xen_disk: remove use of grant map/unmap
[qemu.git] / target / xtensa / helper.c
blob34844eead3586fce5ab593ac325a11aa63c3a6ec
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include "exec/exec-all.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #if !defined(CONFIG_USER_ONLY)
34 #include "hw/loader.h"
35 #endif
37 static struct XtensaConfigList *xtensa_cores;
39 static void xtensa_core_class_init(ObjectClass *oc, void *data)
41 CPUClass *cc = CPU_CLASS(oc);
42 XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
43 const XtensaConfig *config = data;
45 xcc->config = config;
47 /* Use num_core_regs to see only non-privileged registers in an unmodified
48 * gdb. Use num_regs to see all registers. gdb modification is required
49 * for that: reset bit 0 in the 'flags' field of the registers definitions
50 * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
52 cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
55 static void init_libisa(XtensaConfig *config)
57 unsigned i, j;
58 unsigned opcodes;
60 config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
61 assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
62 opcodes = xtensa_isa_num_opcodes(config->isa);
63 config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
65 for (i = 0; i < opcodes; ++i) {
66 const char *opc_name = xtensa_opcode_name(config->isa, i);
67 XtensaOpcodeOps *ops = NULL;
69 assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
70 if (!config->opcode_translators) {
71 ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
72 } else {
73 for (j = 0; !ops && config->opcode_translators[j]; ++j) {
74 ops = xtensa_find_opcode_ops(config->opcode_translators[j],
75 opc_name);
78 #ifdef DEBUG
79 if (ops == NULL) {
80 fprintf(stderr,
81 "opcode translator not found for %s's opcode '%s'\n",
82 config->name, opc_name);
84 #endif
85 config->opcode_ops[i] = ops;
89 void xtensa_finalize_config(XtensaConfig *config)
91 if (config->isa_internal) {
92 init_libisa(config);
95 if (config->gdb_regmap.num_regs == 0 ||
96 config->gdb_regmap.num_core_regs == 0) {
97 unsigned i;
98 unsigned n_regs = 0;
99 unsigned n_core_regs = 0;
101 for (i = 0; config->gdb_regmap.reg[i].targno >= 0; ++i) {
102 if (config->gdb_regmap.reg[i].type != 6) {
103 ++n_regs;
104 if ((config->gdb_regmap.reg[i].flags & 0x1) == 0) {
105 ++n_core_regs;
109 if (config->gdb_regmap.num_regs == 0) {
110 config->gdb_regmap.num_regs = n_regs;
112 if (config->gdb_regmap.num_core_regs == 0) {
113 config->gdb_regmap.num_core_regs = n_core_regs;
118 void xtensa_register_core(XtensaConfigList *node)
120 TypeInfo type = {
121 .parent = TYPE_XTENSA_CPU,
122 .class_init = xtensa_core_class_init,
123 .class_data = (void *)node->config,
126 node->next = xtensa_cores;
127 xtensa_cores = node;
128 type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
129 type_register(&type);
130 g_free((gpointer)type.name);
133 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
135 unsigned i;
137 for (i = 0; i < env->config->ndbreak; ++i) {
138 if (env->cpu_watchpoint[i] &&
139 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
140 return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
143 return 0;
146 void xtensa_breakpoint_handler(CPUState *cs)
148 XtensaCPU *cpu = XTENSA_CPU(cs);
149 CPUXtensaState *env = &cpu->env;
151 if (cs->watchpoint_hit) {
152 if (cs->watchpoint_hit->flags & BP_CPU) {
153 uint32_t cause;
155 cs->watchpoint_hit = NULL;
156 cause = check_hw_breakpoints(env);
157 if (cause) {
158 debug_exception_env(env, cause);
160 cpu_loop_exit_noexc(cs);
165 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
167 XtensaConfigList *core = xtensa_cores;
168 cpu_fprintf(f, "Available CPUs:\n");
169 for (; core; core = core->next) {
170 cpu_fprintf(f, " %s\n", core->config->name);
174 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
176 #ifndef CONFIG_USER_ONLY
177 XtensaCPU *cpu = XTENSA_CPU(cs);
178 uint32_t paddr;
179 uint32_t page_size;
180 unsigned access;
182 if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
183 &paddr, &page_size, &access) == 0) {
184 return paddr;
186 if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
187 &paddr, &page_size, &access) == 0) {
188 return paddr;
190 return ~0;
191 #else
192 return addr;
193 #endif
196 #ifndef CONFIG_USER_ONLY
198 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
200 if (xtensa_option_enabled(env->config,
201 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
202 return vector - env->config->vecbase + env->sregs[VECBASE];
203 } else {
204 return vector;
209 * Handle penging IRQ.
210 * For the high priority interrupt jump to the corresponding interrupt vector.
211 * For the level-1 interrupt convert it to either user, kernel or double
212 * exception with the 'level-1 interrupt' exception cause.
214 static void handle_interrupt(CPUXtensaState *env)
216 int level = env->pending_irq_level;
218 if (level > xtensa_get_cintlevel(env) &&
219 level <= env->config->nlevel &&
220 (env->config->level_mask[level] &
221 env->sregs[INTSET] &
222 env->sregs[INTENABLE])) {
223 CPUState *cs = CPU(xtensa_env_get_cpu(env));
225 if (level > 1) {
226 env->sregs[EPC1 + level - 1] = env->pc;
227 env->sregs[EPS2 + level - 2] = env->sregs[PS];
228 env->sregs[PS] =
229 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
230 env->pc = relocated_vector(env,
231 env->config->interrupt_vector[level]);
232 } else {
233 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
235 if (env->sregs[PS] & PS_EXCM) {
236 if (env->config->ndepc) {
237 env->sregs[DEPC] = env->pc;
238 } else {
239 env->sregs[EPC1] = env->pc;
241 cs->exception_index = EXC_DOUBLE;
242 } else {
243 env->sregs[EPC1] = env->pc;
244 cs->exception_index =
245 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
247 env->sregs[PS] |= PS_EXCM;
249 env->exception_taken = 1;
253 /* Called from cpu_handle_interrupt with BQL held */
254 void xtensa_cpu_do_interrupt(CPUState *cs)
256 XtensaCPU *cpu = XTENSA_CPU(cs);
257 CPUXtensaState *env = &cpu->env;
259 if (cs->exception_index == EXC_IRQ) {
260 qemu_log_mask(CPU_LOG_INT,
261 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
262 "pc = %08x, a0 = %08x, ps = %08x, "
263 "intset = %08x, intenable = %08x, "
264 "ccount = %08x\n",
265 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
266 env->pc, env->regs[0], env->sregs[PS],
267 env->sregs[INTSET], env->sregs[INTENABLE],
268 env->sregs[CCOUNT]);
269 handle_interrupt(env);
272 switch (cs->exception_index) {
273 case EXC_WINDOW_OVERFLOW4:
274 case EXC_WINDOW_UNDERFLOW4:
275 case EXC_WINDOW_OVERFLOW8:
276 case EXC_WINDOW_UNDERFLOW8:
277 case EXC_WINDOW_OVERFLOW12:
278 case EXC_WINDOW_UNDERFLOW12:
279 case EXC_KERNEL:
280 case EXC_USER:
281 case EXC_DOUBLE:
282 case EXC_DEBUG:
283 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
284 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
285 __func__, cs->exception_index,
286 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
287 if (env->config->exception_vector[cs->exception_index]) {
288 env->pc = relocated_vector(env,
289 env->config->exception_vector[cs->exception_index]);
290 env->exception_taken = 1;
291 } else {
292 qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
293 __func__, env->pc, cs->exception_index);
295 break;
297 case EXC_IRQ:
298 break;
300 default:
301 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
302 __func__, env->pc, cs->exception_index);
303 break;
305 check_interrupts(env);
307 #else
308 void xtensa_cpu_do_interrupt(CPUState *cs)
311 #endif
313 bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
315 if (interrupt_request & CPU_INTERRUPT_HARD) {
316 cs->exception_index = EXC_IRQ;
317 xtensa_cpu_do_interrupt(cs);
318 return true;
320 return false;
323 #ifdef CONFIG_USER_ONLY
325 int xtensa_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw,
326 int mmu_idx)
328 XtensaCPU *cpu = XTENSA_CPU(cs);
329 CPUXtensaState *env = &cpu->env;
331 qemu_log_mask(CPU_LOG_INT,
332 "%s: rw = %d, address = 0x%08" VADDR_PRIx ", size = %d\n",
333 __func__, rw, address, size);
334 env->sregs[EXCVADDR] = address;
335 env->sregs[EXCCAUSE] = rw ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE;
336 cs->exception_index = EXC_USER;
337 return 1;
340 #else
342 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
343 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
345 unsigned wi, ei;
347 for (wi = 0; wi < tlb->nways; ++wi) {
348 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
349 entry[wi][ei].asid = 0;
350 entry[wi][ei].variable = true;
355 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
356 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
358 if (!tlb->varway56) {
359 static const xtensa_tlb_entry way5[] = {
361 .vaddr = 0xd0000000,
362 .paddr = 0,
363 .asid = 1,
364 .attr = 7,
365 .variable = false,
366 }, {
367 .vaddr = 0xd8000000,
368 .paddr = 0,
369 .asid = 1,
370 .attr = 3,
371 .variable = false,
374 static const xtensa_tlb_entry way6[] = {
376 .vaddr = 0xe0000000,
377 .paddr = 0xf0000000,
378 .asid = 1,
379 .attr = 7,
380 .variable = false,
381 }, {
382 .vaddr = 0xf0000000,
383 .paddr = 0xf0000000,
384 .asid = 1,
385 .attr = 3,
386 .variable = false,
389 memcpy(entry[5], way5, sizeof(way5));
390 memcpy(entry[6], way6, sizeof(way6));
391 } else {
392 uint32_t ei;
393 for (ei = 0; ei < 8; ++ei) {
394 entry[6][ei].vaddr = ei << 29;
395 entry[6][ei].paddr = ei << 29;
396 entry[6][ei].asid = 1;
397 entry[6][ei].attr = 3;
402 static void reset_tlb_region_way0(CPUXtensaState *env,
403 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
405 unsigned ei;
407 for (ei = 0; ei < 8; ++ei) {
408 entry[0][ei].vaddr = ei << 29;
409 entry[0][ei].paddr = ei << 29;
410 entry[0][ei].asid = 1;
411 entry[0][ei].attr = 2;
412 entry[0][ei].variable = true;
416 void reset_mmu(CPUXtensaState *env)
418 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
419 env->sregs[RASID] = 0x04030201;
420 env->sregs[ITLBCFG] = 0;
421 env->sregs[DTLBCFG] = 0;
422 env->autorefill_idx = 0;
423 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
424 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
425 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
426 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
427 } else {
428 reset_tlb_region_way0(env, env->itlb);
429 reset_tlb_region_way0(env, env->dtlb);
433 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
435 unsigned i;
436 for (i = 0; i < 4; ++i) {
437 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
438 return i;
441 return 0xff;
445 * Lookup xtensa TLB for the given virtual address.
446 * See ISA, 4.6.2.2
448 * \param pwi: [out] way index
449 * \param pei: [out] entry index
450 * \param pring: [out] access ring
451 * \return 0 if ok, exception cause code otherwise
453 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
454 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
456 const xtensa_tlb *tlb = dtlb ?
457 &env->config->dtlb : &env->config->itlb;
458 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
459 env->dtlb : env->itlb;
461 int nhits = 0;
462 unsigned wi;
464 for (wi = 0; wi < tlb->nways; ++wi) {
465 uint32_t vpn;
466 uint32_t ei;
467 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
468 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
469 unsigned ring = get_ring(env, entry[wi][ei].asid);
470 if (ring < 4) {
471 if (++nhits > 1) {
472 return dtlb ?
473 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
474 INST_TLB_MULTI_HIT_CAUSE;
476 *pwi = wi;
477 *pei = ei;
478 *pring = ring;
482 return nhits ? 0 :
483 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
487 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
488 * See ISA, 4.6.5.10
490 static unsigned mmu_attr_to_access(uint32_t attr)
492 unsigned access = 0;
494 if (attr < 12) {
495 access |= PAGE_READ;
496 if (attr & 0x1) {
497 access |= PAGE_EXEC;
499 if (attr & 0x2) {
500 access |= PAGE_WRITE;
503 switch (attr & 0xc) {
504 case 0:
505 access |= PAGE_CACHE_BYPASS;
506 break;
508 case 4:
509 access |= PAGE_CACHE_WB;
510 break;
512 case 8:
513 access |= PAGE_CACHE_WT;
514 break;
516 } else if (attr == 13) {
517 access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
519 return access;
523 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
524 * See ISA, 4.6.3.3
526 static unsigned region_attr_to_access(uint32_t attr)
528 static const unsigned access[16] = {
529 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
530 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
531 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
532 [3] = PAGE_EXEC | PAGE_CACHE_WB,
533 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
534 [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
535 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
538 return access[attr & 0xf];
542 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
543 * See ISA, A.2.14 The Cache Attribute Register
545 static unsigned cacheattr_attr_to_access(uint32_t attr)
547 static const unsigned access[16] = {
548 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
549 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
550 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
551 [3] = PAGE_EXEC | PAGE_CACHE_WB,
552 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
553 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
556 return access[attr & 0xf];
559 static bool is_access_granted(unsigned access, int is_write)
561 switch (is_write) {
562 case 0:
563 return access & PAGE_READ;
565 case 1:
566 return access & PAGE_WRITE;
568 case 2:
569 return access & PAGE_EXEC;
571 default:
572 return 0;
576 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
578 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
579 uint32_t vaddr, int is_write, int mmu_idx,
580 uint32_t *paddr, uint32_t *page_size, unsigned *access,
581 bool may_lookup_pt)
583 bool dtlb = is_write != 2;
584 uint32_t wi;
585 uint32_t ei;
586 uint8_t ring;
587 uint32_t vpn;
588 uint32_t pte;
589 const xtensa_tlb_entry *entry = NULL;
590 xtensa_tlb_entry tmp_entry;
591 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
593 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
594 may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
595 ring = (pte >> 4) & 0x3;
596 wi = 0;
597 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
599 if (update_tlb) {
600 wi = ++env->autorefill_idx & 0x3;
601 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
602 env->sregs[EXCVADDR] = vaddr;
603 qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
604 __func__, vaddr, vpn, pte);
605 } else {
606 xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
607 entry = &tmp_entry;
609 ret = 0;
611 if (ret != 0) {
612 return ret;
615 if (entry == NULL) {
616 entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
619 if (ring < mmu_idx) {
620 return dtlb ?
621 LOAD_STORE_PRIVILEGE_CAUSE :
622 INST_FETCH_PRIVILEGE_CAUSE;
625 *access = mmu_attr_to_access(entry->attr) &
626 ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
627 if (!is_access_granted(*access, is_write)) {
628 return dtlb ?
629 (is_write ?
630 STORE_PROHIBITED_CAUSE :
631 LOAD_PROHIBITED_CAUSE) :
632 INST_FETCH_PROHIBITED_CAUSE;
635 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
636 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
638 return 0;
641 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
643 CPUState *cs = CPU(xtensa_env_get_cpu(env));
644 uint32_t paddr;
645 uint32_t page_size;
646 unsigned access;
647 uint32_t pt_vaddr =
648 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
649 int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
650 &paddr, &page_size, &access, false);
652 qemu_log_mask(CPU_LOG_MMU, "%s: trying autorefill(%08x) -> %08x\n",
653 __func__, vaddr, ret ? ~0 : paddr);
655 if (ret == 0) {
656 *pte = ldl_phys(cs->as, paddr);
658 return ret;
661 static int get_physical_addr_region(CPUXtensaState *env,
662 uint32_t vaddr, int is_write, int mmu_idx,
663 uint32_t *paddr, uint32_t *page_size, unsigned *access)
665 bool dtlb = is_write != 2;
666 uint32_t wi = 0;
667 uint32_t ei = (vaddr >> 29) & 0x7;
668 const xtensa_tlb_entry *entry =
669 xtensa_tlb_get_entry(env, dtlb, wi, ei);
671 *access = region_attr_to_access(entry->attr);
672 if (!is_access_granted(*access, is_write)) {
673 return dtlb ?
674 (is_write ?
675 STORE_PROHIBITED_CAUSE :
676 LOAD_PROHIBITED_CAUSE) :
677 INST_FETCH_PROHIBITED_CAUSE;
680 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
681 *page_size = ~REGION_PAGE_MASK + 1;
683 return 0;
687 * Convert virtual address to physical addr.
688 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
690 * \return 0 if ok, exception cause code otherwise
692 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
693 uint32_t vaddr, int is_write, int mmu_idx,
694 uint32_t *paddr, uint32_t *page_size, unsigned *access)
696 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
697 return get_physical_addr_mmu(env, update_tlb,
698 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
699 } else if (xtensa_option_bits_enabled(env->config,
700 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
701 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
702 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
703 paddr, page_size, access);
704 } else {
705 *paddr = vaddr;
706 *page_size = TARGET_PAGE_SIZE;
707 *access = cacheattr_attr_to_access(
708 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
709 return 0;
713 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
714 CPUXtensaState *env, bool dtlb)
716 unsigned wi, ei;
717 const xtensa_tlb *conf =
718 dtlb ? &env->config->dtlb : &env->config->itlb;
719 unsigned (*attr_to_access)(uint32_t) =
720 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
721 mmu_attr_to_access : region_attr_to_access;
723 for (wi = 0; wi < conf->nways; ++wi) {
724 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
725 const char *sz_text;
726 bool print_header = true;
728 if (sz >= 0x100000) {
729 sz >>= 20;
730 sz_text = "MB";
731 } else {
732 sz >>= 10;
733 sz_text = "KB";
736 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
737 const xtensa_tlb_entry *entry =
738 xtensa_tlb_get_entry(env, dtlb, wi, ei);
740 if (entry->asid) {
741 static const char * const cache_text[8] = {
742 [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
743 [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
744 [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
745 [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
747 unsigned access = attr_to_access(entry->attr);
748 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
749 PAGE_CACHE_SHIFT;
751 if (print_header) {
752 print_header = false;
753 cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
754 cpu_fprintf(f,
755 "\tVaddr Paddr ASID Attr RWX Cache\n"
756 "\t---------- ---------- ---- ---- --- -------\n");
758 cpu_fprintf(f,
759 "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
760 entry->vaddr,
761 entry->paddr,
762 entry->asid,
763 entry->attr,
764 (access & PAGE_READ) ? 'R' : '-',
765 (access & PAGE_WRITE) ? 'W' : '-',
766 (access & PAGE_EXEC) ? 'X' : '-',
767 cache_text[cache_idx] ? cache_text[cache_idx] :
768 "Invalid");
774 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
776 if (xtensa_option_bits_enabled(env->config,
777 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
778 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
779 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
781 cpu_fprintf(f, "ITLB:\n");
782 dump_tlb(f, cpu_fprintf, env, false);
783 cpu_fprintf(f, "\nDTLB:\n");
784 dump_tlb(f, cpu_fprintf, env, true);
785 } else {
786 cpu_fprintf(f, "No TLB for this CPU core\n");
790 void xtensa_runstall(CPUXtensaState *env, bool runstall)
792 CPUState *cpu = CPU(xtensa_env_get_cpu(env));
794 env->runstall = runstall;
795 cpu->halted = runstall;
796 if (runstall) {
797 cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
798 } else {
799 cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
802 #endif