1 /* This is the Linux kernel elf-loading code, ported into user space */
11 #include <sys/resource.h>
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
38 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO
= 0x0100000,
42 ADDR_COMPAT_LAYOUT
= 0x0200000,
43 READ_IMPLIES_EXEC
= 0x0400000,
44 ADDR_LIMIT_32BIT
= 0x0800000,
45 SHORT_INODE
= 0x1000000,
46 WHOLE_SECONDS
= 0x2000000,
47 STICKY_TIMEOUTS
= 0x4000000,
48 ADDR_LIMIT_3GB
= 0x8000000,
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
59 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
60 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
61 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
62 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
63 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
64 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
65 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
66 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
68 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
69 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
71 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
72 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
73 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
74 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
76 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
77 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
78 PER_OSF4
= 0x000f, /* OSF/1 v4 */
84 * Return the base personality without flags.
86 #define personality(pers) (pers & PER_MASK)
88 /* this flag is uneffective under linux too, should be deleted */
90 #define MAP_DENYWRITE 0
93 /* should probably go in elf.h */
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
101 #define ELF_DATA ELFDATA2LSB
104 typedef target_ulong target_elf_greg_t
;
106 typedef target_ushort target_uid_t
;
107 typedef target_ushort target_gid_t
;
109 typedef target_uint target_uid_t
;
110 typedef target_uint target_gid_t
;
112 typedef target_int target_pid_t
;
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform
[] = "i386";
121 int family
= (thread_env
->cpuid_version
>> 8) & 0xff;
125 elf_platform
[1] = '0' + family
;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 return thread_env
->cpuid_features
;
137 #define ELF_START_MMAP 0x2aaaaab000ULL
138 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
140 #define ELF_CLASS ELFCLASS64
141 #define ELF_ARCH EM_X86_64
143 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
146 regs
->rsp
= infop
->start_stack
;
147 regs
->rip
= infop
->entry
;
151 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
158 * See linux kernel: arch/x86/include/asm/elf.h
160 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
162 (*regs
)[0] = env
->regs
[15];
163 (*regs
)[1] = env
->regs
[14];
164 (*regs
)[2] = env
->regs
[13];
165 (*regs
)[3] = env
->regs
[12];
166 (*regs
)[4] = env
->regs
[R_EBP
];
167 (*regs
)[5] = env
->regs
[R_EBX
];
168 (*regs
)[6] = env
->regs
[11];
169 (*regs
)[7] = env
->regs
[10];
170 (*regs
)[8] = env
->regs
[9];
171 (*regs
)[9] = env
->regs
[8];
172 (*regs
)[10] = env
->regs
[R_EAX
];
173 (*regs
)[11] = env
->regs
[R_ECX
];
174 (*regs
)[12] = env
->regs
[R_EDX
];
175 (*regs
)[13] = env
->regs
[R_ESI
];
176 (*regs
)[14] = env
->regs
[R_EDI
];
177 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
178 (*regs
)[16] = env
->eip
;
179 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
180 (*regs
)[18] = env
->eflags
;
181 (*regs
)[19] = env
->regs
[R_ESP
];
182 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
183 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
184 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
185 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
186 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
187 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
188 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
193 #define ELF_START_MMAP 0x80000000
196 * This is used to ensure we don't load something for the wrong architecture.
198 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
201 * These are used to set parameters in the core dumps.
203 #define ELF_CLASS ELFCLASS32
204 #define ELF_ARCH EM_386
206 static inline void init_thread(struct target_pt_regs
*regs
,
207 struct image_info
*infop
)
209 regs
->esp
= infop
->start_stack
;
210 regs
->eip
= infop
->entry
;
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
218 A value of 0 tells we have no such handler. */
223 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
230 * See linux kernel: arch/x86/include/asm/elf.h
232 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
234 (*regs
)[0] = env
->regs
[R_EBX
];
235 (*regs
)[1] = env
->regs
[R_ECX
];
236 (*regs
)[2] = env
->regs
[R_EDX
];
237 (*regs
)[3] = env
->regs
[R_ESI
];
238 (*regs
)[4] = env
->regs
[R_EDI
];
239 (*regs
)[5] = env
->regs
[R_EBP
];
240 (*regs
)[6] = env
->regs
[R_EAX
];
241 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
242 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
243 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
244 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
245 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
246 (*regs
)[12] = env
->eip
;
247 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
248 (*regs
)[14] = env
->eflags
;
249 (*regs
)[15] = env
->regs
[R_ESP
];
250 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
254 #define USE_ELF_CORE_DUMP
255 #define ELF_EXEC_PAGESIZE 4096
261 #define ELF_START_MMAP 0x80000000
263 #define elf_check_arch(x) ( (x) == EM_ARM )
265 #define ELF_CLASS ELFCLASS32
266 #define ELF_ARCH EM_ARM
268 static inline void init_thread(struct target_pt_regs
*regs
,
269 struct image_info
*infop
)
271 abi_long stack
= infop
->start_stack
;
272 memset(regs
, 0, sizeof(*regs
));
273 regs
->ARM_cpsr
= 0x10;
274 if (infop
->entry
& 1)
275 regs
->ARM_cpsr
|= CPSR_T
;
276 regs
->ARM_pc
= infop
->entry
& 0xfffffffe;
277 regs
->ARM_sp
= infop
->start_stack
;
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs
->ARM_r2
, stack
+ 8); /* envp */
280 get_user_ual(regs
->ARM_r1
, stack
+ 4); /* envp */
281 /* XXX: it seems that r0 is zeroed after ! */
283 /* For uClinux PIC binaries. */
284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
285 regs
->ARM_r10
= infop
->start_data
;
289 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
291 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
293 (*regs
)[0] = tswapl(env
->regs
[0]);
294 (*regs
)[1] = tswapl(env
->regs
[1]);
295 (*regs
)[2] = tswapl(env
->regs
[2]);
296 (*regs
)[3] = tswapl(env
->regs
[3]);
297 (*regs
)[4] = tswapl(env
->regs
[4]);
298 (*regs
)[5] = tswapl(env
->regs
[5]);
299 (*regs
)[6] = tswapl(env
->regs
[6]);
300 (*regs
)[7] = tswapl(env
->regs
[7]);
301 (*regs
)[8] = tswapl(env
->regs
[8]);
302 (*regs
)[9] = tswapl(env
->regs
[9]);
303 (*regs
)[10] = tswapl(env
->regs
[10]);
304 (*regs
)[11] = tswapl(env
->regs
[11]);
305 (*regs
)[12] = tswapl(env
->regs
[12]);
306 (*regs
)[13] = tswapl(env
->regs
[13]);
307 (*regs
)[14] = tswapl(env
->regs
[14]);
308 (*regs
)[15] = tswapl(env
->regs
[15]);
310 (*regs
)[16] = tswapl(cpsr_read((CPUState
*)env
));
311 (*regs
)[17] = tswapl(env
->regs
[0]); /* XXX */
314 #define USE_ELF_CORE_DUMP
315 #define ELF_EXEC_PAGESIZE 4096
319 ARM_HWCAP_ARM_SWP
= 1 << 0,
320 ARM_HWCAP_ARM_HALF
= 1 << 1,
321 ARM_HWCAP_ARM_THUMB
= 1 << 2,
322 ARM_HWCAP_ARM_26BIT
= 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
324 ARM_HWCAP_ARM_FPA
= 1 << 5,
325 ARM_HWCAP_ARM_VFP
= 1 << 6,
326 ARM_HWCAP_ARM_EDSP
= 1 << 7,
327 ARM_HWCAP_ARM_JAVA
= 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE
= 1 << 10,
330 ARM_HWCAP_ARM_NEON
= 1 << 11,
331 ARM_HWCAP_ARM_VFPv3
= 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16
= 1 << 13,
335 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
338 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
343 #ifdef TARGET_SPARC64
345 #define ELF_START_MMAP 0x80000000
348 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
350 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
353 #define ELF_CLASS ELFCLASS64
354 #define ELF_ARCH EM_SPARCV9
356 #define STACK_BIAS 2047
358 static inline void init_thread(struct target_pt_regs
*regs
,
359 struct image_info
*infop
)
364 regs
->pc
= infop
->entry
;
365 regs
->npc
= regs
->pc
+ 4;
368 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
370 if (personality(infop
->personality
) == PER_LINUX32
)
371 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
373 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
378 #define ELF_START_MMAP 0x80000000
380 #define elf_check_arch(x) ( (x) == EM_SPARC )
382 #define ELF_CLASS ELFCLASS32
383 #define ELF_ARCH EM_SPARC
385 static inline void init_thread(struct target_pt_regs
*regs
,
386 struct image_info
*infop
)
389 regs
->pc
= infop
->entry
;
390 regs
->npc
= regs
->pc
+ 4;
392 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
400 #define ELF_START_MMAP 0x80000000
402 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
404 #define elf_check_arch(x) ( (x) == EM_PPC64 )
406 #define ELF_CLASS ELFCLASS64
410 #define elf_check_arch(x) ( (x) == EM_PPC )
412 #define ELF_CLASS ELFCLASS32
416 #define ELF_ARCH EM_PPC
418 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
419 See arch/powerpc/include/asm/cputable.h. */
421 QEMU_PPC_FEATURE_32
= 0x80000000,
422 QEMU_PPC_FEATURE_64
= 0x40000000,
423 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
424 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
425 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
426 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
427 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
428 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
429 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
430 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
431 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
432 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
433 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
434 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
435 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
436 QEMU_PPC_FEATURE_CELL
= 0x00010000,
437 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
438 QEMU_PPC_FEATURE_SMT
= 0x00004000,
439 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
440 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
441 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
442 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
443 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
444 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
445 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
446 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
448 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
449 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
452 #define ELF_HWCAP get_elf_hwcap()
454 static uint32_t get_elf_hwcap(void)
456 CPUState
*e
= thread_env
;
457 uint32_t features
= 0;
459 /* We don't have to be terribly complete here; the high points are
460 Altivec/FP/SPE support. Anything else is just a bonus. */
461 #define GET_FEATURE(flag, feature) \
462 do {if (e->insns_flags & flag) features |= feature; } while(0)
463 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
464 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
465 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
466 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
467 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
468 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
469 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
470 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
477 * The requirements here are:
478 * - keep the final alignment of sp (sp & 0xf)
479 * - make sure the 32-bit value at the first 16 byte aligned position of
480 * AUXV is greater than 16 for glibc compatibility.
481 * AT_IGNOREPPC is used for that.
482 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
483 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
485 #define DLINFO_ARCH_ITEMS 5
486 #define ARCH_DLINFO \
488 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
489 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
490 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
492 * Now handle glibc compatibility. \
494 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
495 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
498 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
500 _regs
->gpr
[1] = infop
->start_stack
;
501 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
502 _regs
->gpr
[2] = ldq_raw(infop
->entry
+ 8) + infop
->load_addr
;
503 infop
->entry
= ldq_raw(infop
->entry
) + infop
->load_addr
;
505 _regs
->nip
= infop
->entry
;
508 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
510 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
512 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
515 target_ulong ccr
= 0;
517 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
518 (*regs
)[i
] = tswapl(env
->gpr
[i
]);
521 (*regs
)[32] = tswapl(env
->nip
);
522 (*regs
)[33] = tswapl(env
->msr
);
523 (*regs
)[35] = tswapl(env
->ctr
);
524 (*regs
)[36] = tswapl(env
->lr
);
525 (*regs
)[37] = tswapl(env
->xer
);
527 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
528 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
530 (*regs
)[38] = tswapl(ccr
);
533 #define USE_ELF_CORE_DUMP
534 #define ELF_EXEC_PAGESIZE 4096
540 #define ELF_START_MMAP 0x80000000
542 #define elf_check_arch(x) ( (x) == EM_MIPS )
545 #define ELF_CLASS ELFCLASS64
547 #define ELF_CLASS ELFCLASS32
549 #define ELF_ARCH EM_MIPS
551 static inline void init_thread(struct target_pt_regs
*regs
,
552 struct image_info
*infop
)
554 regs
->cp0_status
= 2 << CP0St_KSU
;
555 regs
->cp0_epc
= infop
->entry
;
556 regs
->regs
[29] = infop
->start_stack
;
559 /* See linux kernel: arch/mips/include/asm/elf.h. */
561 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
563 /* See linux kernel: arch/mips/include/asm/reg.h. */
570 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
571 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
572 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
573 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
574 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
575 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
576 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
577 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
580 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
581 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
585 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
588 (*regs
)[TARGET_EF_R0
] = 0;
590 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
591 (*regs
)[TARGET_EF_R0
+ i
] = tswapl(env
->active_tc
.gpr
[i
]);
594 (*regs
)[TARGET_EF_R26
] = 0;
595 (*regs
)[TARGET_EF_R27
] = 0;
596 (*regs
)[TARGET_EF_LO
] = tswapl(env
->active_tc
.LO
[0]);
597 (*regs
)[TARGET_EF_HI
] = tswapl(env
->active_tc
.HI
[0]);
598 (*regs
)[TARGET_EF_CP0_EPC
] = tswapl(env
->active_tc
.PC
);
599 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapl(env
->CP0_BadVAddr
);
600 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapl(env
->CP0_Status
);
601 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapl(env
->CP0_Cause
);
604 #define USE_ELF_CORE_DUMP
605 #define ELF_EXEC_PAGESIZE 4096
607 #endif /* TARGET_MIPS */
609 #ifdef TARGET_MICROBLAZE
611 #define ELF_START_MMAP 0x80000000
613 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
615 #define ELF_CLASS ELFCLASS32
616 #define ELF_ARCH EM_MICROBLAZE
618 static inline void init_thread(struct target_pt_regs
*regs
,
619 struct image_info
*infop
)
621 regs
->pc
= infop
->entry
;
622 regs
->r1
= infop
->start_stack
;
626 #define ELF_EXEC_PAGESIZE 4096
628 #define USE_ELF_CORE_DUMP
630 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
632 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
633 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
637 for (i
= 0; i
< 32; i
++) {
638 (*regs
)[pos
++] = tswapl(env
->regs
[i
]);
641 for (i
= 0; i
< 6; i
++) {
642 (*regs
)[pos
++] = tswapl(env
->sregs
[i
]);
646 #endif /* TARGET_MICROBLAZE */
650 #define ELF_START_MMAP 0x80000000
652 #define elf_check_arch(x) ( (x) == EM_SH )
654 #define ELF_CLASS ELFCLASS32
655 #define ELF_ARCH EM_SH
657 static inline void init_thread(struct target_pt_regs
*regs
,
658 struct image_info
*infop
)
660 /* Check other registers XXXXX */
661 regs
->pc
= infop
->entry
;
662 regs
->regs
[15] = infop
->start_stack
;
665 /* See linux kernel: arch/sh/include/asm/elf.h. */
667 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
669 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
675 TARGET_REG_MACH
= 20,
676 TARGET_REG_MACL
= 21,
677 TARGET_REG_SYSCALL
= 22
680 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
685 for (i
= 0; i
< 16; i
++) {
686 (*regs
[i
]) = tswapl(env
->gregs
[i
]);
689 (*regs
)[TARGET_REG_PC
] = tswapl(env
->pc
);
690 (*regs
)[TARGET_REG_PR
] = tswapl(env
->pr
);
691 (*regs
)[TARGET_REG_SR
] = tswapl(env
->sr
);
692 (*regs
)[TARGET_REG_GBR
] = tswapl(env
->gbr
);
693 (*regs
)[TARGET_REG_MACH
] = tswapl(env
->mach
);
694 (*regs
)[TARGET_REG_MACL
] = tswapl(env
->macl
);
695 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
698 #define USE_ELF_CORE_DUMP
699 #define ELF_EXEC_PAGESIZE 4096
705 #define ELF_START_MMAP 0x80000000
707 #define elf_check_arch(x) ( (x) == EM_CRIS )
709 #define ELF_CLASS ELFCLASS32
710 #define ELF_ARCH EM_CRIS
712 static inline void init_thread(struct target_pt_regs
*regs
,
713 struct image_info
*infop
)
715 regs
->erp
= infop
->entry
;
718 #define ELF_EXEC_PAGESIZE 8192
724 #define ELF_START_MMAP 0x80000000
726 #define elf_check_arch(x) ( (x) == EM_68K )
728 #define ELF_CLASS ELFCLASS32
729 #define ELF_ARCH EM_68K
731 /* ??? Does this need to do anything?
732 #define ELF_PLAT_INIT(_r) */
734 static inline void init_thread(struct target_pt_regs
*regs
,
735 struct image_info
*infop
)
737 regs
->usp
= infop
->start_stack
;
739 regs
->pc
= infop
->entry
;
742 /* See linux kernel: arch/m68k/include/asm/elf.h. */
744 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
746 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
748 (*regs
)[0] = tswapl(env
->dregs
[1]);
749 (*regs
)[1] = tswapl(env
->dregs
[2]);
750 (*regs
)[2] = tswapl(env
->dregs
[3]);
751 (*regs
)[3] = tswapl(env
->dregs
[4]);
752 (*regs
)[4] = tswapl(env
->dregs
[5]);
753 (*regs
)[5] = tswapl(env
->dregs
[6]);
754 (*regs
)[6] = tswapl(env
->dregs
[7]);
755 (*regs
)[7] = tswapl(env
->aregs
[0]);
756 (*regs
)[8] = tswapl(env
->aregs
[1]);
757 (*regs
)[9] = tswapl(env
->aregs
[2]);
758 (*regs
)[10] = tswapl(env
->aregs
[3]);
759 (*regs
)[11] = tswapl(env
->aregs
[4]);
760 (*regs
)[12] = tswapl(env
->aregs
[5]);
761 (*regs
)[13] = tswapl(env
->aregs
[6]);
762 (*regs
)[14] = tswapl(env
->dregs
[0]);
763 (*regs
)[15] = tswapl(env
->aregs
[7]);
764 (*regs
)[16] = tswapl(env
->dregs
[0]); /* FIXME: orig_d0 */
765 (*regs
)[17] = tswapl(env
->sr
);
766 (*regs
)[18] = tswapl(env
->pc
);
767 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
770 #define USE_ELF_CORE_DUMP
771 #define ELF_EXEC_PAGESIZE 8192
777 #define ELF_START_MMAP (0x30000000000ULL)
779 #define elf_check_arch(x) ( (x) == ELF_ARCH )
781 #define ELF_CLASS ELFCLASS64
782 #define ELF_ARCH EM_ALPHA
784 static inline void init_thread(struct target_pt_regs
*regs
,
785 struct image_info
*infop
)
787 regs
->pc
= infop
->entry
;
789 regs
->usp
= infop
->start_stack
;
792 #define ELF_EXEC_PAGESIZE 8192
794 #endif /* TARGET_ALPHA */
797 #define ELF_PLATFORM (NULL)
806 #define ELF_CLASS ELFCLASS32
808 #define bswaptls(ptr) bswap32s(ptr)
815 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
816 unsigned int a_text
; /* length of text, in bytes */
817 unsigned int a_data
; /* length of data, in bytes */
818 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
819 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
820 unsigned int a_entry
; /* start address */
821 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
822 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
826 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
832 /* Necessary parameters */
833 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
834 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
835 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
837 #define DLINFO_ITEMS 12
839 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
845 static void bswap_ehdr(struct elfhdr
*ehdr
)
847 bswap16s(&ehdr
->e_type
); /* Object file type */
848 bswap16s(&ehdr
->e_machine
); /* Architecture */
849 bswap32s(&ehdr
->e_version
); /* Object file version */
850 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
851 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
852 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
853 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
854 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
855 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
856 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
857 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
858 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
859 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
862 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
865 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
866 bswap32s(&phdr
->p_type
); /* Segment type */
867 bswap32s(&phdr
->p_flags
); /* Segment flags */
868 bswaptls(&phdr
->p_offset
); /* Segment file offset */
869 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
870 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
871 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
872 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
873 bswaptls(&phdr
->p_align
); /* Segment alignment */
877 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
880 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
881 bswap32s(&shdr
->sh_name
);
882 bswap32s(&shdr
->sh_type
);
883 bswaptls(&shdr
->sh_flags
);
884 bswaptls(&shdr
->sh_addr
);
885 bswaptls(&shdr
->sh_offset
);
886 bswaptls(&shdr
->sh_size
);
887 bswap32s(&shdr
->sh_link
);
888 bswap32s(&shdr
->sh_info
);
889 bswaptls(&shdr
->sh_addralign
);
890 bswaptls(&shdr
->sh_entsize
);
894 static void bswap_sym(struct elf_sym
*sym
)
896 bswap32s(&sym
->st_name
);
897 bswaptls(&sym
->st_value
);
898 bswaptls(&sym
->st_size
);
899 bswap16s(&sym
->st_shndx
);
902 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
903 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
904 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
905 static inline void bswap_sym(struct elf_sym
*sym
) { }
908 #ifdef USE_ELF_CORE_DUMP
909 static int elf_core_dump(int, const CPUState
*);
910 #endif /* USE_ELF_CORE_DUMP */
911 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
913 /* Verify the portions of EHDR within E_IDENT for the target.
914 This can be performed before bswapping the entire header. */
915 static bool elf_check_ident(struct elfhdr
*ehdr
)
917 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
918 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
919 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
920 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
921 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
922 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
923 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
926 /* Verify the portions of EHDR outside of E_IDENT for the target.
927 This has to wait until after bswapping the header. */
928 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
930 return (elf_check_arch(ehdr
->e_machine
)
931 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
932 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
933 && ehdr
->e_shentsize
== sizeof(struct elf_shdr
)
934 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
938 * 'copy_elf_strings()' copies argument/envelope strings from user
939 * memory to free pages in kernel mem. These are in a format ready
940 * to be put directly into the top of new user memory.
943 static abi_ulong
copy_elf_strings(int argc
,char ** argv
, void **page
,
946 char *tmp
, *tmp1
, *pag
= NULL
;
950 return 0; /* bullet-proofing */
955 fprintf(stderr
, "VFS: argc is wrong");
961 if (p
< len
) { /* this shouldn't happen - 128kB */
967 offset
= p
% TARGET_PAGE_SIZE
;
968 pag
= (char *)page
[p
/TARGET_PAGE_SIZE
];
970 pag
= (char *)malloc(TARGET_PAGE_SIZE
);
971 memset(pag
, 0, TARGET_PAGE_SIZE
);
972 page
[p
/TARGET_PAGE_SIZE
] = pag
;
977 if (len
== 0 || offset
== 0) {
978 *(pag
+ offset
) = *tmp
;
981 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
982 tmp
-= bytes_to_copy
;
984 offset
-= bytes_to_copy
;
985 len
-= bytes_to_copy
;
986 memcpy_fromfs(pag
+ offset
, tmp
, bytes_to_copy
+ 1);
993 static abi_ulong
setup_arg_pages(abi_ulong p
, struct linux_binprm
*bprm
,
994 struct image_info
*info
)
996 abi_ulong stack_base
, size
, error
, guard
;
999 /* Create enough stack to hold everything. If we don't use
1000 it for args, we'll use it for something else. */
1001 size
= guest_stack_size
;
1002 if (size
< MAX_ARG_PAGES
*TARGET_PAGE_SIZE
) {
1003 size
= MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1005 guard
= TARGET_PAGE_SIZE
;
1006 if (guard
< qemu_real_host_page_size
) {
1007 guard
= qemu_real_host_page_size
;
1010 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1011 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1013 perror("mmap stack");
1017 /* We reserve one extra page at the top of the stack as guard. */
1018 target_mprotect(error
, guard
, PROT_NONE
);
1020 info
->stack_limit
= error
+ guard
;
1021 stack_base
= info
->stack_limit
+ size
- MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1024 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1025 if (bprm
->page
[i
]) {
1027 /* FIXME - check return value of memcpy_to_target() for failure */
1028 memcpy_to_target(stack_base
, bprm
->page
[i
], TARGET_PAGE_SIZE
);
1029 free(bprm
->page
[i
]);
1031 stack_base
+= TARGET_PAGE_SIZE
;
1036 /* Map and zero the bss. We need to explicitly zero any fractional pages
1037 after the data section (i.e. bss). */
1038 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1040 uintptr_t host_start
, host_map_start
, host_end
;
1042 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1044 /* ??? There is confusion between qemu_real_host_page_size and
1045 qemu_host_page_size here and elsewhere in target_mmap, which
1046 may lead to the end of the data section mapping from the file
1047 not being mapped. At least there was an explicit test and
1048 comment for that here, suggesting that "the file size must
1049 be known". The comment probably pre-dates the introduction
1050 of the fstat system call in target_mmap which does in fact
1051 find out the size. What isn't clear is if the workaround
1052 here is still actually needed. For now, continue with it,
1053 but merge it with the "normal" mmap that would allocate the bss. */
1055 host_start
= (uintptr_t) g2h(elf_bss
);
1056 host_end
= (uintptr_t) g2h(last_bss
);
1057 host_map_start
= (host_start
+ qemu_real_host_page_size
- 1);
1058 host_map_start
&= -qemu_real_host_page_size
;
1060 if (host_map_start
< host_end
) {
1061 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1062 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1063 if (p
== MAP_FAILED
) {
1064 perror("cannot mmap brk");
1068 /* Since we didn't use target_mmap, make sure to record
1069 the validity of the pages with qemu. */
1070 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
|PAGE_VALID
);
1073 if (host_start
< host_map_start
) {
1074 memset((void *)host_start
, 0, host_map_start
- host_start
);
1078 #ifdef CONFIG_USE_FDPIC
1079 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1082 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1084 /* elf32_fdpic_loadseg */
1088 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1089 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1090 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1093 /* elf32_fdpic_loadmap */
1095 put_user_u16(0, sp
+0); /* version */
1096 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1098 info
->personality
= PER_LINUX_FDPIC
;
1099 info
->loadmap_addr
= sp
;
1105 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1106 struct elfhdr
*exec
,
1107 struct image_info
*info
,
1108 struct image_info
*interp_info
)
1112 abi_ulong u_platform
;
1113 const char *k_platform
;
1114 const int n
= sizeof(elf_addr_t
);
1118 #ifdef CONFIG_USE_FDPIC
1119 /* Needs to be before we load the env/argc/... */
1120 if (elf_is_fdpic(exec
)) {
1121 /* Need 4 byte alignment for these structs */
1123 sp
= loader_build_fdpic_loadmap(info
, sp
);
1124 info
->other_info
= interp_info
;
1126 interp_info
->other_info
= info
;
1127 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1133 k_platform
= ELF_PLATFORM
;
1135 size_t len
= strlen(k_platform
) + 1;
1136 sp
-= (len
+ n
- 1) & ~(n
- 1);
1138 /* FIXME - check return value of memcpy_to_target() for failure */
1139 memcpy_to_target(sp
, k_platform
, len
);
1142 * Force 16 byte _final_ alignment here for generality.
1144 sp
= sp
&~ (abi_ulong
)15;
1145 size
= (DLINFO_ITEMS
+ 1) * 2;
1148 #ifdef DLINFO_ARCH_ITEMS
1149 size
+= DLINFO_ARCH_ITEMS
* 2;
1151 size
+= envc
+ argc
+ 2;
1152 size
+= 1; /* argc itself */
1155 sp
-= 16 - (size
& 15);
1157 /* This is correct because Linux defines
1158 * elf_addr_t as Elf32_Off / Elf64_Off
1160 #define NEW_AUX_ENT(id, val) do { \
1161 sp -= n; put_user_ual(val, sp); \
1162 sp -= n; put_user_ual(id, sp); \
1165 NEW_AUX_ENT (AT_NULL
, 0);
1167 /* There must be exactly DLINFO_ITEMS entries here. */
1168 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1169 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1170 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1171 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
1172 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1173 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1174 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1175 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1176 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1177 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1178 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1179 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1180 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1182 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1185 * ARCH_DLINFO must come last so platform specific code can enforce
1186 * special alignment requirements on the AUXV if necessary (eg. PPC).
1192 info
->saved_auxv
= sp
;
1194 sp
= loader_build_argptr(envc
, argc
, sp
, p
, 0);
1198 /* Load an ELF image into the address space.
1200 IMAGE_NAME is the filename of the image, to use in error messages.
1201 IMAGE_FD is the open file descriptor for the image.
1203 BPRM_BUF is a copy of the beginning of the file; this of course
1204 contains the elf file header at offset 0. It is assumed that this
1205 buffer is sufficiently aligned to present no problems to the host
1206 in accessing data at aligned offsets within the buffer.
1208 On return: INFO values will be filled in, as necessary or available. */
1210 static void load_elf_image(const char *image_name
, int image_fd
,
1211 struct image_info
*info
, char **pinterp_name
,
1212 char bprm_buf
[BPRM_BUF_SIZE
])
1214 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
1215 struct elf_phdr
*phdr
;
1216 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
1220 /* First of all, some simple consistency checks */
1221 errmsg
= "Invalid ELF image for this architecture";
1222 if (!elf_check_ident(ehdr
)) {
1226 if (!elf_check_ehdr(ehdr
)) {
1230 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
1231 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
1232 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
1234 phdr
= (struct elf_phdr
*) alloca(i
);
1235 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
1240 bswap_phdr(phdr
, ehdr
->e_phnum
);
1242 #ifdef CONFIG_USE_FDPIC
1244 info
->pt_dynamic_addr
= 0;
1247 /* Find the maximum size of the image and allocate an appropriate
1248 amount of memory to handle that. */
1249 loaddr
= -1, hiaddr
= 0;
1250 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1251 if (phdr
[i
].p_type
== PT_LOAD
) {
1252 abi_ulong a
= phdr
[i
].p_vaddr
;
1256 a
+= phdr
[i
].p_memsz
;
1260 #ifdef CONFIG_USE_FDPIC
1267 if (ehdr
->e_type
== ET_DYN
) {
1268 /* The image indicates that it can be loaded anywhere. Find a
1269 location that can hold the memory space required. If the
1270 image is pre-linked, LOADDR will be non-zero. Since we do
1271 not supply MAP_FIXED here we'll use that address if and
1272 only if it remains available. */
1273 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
1274 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
1276 if (load_addr
== -1) {
1279 } else if (pinterp_name
!= NULL
) {
1280 /* This is the main executable. Make sure that the low
1281 address does not conflict with MMAP_MIN_ADDR or the
1282 QEMU application itself. */
1283 #if defined(CONFIG_USE_GUEST_BASE)
1285 * In case where user has not explicitly set the guest_base, we
1286 * probe here that should we set it automatically.
1288 if (!have_guest_base
&& !reserved_va
) {
1289 unsigned long host_start
, real_start
, host_size
;
1291 /* Round addresses to page boundaries. */
1292 loaddr
&= qemu_host_page_mask
;
1293 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
1295 if (loaddr
< mmap_min_addr
) {
1296 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
1298 host_start
= loaddr
;
1299 if (host_start
!= loaddr
) {
1300 errmsg
= "Address overflow loading ELF binary";
1304 host_size
= hiaddr
- loaddr
;
1306 /* Do not use mmap_find_vma here because that is limited to the
1307 guest address space. We are going to make the
1308 guest address space fit whatever we're given. */
1309 real_start
= (unsigned long)
1310 mmap((void *)host_start
, host_size
, PROT_NONE
,
1311 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
, -1, 0);
1312 if (real_start
== (unsigned long)-1) {
1315 if (real_start
== host_start
) {
1318 /* That address didn't work. Unmap and try a different one.
1319 The address the host picked because is typically right at
1320 the top of the host address space and leaves the guest with
1321 no usable address space. Resort to a linear search. We
1322 already compensated for mmap_min_addr, so this should not
1323 happen often. Probably means we got unlucky and host
1324 address space randomization put a shared library somewhere
1326 munmap((void *)real_start
, host_size
);
1327 host_start
+= qemu_host_page_size
;
1328 if (host_start
== loaddr
) {
1329 /* Theoretically possible if host doesn't have any suitably
1330 aligned areas. Normally the first mmap will fail. */
1331 errmsg
= "Unable to find space for application";
1335 qemu_log("Relocating guest address space from 0x"
1336 TARGET_ABI_FMT_lx
" to 0x%lx\n", loaddr
, real_start
);
1337 guest_base
= real_start
- loaddr
;
1341 load_bias
= load_addr
- loaddr
;
1343 #ifdef CONFIG_USE_FDPIC
1345 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
1346 qemu_malloc(sizeof(*loadsegs
) * info
->nsegs
);
1348 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1349 switch (phdr
[i
].p_type
) {
1351 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
1354 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
1355 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
1356 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
1364 info
->load_bias
= load_bias
;
1365 info
->load_addr
= load_addr
;
1366 info
->entry
= ehdr
->e_entry
+ load_bias
;
1367 info
->start_code
= -1;
1369 info
->start_data
= -1;
1373 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
1374 struct elf_phdr
*eppnt
= phdr
+ i
;
1375 if (eppnt
->p_type
== PT_LOAD
) {
1376 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
1379 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
1380 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1381 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1383 vaddr
= load_bias
+ eppnt
->p_vaddr
;
1384 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
1385 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
1387 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
1388 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
1389 image_fd
, eppnt
->p_offset
- vaddr_po
);
1394 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
1395 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
1397 /* If the load segment requests extra zeros (e.g. bss), map it. */
1398 if (vaddr_ef
< vaddr_em
) {
1399 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
1402 /* Find the full program boundaries. */
1403 if (elf_prot
& PROT_EXEC
) {
1404 if (vaddr
< info
->start_code
) {
1405 info
->start_code
= vaddr
;
1407 if (vaddr_ef
> info
->end_code
) {
1408 info
->end_code
= vaddr_ef
;
1411 if (elf_prot
& PROT_WRITE
) {
1412 if (vaddr
< info
->start_data
) {
1413 info
->start_data
= vaddr
;
1415 if (vaddr_ef
> info
->end_data
) {
1416 info
->end_data
= vaddr_ef
;
1418 if (vaddr_em
> info
->brk
) {
1419 info
->brk
= vaddr_em
;
1422 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
1425 if (*pinterp_name
) {
1426 errmsg
= "Multiple PT_INTERP entries";
1429 interp_name
= malloc(eppnt
->p_filesz
);
1434 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
1435 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
1438 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
1440 if (retval
!= eppnt
->p_filesz
) {
1444 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
1445 errmsg
= "Invalid PT_INTERP entry";
1448 *pinterp_name
= interp_name
;
1452 if (info
->end_data
== 0) {
1453 info
->start_data
= info
->end_code
;
1454 info
->end_data
= info
->end_code
;
1455 info
->brk
= info
->end_code
;
1458 if (qemu_log_enabled()) {
1459 load_symbols(ehdr
, image_fd
, load_bias
);
1467 errmsg
= "Incomplete read of file header";
1471 errmsg
= strerror(errno
);
1473 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1477 static void load_elf_interp(const char *filename
, struct image_info
*info
,
1478 char bprm_buf
[BPRM_BUF_SIZE
])
1482 fd
= open(path(filename
), O_RDONLY
);
1487 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
1491 if (retval
< BPRM_BUF_SIZE
) {
1492 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
1495 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
1499 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
1503 static int symfind(const void *s0
, const void *s1
)
1505 struct elf_sym
*key
= (struct elf_sym
*)s0
;
1506 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
1508 if (key
->st_value
< sym
->st_value
) {
1510 } else if (key
->st_value
>= sym
->st_value
+ sym
->st_size
) {
1516 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
1518 #if ELF_CLASS == ELFCLASS32
1519 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
1521 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
1526 struct elf_sym
*sym
;
1528 key
.st_value
= orig_addr
;
1530 sym
= bsearch(&key
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
1532 return s
->disas_strtab
+ sym
->st_name
;
1538 /* FIXME: This should use elf_ops.h */
1539 static int symcmp(const void *s0
, const void *s1
)
1541 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
1542 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
1543 return (sym0
->st_value
< sym1
->st_value
)
1545 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
1548 /* Best attempt to load symbols from this ELF object. */
1549 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
1551 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
1552 struct elf_shdr
*shdr
;
1555 struct elf_sym
*syms
, *new_syms
;
1557 shnum
= hdr
->e_shnum
;
1558 i
= shnum
* sizeof(struct elf_shdr
);
1559 shdr
= (struct elf_shdr
*)alloca(i
);
1560 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
1564 bswap_shdr(shdr
, shnum
);
1565 for (i
= 0; i
< shnum
; ++i
) {
1566 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
1568 str_idx
= shdr
[i
].sh_link
;
1573 /* There will be no symbol table if the file was stripped. */
1577 /* Now know where the strtab and symtab are. Snarf them. */
1578 s
= malloc(sizeof(*s
));
1583 i
= shdr
[str_idx
].sh_size
;
1584 s
->disas_strtab
= strings
= malloc(i
);
1585 if (!strings
|| pread(fd
, strings
, i
, shdr
[str_idx
].sh_offset
) != i
) {
1591 i
= shdr
[sym_idx
].sh_size
;
1593 if (!syms
|| pread(fd
, syms
, i
, shdr
[sym_idx
].sh_offset
) != i
) {
1600 nsyms
= i
/ sizeof(struct elf_sym
);
1601 for (i
= 0; i
< nsyms
; ) {
1602 bswap_sym(syms
+ i
);
1603 /* Throw away entries which we do not need. */
1604 if (syms
[i
].st_shndx
== SHN_UNDEF
1605 || syms
[i
].st_shndx
>= SHN_LORESERVE
1606 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
1608 syms
[i
] = syms
[nsyms
];
1611 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1612 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1613 syms
[i
].st_value
&= ~(target_ulong
)1;
1615 syms
[i
].st_value
+= load_bias
;
1620 /* Attempt to free the storage associated with the local symbols
1621 that we threw away. Whether or not this has any effect on the
1622 memory allocation depends on the malloc implementation and how
1623 many symbols we managed to discard. */
1624 new_syms
= realloc(syms
, nsyms
* sizeof(*syms
));
1625 if (new_syms
== NULL
) {
1633 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
1635 s
->disas_num_syms
= nsyms
;
1636 #if ELF_CLASS == ELFCLASS32
1637 s
->disas_symtab
.elf32
= syms
;
1639 s
->disas_symtab
.elf64
= syms
;
1641 s
->lookup_symbol
= lookup_symbolxx
;
1646 int load_elf_binary(struct linux_binprm
* bprm
, struct target_pt_regs
* regs
,
1647 struct image_info
* info
)
1649 struct image_info interp_info
;
1650 struct elfhdr elf_ex
;
1651 char *elf_interpreter
= NULL
;
1653 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
1657 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
1658 &elf_interpreter
, bprm
->buf
);
1660 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1661 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1662 when we load the interpreter. */
1663 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
1665 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, bprm
->page
, bprm
->p
);
1666 bprm
->p
= copy_elf_strings(bprm
->envc
,bprm
->envp
,bprm
->page
,bprm
->p
);
1667 bprm
->p
= copy_elf_strings(bprm
->argc
,bprm
->argv
,bprm
->page
,bprm
->p
);
1669 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
1673 /* Do this so that we can load the interpreter, if need be. We will
1674 change some of these later */
1675 bprm
->p
= setup_arg_pages(bprm
->p
, bprm
, info
);
1677 if (elf_interpreter
) {
1678 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
1680 /* If the program interpreter is one of these two, then assume
1681 an iBCS2 image. Otherwise assume a native linux image. */
1683 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
1684 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
1685 info
->personality
= PER_SVR4
;
1687 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1688 and some applications "depend" upon this behavior. Since
1689 we do not have the power to recompile these, we emulate
1690 the SVr4 behavior. Sigh. */
1691 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
1692 MAP_FIXED
| MAP_PRIVATE
, -1, 0);
1696 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
1697 info
, (elf_interpreter
? &interp_info
: NULL
));
1698 info
->start_stack
= bprm
->p
;
1700 /* If we have an interpreter, set that as the program's entry point.
1701 Copy the load_addr as well, to help PPC64 interpret the entry
1702 point as a function descriptor. Do this after creating elf tables
1703 so that we copy the original program entry point into the AUXV. */
1704 if (elf_interpreter
) {
1705 info
->load_addr
= interp_info
.load_addr
;
1706 info
->entry
= interp_info
.entry
;
1707 free(elf_interpreter
);
1710 #ifdef USE_ELF_CORE_DUMP
1711 bprm
->core_dump
= &elf_core_dump
;
1717 #ifdef USE_ELF_CORE_DUMP
1719 * Definitions to generate Intel SVR4-like core files.
1720 * These mostly have the same names as the SVR4 types with "target_elf_"
1721 * tacked on the front to prevent clashes with linux definitions,
1722 * and the typedef forms have been avoided. This is mostly like
1723 * the SVR4 structure, but more Linuxy, with things that Linux does
1724 * not support and which gdb doesn't really use excluded.
1726 * Fields we don't dump (their contents is zero) in linux-user qemu
1727 * are marked with XXX.
1729 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1731 * Porting ELF coredump for target is (quite) simple process. First you
1732 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
1733 * the target resides):
1735 * #define USE_ELF_CORE_DUMP
1737 * Next you define type of register set used for dumping. ELF specification
1738 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1740 * typedef <target_regtype> target_elf_greg_t;
1741 * #define ELF_NREG <number of registers>
1742 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1744 * Last step is to implement target specific function that copies registers
1745 * from given cpu into just specified register set. Prototype is:
1747 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1748 * const CPUState *env);
1751 * regs - copy register values into here (allocated and zeroed by caller)
1752 * env - copy registers from here
1754 * Example for ARM target is provided in this file.
1757 /* An ELF note in memory */
1761 size_t namesz_rounded
;
1764 size_t datasz_rounded
;
1769 struct target_elf_siginfo
{
1770 target_int si_signo
; /* signal number */
1771 target_int si_code
; /* extra code */
1772 target_int si_errno
; /* errno */
1775 struct target_elf_prstatus
{
1776 struct target_elf_siginfo pr_info
; /* Info associated with signal */
1777 target_short pr_cursig
; /* Current signal */
1778 target_ulong pr_sigpend
; /* XXX */
1779 target_ulong pr_sighold
; /* XXX */
1780 target_pid_t pr_pid
;
1781 target_pid_t pr_ppid
;
1782 target_pid_t pr_pgrp
;
1783 target_pid_t pr_sid
;
1784 struct target_timeval pr_utime
; /* XXX User time */
1785 struct target_timeval pr_stime
; /* XXX System time */
1786 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
1787 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
1788 target_elf_gregset_t pr_reg
; /* GP registers */
1789 target_int pr_fpvalid
; /* XXX */
1792 #define ELF_PRARGSZ (80) /* Number of chars for args */
1794 struct target_elf_prpsinfo
{
1795 char pr_state
; /* numeric process state */
1796 char pr_sname
; /* char for pr_state */
1797 char pr_zomb
; /* zombie */
1798 char pr_nice
; /* nice val */
1799 target_ulong pr_flag
; /* flags */
1800 target_uid_t pr_uid
;
1801 target_gid_t pr_gid
;
1802 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
1804 char pr_fname
[16]; /* filename of executable */
1805 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
1808 /* Here is the structure in which status of each thread is captured. */
1809 struct elf_thread_status
{
1810 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
1811 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
1813 elf_fpregset_t fpu
; /* NT_PRFPREG */
1814 struct task_struct
*thread
;
1815 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1817 struct memelfnote notes
[1];
1821 struct elf_note_info
{
1822 struct memelfnote
*notes
;
1823 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1824 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1826 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
1829 * Current version of ELF coredump doesn't support
1830 * dumping fp regs etc.
1832 elf_fpregset_t
*fpu
;
1833 elf_fpxregset_t
*xfpu
;
1834 int thread_status_size
;
1840 struct vm_area_struct
{
1841 abi_ulong vma_start
; /* start vaddr of memory region */
1842 abi_ulong vma_end
; /* end vaddr of memory region */
1843 abi_ulong vma_flags
; /* protection etc. flags for the region */
1844 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
1848 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
1849 int mm_count
; /* number of mappings */
1852 static struct mm_struct
*vma_init(void);
1853 static void vma_delete(struct mm_struct
*);
1854 static int vma_add_mapping(struct mm_struct
*, abi_ulong
,
1855 abi_ulong
, abi_ulong
);
1856 static int vma_get_mapping_count(const struct mm_struct
*);
1857 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
1858 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
1859 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
1860 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
1861 unsigned long flags
);
1863 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
1864 static void fill_note(struct memelfnote
*, const char *, int,
1865 unsigned int, void *);
1866 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
1867 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
1868 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
1869 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
1870 static size_t note_size(const struct memelfnote
*);
1871 static void free_note_info(struct elf_note_info
*);
1872 static int fill_note_info(struct elf_note_info
*, long, const CPUState
*);
1873 static void fill_thread_info(struct elf_note_info
*, const CPUState
*);
1874 static int core_dump_filename(const TaskState
*, char *, size_t);
1876 static int dump_write(int, const void *, size_t);
1877 static int write_note(struct memelfnote
*, int);
1878 static int write_note_info(struct elf_note_info
*, int);
1881 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
1883 prstatus
->pr_info
.si_signo
= tswapl(prstatus
->pr_info
.si_signo
);
1884 prstatus
->pr_info
.si_code
= tswapl(prstatus
->pr_info
.si_code
);
1885 prstatus
->pr_info
.si_errno
= tswapl(prstatus
->pr_info
.si_errno
);
1886 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
1887 prstatus
->pr_sigpend
= tswapl(prstatus
->pr_sigpend
);
1888 prstatus
->pr_sighold
= tswapl(prstatus
->pr_sighold
);
1889 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
1890 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
1891 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
1892 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
1893 /* cpu times are not filled, so we skip them */
1894 /* regs should be in correct format already */
1895 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
1898 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
1900 psinfo
->pr_flag
= tswapl(psinfo
->pr_flag
);
1901 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
1902 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
1903 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
1904 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
1905 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
1906 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
1909 static void bswap_note(struct elf_note
*en
)
1911 bswap32s(&en
->n_namesz
);
1912 bswap32s(&en
->n_descsz
);
1913 bswap32s(&en
->n_type
);
1916 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
1917 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
1918 static inline void bswap_note(struct elf_note
*en
) { }
1919 #endif /* BSWAP_NEEDED */
1922 * Minimal support for linux memory regions. These are needed
1923 * when we are finding out what memory exactly belongs to
1924 * emulated process. No locks needed here, as long as
1925 * thread that received the signal is stopped.
1928 static struct mm_struct
*vma_init(void)
1930 struct mm_struct
*mm
;
1932 if ((mm
= qemu_malloc(sizeof (*mm
))) == NULL
)
1936 QTAILQ_INIT(&mm
->mm_mmap
);
1941 static void vma_delete(struct mm_struct
*mm
)
1943 struct vm_area_struct
*vma
;
1945 while ((vma
= vma_first(mm
)) != NULL
) {
1946 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
1952 static int vma_add_mapping(struct mm_struct
*mm
, abi_ulong start
,
1953 abi_ulong end
, abi_ulong flags
)
1955 struct vm_area_struct
*vma
;
1957 if ((vma
= qemu_mallocz(sizeof (*vma
))) == NULL
)
1960 vma
->vma_start
= start
;
1962 vma
->vma_flags
= flags
;
1964 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
1970 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
1972 return (QTAILQ_FIRST(&mm
->mm_mmap
));
1975 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
1977 return (QTAILQ_NEXT(vma
, vma_link
));
1980 static int vma_get_mapping_count(const struct mm_struct
*mm
)
1982 return (mm
->mm_count
);
1986 * Calculate file (dump) size of given memory region.
1988 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
1990 /* if we cannot even read the first page, skip it */
1991 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
1995 * Usually we don't dump executable pages as they contain
1996 * non-writable code that debugger can read directly from
1997 * target library etc. However, thread stacks are marked
1998 * also executable so we read in first page of given region
1999 * and check whether it contains elf header. If there is
2000 * no elf header, we dump it.
2002 if (vma
->vma_flags
& PROT_EXEC
) {
2003 char page
[TARGET_PAGE_SIZE
];
2005 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2006 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2007 (page
[EI_MAG1
] == ELFMAG1
) &&
2008 (page
[EI_MAG2
] == ELFMAG2
) &&
2009 (page
[EI_MAG3
] == ELFMAG3
)) {
2011 * Mappings are possibly from ELF binary. Don't dump
2018 return (vma
->vma_end
- vma
->vma_start
);
2021 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
2022 unsigned long flags
)
2024 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2026 vma_add_mapping(mm
, start
, end
, flags
);
2030 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2031 unsigned int sz
, void *data
)
2033 unsigned int namesz
;
2035 namesz
= strlen(name
) + 1;
2037 note
->namesz
= namesz
;
2038 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2041 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
2046 * We calculate rounded up note size here as specified by
2049 note
->notesz
= sizeof (struct elf_note
) +
2050 note
->namesz_rounded
+ note
->datasz_rounded
;
2053 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2056 (void) memset(elf
, 0, sizeof(*elf
));
2058 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2059 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2060 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2061 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2062 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2064 elf
->e_type
= ET_CORE
;
2065 elf
->e_machine
= machine
;
2066 elf
->e_version
= EV_CURRENT
;
2067 elf
->e_phoff
= sizeof(struct elfhdr
);
2068 elf
->e_flags
= flags
;
2069 elf
->e_ehsize
= sizeof(struct elfhdr
);
2070 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2071 elf
->e_phnum
= segs
;
2076 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2078 phdr
->p_type
= PT_NOTE
;
2079 phdr
->p_offset
= offset
;
2082 phdr
->p_filesz
= sz
;
2087 bswap_phdr(phdr
, 1);
2090 static size_t note_size(const struct memelfnote
*note
)
2092 return (note
->notesz
);
2095 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
2096 const TaskState
*ts
, int signr
)
2098 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2099 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2100 prstatus
->pr_pid
= ts
->ts_tid
;
2101 prstatus
->pr_ppid
= getppid();
2102 prstatus
->pr_pgrp
= getpgrp();
2103 prstatus
->pr_sid
= getsid(0);
2105 bswap_prstatus(prstatus
);
2108 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2110 char *filename
, *base_filename
;
2111 unsigned int i
, len
;
2113 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2115 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2116 if (len
>= ELF_PRARGSZ
)
2117 len
= ELF_PRARGSZ
- 1;
2118 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2120 for (i
= 0; i
< len
; i
++)
2121 if (psinfo
->pr_psargs
[i
] == 0)
2122 psinfo
->pr_psargs
[i
] = ' ';
2123 psinfo
->pr_psargs
[len
] = 0;
2125 psinfo
->pr_pid
= getpid();
2126 psinfo
->pr_ppid
= getppid();
2127 psinfo
->pr_pgrp
= getpgrp();
2128 psinfo
->pr_sid
= getsid(0);
2129 psinfo
->pr_uid
= getuid();
2130 psinfo
->pr_gid
= getgid();
2132 filename
= strdup(ts
->bprm
->filename
);
2133 base_filename
= strdup(basename(filename
));
2134 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2135 sizeof(psinfo
->pr_fname
));
2136 free(base_filename
);
2139 bswap_psinfo(psinfo
);
2143 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2145 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2146 elf_addr_t orig_auxv
= auxv
;
2152 * Auxiliary vector is stored in target process stack. It contains
2153 * {type, value} pairs that we need to dump into note. This is not
2154 * strictly necessary but we do it here for sake of completeness.
2157 /* find out lenght of the vector, AT_NULL is terminator */
2160 get_user_ual(val
, auxv
);
2162 auxv
+= 2 * sizeof (elf_addr_t
);
2163 } while (val
!= AT_NULL
);
2164 len
= i
* sizeof (elf_addr_t
);
2166 /* read in whole auxv vector and copy it to memelfnote */
2167 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2169 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2170 unlock_user(ptr
, auxv
, len
);
2175 * Constructs name of coredump file. We have following convention
2177 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2179 * Returns 0 in case of success, -1 otherwise (errno is set).
2181 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2185 char *filename
= NULL
;
2186 char *base_filename
= NULL
;
2190 assert(bufsize
>= PATH_MAX
);
2192 if (gettimeofday(&tv
, NULL
) < 0) {
2193 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2198 filename
= strdup(ts
->bprm
->filename
);
2199 base_filename
= strdup(basename(filename
));
2200 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2201 localtime_r(&tv
.tv_sec
, &tm
));
2202 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2203 base_filename
, timestamp
, (int)getpid());
2204 free(base_filename
);
2210 static int dump_write(int fd
, const void *ptr
, size_t size
)
2212 const char *bufp
= (const char *)ptr
;
2213 ssize_t bytes_written
, bytes_left
;
2214 struct rlimit dumpsize
;
2218 getrlimit(RLIMIT_CORE
, &dumpsize
);
2219 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2220 if (errno
== ESPIPE
) { /* not a seekable stream */
2226 if (dumpsize
.rlim_cur
<= pos
) {
2228 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2231 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2232 bytes_left
= limit_left
>= size
? size
: limit_left
;
2237 * In normal conditions, single write(2) should do but
2238 * in case of socket etc. this mechanism is more portable.
2241 bytes_written
= write(fd
, bufp
, bytes_left
);
2242 if (bytes_written
< 0) {
2246 } else if (bytes_written
== 0) { /* eof */
2249 bufp
+= bytes_written
;
2250 bytes_left
-= bytes_written
;
2251 } while (bytes_left
> 0);
2256 static int write_note(struct memelfnote
*men
, int fd
)
2260 en
.n_namesz
= men
->namesz
;
2261 en
.n_type
= men
->type
;
2262 en
.n_descsz
= men
->datasz
;
2266 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
2268 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
2270 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
2276 static void fill_thread_info(struct elf_note_info
*info
, const CPUState
*env
)
2278 TaskState
*ts
= (TaskState
*)env
->opaque
;
2279 struct elf_thread_status
*ets
;
2281 ets
= qemu_mallocz(sizeof (*ets
));
2282 ets
->num_notes
= 1; /* only prstatus is dumped */
2283 fill_prstatus(&ets
->prstatus
, ts
, 0);
2284 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
2285 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
2288 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
2290 info
->notes_size
+= note_size(&ets
->notes
[0]);
2293 static int fill_note_info(struct elf_note_info
*info
,
2294 long signr
, const CPUState
*env
)
2297 CPUState
*cpu
= NULL
;
2298 TaskState
*ts
= (TaskState
*)env
->opaque
;
2301 (void) memset(info
, 0, sizeof (*info
));
2303 QTAILQ_INIT(&info
->thread_list
);
2305 info
->notes
= qemu_mallocz(NUMNOTES
* sizeof (struct memelfnote
));
2306 if (info
->notes
== NULL
)
2308 info
->prstatus
= qemu_mallocz(sizeof (*info
->prstatus
));
2309 if (info
->prstatus
== NULL
)
2311 info
->psinfo
= qemu_mallocz(sizeof (*info
->psinfo
));
2312 if (info
->prstatus
== NULL
)
2316 * First fill in status (and registers) of current thread
2317 * including process info & aux vector.
2319 fill_prstatus(info
->prstatus
, ts
, signr
);
2320 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
2321 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
2322 sizeof (*info
->prstatus
), info
->prstatus
);
2323 fill_psinfo(info
->psinfo
, ts
);
2324 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
2325 sizeof (*info
->psinfo
), info
->psinfo
);
2326 fill_auxv_note(&info
->notes
[2], ts
);
2329 info
->notes_size
= 0;
2330 for (i
= 0; i
< info
->numnote
; i
++)
2331 info
->notes_size
+= note_size(&info
->notes
[i
]);
2333 /* read and fill status of all threads */
2335 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
2336 if (cpu
== thread_env
)
2338 fill_thread_info(info
, cpu
);
2345 static void free_note_info(struct elf_note_info
*info
)
2347 struct elf_thread_status
*ets
;
2349 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
2350 ets
= QTAILQ_FIRST(&info
->thread_list
);
2351 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
2355 qemu_free(info
->prstatus
);
2356 qemu_free(info
->psinfo
);
2357 qemu_free(info
->notes
);
2360 static int write_note_info(struct elf_note_info
*info
, int fd
)
2362 struct elf_thread_status
*ets
;
2365 /* write prstatus, psinfo and auxv for current thread */
2366 for (i
= 0; i
< info
->numnote
; i
++)
2367 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
2370 /* write prstatus for each thread */
2371 for (ets
= info
->thread_list
.tqh_first
; ets
!= NULL
;
2372 ets
= ets
->ets_link
.tqe_next
) {
2373 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
2381 * Write out ELF coredump.
2383 * See documentation of ELF object file format in:
2384 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2386 * Coredump format in linux is following:
2388 * 0 +----------------------+ \
2389 * | ELF header | ET_CORE |
2390 * +----------------------+ |
2391 * | ELF program headers | |--- headers
2392 * | - NOTE section | |
2393 * | - PT_LOAD sections | |
2394 * +----------------------+ /
2399 * +----------------------+ <-- aligned to target page
2400 * | Process memory dump |
2405 * +----------------------+
2407 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2408 * NT_PRSINFO -> struct elf_prpsinfo
2409 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2411 * Format follows System V format as close as possible. Current
2412 * version limitations are as follows:
2413 * - no floating point registers are dumped
2415 * Function returns 0 in case of success, negative errno otherwise.
2417 * TODO: make this work also during runtime: it should be
2418 * possible to force coredump from running process and then
2419 * continue processing. For example qemu could set up SIGUSR2
2420 * handler (provided that target process haven't registered
2421 * handler for that) that does the dump when signal is received.
2423 static int elf_core_dump(int signr
, const CPUState
*env
)
2425 const TaskState
*ts
= (const TaskState
*)env
->opaque
;
2426 struct vm_area_struct
*vma
= NULL
;
2427 char corefile
[PATH_MAX
];
2428 struct elf_note_info info
;
2430 struct elf_phdr phdr
;
2431 struct rlimit dumpsize
;
2432 struct mm_struct
*mm
= NULL
;
2433 off_t offset
= 0, data_offset
= 0;
2438 getrlimit(RLIMIT_CORE
, &dumpsize
);
2439 if (dumpsize
.rlim_cur
== 0)
2442 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
2445 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
2446 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
2450 * Walk through target process memory mappings and
2451 * set up structure containing this information. After
2452 * this point vma_xxx functions can be used.
2454 if ((mm
= vma_init()) == NULL
)
2457 walk_memory_regions(mm
, vma_walker
);
2458 segs
= vma_get_mapping_count(mm
);
2461 * Construct valid coredump ELF header. We also
2462 * add one more segment for notes.
2464 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
2465 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
2468 /* fill in in-memory version of notes */
2469 if (fill_note_info(&info
, signr
, env
) < 0)
2472 offset
+= sizeof (elf
); /* elf header */
2473 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
2475 /* write out notes program header */
2476 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
2478 offset
+= info
.notes_size
;
2479 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
2483 * ELF specification wants data to start at page boundary so
2486 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2489 * Write program headers for memory regions mapped in
2490 * the target process.
2492 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2493 (void) memset(&phdr
, 0, sizeof (phdr
));
2495 phdr
.p_type
= PT_LOAD
;
2496 phdr
.p_offset
= offset
;
2497 phdr
.p_vaddr
= vma
->vma_start
;
2499 phdr
.p_filesz
= vma_dump_size(vma
);
2500 offset
+= phdr
.p_filesz
;
2501 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
2502 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
2503 if (vma
->vma_flags
& PROT_WRITE
)
2504 phdr
.p_flags
|= PF_W
;
2505 if (vma
->vma_flags
& PROT_EXEC
)
2506 phdr
.p_flags
|= PF_X
;
2507 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2509 bswap_phdr(&phdr
, 1);
2510 dump_write(fd
, &phdr
, sizeof (phdr
));
2514 * Next we write notes just after program headers. No
2515 * alignment needed here.
2517 if (write_note_info(&info
, fd
) < 0)
2520 /* align data to page boundary */
2521 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
2525 * Finally we can dump process memory into corefile as well.
2527 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2531 end
= vma
->vma_start
+ vma_dump_size(vma
);
2533 for (addr
= vma
->vma_start
; addr
< end
;
2534 addr
+= TARGET_PAGE_SIZE
) {
2535 char page
[TARGET_PAGE_SIZE
];
2539 * Read in page from target process memory and
2540 * write it to coredump file.
2542 error
= copy_from_user(page
, addr
, sizeof (page
));
2544 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
2549 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
2555 free_note_info(&info
);
2564 #endif /* USE_ELF_CORE_DUMP */
2566 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
2568 init_thread(regs
, infop
);