871 * wraps round to zero.
873 vaddr wpend = wp->vaddr + wp->len - 1;
874 vaddr addrend = addr + len - 1;
876 return !(addr > wpend || wp->vaddr > addrend);
879 /* Return flags for watchpoints that match addr + prot. */
880 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
882 CPUWatchpoint *wp;
883 int ret = 0;
885 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
886 if (watchpoint_address_matches(wp, addr, len)) {
887 ret |= wp->flags;
890 return ret;
893 /* Generate a debug exception if a watchpoint has been hit. */
894 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
895 MemTxAttrs attrs, int flags, uintptr_t ra)
897 CPUClass *cc = CPU_GET_CLASS(cpu);
898 CPUWatchpoint *wp;
900 assert(tcg_enabled());
901 if (cpu->watchpoint_hit) {
903 * We re-entered the check after replacing the TB.
904 * Now raise the debug interrupt so that it will
905 * trigger after the current instruction.
907 qemu_mutex_lock_iothread();
908 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
909 qemu_mutex_unlock_iothread();
910 return;
913 if (cc->tcg_ops->adjust_watchpoint_address) {
914 /* this is currently used only by ARM BE32 */
915 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
917 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
918 if (watchpoint_address_matches(wp, addr, len)
919 && (wp->flags & flags)) {
920 if (replay_running_debug()) {
922 * replay_breakpoint reads icount.
923 * Force recompile to succeed, because icount may
924 * be read only at the end of the block.
926 if (!cpu->can_do_io) {
927 /* Force execution of one insn next time. */
928 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
929 cpu_loop_exit_restore(cpu, ra);
932 * Don't process the watchpoints when we are
933 * in a reverse debugging operation.
935 replay_breakpoint();
936 return;
938 if (flags == BP_MEM_READ) {
939 wp->flags |= BP_WATCHPOINT_HIT_READ;
940 } else {
941 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
943 wp->hitaddr = MAX(addr, wp->vaddr);
944 wp->hitattrs = attrs;
946 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
947 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
948 wp->flags &= ~BP_WATCHPOINT_HIT;
949 continue;
951 cpu->watchpoint_hit = wp;
953 mmap_lock();
954 /* This call also restores vCPU state */
955 tb_check_watchpoint(cpu, ra);
956 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
957 cpu->exception_index = EXCP_DEBUG;
958 mmap_unlock();
959 cpu_loop_exit(cpu);
960 } else {
961 /* Force execution of one insn next time. */
962 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
963 mmap_unlock();
964 cpu_loop_exit_noexc(cpu);
966 } else {
967 wp->flags &= ~BP_WATCHPOINT_HIT;
972 #endif /* CONFIG_TCG */
974 /* Called from RCU critical section */
975 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
977 RAMBlock *block;
979 block = qatomic_rcu_read(&ram_list.mru_block);
980 if (block && addr - block->offset < block->max_length) {
981 return block;
983 RAMBLOCK_FOREACH(block) {
984 if (addr - block->offset < block->max_length) {
985 goto found;
989 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
990 abort();
992 found:
993 /* It is safe to write mru_block outside the iothread lock. This
994 * is what happens:
996 * mru_block = xxx
997 * rcu_read_unlock()
998 * xxx removed from list
999 * rcu_read_lock()
1000 * read mru_block
1001 * mru_block = NULL;
1002 * call_rcu(reclaim_ramblock, xxx);
1003 * rcu_read_unlock()
1005 * qatomic_rcu_set is not needed here. The block was already published
1006 * when it was placed into the list. Here we're just making an extra
1007 * copy of the pointer.
1009 ram_list.mru_block = block;
1010 return block;
1013 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1015 CPUState *cpu;
1016 ram_addr_t start1;
1017 RAMBlock *block;
1018 ram_addr_t end;
1020 assert(tcg_enabled());
1021 end = TARGET_PAGE_ALIGN(start + length);
1022 start &= TARGET_PAGE_MASK;
1024 RCU_READ_LOCK_GUARD();
1025 block = qemu_get_ram_block(start);
1026 assert(block == qemu_get_ram_block(end - 1));
1027 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1028 CPU_FOREACH(cpu) {
1029 tlb_reset_dirty(cpu, start1, length);
1033 /* Note: start and end must be within the same ram block. */
1034 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1035 ram_addr_t length,
1036 unsigned client)
1038 DirtyMemoryBlocks *blocks;
1039 unsigned long end, page, start_page;
1040 bool dirty = false;
1041 RAMBlock *ramblock;
1042 uint64_t mr_offset, mr_size;
1044 if (length == 0) {
1045 return false;
1048 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1049 start_page = start >> TARGET_PAGE_BITS;
1050 page = start_page;
1052 WITH_RCU_READ_LOCK_GUARD() {
1053 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1054 ramblock = qemu_get_ram_block(start);
1055 /* Range sanity check on the ramblock */
1056 assert(start >= ramblock->offset &&
1057 start + length <= ramblock->offset + ramblock->used_length);
1059 while (page < end) {
1060 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1061 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1062 unsigned long num = MIN(end - page,
1063 DIRTY_MEMORY_BLOCK_SIZE - offset);
1065 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1066 offset, num);
1067 page += num;
1070 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1071 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1072 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1075 if (dirty && tcg_enabled()) {
1076 tlb_reset_dirty_range_all(start, length);
1079 return dirty;
1082 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1083 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1085 DirtyMemoryBlocks *blocks;
1086 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1087 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1088 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1089 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1090 DirtyBitmapSnapshot *snap;
1091 unsigned long page, end, dest;
1093 snap = g_malloc0(sizeof(*snap) +
1094 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1095 snap->start = first;
1096 snap->end = last;
1098 page = first >> TARGET_PAGE_BITS;
1099 end = last >> TARGET_PAGE_BITS;
1100 dest = 0;
1102 WITH_RCU_READ_LOCK_GUARD() {
1103 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1105 while (page < end) {
1106 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1107 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1108 unsigned long num = MIN(end - page,
1109 DIRTY_MEMORY_BLOCK_SIZE - offset);
1111 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1112 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1113 offset >>= BITS_PER_LEVEL;
1115 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1116 blocks->blocks[idx] + offset,
1117 num);
1118 page += num;
1119 dest += num >> BITS_PER_LEVEL;
1123 if (tcg_enabled()) {
1124 tlb_reset_dirty_range_all(start, length);
1127 memory_region_clear_dirty_bitmap(mr, offset, length);
1129 return snap;
1132 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1133 ram_addr_t start,
1134 ram_addr_t length)
1136 unsigned long page, end;
1138 assert(start >= snap->start);
1139 assert(start + length <= snap->end);
1141 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1142 page = (start - snap->start) >> TARGET_PAGE_BITS;
1144 while (page < end) {
1145 if (test_bit(page, snap->dirty)) {
1146 return true;
1148 page++;
1150 return false;
1153 /* Called from RCU critical section */
1154 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1155 MemoryRegionSection *section)
1157 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1158 return section - d->map.sections;
1161 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1162 uint16_t section);
1163 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1165 static uint16_t phys_section_add(PhysPageMap *map,
1166 MemoryRegionSection *section)
1168 /* The physical section number is ORed with a page-aligned
1169 * pointer to produce the iotlb entries. Thus it should
1170 * never overflow into the page-aligned value.
1172 assert(map->sections_nb < TARGET_PAGE_SIZE);
1174 if (map->sections_nb == map->sections_nb_alloc) {
1175 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1176 map->sections = g_renew(MemoryRegionSection, map->sections,
1177 map->sections_nb_alloc);
1179 map->sections[map->sections_nb] = *section;
1180 memory_region_ref(section->mr);
1181 return map->sections_nb++;
1184 static void phys_section_destroy(MemoryRegion *mr)
1186 bool have_sub_page = mr->subpage;
1188 memory_region_unref(mr);
1190 if (have_sub_page) {
1191 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1192 object_unref(OBJECT(&subpage->iomem));
1193 g_free(subpage);
1197 static void phys_sections_free(PhysPageMap *map)
1199 while (map->sections_nb > 0) {
1200 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1201 phys_section_destroy(section->mr);
1203 g_free(map->sections);
1204 g_free(map->nodes);
1207 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1209 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1210 subpage_t *subpage;
1211 hwaddr base = section->offset_within_address_space
1212 & TARGET_PAGE_MASK;
1213 MemoryRegionSection *existing = phys_page_find(d, base);
1214 MemoryRegionSection subsection = {
1215 .offset_within_address_space = base,
1216 .size = int128_make64(TARGET_PAGE_SIZE),
1218 hwaddr start, end;
1220 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1222 if (!(existing->mr->subpage)) {
1223 subpage = subpage_init(fv, base);
1224 subsection.fv = fv;
1225 subsection.mr = &subpage->iomem;
1226 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1227 phys_section_add(&d->map, &subsection));
1228 } else {
1229 subpage = container_of(existing->mr, subpage_t, iomem);
1231 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1232 end = start + int128_get64(section->size) - 1;
1233 subpage_register(subpage, start, end,
1234 phys_section_add(&d->map, section));
1238 static void register_multipage(FlatView *fv,
1239 MemoryRegionSection *section)
1241 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1242 hwaddr start_addr = section->offset_within_address_space;
1243 uint16_t section_index = phys_section_add(&d->map, section);
1244 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1245 TARGET_PAGE_BITS));
1247 assert(num_pages);
1248 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1252 * The range in *section* may look like this:
1254 * |s|PPPPPPP|s|
1256 * where s stands for subpage and P for page.
1258 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1260 MemoryRegionSection remain = *section;
1261 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1263 /* register first subpage */
1264 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1265 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1266 - remain.offset_within_address_space;
1268 MemoryRegionSection now = remain;
1269 now.size = int128_min(int128_make64(left), now.size);
1270 register_subpage(fv, &now);
1271 if (int128_eq(remain.size, now.size)) {
1272 return;
1274 remain.size = int128_sub(remain.size, now.size);
1275 remain.offset_within_address_space += int128_get64(now.size);
1276 remain.offset_within_region += int128_get64(now.size);
1279 /* register whole pages */
1280 if (int128_ge(remain.size, page_size)) {
1281 MemoryRegionSection now = remain;
1282 now.size = int128_and(now.size, int128_neg(page_size));
1283 register_multipage(fv, &now);
1284 if (int128_eq(remain.size, now.size)) {
1285 return;
1287 remain.size = int128_sub(remain.size, now.size);
1288 remain.offset_within_address_space += int128_get64(now.size);
1289 remain.offset_within_region += int128_get64(now.size);
1292 /* register last subpage */
1293 register_subpage(fv, &remain);
1296 void qemu_flush_coalesced_mmio_buffer(void)
1298 if (kvm_enabled())
1299 kvm_flush_coalesced_mmio_buffer();
1302 void qemu_mutex_lock_ramlist(void)
1304 qemu_mutex_lock(&ram_list.mutex);
1307 void qemu_mutex_unlock_ramlist(void)
1309 qemu_mutex_unlock(&ram_list.mutex);
1312 GString *ram_block_format(void)
1314 RAMBlock *block;
1315 char *psize;
1316 GString *buf = g_string_new("");
1318 RCU_READ_LOCK_GUARD();
1319 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n",
1320 "Block Name", "PSize", "Offset", "Used", "Total");
1321 RAMBLOCK_FOREACH(block) {
1322 psize = size_to_str(block->page_size);
1323 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1324 " 0x%016" PRIx64 "\n", block->idstr, psize,
1325 (uint64_t)block->offset,
1326 (uint64_t)block->used_length,
1327 (uint64_t)block->max_length);
1328 g_free(psize);
1331 return buf;
1334 #ifdef __linux__
1336 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1337 * may or may not name the same files / on the same filesystem now as
1338 * when we actually open and map them. Iterate over the file
1339 * descriptors instead, and use qemu_fd_getpagesize().
1341 static int find_min_backend_pagesize(Object *obj, void *opaque)
1343 long *hpsize_min = opaque;
1345 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1346 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1347 long hpsize = host_memory_backend_pagesize(backend);
1349 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1350 *hpsize_min = hpsize;
1354 return 0;
1357 static int find_max_backend_pagesize(Object *obj, void *opaque)
1359 long *hpsize_max = opaque;
1361 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1362 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1363 long hpsize = host_memory_backend_pagesize(backend);
1365 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1366 *hpsize_max = hpsize;
1370 return 0;
1374 * TODO: We assume right now that all mapped host memory backends are
1375 * used as RAM, however some might be used for different purposes.
1377 long qemu_minrampagesize(void)
1379 long hpsize = LONG_MAX;
1380 Object *memdev_root = object_resolve_path("/objects", NULL);
1382 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1383 return hpsize;
1386 long qemu_maxrampagesize(void)
1388 long pagesize = 0;
1389 Object *memdev_root = object_resolve_path("/objects", NULL);
1391 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1392 return pagesize;
1394 #else
1395 long qemu_minrampagesize(void)
1397 return qemu_real_host_page_size();
1399 long qemu_maxrampagesize(void)
1401 return qemu_real_host_page_size();
1403 #endif
1405 #ifdef CONFIG_POSIX
1406 static int64_t get_file_size(int fd)
1408 int64_t size;
1409 #if defined(__linux__)
1410 struct stat st;
1412 if (fstat(fd, &st) < 0) {
1413 return -errno;
1416 /* Special handling for devdax character devices */
1417 if (S_ISCHR(st.st_mode)) {
1418 g_autofree char *subsystem_path = NULL;
1419 g_autofree char *subsystem = NULL;
1421 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1422 major(st.st_rdev), minor(st.st_rdev));
1423 subsystem = g_file_read_link(subsystem_path, NULL);
1425 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1426 g_autofree char *size_path = NULL;
1427 g_autofree char *size_str = NULL;
1429 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1430 major(st.st_rdev), minor(st.st_rdev));
1432 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1433 return g_ascii_strtoll(size_str, NULL, 0);
1437 #endif /* defined(__linux__) */
1439 /* st.st_size may be zero for special files yet lseek(2) works */
1440 size = lseek(fd, 0, SEEK_END);
1441 if (size < 0) {
1442 return -errno;
1444 return size;
1447 static int64_t get_file_align(int fd)
1449 int64_t align = -1;
1450 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1451 struct stat st;
1453 if (fstat(fd, &st) < 0) {
1454 return -errno;
1457 /* Special handling for devdax character devices */
1458 if (S_ISCHR(st.st_mode)) {
1459 g_autofree char *path = NULL;
1460 g_autofree char *rpath = NULL;
1461 struct daxctl_ctx *ctx;
1462 struct daxctl_region *region;
1463 int rc = 0;
1465 path = g_strdup_printf("/sys/dev/char/%d:%d",
1466 major(st.st_rdev), minor(st.st_rdev));
1467 rpath = realpath(path, NULL);
1468 if (!rpath) {
1469 return -errno;
1472 rc = daxctl_new(&ctx);
1473 if (rc) {
1474 return -1;
1477 daxctl_region_foreach(ctx, region) {
1478 if (strstr(rpath, daxctl_region_get_path(region))) {
1479 align = daxctl_region_get_align(region);
1480 break;
1483 daxctl_unref(ctx);
1485 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1487 return align;
1490 static int file_ram_open(const char *path,
1491 const char *region_name,
1492 bool readonly,
1493 bool *created,
1494 Error **errp)
1496 char *filename;
1497 char *sanitized_name;
1498 char *c;
1499 int fd = -1;
1501 *created = false;
1502 for (;;) {
1503 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1504 if (fd >= 0) {
1505 /* @path names an existing file, use it */
1506 break;
1508 if (errno == ENOENT) {
1509 /* @path names a file that doesn't exist, create it */
1510 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1511 if (fd >= 0) {
1512 *created = true;
1513 break;
1515 } else if (errno == EISDIR) {
1516 /* @path names a directory, create a file there */
1517 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1518 sanitized_name = g_strdup(region_name);
1519 for (c = sanitized_name; *c != '\0'; c++) {
1520 if (*c == '/') {
1521 *c = '_';
1525 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1526 sanitized_name);
1527 g_free(sanitized_name);
1529 fd = mkstemp(filename);
1530 if (fd >= 0) {
1531 unlink(filename);
1532 g_free(filename);
1533 break;
1535 g_free(filename);
1537 if (errno != EEXIST && errno != EINTR) {
1538 error_setg_errno(errp, errno,
1539 "can't open backing store %s for guest RAM",
1540 path);
1541 return -1;
1544 * Try again on EINTR and EEXIST. The latter happens when
1545 * something else creates the file between our two open().
1549 return fd;
1552 static void *file_ram_alloc(RAMBlock *block,
1553 ram_addr_t memory,
1554 int fd,
1555 bool readonly,
1556 bool truncate,
1557 off_t offset,
1558 Error **errp)
1560 uint32_t qemu_map_flags;
1561 void *area;
1563 block->page_size = qemu_fd_getpagesize(fd);
1564 if (block->mr->align % block->page_size) {
1565 error_setg(errp, "alignment 0x%" PRIx64
1566 " must be multiples of page size 0x%zx",
1567 block->mr->align, block->page_size);
1568 return NULL;
1569 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1570 error_setg(errp, "alignment 0x%" PRIx64
1571 " must be a power of two", block->mr->align);
1572 return NULL;
1574 block->mr->align = MAX(block->page_size, block->mr->align);
1575 #if defined(__s390x__)
1576 if (kvm_enabled()) {
1577 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1579 #endif
1581 if (memory < block->page_size) {
1582 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1583 "or larger than page size 0x%zx",
1584 memory, block->page_size);
1585 return NULL;
1588 memory = ROUND_UP(memory, block->page_size);
1591 * ftruncate is not supported by hugetlbfs in older
1592 * hosts, so don't bother bailing out on errors.
1593 * If anything goes wrong with it under other filesystems,
1594 * mmap will fail.
1596 * Do not truncate the non-empty backend file to avoid corrupting
1597 * the existing data in the file. Disabling shrinking is not
1598 * enough. For example, the current vNVDIMM implementation stores
1599 * the guest NVDIMM labels at the end of the backend file. If the
1600 * backend file is later extended, QEMU will not be able to find
1601 * those labels. Therefore, extending the non-empty backend file
1602 * is disabled as well.
1604 if (truncate && ftruncate(fd, memory)) {
1605 perror("ftruncate");
1608 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1609 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1610 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1611 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1612 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1613 if (area == MAP_FAILED) {
1614 error_setg_errno(errp, errno,
1615 "unable to map backing store for guest RAM");
1616 return NULL;
1619 block->fd = fd;
1620 return area;
1622 #endif
1624 /* Allocate space within the ram_addr_t space that governs the
1625 * dirty bitmaps.
1626 * Called with the ramlist lock held.
1628 static ram_addr_t find_ram_offset(ram_addr_t size)
1630 RAMBlock *block, *next_block;
1631 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1633 assert(size != 0); /* it would hand out same offset multiple times */
1635 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1636 return 0;
1639 RAMBLOCK_FOREACH(block) {
1640 ram_addr_t candidate, next = RAM_ADDR_MAX;
1642 /* Align blocks to start on a 'long' in the bitmap
1643 * which makes the bitmap sync'ing take the fast path.
1645 candidate = block->offset + block->max_length;
1646 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1648 /* Search for the closest following block
1649 * and find the gap.
1651 RAMBLOCK_FOREACH(next_block) {
1652 if (next_block->offset >= candidate) {
1653 next = MIN(next, next_block->offset);
1657 /* If it fits remember our place and remember the size
1658 * of gap, but keep going so that we might find a smaller
1659 * gap to fill so avoiding fragmentation.
1661 if (next - candidate >= size && next - candidate < mingap) {
1662 offset = candidate;
1663 mingap = next - candidate;
1666 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1669 if (offset == RAM_ADDR_MAX) {
1670 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1671 (uint64_t)size);
1672 abort();
1675 trace_find_ram_offset(size, offset);
1677 return offset;
1680 static unsigned long last_ram_page(void)
1682 RAMBlock *block;
1683 ram_addr_t last = 0;
1685 RCU_READ_LOCK_GUARD();
1686 RAMBLOCK_FOREACH(block) {
1687 last = MAX(last, block->offset + block->max_length);
1689 return last >> TARGET_PAGE_BITS;
1692 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1694 int ret;
1696 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1697 if (!machine_dump_guest_core(current_machine)) {
1698 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1699 if (ret) {
1700 perror("qemu_madvise");
1701 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1702 "but dump_guest_core=off specified\n");
1707 const char *qemu_ram_get_idstr(RAMBlock *rb)
1709 return rb->idstr;
1712 void *qemu_ram_get_host_addr(RAMBlock *rb)
1714 return rb->host;
1717 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1719 return rb->offset;
1722 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1724 return rb->used_length;
1727 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1729 return rb->max_length;
1732 bool qemu_ram_is_shared(RAMBlock *rb)
1734 return rb->flags & RAM_SHARED;
1737 bool qemu_ram_is_noreserve(RAMBlock *rb)
1739 return rb->flags & RAM_NORESERVE;
1742 /* Note: Only set at the start of postcopy */
1743 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1745 return rb->flags & RAM_UF_ZEROPAGE;
1748 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1750 rb->flags |= RAM_UF_ZEROPAGE;
1753 bool qemu_ram_is_migratable(RAMBlock *rb)
1755 return rb->flags & RAM_MIGRATABLE;
1758 void qemu_ram_set_migratable(RAMBlock *rb)
1760 rb->flags |= RAM_MIGRATABLE;
1763 void qemu_ram_unset_migratable(RAMBlock *rb)
1765 rb->flags &= ~RAM_MIGRATABLE;
1768 /* Called with iothread lock held. */
1769 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1771 RAMBlock *block;
1773 assert(new_block);
1774 assert(!new_block->idstr[0]);
1776 if (dev) {
1777 char *id = qdev_get_dev_path(dev);
1778 if (id) {
1779 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1780 g_free(id);
1783 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1785 RCU_READ_LOCK_GUARD();
1786 RAMBLOCK_FOREACH(block) {
1787 if (block != new_block &&
1788 !strcmp(block->idstr, new_block->idstr)) {
1789 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1790 new_block->idstr);
1791 abort();
1796 /* Called with iothread lock held. */
1797 void qemu_ram_unset_idstr(RAMBlock *block)
1799 /* FIXME: arch_init.c assumes that this is not called throughout
1800 * migration. Ignore the problem since hot-unplug during migration
1801 * does not work anyway.
1803 if (block) {
1804 memset(block->idstr, 0, sizeof(block->idstr));
1808 size_t qemu_ram_pagesize(RAMBlock *rb)
1810 return rb->page_size;
1813 /* Returns the largest size of page in use */
1814 size_t qemu_ram_pagesize_largest(void)
1816 RAMBlock *block;
1817 size_t largest = 0;
1819 RAMBLOCK_FOREACH(block) {
1820 largest = MAX(largest, qemu_ram_pagesize(block));
1823 return largest;
1826 static int memory_try_enable_merging(void *addr, size_t len)
1828 if (!machine_mem_merge(current_machine)) {
1829 /* disabled by the user */
1830 return 0;
1833 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1837 * Resizing RAM while migrating can result in the migration being canceled.
1838 * Care has to be taken if the guest might have already detected the memory.
1840 * As memory core doesn't know how is memory accessed, it is up to
1841 * resize callback to update device state and/or add assertions to detect
1842 * misuse, if necessary.
1844 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1846 const ram_addr_t oldsize = block->used_length;
1847 const ram_addr_t unaligned_size = newsize;
1849 assert(block);
1851 newsize = HOST_PAGE_ALIGN(newsize);
1853 if (block->used_length == newsize) {
1855 * We don't have to resize the ram block (which only knows aligned
1856 * sizes), however, we have to notify if the unaligned size changed.
1858 if (unaligned_size != memory_region_size(block->mr)) {
1859 memory_region_set_size(block->mr, unaligned_size);
1860 if (block->resized) {
1861 block->resized(block->idstr, unaligned_size, block->host);
1864 return 0;
1867 if (!(block->flags & RAM_RESIZEABLE)) {
1868 error_setg_errno(errp, EINVAL,
1869 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1870 " != 0x" RAM_ADDR_FMT, block->idstr,
1871 newsize, block->used_length);
1872 return -EINVAL;
1875 if (block->max_length < newsize) {
1876 error_setg_errno(errp, EINVAL,
1877 "Size too large: %s: 0x" RAM_ADDR_FMT
1878 " > 0x" RAM_ADDR_FMT, block->idstr,
1879 newsize, block->max_length);
1880 return -EINVAL;
1883 /* Notify before modifying the ram block and touching the bitmaps. */
1884 if (block->host) {
1885 ram_block_notify_resize(block->host, oldsize, newsize);
1888 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1889 block->used_length = newsize;
1890 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1891 DIRTY_CLIENTS_ALL);
1892 memory_region_set_size(block->mr, unaligned_size);
1893 if (block->resized) {
1894 block->resized(block->idstr, unaligned_size, block->host);
1896 return 0;
1900 * Trigger sync on the given ram block for range [start, start + length]
1901 * with the backing store if one is available.
1902 * Otherwise no-op.
1903 * @Note: this is supposed to be a synchronous op.
1905 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1907 /* The requested range should fit in within the block range */
1908 g_assert((start + length) <= block->used_length);
1910 #ifdef CONFIG_LIBPMEM
1911 /* The lack of support for pmem should not block the sync */
1912 if (ramblock_is_pmem(block)) {
1913 void *addr = ramblock_ptr(block, start);
1914 pmem_persist(addr, length);
1915 return;
1917 #endif
1918 if (block->fd >= 0) {
1920 * Case there is no support for PMEM or the memory has not been
1921 * specified as persistent (or is not one) - use the msync.
1922 * Less optimal but still achieves the same goal
1924 void *addr = ramblock_ptr(block, start);
1925 if (qemu_msync(addr, length, block->fd)) {
1926 warn_report("%s: failed to sync memory range: start: "
1927 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1928 __func__, start, length);
1933 /* Called with ram_list.mutex held */
1934 static void dirty_memory_extend(ram_addr_t old_ram_size,
1935 ram_addr_t new_ram_size)
1937 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1938 DIRTY_MEMORY_BLOCK_SIZE);
1939 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1940 DIRTY_MEMORY_BLOCK_SIZE);
1941 int i;
1943 /* Only need to extend if block count increased */
1944 if (new_num_blocks <= old_num_blocks) {
1945 return;
1948 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1949 DirtyMemoryBlocks *old_blocks;
1950 DirtyMemoryBlocks *new_blocks;
1951 int j;
1953 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1954 new_blocks = g_malloc(sizeof(*new_blocks) +
1955 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1957 if (old_num_blocks) {
1958 memcpy(new_blocks->blocks, old_blocks->blocks,
1959 old_num_blocks * sizeof(old_blocks->blocks[0]));
1962 for (j = old_num_blocks; j < new_num_blocks; j++) {
1963 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1966 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1968 if (old_blocks) {
1969 g_free_rcu(old_blocks, rcu);
1974 static void ram_block_add(RAMBlock *new_block, Error **errp)
1976 const bool noreserve = qemu_ram_is_noreserve(new_block);
1977 const bool shared = qemu_ram_is_shared(new_block);
1978 RAMBlock *block;
1979 RAMBlock *last_block = NULL;
1980 ram_addr_t old_ram_size, new_ram_size;
1981 Error *err = NULL;
1983 old_ram_size = last_ram_page();
1985 qemu_mutex_lock_ramlist();
1986 new_block->offset = find_ram_offset(new_block->max_length);
1988 if (!new_block->host) {
1989 if (xen_enabled()) {
1990 xen_ram_alloc(new_block->offset, new_block->max_length,
1991 new_block->mr, &err);
1992 if (err) {
1993 error_propagate(errp, err);
1994 qemu_mutex_unlock_ramlist();
1995 return;
1997 } else {
1998 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1999 &new_block->mr->align,
2000 shared, noreserve);
2001 if (!new_block->host) {
2002 error_setg_errno(errp, errno,
2003 "cannot set up guest memory '%s'",
2004 memory_region_name(new_block->mr));
2005 qemu_mutex_unlock_ramlist();
2006 return;
2008 memory_try_enable_merging(new_block->host, new_block->max_length);
2012 new_ram_size = MAX(old_ram_size,
2013 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2014 if (new_ram_size > old_ram_size) {
2015 dirty_memory_extend(old_ram_size, new_ram_size);
2017 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2018 * QLIST (which has an RCU-friendly variant) does not have insertion at
2019 * tail, so save the last element in last_block.
2021 RAMBLOCK_FOREACH(block) {
2022 last_block = block;
2023 if (block->max_length < new_block->max_length) {
2024 break;
2027 if (block) {
2028 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2029 } else if (last_block) {
2030 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2031 } else { /* list is empty */
2032 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2034 ram_list.mru_block = NULL;
2036 /* Write list before version */
2037 smp_wmb();
2038 ram_list.version++;
2039 qemu_mutex_unlock_ramlist();
2041 cpu_physical_memory_set_dirty_range(new_block->offset,
2042 new_block->used_length,
2043 DIRTY_CLIENTS_ALL);
2045 if (new_block->host) {
2046 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2047 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2049 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2050 * Configure it unless the machine is a qtest server, in which case
2051 * KVM is not used and it may be forked (eg for fuzzing purposes).
2053 if (!qtest_enabled()) {
2054 qemu_madvise(new_block->host, new_block->max_length,
2055 QEMU_MADV_DONTFORK);
2057 ram_block_notify_add(new_block->host, new_block->used_length,
2058 new_block->max_length);
2062 #ifdef CONFIG_POSIX
2063 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2064 uint32_t ram_flags, int fd, off_t offset,
2065 bool readonly, Error **errp)
2067 RAMBlock *new_block;
2068 Error *local_err = NULL;
2069 int64_t file_size, file_align;
2071 /* Just support these ram flags by now. */
2072 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2073 RAM_PROTECTED)) == 0);
2075 if (xen_enabled()) {
2076 error_setg(errp, "-mem-path not supported with Xen");
2077 return NULL;
2080 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2081 error_setg(errp,
2082 "host lacks kvm mmu notifiers, -mem-path unsupported");
2083 return NULL;
2086 size = HOST_PAGE_ALIGN(size);
2087 file_size = get_file_size(fd);
2088 if (file_size > 0 && file_size < size) {
2089 error_setg(errp, "backing store size 0x%" PRIx64
2090 " does not match 'size' option 0x" RAM_ADDR_FMT,
2091 file_size, size);
2092 return NULL;
2095 file_align = get_file_align(fd);
2096 if (file_align > 0 && file_align > mr->align) {
2097 error_setg(errp, "backing store align 0x%" PRIx64
2098 " is larger than 'align' option 0x%" PRIx64,
2099 file_align, mr->align);
2100 return NULL;
2103 new_block = g_malloc0(sizeof(*new_block));
2104 new_block->mr = mr;
2105 new_block->used_length = size;
2106 new_block->max_length = size;
2107 new_block->flags = ram_flags;
2108 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2109 !file_size, offset, errp);
2110 if (!new_block->host) {
2111 g_free(new_block);
2112 return NULL;
2115 ram_block_add(new_block, &local_err);
2116 if (local_err) {
2117 g_free(new_block);
2118 error_propagate(errp, local_err);
2119 return NULL;
2121 return new_block;
2126 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2127 uint32_t ram_flags, const char *mem_path,
2128 bool readonly, Error **errp)
2130 int fd;
2131 bool created;
2132 RAMBlock *block;
2134 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2135 errp);
2136 if (fd < 0) {
2137 return NULL;
2140 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2141 if (!block) {
2142 if (created) {
2143 unlink(mem_path);
2145 close(fd);
2146 return NULL;
2149 return block;
2151 #endif
2153 static
2154 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2155 void (*resized)(const char*,
2156 uint64_t length,
2157 void *host),
2158 void *host, uint32_t ram_flags,
2159 MemoryRegion *mr, Error **errp)
2161 RAMBlock *new_block;
2162 Error *local_err = NULL;
2164 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2165 RAM_NORESERVE)) == 0);
2166 assert(!host ^ (ram_flags & RAM_PREALLOC));
2168 size = HOST_PAGE_ALIGN(size);
2169 max_size = HOST_PAGE_ALIGN(max_size);
2170 new_block = g_malloc0(sizeof(*new_block));
2171 new_block->mr = mr;
2172 new_block->resized = resized;
2173 new_block->used_length = size;
2174 new_block->max_length = max_size;
2175 assert(max_size >= size);
2176 new_block->fd = -1;
2177 new_block->page_size = qemu_real_host_page_size();
2178 new_block->host = host;
2179 new_block->flags = ram_flags;
2180 ram_block_add(new_block, &local_err);
2181 if (local_err) {
2182 g_free(new_block);
2183 error_propagate(errp, local_err);
2184 return NULL;
2186 return new_block;
2189 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2190 MemoryRegion *mr, Error **errp)
2192 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2193 errp);
2196 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2197 MemoryRegion *mr, Error **errp)
2199 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2200 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2203 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2204 void (*resized)(const char*,
2205 uint64_t length,
2206 void *host),
2207 MemoryRegion *mr, Error **errp)
2209 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2210 RAM_RESIZEABLE, mr, errp);
2213 static void reclaim_ramblock(RAMBlock *block)
2215 if (block->flags & RAM_PREALLOC) {
2217 } else if (xen_enabled()) {
2218 xen_invalidate_map_cache_entry(block->host);
2219 #ifndef _WIN32
2220 } else if (block->fd >= 0) {
2221 qemu_ram_munmap(block->fd, block->host, block->max_length);
2222 close(block->fd);
2223 #endif
2224 } else {
2225 qemu_anon_ram_free(block->host, block->max_length);
2227 g_free(block);
2230 void qemu_ram_free(RAMBlock *block)
2232 if (!block) {
2233 return;
2236 if (block->host) {
2237 ram_block_notify_remove(block->host, block->used_length,
2238 block->max_length);
2241 qemu_mutex_lock_ramlist();
2242 QLIST_REMOVE_RCU(block, next);
2243 ram_list.mru_block = NULL;
2244 /* Write list before version */
2245 smp_wmb();
2246 ram_list.version++;
2247 call_rcu(block, reclaim_ramblock, rcu);
2248 qemu_mutex_unlock_ramlist();
2251 #ifndef _WIN32
2252 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2254 RAMBlock *block;
2255 ram_addr_t offset;
2256 int flags;
2257 void *area, *vaddr;
2259 RAMBLOCK_FOREACH(block) {
2260 offset = addr - block->offset;
2261 if (offset < block->max_length) {
2262 vaddr = ramblock_ptr(block, offset);
2263 if (block->flags & RAM_PREALLOC) {
2265 } else if (xen_enabled()) {
2266 abort();
2267 } else {
2268 flags = MAP_FIXED;
2269 flags |= block->flags & RAM_SHARED ?
2270 MAP_SHARED : MAP_PRIVATE;
2271 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2272 if (block->fd >= 0) {
2273 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2274 flags, block->fd, offset);
2275 } else {
2276 flags |= MAP_ANONYMOUS;
2277 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2278 flags, -1, 0);
2280 if (area != vaddr) {
2281 error_report("Could not remap addr: "
2282 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2283 length, addr);
2284 exit(1);
2286 memory_try_enable_merging(vaddr, length);
2287 qemu_ram_setup_dump(vaddr, length);
2292 #endif /* !_WIN32 */
2294 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2295 * This should not be used for general purpose DMA. Use address_space_map
2296 * or address_space_rw instead. For local memory (e.g. video ram) that the
2297 * device owns, use memory_region_get_ram_ptr.
2299 * Called within RCU critical section.
2301 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2303 RAMBlock *block = ram_block;
2305 if (block == NULL) {
2306 block = qemu_get_ram_block(addr);
2307 addr -= block->offset;
2310 if (xen_enabled() && block->host == NULL) {
2311 /* We need to check if the requested address is in the RAM
2312 * because we don't want to map the entire memory in QEMU.
2313 * In that case just map until the end of the page.
2315 if (block->offset == 0) {
2316 return xen_map_cache(addr, 0, 0, false);
2319 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2321 return ramblock_ptr(block, addr);
2324 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2325 * but takes a size argument.
2327 * Called within RCU critical section.
2329 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2330 hwaddr *size, bool lock)
2332 RAMBlock *block = ram_block;
2333 if (*size == 0) {
2334 return NULL;
2337 if (block == NULL) {
2338 block = qemu_get_ram_block(addr);
2339 addr -= block->offset;
2341 *size = MIN(*size, block->max_length - addr);
2343 if (xen_enabled() && block->host == NULL) {
2344 /* We need to check if the requested address is in the RAM
2345 * because we don't want to map the entire memory in QEMU.
2346 * In that case just map the requested area.
2348 if (block->offset == 0) {
2349 return xen_map_cache(addr, *size, lock, lock);
2352 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2355 return ramblock_ptr(block, addr);
2358 /* Return the offset of a hostpointer within a ramblock */
2359 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2361 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2362 assert((uintptr_t)host >= (uintptr_t)rb->host);
2363 assert(res < rb->max_length);
2365 return res;
2369 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2370 * in that RAMBlock.
2372 * ptr: Host pointer to look up
2373 * round_offset: If true round the result offset down to a page boundary
2374 * *ram_addr: set to result ram_addr
2375 * *offset: set to result offset within the RAMBlock
2377 * Returns: RAMBlock (or NULL if not found)
2379 * By the time this function returns, the returned pointer is not protected
2380 * by RCU anymore. If the caller is not within an RCU critical section and
2381 * does not hold the iothread lock, it must have other means of protecting the
2382 * pointer, such as a reference to the region that includes the incoming
2383 * ram_addr_t.
2385 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2386 ram_addr_t *offset)
2388 RAMBlock *block;
2389 uint8_t *host = ptr;
2391 if (xen_enabled()) {
2392 ram_addr_t ram_addr;
2393 RCU_READ_LOCK_GUARD();
2394 ram_addr = xen_ram_addr_from_mapcache(ptr);
2395 block = qemu_get_ram_block(ram_addr);
2396 if (block) {
2397 *offset = ram_addr - block->offset;
2399 return block;
2402 RCU_READ_LOCK_GUARD();
2403 block = qatomic_rcu_read(&ram_list.mru_block);
2404 if (block && block->host && host - block->host < block->max_length) {
2405 goto found;
2408 RAMBLOCK_FOREACH(block) {
2409 /* This case append when the block is not mapped. */
2410 if (block->host == NULL) {
2411 continue;
2413 if (host - block->host < block->max_length) {
2414 goto found;
2418 return NULL;
2420 found:
2421 *offset = (host - block->host);
2422 if (round_offset) {
2423 *offset &= TARGET_PAGE_MASK;
2425 return block;
2429 * Finds the named RAMBlock
2431 * name: The name of RAMBlock to find
2433 * Returns: RAMBlock (or NULL if not found)
2435 RAMBlock *qemu_ram_block_by_name(const char *name)
2437 RAMBlock *block;
2439 RAMBLOCK_FOREACH(block) {
2440 if (!strcmp(name, block->idstr)) {
2441 return block;
2445 return NULL;
2448 /* Some of the softmmu routines need to translate from a host pointer
2449 (typically a TLB entry) back to a ram offset. */
2450 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2452 RAMBlock *block;
2453 ram_addr_t offset;
2455 block = qemu_ram_block_from_host(ptr, false, &offset);
2456 if (!block) {
2457 return RAM_ADDR_INVALID;
2460 return block->offset + offset;
2463 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2464 MemTxAttrs attrs, void *buf, hwaddr len);
2465 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2466 const void *buf, hwaddr len);
2467 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2468 bool is_write, MemTxAttrs attrs);
2470 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2471 unsigned len, MemTxAttrs attrs)
2473 subpage_t *subpage = opaque;
2474 uint8_t buf[8];
2475 MemTxResult res;
2477 #if defined(DEBUG_SUBPAGE)
2478 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2479 subpage, len, addr);
2480 #endif
2481 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2482 if (res) {
2483 return res;
2485 *data = ldn_p(buf, len);
2486 return MEMTX_OK;
2489 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2490 uint64_t value, unsigned len, MemTxAttrs attrs)
2492 subpage_t *subpage = opaque;
2493 uint8_t buf[8];
2495 #if defined(DEBUG_SUBPAGE)
2496 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2497 " value %"PRIx64"\n",
2498 __func__, subpage, len, addr, value);
2499 #endif
2500 stn_p(buf, len, value);
2501 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2504 static bool subpage_accepts(void *opaque, hwaddr addr,
2505 unsigned len, bool is_write,
2506 MemTxAttrs attrs)
2508 subpage_t *subpage = opaque;
2509 #if defined(DEBUG_SUBPAGE)
2510 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2511 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2512 #endif
2514 return flatview_access_valid(subpage->fv, addr + subpage->base,
2515 len, is_write, attrs);
2518 static const MemoryRegionOps subpage_ops = {
2519 .read_with_attrs = subpage_read,
2520 .write_with_attrs = subpage_write,
2521 .impl.min_access_size = 1,
2522 .impl.max_access_size = 8,
2523 .valid.min_access_size = 1,
2524 .valid.max_access_size = 8,
2525 .valid.accepts = subpage_accepts,
2526 .endianness = DEVICE_NATIVE_ENDIAN,
2529 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2530 uint16_t section)
2532 int idx, eidx;
2534 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2535 return -1;
2536 idx = SUBPAGE_IDX(start);
2537 eidx = SUBPAGE_IDX(end);
2538 #if defined(DEBUG_SUBPAGE)
2539 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2540 __func__, mmio, start, end, idx, eidx, section);
2541 #endif
2542 for (; idx <= eidx; idx++) {
2543 mmio->sub_section[idx] = section;
2546 return 0;
2549 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2551 subpage_t *mmio;
2553 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2554 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2555 mmio->fv = fv;
2556 mmio->base = base;
2557 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2558 NULL, TARGET_PAGE_SIZE);
2559 mmio->iomem.subpage = true;
2560 #if defined(DEBUG_SUBPAGE)
2561 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2562 mmio, base, TARGET_PAGE_SIZE);
2563 #endif
2565 return mmio;
2568 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2570 assert(fv);
2571 MemoryRegionSection section = {
2572 .fv = fv,
2573 .mr = mr,
2574 .offset_within_address_space = 0,
2575 .offset_within_region = 0,
2576 .size = int128_2_64(),
2579 return phys_section_add(map, &section);
2582 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2583 hwaddr index, MemTxAttrs attrs)
2585 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2586 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2587 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2588 MemoryRegionSection *sections = d->map.sections;
2590 return &sections[index & ~TARGET_PAGE_MASK];
2593 static void io_mem_init(void)
2595 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2596 NULL, UINT64_MAX);
2599 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2601 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2602 uint16_t n;
2604 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2605 assert(n == PHYS_SECTION_UNASSIGNED);
2607 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2609 return d;
2612 void address_space_dispatch_free(AddressSpaceDispatch *d)
2614 phys_sections_free(&d->map);
2615 g_free(d);
2618 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2622 static void tcg_log_global_after_sync(MemoryListener *listener)
2624 CPUAddressSpace *cpuas;
2626 /* Wait for the CPU to end the current TB. This avoids the following
2627 * incorrect race:
2629 * vCPU migration
2630 * ---------------------- -------------------------
2631 * TLB check -> slow path
2632 * notdirty_mem_write
2633 * write to RAM
2634 * mark dirty
2635 * clear dirty flag
2636 * TLB check -> fast path
2637 * read memory
2638 * write to RAM
2640 * by pushing the migration thread's memory read after the vCPU thread has
2641 * written the memory.
2643 if (replay_mode == REPLAY_MODE_NONE) {
2645 * VGA can make calls to this function while updating the screen.
2646 * In record/replay mode this causes a deadlock, because
2647 * run_on_cpu waits for rr mutex. Therefore no races are possible
2648 * in this case and no need for making run_on_cpu when
2649 * record/replay is enabled.
2651 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2652 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2656 static void tcg_commit(MemoryListener *listener)
2658 CPUAddressSpace *cpuas;
2659 AddressSpaceDispatch *d;
2661 assert(tcg_enabled());
2662 /* since each CPU stores ram addresses in its TLB cache, we must
2663 reset the modified entries */
2664 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2665 cpu_reloading_memory_map();
2666 /* The CPU and TLB are protected by the iothread lock.
2667 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2668 * may have split the RCU critical section.
2670 d = address_space_to_dispatch(cpuas->as);
2671 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2672 tlb_flush(cpuas->cpu);
2675 static void memory_map_init(void)
2677 system_memory = g_malloc(sizeof(*system_memory));
2679 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2680 address_space_init(&address_space_memory, system_memory, "memory");
2682 system_io = g_malloc(sizeof(*system_io));
2683 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2684 65536);
2685 address_space_init(&address_space_io, system_io, "I/O");
2688 MemoryRegion *get_system_memory(void)
2690 return system_memory;
2693 MemoryRegion *get_system_io(void)
2695 return system_io;
2698 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2699 hwaddr length)
2701 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2702 addr += memory_region_get_ram_addr(mr);
2704 /* No early return if dirty_log_mask is or becomes 0, because
2705 * cpu_physical_memory_set_dirty_range will still call
2706 * xen_modified_memory.
2708 if (dirty_log_mask) {
2709 dirty_log_mask =
2710 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2712 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2713 assert(tcg_enabled());
2714 tb_invalidate_phys_range(addr, addr + length);
2715 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2717 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2720 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2723 * In principle this function would work on other memory region types too,
2724 * but the ROM device use case is the only one where this operation is
2725 * necessary. Other memory regions should use the
2726 * address_space_read/write() APIs.
2728 assert(memory_region_is_romd(mr));
2730 invalidate_and_set_dirty(mr, addr, size);
2733 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2735 unsigned access_size_max = mr->ops->valid.max_access_size;
2737 /* Regions are assumed to support 1-4 byte accesses unless
2738 otherwise specified. */
2739 if (access_size_max == 0) {
2740 access_size_max = 4;
2743 /* Bound the maximum access by the alignment of the address. */
2744 if (!mr->ops->impl.unaligned) {
2745 unsigned align_size_max = addr & -addr;
2746 if (align_size_max != 0 && align_size_max < access_size_max) {
2747 access_size_max = align_size_max;
2751 /* Don't attempt accesses larger than the maximum. */
2752 if (l > access_size_max) {
2753 l = access_size_max;
2755 l = pow2floor(l);
2757 return l;
2760 bool prepare_mmio_access(MemoryRegion *mr)
2762 bool release_lock = false;
2764 if (!qemu_mutex_iothread_locked()) {
2765 qemu_mutex_lock_iothread();
2766 release_lock = true;
2768 if (mr->flush_coalesced_mmio) {
2769 qemu_flush_coalesced_mmio_buffer();
2772 return release_lock;
2776 * flatview_access_allowed
2777 * @mr: #MemoryRegion to be accessed
2778 * @attrs: memory transaction attributes
2779 * @addr: address within that memory region
2780 * @len: the number of bytes to access
2782 * Check if a memory transaction is allowed.
2784 * Returns: true if transaction is allowed, false if denied.
2786 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2787 hwaddr addr, hwaddr len)
2789 if (likely(!attrs.memory)) {
2790 return true;
2792 if (memory_region_is_ram(mr)) {
2793 return true;
2795 qemu_log_mask(LOG_GUEST_ERROR,
2796 "Invalid access to non-RAM device at "
2797 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2798 "region '%s'\n", addr, len, memory_region_name(mr));
2799 return false;
2802 /* Called within RCU critical section. */
2803 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2804 MemTxAttrs attrs,
2805 const void *ptr,
2806 hwaddr len, hwaddr addr1,
2807 hwaddr l, MemoryRegion *mr)
2809 uint8_t *ram_ptr;
2810 uint64_t val;
2811 MemTxResult result = MEMTX_OK;
2812 bool release_lock = false;
2813 const uint8_t *buf = ptr;
2815 for (;;) {
2816 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2817 result |= MEMTX_ACCESS_ERROR;
2818 /* Keep going. */
2819 } else if (!memory_access_is_direct(mr, true)) {
2820 release_lock |= prepare_mmio_access(mr);
2821 l = memory_access_size(mr, l, addr1);
2822 /* XXX: could force current_cpu to NULL to avoid
2823 potential bugs */
2824 val = ldn_he_p(buf, l);
2825 result |= memory_region_dispatch_write(mr, addr1, val,
2826 size_memop(l), attrs);
2827 } else {
2828 /* RAM case */
2829 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2830 memcpy(ram_ptr, buf, l);
2831 invalidate_and_set_dirty(mr, addr1, l);
2834 if (release_lock) {
2835 qemu_mutex_unlock_iothread();
2836 release_lock = false;
2839 len -= l;
2840 buf += l;
2841 addr += l;
2843 if (!len) {
2844 break;
2847 l = len;
2848 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2851 return result;
2854 /* Called from RCU critical section. */
2855 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2856 const void *buf, hwaddr len)
2858 hwaddr l;
2859 hwaddr addr1;
2860 MemoryRegion *mr;
2862 l = len;
2863 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2864 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2865 return MEMTX_ACCESS_ERROR;
2867 return flatview_write_continue(fv, addr, attrs, buf, len,
2868 addr1, l, mr);
2871 /* Called within RCU critical section. */
2872 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2873 MemTxAttrs attrs, void *ptr,
2874 hwaddr len, hwaddr addr1, hwaddr l,
2875 MemoryRegion *mr)
2877 uint8_t *ram_ptr;
2878 uint64_t val;
2879 MemTxResult result = MEMTX_OK;
2880 bool release_lock = false;
2881 uint8_t *buf = ptr;
2883 fuzz_dma_read_cb(addr, len, mr);
2884 for (;;) {
2885 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2886 result |= MEMTX_ACCESS_ERROR;
2887 /* Keep going. */
2888 } else if (!memory_access_is_direct(mr, false)) {
2889 /* I/O case */
2890 release_lock |= prepare_mmio_access(mr);
2891 l = memory_access_size(mr, l, addr1);
2892 result |= memory_region_dispatch_read(mr, addr1, &val,
2893 size_memop(l), attrs);
2894 stn_he_p(buf, l, val);
2895 } else {
2896 /* RAM case */
2897 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2898 memcpy(buf, ram_ptr, l);
2901 if (release_lock) {
2902 qemu_mutex_unlock_iothread();
2903 release_lock = false;
2906 len -= l;
2907 buf += l;
2908 addr += l;
2910 if (!len) {
2911 break;
2914 l = len;
2915 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2918 return result;
2921 /* Called from RCU critical section. */
2922 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2923 MemTxAttrs attrs, void *buf, hwaddr len)
2925 hwaddr l;
2926 hwaddr addr1;
2927 MemoryRegion *mr;
2929 l = len;
2930 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2931 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2932 return MEMTX_ACCESS_ERROR;
2934 return flatview_read_continue(fv, addr, attrs, buf, len,
2935 addr1, l, mr);
2938 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2939 MemTxAttrs attrs, void *buf, hwaddr len)
2941 MemTxResult result = MEMTX_OK;
2942 FlatView *fv;
2944 if (len > 0) {
2945 RCU_READ_LOCK_GUARD();
2946 fv = address_space_to_flatview(as);
2947 result = flatview_read(fv, addr, attrs, buf, len);
2950 return result;
2953 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2954 MemTxAttrs attrs,
2955 const void *buf, hwaddr len)
2957 MemTxResult result = MEMTX_OK;
2958 FlatView *fv;
2960 if (len > 0) {
2961 RCU_READ_LOCK_GUARD();
2962 fv = address_space_to_flatview(as);
2963 result = flatview_write(fv, addr, attrs, buf, len);
2966 return result;
2969 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2970 void *buf, hwaddr len, bool is_write)
2972 if (is_write) {
2973 return address_space_write(as, addr, attrs, buf, len);
2974 } else {
2975 return address_space_read_full(as, addr, attrs, buf, len);
2979 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2980 uint8_t c, hwaddr len, MemTxAttrs attrs)
2982 #define FILLBUF_SIZE 512
2983 uint8_t fillbuf[FILLBUF_SIZE];
2984 int l;
2985 MemTxResult error = MEMTX_OK;
2987 memset(fillbuf, c, FILLBUF_SIZE);
2988 while (len > 0) {
2989 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2990 error |= address_space_write(as, addr, attrs, fillbuf, l);
2991 len -= l;
2992 addr += l;
2995 return error;
2998 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2999 hwaddr len, bool is_write)
3001 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3002 buf, len, is_write);
3005 enum write_rom_type {
3006 WRITE_DATA,
3007 FLUSH_CACHE,
3010 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3011 hwaddr addr,
3012 MemTxAttrs attrs,
3013 const void *ptr,
3014 hwaddr len,
3015 enum write_rom_type type)
3017 hwaddr l;
3018 uint8_t *ram_ptr;
3019 hwaddr addr1;
3020 MemoryRegion *mr;
3021 const uint8_t *buf = ptr;
3023 RCU_READ_LOCK_GUARD();
3024 while (len > 0) {
3025 l = len;
3026 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3028 if (!(memory_region_is_ram(mr) ||
3029 memory_region_is_romd(mr))) {
3030 l = memory_access_size(mr, l, addr1);
3031 } else {
3032 /* ROM/RAM case */
3033 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3034 switch (type) {
3035 case WRITE_DATA:
3036 memcpy(ram_ptr, buf, l);
3037 invalidate_and_set_dirty(mr, addr1, l);
3038 break;
3039 case FLUSH_CACHE:
3040 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3041 break;
3044 len -= l;
3045 buf += l;
3046 addr += l;
3048 return MEMTX_OK;
3051 /* used for ROM loading : can write in RAM and ROM */
3052 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3053 MemTxAttrs attrs,
3054 const void *buf, hwaddr len)
3056 return address_space_write_rom_internal(as, addr, attrs,
3057 buf, len, WRITE_DATA);
3060 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3063 * This function should do the same thing as an icache flush that was
3064 * triggered from within the guest. For TCG we are always cache coherent,
3065 * so there is no need to flush anything. For KVM / Xen we need to flush
3066 * the host's instruction cache at least.
3068 if (tcg_enabled()) {
3069 return;
3072 address_space_write_rom_internal(&address_space_memory,
3073 start, MEMTXATTRS_UNSPECIFIED,
3074 NULL, len, FLUSH_CACHE);
3077 typedef struct {
3078 MemoryRegion *mr;
3079 void *buffer;
3080 hwaddr addr;
3081 hwaddr len;
3082 bool in_use;
3083 } BounceBuffer;
3085 static BounceBuffer bounce;
3087 typedef struct MapClient {
3088 QEMUBH *bh;
3089 QLIST_ENTRY(MapClient) link;
3090 } MapClient;
3092 QemuMutex map_client_list_lock;
3093 static QLIST_HEAD(, MapClient) map_client_list
3094 = QLIST_HEAD_INITIALIZER(map_client_list);
3096 static void cpu_unregister_map_client_do(MapClient *client)
3098 QLIST_REMOVE(client, link);
3099 g_free(client);
3102 static void cpu_notify_map_clients_locked(void)
3104 MapClient *client;
3106 while (!QLIST_EMPTY(&map_client_list)) {
3107 client = QLIST_FIRST(&map_client_list);
3108 qemu_bh_schedule(client->bh);
3109 cpu_unregister_map_client_do(client);
3113 void cpu_register_map_client(QEMUBH *bh)
3115 MapClient *client = g_malloc(sizeof(*client));
3117 qemu_mutex_lock(&map_client_list_lock);
3118 client->bh = bh;
3119 QLIST_INSERT_HEAD(&map_client_list, client, link);
3120 if (!qatomic_read(&bounce.in_use)) {
3121 cpu_notify_map_clients_locked();
3123 qemu_mutex_unlock(&map_client_list_lock);
3126 void cpu_exec_init_all(void)
3128 qemu_mutex_init(&ram_list.mutex);
3129 /* The data structures we set up here depend on knowing the page size,
3130 * so no more changes can be made after this point.
3131 * In an ideal world, nothing we did before we had finished the
3132 * machine setup would care about the target page size, and we could
3133 * do this much later, rather than requiring board models to state
3134 * up front what their requirements are.
3136 finalize_target_page_bits();
3137 io_mem_init();
3138 memory_map_init();
3139 qemu_mutex_init(&map_client_list_lock);
3142 void cpu_unregister_map_client(QEMUBH *bh)
3144 MapClient *client;
3146 qemu_mutex_lock(&map_client_list_lock);
3147 QLIST_FOREACH(client, &map_client_list, link) {
3148 if (client->bh == bh) {
3149 cpu_unregister_map_client_do(client);
3150 break;
3153 qemu_mutex_unlock(&map_client_list_lock);
3156 static void cpu_notify_map_clients(void)
3158 qemu_mutex_lock(&map_client_list_lock);
3159 cpu_notify_map_clients_locked();
3160 qemu_mutex_unlock(&map_client_list_lock);
3163 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3164 bool is_write, MemTxAttrs attrs)
3166 MemoryRegion *mr;
3167 hwaddr l, xlat;
3169 while (len > 0) {
3170 l = len;
3171 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3172 if (!memory_access_is_direct(mr, is_write)) {
3173 l = memory_access_size(mr, l, addr);
3174 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3175 return false;
3179 len -= l;
3180 addr += l;
3182 return true;
3185 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3186 hwaddr len, bool is_write,
3187 MemTxAttrs attrs)
3189 FlatView *fv;
3191 RCU_READ_LOCK_GUARD();
3192 fv = address_space_to_flatview(as);
3193 return flatview_access_valid(fv, addr, len, is_write, attrs);
3196 static hwaddr
3197 flatview_extend_translation(FlatView *fv, hwaddr addr,
3198 hwaddr target_len,
3199 MemoryRegion *mr, hwaddr base, hwaddr len,
3200 bool is_write, MemTxAttrs attrs)
3202 hwaddr done = 0;
3203 hwaddr xlat;
3204 MemoryRegion *this_mr;
3206 for (;;) {
3207 target_len -= len;
3208 addr += len;
3209 done += len;
3210 if (target_len == 0) {
3211 return done;
3214 len = target_len;
3215 this_mr = flatview_translate(fv, addr, &xlat,
3216 &len, is_write, attrs);
3217 if (this_mr != mr || xlat != base + done) {
3218 return done;
3223 /* Map a physical memory region into a host virtual address.
3224 * May map a subset of the requested range, given by and returned in *plen.
3225 * May return NULL if resources needed to perform the mapping are exhausted.
3226 * Use only for reads OR writes - not for read-modify-write operations.
3227 * Use cpu_register_map_client() to know when retrying the map operation is
3228 * likely to succeed.
3230 void *address_space_map(AddressSpace *as,
3231 hwaddr addr,
3232 hwaddr *plen,
3233 bool is_write,
3234 MemTxAttrs attrs)
3236 hwaddr len = *plen;
3237 hwaddr l, xlat;
3238 MemoryRegion *mr;
3239 void *ptr;
3240 FlatView *fv;
3242 if (len == 0) {
3243 return NULL;
3246 l = len;
3247 RCU_READ_LOCK_GUARD();
3248 fv = address_space_to_flatview(as);
3249 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3251 if (!memory_access_is_direct(mr, is_write)) {
3252 if (qatomic_xchg(&bounce.in_use, true)) {
3253 *plen = 0;
3254 return NULL;
3256 /* Avoid unbounded allocations */
3257 l = MIN(l, TARGET_PAGE_SIZE);
3258 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3259 bounce.addr = addr;
3260 bounce.len = l;
3262 memory_region_ref(mr);
3263 bounce.mr = mr;
3264 if (!is_write) {
3265 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3266 bounce.buffer, l);
3269 *plen = l;
3270 return bounce.buffer;
3274 memory_region_ref(mr);
3275 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3276 l, is_write, attrs);
3277 fuzz_dma_read_cb(addr, *plen, mr);
3278 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3280 return ptr;
3283 /* Unmaps a memory region previously mapped by address_space_map().
3284 * Will also mark the memory as dirty if is_write is true. access_len gives
3285 * the amount of memory that was actually read or written by the caller.
3287 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3288 bool is_write, hwaddr access_len)
3290 if (buffer != bounce.buffer) {
3291 MemoryRegion *mr;
3292 ram_addr_t addr1;
3294 mr = memory_region_from_host(buffer, &addr1);
3295 assert(mr != NULL);
3296 if (is_write) {
3297 invalidate_and_set_dirty(mr, addr1, access_len);
3299 if (xen_enabled()) {
3300 xen_invalidate_map_cache_entry(buffer);
3302 memory_region_unref(mr);
3303 return;
3305 if (is_write) {
3306 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3307 bounce.buffer, access_len);
3309 qemu_vfree(bounce.buffer);
3310 bounce.buffer = NULL;
3311 memory_region_unref(bounce.mr);
3312 qatomic_mb_set(&bounce.in_use, false);
3313 cpu_notify_map_clients();
3316 void *cpu_physical_memory_map(hwaddr addr,
3317 hwaddr *plen,
3318 bool is_write)
3320 return address_space_map(&address_space_memory, addr, plen, is_write,
3321 MEMTXATTRS_UNSPECIFIED);
3324 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3325 bool is_write, hwaddr access_len)
3327 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3330 #define ARG1_DECL AddressSpace *as
3331 #define ARG1 as
3332 #define SUFFIX
3333 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3334 #define RCU_READ_LOCK(...) rcu_read_lock()
3335 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3336 #include "memory_ldst.c.inc"
3338 int64_t address_space_cache_init(MemoryRegionCache *cache,
3339 AddressSpace *as,
3340 hwaddr addr,
3341 hwaddr len,
3342 bool is_write)
3344 AddressSpaceDispatch *d;
3345 hwaddr l;
3346 MemoryRegion *mr;
3347 Int128 diff;
3349 assert(len > 0);
3351 l = len;
3352 cache->fv = address_space_get_flatview(as);
3353 d = flatview_to_dispatch(cache->fv);
3354 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3357 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3358 * Take that into account to compute how many bytes are there between
3359 * cache->xlat and the end of the section.
3361 diff = int128_sub(cache->mrs.size,
3362 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3363 l = int128_get64(int128_min(diff, int128_make64(l)));
3365 mr = cache->mrs.mr;
3366 memory_region_ref(mr);
3367 if (memory_access_is_direct(mr, is_write)) {
3368 /* We don't care about the memory attributes here as we're only
3369 * doing this if we found actual RAM, which behaves the same
3370 * regardless of attributes; so UNSPECIFIED is fine.
3372 l = flatview_extend_translation(cache->fv, addr, len, mr,
3373 cache->xlat, l, is_write,
3374 MEMTXATTRS_UNSPECIFIED);
3375 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3376 } else {
3377 cache->ptr = NULL;
3380 cache->len = l;
3381 cache->is_write = is_write;
3382 return l;
3385 void address_space_cache_invalidate(MemoryRegionCache *cache,
3386 hwaddr addr,
3387 hwaddr access_len)
3389 assert(cache->is_write);
3390 if (likely(cache->ptr)) {
3391 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3395 void address_space_cache_destroy(MemoryRegionCache *cache)
3397 if (!cache->mrs.mr) {
3398 return;
3401 if (xen_enabled()) {
3402 xen_invalidate_map_cache_entry(cache->ptr);
3404 memory_region_unref(cache->mrs.mr);
3405 flatview_unref(cache->fv);
3406 cache->mrs.mr = NULL;
3407 cache->fv = NULL;
3410 /* Called from RCU critical section. This function has the same
3411 * semantics as address_space_translate, but it only works on a
3412 * predefined range of a MemoryRegion that was mapped with
3413 * address_space_cache_init.
3415 static inline MemoryRegion *address_space_translate_cached(
3416 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3417 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3419 MemoryRegionSection section;
3420 MemoryRegion *mr;
3421 IOMMUMemoryRegion *iommu_mr;
3422 AddressSpace *target_as;
3424 assert(!cache->ptr);
3425 *xlat = addr + cache->xlat;
3427 mr = cache->mrs.mr;
3428 iommu_mr = memory_region_get_iommu(mr);
3429 if (!iommu_mr) {
3430 /* MMIO region. */
3431 return mr;
3434 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3435 NULL, is_write, true,
3436 &target_as, attrs);
3437 return section.mr;
3440 /* Called from RCU critical section. address_space_read_cached uses this
3441 * out of line function when the target is an MMIO or IOMMU region.
3443 MemTxResult
3444 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3445 void *buf, hwaddr len)
3447 hwaddr addr1, l;
3448 MemoryRegion *mr;
3450 l = len;
3451 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3452 MEMTXATTRS_UNSPECIFIED);
3453 return flatview_read_continue(cache->fv,
3454 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3455 addr1, l, mr);
3458 /* Called from RCU critical section. address_space_write_cached uses this
3459 * out of line function when the target is an MMIO or IOMMU region.
3461 MemTxResult
3462 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3463 const void *buf, hwaddr len)
3465 hwaddr addr1, l;
3466 MemoryRegion *mr;
3468 l = len;
3469 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3470 MEMTXATTRS_UNSPECIFIED);
3471 return flatview_write_continue(cache->fv,
3472 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3473 addr1, l, mr);
3476 #define ARG1_DECL MemoryRegionCache *cache
3477 #define ARG1 cache
3478 #define SUFFIX _cached_slow
3479 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3480 #define RCU_READ_LOCK() ((void)0)
3481 #define RCU_READ_UNLOCK() ((void)0)
3482 #include "memory_ldst.c.inc"
3484 /* virtual memory access for debug (includes writing to ROM) */
3485 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3486 void *ptr, size_t len, bool is_write)
3488 hwaddr phys_addr;
3489 vaddr l, page;
3490 uint8_t *buf = ptr;
3492 cpu_synchronize_state(cpu);
3493 while (len > 0) {
3494 int asidx;
3495 MemTxAttrs attrs;
3496 MemTxResult res;
3498 page = addr & TARGET_PAGE_MASK;
3499 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3500 asidx = cpu_asidx_from_attrs(cpu, attrs);
3501 /* if no physical page mapped, return an error */
3502 if (phys_addr == -1)
3503 return -1;
3504 l = (page + TARGET_PAGE_SIZE) - addr;
3505 if (l > len)
3506 l = len;
3507 phys_addr += (addr & ~TARGET_PAGE_MASK);
3508 if (is_write) {
3509 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3510 attrs, buf, l);
3511 } else {
3512 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3513 attrs, buf, l);
3515 if (res != MEMTX_OK) {
3516 return -1;
3518 len -= l;
3519 buf += l;
3520 addr += l;
3522 return 0;
3526 * Allows code that needs to deal with migration bitmaps etc to still be built
3527 * target independent.
3529 size_t qemu_target_page_size(void)
3531 return TARGET_PAGE_SIZE;
3534 int qemu_target_page_bits(void)
3536 return TARGET_PAGE_BITS;
3539 int qemu_target_page_bits_min(void)
3541 return TARGET_PAGE_BITS_MIN;
3544 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3546 MemoryRegion*mr;
3547 hwaddr l = 1;
3548 bool res;
3550 RCU_READ_LOCK_GUARD();
3551 mr = address_space_translate(&address_space_memory,
3552 phys_addr, &phys_addr, &l, false,
3553 MEMTXATTRS_UNSPECIFIED);
3555 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3556 return res;
3559 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3561 RAMBlock *block;
3562 int ret = 0;
3564 RCU_READ_LOCK_GUARD();
3565 RAMBLOCK_FOREACH(block) {
3566 ret = func(block, opaque);
3567 if (ret) {
3568 break;
3571 return ret;
3575 * Unmap pages of memory from start to start+length such that
3576 * they a) read as 0, b) Trigger whatever fault mechanism
3577 * the OS provides for postcopy.
3578 * The pages must be unmapped by the end of the function.
3579 * Returns: 0 on success, none-0 on failure
3582 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3584 int ret = -1;
3586 uint8_t *host_startaddr = rb->host + start;
3588 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3589 error_report("ram_block_discard_range: Unaligned start address: %p",
3590 host_startaddr);
3591 goto err;
3594 if ((start + length) <= rb->max_length) {
3595 bool need_madvise, need_fallocate;
3596 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3597 error_report("ram_block_discard_range: Unaligned length: %zx",
3598 length);
3599 goto err;
3602 errno = ENOTSUP; /* If we are missing MADVISE etc */
3604 /* The logic here is messy;
3605 * madvise DONTNEED fails for hugepages
3606 * fallocate works on hugepages and shmem
3607 * shared anonymous memory requires madvise REMOVE
3609 need_madvise = (rb->page_size == qemu_host_page_size);
3610 need_fallocate = rb->fd != -1;
3611 if (need_fallocate) {
3612 /* For a file, this causes the area of the file to be zero'd
3613 * if read, and for hugetlbfs also causes it to be unmapped
3614 * so a userfault will trigger.
3616 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3617 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3618 start, length);
3619 if (ret) {
3620 ret = -errno;
3621 error_report("ram_block_discard_range: Failed to fallocate "
3622 "%s:%" PRIx64 " +%zx (%d)",
3623 rb->idstr, start, length, ret);
3624 goto err;
3626 #else
3627 ret = -ENOSYS;
3628 error_report("ram_block_discard_range: fallocate not available/file"
3629 "%s:%" PRIx64 " +%zx (%d)",
3630 rb->idstr, start, length, ret);
3631 goto err;
3632 #endif
3634 if (need_madvise) {
3635 /* For normal RAM this causes it to be unmapped,
3636 * for shared memory it causes the local mapping to disappear
3637 * and to fall back on the file contents (which we just
3638 * fallocate'd away).
3640 #if defined(CONFIG_MADVISE)
3641 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3642 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3643 } else {
3644 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3646 if (ret) {
3647 ret = -errno;
3648 error_report("ram_block_discard_range: Failed to discard range "
3649 "%s:%" PRIx64 " +%zx (%d)",
3650 rb->idstr, start, length, ret);
3651 goto err;
3653 #else
3654 ret = -ENOSYS;
3655 error_report("ram_block_discard_range: MADVISE not available"
3656 "%s:%" PRIx64 " +%zx (%d)",
3657 rb->idstr, start, length, ret);
3658 goto err;
3659 #endif
3661 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3662 need_madvise, need_fallocate, ret);
3663 } else {
3664 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3665 "/%zx/" RAM_ADDR_FMT")",
3666 rb->idstr, start, length, rb->max_length);
3669 err:
3670 return ret;
3673 bool ramblock_is_pmem(RAMBlock *rb)
3675 return rb->flags & RAM_PMEM;
3678 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3680 if (start == end - 1) {
3681 qemu_printf("\t%3d ", start);
3682 } else {
3683 qemu_printf("\t%3d..%-3d ", start, end - 1);
3685 qemu_printf(" skip=%d ", skip);
3686 if (ptr == PHYS_MAP_NODE_NIL) {
3687 qemu_printf(" ptr=NIL");
3688 } else if (!skip) {
3689 qemu_printf(" ptr=#%d", ptr);
3690 } else {
3691 qemu_printf(" ptr=[%d]", ptr);
3693 qemu_printf("\n");
3696 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3697 int128_sub((size), int128_one())) : 0)
3699 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3701 int i;
3703 qemu_printf(" Dispatch\n");
3704 qemu_printf(" Physical sections\n");
3706 for (i = 0; i < d->map.sections_nb; ++i) {
3707 MemoryRegionSection *s = d->map.sections + i;
3708 const char *names[] = { " [unassigned]", " [not dirty]",
3709 " [ROM]", " [watch]" };
3711 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3712 " %s%s%s%s%s",
3714 s->offset_within_address_space,
3715 s->offset_within_address_space + MR_SIZE(s->mr->size),
3716 s->mr->name ? s->mr->name : "(noname)",
3717 i < ARRAY_SIZE(names) ? names[i] : "",
3718 s->mr == root ? " [ROOT]" : "",
3719 s == d->mru_section ? " [MRU]" : "",
3720 s->mr->is_iommu ? " [iommu]" : "");
3722 if (s->mr->alias) {
3723 qemu_printf(" alias=%s", s->mr->alias->name ?
3724 s->mr->alias->name : "noname");
3726 qemu_printf("\n");
3729 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3730 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3731 for (i = 0; i < d->map.nodes_nb; ++i) {
3732 int j, jprev;
3733 PhysPageEntry prev;
3734 Node *n = d->map.nodes + i;
3736 qemu_printf(" [%d]\n", i);
3738 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3739 PhysPageEntry *pe = *n + j;
3741 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3742 continue;
3745 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3747 jprev = j;
3748 prev = *pe;
3751 if (jprev != ARRAY_SIZE(*n)) {
3752 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3757 /* Require any discards to work. */
3758 static unsigned int ram_block_discard_required_cnt;
3759 /* Require only coordinated discards to work. */
3760 static unsigned int ram_block_coordinated_discard_required_cnt;
3761 /* Disable any discards. */
3762 static unsigned int ram_block_discard_disabled_cnt;
3763 /* Disable only uncoordinated discards. */
3764 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3765 static QemuMutex ram_block_discard_disable_mutex;
3767 static void ram_block_discard_disable_mutex_lock(void)
3769 static gsize initialized;
3771 if (g_once_init_enter(&initialized)) {
3772 qemu_mutex_init(&ram_block_discard_disable_mutex);
3773 g_once_init_leave(&initialized, 1);
3775 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3778 static void ram_block_discard_disable_mutex_unlock(void)
3780 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3783 int ram_block_discard_disable(bool state)
3785 int ret = 0;
3787 ram_block_discard_disable_mutex_lock();
3788 if (!state) {
3789 ram_block_discard_disabled_cnt--;
3790 } else if (ram_block_discard_required_cnt ||
3791 ram_block_coordinated_discard_required_cnt) {
3792 ret = -EBUSY;
3793 } else {
3794 ram_block_discard_disabled_cnt++;
3796 ram_block_discard_disable_mutex_unlock();
3797 return ret;
3800 int ram_block_uncoordinated_discard_disable(bool state)
3802 int ret = 0;
3804 ram_block_discard_disable_mutex_lock();
3805 if (!state) {
3806 ram_block_uncoordinated_discard_disabled_cnt--;
3807 } else if (ram_block_discard_required_cnt) {
3808 ret = -EBUSY;
3809 } else {
3810 ram_block_uncoordinated_discard_disabled_cnt++;
3812 ram_block_discard_disable_mutex_unlock();
3813 return ret;
3816 int ram_block_discard_require(bool state)
3818 int ret = 0;
3820 ram_block_discard_disable_mutex_lock();
3821 if (!state) {
3822 ram_block_discard_required_cnt--;
3823 } else if (ram_block_discard_disabled_cnt ||
3824 ram_block_uncoordinated_discard_disabled_cnt) {
3825 ret = -EBUSY;
3826 } else {
3827 ram_block_discard_required_cnt++;
3829 ram_block_discard_disable_mutex_unlock();
3830 return ret;
3833 int ram_block_coordinated_discard_require(bool state)
3835 int ret = 0;
3837 ram_block_discard_disable_mutex_lock();
3838 if (!state) {
3839 ram_block_coordinated_discard_required_cnt--;
3840 } else if (ram_block_discard_disabled_cnt) {
3841 ret = -EBUSY;
3842 } else {
3843 ram_block_coordinated_discard_required_cnt++;
3845 ram_block_discard_disable_mutex_unlock();
3846 return ret;
3849 bool ram_block_discard_is_disabled(void)
3851 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3852 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3855 bool ram_block_discard_is_required(void)
3857 return qatomic_read(&ram_block_discard_required_cnt) ||
3858 qatomic_read(&ram_block_coordinated_discard_required_cnt);