qdev: Separate USB product description from qdev name
[qemu.git] / gdbstub.c
blob5320b1c14102a79980396901530fc5751cecf5e8
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
41 #include "kvm.h"
44 enum {
45 GDB_SIGNAL_0 = 0,
46 GDB_SIGNAL_INT = 2,
47 GDB_SIGNAL_TRAP = 5,
48 GDB_SIGNAL_UNKNOWN = 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table[] = {
60 TARGET_SIGHUP,
61 TARGET_SIGINT,
62 TARGET_SIGQUIT,
63 TARGET_SIGILL,
64 TARGET_SIGTRAP,
65 TARGET_SIGABRT,
66 -1, /* SIGEMT */
67 TARGET_SIGFPE,
68 TARGET_SIGKILL,
69 TARGET_SIGBUS,
70 TARGET_SIGSEGV,
71 TARGET_SIGSYS,
72 TARGET_SIGPIPE,
73 TARGET_SIGALRM,
74 TARGET_SIGTERM,
75 TARGET_SIGURG,
76 TARGET_SIGSTOP,
77 TARGET_SIGTSTP,
78 TARGET_SIGCONT,
79 TARGET_SIGCHLD,
80 TARGET_SIGTTIN,
81 TARGET_SIGTTOU,
82 TARGET_SIGIO,
83 TARGET_SIGXCPU,
84 TARGET_SIGXFSZ,
85 TARGET_SIGVTALRM,
86 TARGET_SIGPROF,
87 TARGET_SIGWINCH,
88 -1, /* SIGLOST */
89 TARGET_SIGUSR1,
90 TARGET_SIGUSR2,
91 #ifdef TARGET_SIGPWR
92 TARGET_SIGPWR,
93 #else
94 -1,
95 #endif
96 -1, /* SIGPOLL */
97 -1,
98 -1,
99 -1,
108 #ifdef __SIGRTMIN
109 __SIGRTMIN + 1,
110 __SIGRTMIN + 2,
111 __SIGRTMIN + 3,
112 __SIGRTMIN + 4,
113 __SIGRTMIN + 5,
114 __SIGRTMIN + 6,
115 __SIGRTMIN + 7,
116 __SIGRTMIN + 8,
117 __SIGRTMIN + 9,
118 __SIGRTMIN + 10,
119 __SIGRTMIN + 11,
120 __SIGRTMIN + 12,
121 __SIGRTMIN + 13,
122 __SIGRTMIN + 14,
123 __SIGRTMIN + 15,
124 __SIGRTMIN + 16,
125 __SIGRTMIN + 17,
126 __SIGRTMIN + 18,
127 __SIGRTMIN + 19,
128 __SIGRTMIN + 20,
129 __SIGRTMIN + 21,
130 __SIGRTMIN + 22,
131 __SIGRTMIN + 23,
132 __SIGRTMIN + 24,
133 __SIGRTMIN + 25,
134 __SIGRTMIN + 26,
135 __SIGRTMIN + 27,
136 __SIGRTMIN + 28,
137 __SIGRTMIN + 29,
138 __SIGRTMIN + 30,
139 __SIGRTMIN + 31,
140 -1, /* SIGCANCEL */
141 __SIGRTMIN,
142 __SIGRTMIN + 32,
143 __SIGRTMIN + 33,
144 __SIGRTMIN + 34,
145 __SIGRTMIN + 35,
146 __SIGRTMIN + 36,
147 __SIGRTMIN + 37,
148 __SIGRTMIN + 38,
149 __SIGRTMIN + 39,
150 __SIGRTMIN + 40,
151 __SIGRTMIN + 41,
152 __SIGRTMIN + 42,
153 __SIGRTMIN + 43,
154 __SIGRTMIN + 44,
155 __SIGRTMIN + 45,
156 __SIGRTMIN + 46,
157 __SIGRTMIN + 47,
158 __SIGRTMIN + 48,
159 __SIGRTMIN + 49,
160 __SIGRTMIN + 50,
161 __SIGRTMIN + 51,
162 __SIGRTMIN + 52,
163 __SIGRTMIN + 53,
164 __SIGRTMIN + 54,
165 __SIGRTMIN + 55,
166 __SIGRTMIN + 56,
167 __SIGRTMIN + 57,
168 __SIGRTMIN + 58,
169 __SIGRTMIN + 59,
170 __SIGRTMIN + 60,
171 __SIGRTMIN + 61,
172 __SIGRTMIN + 62,
173 __SIGRTMIN + 63,
174 __SIGRTMIN + 64,
175 __SIGRTMIN + 65,
176 __SIGRTMIN + 66,
177 __SIGRTMIN + 67,
178 __SIGRTMIN + 68,
179 __SIGRTMIN + 69,
180 __SIGRTMIN + 70,
181 __SIGRTMIN + 71,
182 __SIGRTMIN + 72,
183 __SIGRTMIN + 73,
184 __SIGRTMIN + 74,
185 __SIGRTMIN + 75,
186 __SIGRTMIN + 76,
187 __SIGRTMIN + 77,
188 __SIGRTMIN + 78,
189 __SIGRTMIN + 79,
190 __SIGRTMIN + 80,
191 __SIGRTMIN + 81,
192 __SIGRTMIN + 82,
193 __SIGRTMIN + 83,
194 __SIGRTMIN + 84,
195 __SIGRTMIN + 85,
196 __SIGRTMIN + 86,
197 __SIGRTMIN + 87,
198 __SIGRTMIN + 88,
199 __SIGRTMIN + 89,
200 __SIGRTMIN + 90,
201 __SIGRTMIN + 91,
202 __SIGRTMIN + 92,
203 __SIGRTMIN + 93,
204 __SIGRTMIN + 94,
205 __SIGRTMIN + 95,
206 -1, /* SIGINFO */
207 -1, /* UNKNOWN */
208 -1, /* DEFAULT */
215 #endif
217 #else
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
221 enum {
222 TARGET_SIGINT = 2,
223 TARGET_SIGTRAP = 5
226 static int gdb_signal_table[] = {
229 TARGET_SIGINT,
232 TARGET_SIGTRAP
234 #endif
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig)
239 int i;
240 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
241 if (gdb_signal_table[i] == sig)
242 return i;
243 return GDB_SIGNAL_UNKNOWN;
245 #endif
247 static int gdb_signal_to_target (int sig)
249 if (sig < ARRAY_SIZE (gdb_signal_table))
250 return gdb_signal_table[sig];
251 else
252 return -1;
255 //#define DEBUG_GDB
257 typedef struct GDBRegisterState {
258 int base_reg;
259 int num_regs;
260 gdb_reg_cb get_reg;
261 gdb_reg_cb set_reg;
262 const char *xml;
263 struct GDBRegisterState *next;
264 } GDBRegisterState;
266 enum RSState {
267 RS_INACTIVE,
268 RS_IDLE,
269 RS_GETLINE,
270 RS_CHKSUM1,
271 RS_CHKSUM2,
272 RS_SYSCALL,
274 typedef struct GDBState {
275 CPUState *c_cpu; /* current CPU for step/continue ops */
276 CPUState *g_cpu; /* current CPU for other ops */
277 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
278 enum RSState state; /* parsing state */
279 char line_buf[MAX_PACKET_LENGTH];
280 int line_buf_index;
281 int line_csum;
282 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
283 int last_packet_len;
284 int signal;
285 #ifdef CONFIG_USER_ONLY
286 int fd;
287 int running_state;
288 #else
289 CharDriverState *chr;
290 CharDriverState *mon_chr;
291 #endif
292 } GDBState;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
299 static GDBState *gdbserver_state;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd = -1;
310 static int get_char(GDBState *s)
312 uint8_t ch;
313 int ret;
315 for(;;) {
316 ret = recv(s->fd, &ch, 1, 0);
317 if (ret < 0) {
318 if (errno == ECONNRESET)
319 s->fd = -1;
320 if (errno != EINTR && errno != EAGAIN)
321 return -1;
322 } else if (ret == 0) {
323 close(s->fd);
324 s->fd = -1;
325 return -1;
326 } else {
327 break;
330 return ch;
332 #endif
334 static gdb_syscall_complete_cb gdb_current_syscall_cb;
336 static enum {
337 GDB_SYS_UNKNOWN,
338 GDB_SYS_ENABLED,
339 GDB_SYS_DISABLED,
340 } gdb_syscall_mode;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
347 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
348 : GDB_SYS_DISABLED);
350 return gdb_syscall_mode == GDB_SYS_ENABLED;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState *s)
356 #ifdef CONFIG_USER_ONLY
357 s->running_state = 1;
358 #else
359 vm_start();
360 #endif
363 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
365 #ifdef CONFIG_USER_ONLY
366 int ret;
368 while (len > 0) {
369 ret = send(s->fd, buf, len, 0);
370 if (ret < 0) {
371 if (errno != EINTR && errno != EAGAIN)
372 return;
373 } else {
374 buf += ret;
375 len -= ret;
378 #else
379 qemu_chr_write(s->chr, buf, len);
380 #endif
383 static inline int fromhex(int v)
385 if (v >= '0' && v <= '9')
386 return v - '0';
387 else if (v >= 'A' && v <= 'F')
388 return v - 'A' + 10;
389 else if (v >= 'a' && v <= 'f')
390 return v - 'a' + 10;
391 else
392 return 0;
395 static inline int tohex(int v)
397 if (v < 10)
398 return v + '0';
399 else
400 return v - 10 + 'a';
403 static void memtohex(char *buf, const uint8_t *mem, int len)
405 int i, c;
406 char *q;
407 q = buf;
408 for(i = 0; i < len; i++) {
409 c = mem[i];
410 *q++ = tohex(c >> 4);
411 *q++ = tohex(c & 0xf);
413 *q = '\0';
416 static void hextomem(uint8_t *mem, const char *buf, int len)
418 int i;
420 for(i = 0; i < len; i++) {
421 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
422 buf += 2;
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState *s, const char *buf, int len)
429 int csum, i;
430 uint8_t *p;
432 for(;;) {
433 p = s->last_packet;
434 *(p++) = '$';
435 memcpy(p, buf, len);
436 p += len;
437 csum = 0;
438 for(i = 0; i < len; i++) {
439 csum += buf[i];
441 *(p++) = '#';
442 *(p++) = tohex((csum >> 4) & 0xf);
443 *(p++) = tohex((csum) & 0xf);
445 s->last_packet_len = p - s->last_packet;
446 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
448 #ifdef CONFIG_USER_ONLY
449 i = get_char(s);
450 if (i < 0)
451 return -1;
452 if (i == '+')
453 break;
454 #else
455 break;
456 #endif
458 return 0;
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState *s, const char *buf)
464 #ifdef DEBUG_GDB
465 printf("reply='%s'\n", buf);
466 #endif
468 return put_packet_binary(s, buf, strlen(buf));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
477 return 1; \
478 } while(0)
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
481 return 2; \
482 } while(0)
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
485 return 4; \
486 } while(0)
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
489 return 8; \
490 } while(0)
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
495 #else
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
498 #endif
500 #if defined(TARGET_I386)
502 #ifdef TARGET_X86_64
503 static const int gpr_map[16] = {
504 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
505 8, 9, 10, 11, 12, 13, 14, 15
507 #else
508 #define gpr_map gpr_map32
509 #endif
510 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 #define IDX_IP_REG CPU_NB_REGS
515 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
516 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
517 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
518 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
519 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
521 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
523 if (n < CPU_NB_REGS) {
524 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
525 GET_REG64(env->regs[gpr_map[n]]);
526 } else if (n < CPU_NB_REGS32) {
527 GET_REG32(env->regs[gpr_map32[n]]);
529 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
530 #ifdef USE_X86LDOUBLE
531 /* FIXME: byteswap float values - after fixing fpregs layout. */
532 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
533 #else
534 memset(mem_buf, 0, 10);
535 #endif
536 return 10;
537 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
538 n -= IDX_XMM_REGS;
539 if (n < CPU_NB_REGS32 ||
540 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
541 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
542 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
543 return 16;
545 } else {
546 switch (n) {
547 case IDX_IP_REG:
548 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
549 GET_REG64(env->eip);
550 } else {
551 GET_REG32(env->eip);
553 case IDX_FLAGS_REG: GET_REG32(env->eflags);
555 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
556 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
557 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
558 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
559 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
560 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
562 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
563 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
564 (env->fpstt & 0x7) << 11);
565 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
566 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
567 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
568 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
569 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
570 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
572 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
575 return 0;
578 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
580 uint16_t selector = ldl_p(mem_buf);
582 if (selector != env->segs[sreg].selector) {
583 #if defined(CONFIG_USER_ONLY)
584 cpu_x86_load_seg(env, sreg, selector);
585 #else
586 unsigned int limit, flags;
587 target_ulong base;
589 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
590 base = selector << 4;
591 limit = 0xffff;
592 flags = 0;
593 } else {
594 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
595 return 4;
597 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
598 #endif
600 return 4;
603 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
605 uint32_t tmp;
607 if (n < CPU_NB_REGS) {
608 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
609 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
610 return sizeof(target_ulong);
611 } else if (n < CPU_NB_REGS32) {
612 n = gpr_map32[n];
613 env->regs[n] &= ~0xffffffffUL;
614 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
615 return 4;
617 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
618 #ifdef USE_X86LDOUBLE
619 /* FIXME: byteswap float values - after fixing fpregs layout. */
620 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
621 #endif
622 return 10;
623 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
624 n -= IDX_XMM_REGS;
625 if (n < CPU_NB_REGS32 ||
626 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
627 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
628 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
629 return 16;
631 } else {
632 switch (n) {
633 case IDX_IP_REG:
634 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
635 env->eip = ldq_p(mem_buf);
636 return 8;
637 } else {
638 env->eip &= ~0xffffffffUL;
639 env->eip |= (uint32_t)ldl_p(mem_buf);
640 return 4;
642 case IDX_FLAGS_REG:
643 env->eflags = ldl_p(mem_buf);
644 return 4;
646 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
647 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
648 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
649 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
650 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
651 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
653 case IDX_FP_REGS + 8:
654 env->fpuc = ldl_p(mem_buf);
655 return 4;
656 case IDX_FP_REGS + 9:
657 tmp = ldl_p(mem_buf);
658 env->fpstt = (tmp >> 11) & 7;
659 env->fpus = tmp & ~0x3800;
660 return 4;
661 case IDX_FP_REGS + 10: /* ftag */ return 4;
662 case IDX_FP_REGS + 11: /* fiseg */ return 4;
663 case IDX_FP_REGS + 12: /* fioff */ return 4;
664 case IDX_FP_REGS + 13: /* foseg */ return 4;
665 case IDX_FP_REGS + 14: /* fooff */ return 4;
666 case IDX_FP_REGS + 15: /* fop */ return 4;
668 case IDX_MXCSR_REG:
669 env->mxcsr = ldl_p(mem_buf);
670 return 4;
673 /* Unrecognised register. */
674 return 0;
677 #elif defined (TARGET_PPC)
679 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
680 expects whatever the target description contains. Due to a
681 historical mishap the FP registers appear in between core integer
682 regs and PC, MSR, CR, and so forth. We hack round this by giving the
683 FP regs zero size when talking to a newer gdb. */
684 #define NUM_CORE_REGS 71
685 #if defined (TARGET_PPC64)
686 #define GDB_CORE_XML "power64-core.xml"
687 #else
688 #define GDB_CORE_XML "power-core.xml"
689 #endif
691 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
693 if (n < 32) {
694 /* gprs */
695 GET_REGL(env->gpr[n]);
696 } else if (n < 64) {
697 /* fprs */
698 if (gdb_has_xml)
699 return 0;
700 stfq_p(mem_buf, env->fpr[n-32]);
701 return 8;
702 } else {
703 switch (n) {
704 case 64: GET_REGL(env->nip);
705 case 65: GET_REGL(env->msr);
706 case 66:
708 uint32_t cr = 0;
709 int i;
710 for (i = 0; i < 8; i++)
711 cr |= env->crf[i] << (32 - ((i + 1) * 4));
712 GET_REG32(cr);
714 case 67: GET_REGL(env->lr);
715 case 68: GET_REGL(env->ctr);
716 case 69: GET_REGL(env->xer);
717 case 70:
719 if (gdb_has_xml)
720 return 0;
721 GET_REG32(0); /* fpscr */
725 return 0;
728 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
730 if (n < 32) {
731 /* gprs */
732 env->gpr[n] = ldtul_p(mem_buf);
733 return sizeof(target_ulong);
734 } else if (n < 64) {
735 /* fprs */
736 if (gdb_has_xml)
737 return 0;
738 env->fpr[n-32] = ldfq_p(mem_buf);
739 return 8;
740 } else {
741 switch (n) {
742 case 64:
743 env->nip = ldtul_p(mem_buf);
744 return sizeof(target_ulong);
745 case 65:
746 ppc_store_msr(env, ldtul_p(mem_buf));
747 return sizeof(target_ulong);
748 case 66:
750 uint32_t cr = ldl_p(mem_buf);
751 int i;
752 for (i = 0; i < 8; i++)
753 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
754 return 4;
756 case 67:
757 env->lr = ldtul_p(mem_buf);
758 return sizeof(target_ulong);
759 case 68:
760 env->ctr = ldtul_p(mem_buf);
761 return sizeof(target_ulong);
762 case 69:
763 env->xer = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 70:
766 /* fpscr */
767 if (gdb_has_xml)
768 return 0;
769 return 4;
772 return 0;
775 #elif defined (TARGET_SPARC)
777 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
778 #define NUM_CORE_REGS 86
779 #else
780 #define NUM_CORE_REGS 72
781 #endif
783 #ifdef TARGET_ABI32
784 #define GET_REGA(val) GET_REG32(val)
785 #else
786 #define GET_REGA(val) GET_REGL(val)
787 #endif
789 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
791 if (n < 8) {
792 /* g0..g7 */
793 GET_REGA(env->gregs[n]);
795 if (n < 32) {
796 /* register window */
797 GET_REGA(env->regwptr[n - 8]);
799 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
800 if (n < 64) {
801 /* fprs */
802 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
804 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
805 switch (n) {
806 case 64: GET_REGA(env->y);
807 case 65: GET_REGA(GET_PSR(env));
808 case 66: GET_REGA(env->wim);
809 case 67: GET_REGA(env->tbr);
810 case 68: GET_REGA(env->pc);
811 case 69: GET_REGA(env->npc);
812 case 70: GET_REGA(env->fsr);
813 case 71: GET_REGA(0); /* csr */
814 default: GET_REGA(0);
816 #else
817 if (n < 64) {
818 /* f0-f31 */
819 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
821 if (n < 80) {
822 /* f32-f62 (double width, even numbers only) */
823 uint64_t val;
825 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
826 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
827 GET_REG64(val);
829 switch (n) {
830 case 80: GET_REGL(env->pc);
831 case 81: GET_REGL(env->npc);
832 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
833 ((env->asi & 0xff) << 24) |
834 ((env->pstate & 0xfff) << 8) |
835 GET_CWP64(env));
836 case 83: GET_REGL(env->fsr);
837 case 84: GET_REGL(env->fprs);
838 case 85: GET_REGL(env->y);
840 #endif
841 return 0;
844 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
846 #if defined(TARGET_ABI32)
847 abi_ulong tmp;
849 tmp = ldl_p(mem_buf);
850 #else
851 target_ulong tmp;
853 tmp = ldtul_p(mem_buf);
854 #endif
856 if (n < 8) {
857 /* g0..g7 */
858 env->gregs[n] = tmp;
859 } else if (n < 32) {
860 /* register window */
861 env->regwptr[n - 8] = tmp;
863 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
864 else if (n < 64) {
865 /* fprs */
866 *((uint32_t *)&env->fpr[n - 32]) = tmp;
867 } else {
868 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
869 switch (n) {
870 case 64: env->y = tmp; break;
871 case 65: PUT_PSR(env, tmp); break;
872 case 66: env->wim = tmp; break;
873 case 67: env->tbr = tmp; break;
874 case 68: env->pc = tmp; break;
875 case 69: env->npc = tmp; break;
876 case 70: env->fsr = tmp; break;
877 default: return 0;
880 return 4;
881 #else
882 else if (n < 64) {
883 /* f0-f31 */
884 env->fpr[n] = ldfl_p(mem_buf);
885 return 4;
886 } else if (n < 80) {
887 /* f32-f62 (double width, even numbers only) */
888 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
889 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
890 } else {
891 switch (n) {
892 case 80: env->pc = tmp; break;
893 case 81: env->npc = tmp; break;
894 case 82:
895 PUT_CCR(env, tmp >> 32);
896 env->asi = (tmp >> 24) & 0xff;
897 env->pstate = (tmp >> 8) & 0xfff;
898 PUT_CWP64(env, tmp & 0xff);
899 break;
900 case 83: env->fsr = tmp; break;
901 case 84: env->fprs = tmp; break;
902 case 85: env->y = tmp; break;
903 default: return 0;
906 return 8;
907 #endif
909 #elif defined (TARGET_ARM)
911 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
912 whatever the target description contains. Due to a historical mishap
913 the FPA registers appear in between core integer regs and the CPSR.
914 We hack round this by giving the FPA regs zero size when talking to a
915 newer gdb. */
916 #define NUM_CORE_REGS 26
917 #define GDB_CORE_XML "arm-core.xml"
919 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
921 if (n < 16) {
922 /* Core integer register. */
923 GET_REG32(env->regs[n]);
925 if (n < 24) {
926 /* FPA registers. */
927 if (gdb_has_xml)
928 return 0;
929 memset(mem_buf, 0, 12);
930 return 12;
932 switch (n) {
933 case 24:
934 /* FPA status register. */
935 if (gdb_has_xml)
936 return 0;
937 GET_REG32(0);
938 case 25:
939 /* CPSR */
940 GET_REG32(cpsr_read(env));
942 /* Unknown register. */
943 return 0;
946 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
948 uint32_t tmp;
950 tmp = ldl_p(mem_buf);
952 /* Mask out low bit of PC to workaround gdb bugs. This will probably
953 cause problems if we ever implement the Jazelle DBX extensions. */
954 if (n == 15)
955 tmp &= ~1;
957 if (n < 16) {
958 /* Core integer register. */
959 env->regs[n] = tmp;
960 return 4;
962 if (n < 24) { /* 16-23 */
963 /* FPA registers (ignored). */
964 if (gdb_has_xml)
965 return 0;
966 return 12;
968 switch (n) {
969 case 24:
970 /* FPA status register (ignored). */
971 if (gdb_has_xml)
972 return 0;
973 return 4;
974 case 25:
975 /* CPSR */
976 cpsr_write (env, tmp, 0xffffffff);
977 return 4;
979 /* Unknown register. */
980 return 0;
983 #elif defined (TARGET_M68K)
985 #define NUM_CORE_REGS 18
987 #define GDB_CORE_XML "cf-core.xml"
989 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
991 if (n < 8) {
992 /* D0-D7 */
993 GET_REG32(env->dregs[n]);
994 } else if (n < 16) {
995 /* A0-A7 */
996 GET_REG32(env->aregs[n - 8]);
997 } else {
998 switch (n) {
999 case 16: GET_REG32(env->sr);
1000 case 17: GET_REG32(env->pc);
1003 /* FP registers not included here because they vary between
1004 ColdFire and m68k. Use XML bits for these. */
1005 return 0;
1008 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1010 uint32_t tmp;
1012 tmp = ldl_p(mem_buf);
1014 if (n < 8) {
1015 /* D0-D7 */
1016 env->dregs[n] = tmp;
1017 } else if (n < 8) {
1018 /* A0-A7 */
1019 env->aregs[n - 8] = tmp;
1020 } else {
1021 switch (n) {
1022 case 16: env->sr = tmp; break;
1023 case 17: env->pc = tmp; break;
1024 default: return 0;
1027 return 4;
1029 #elif defined (TARGET_MIPS)
1031 #define NUM_CORE_REGS 73
1033 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1035 if (n < 32) {
1036 GET_REGL(env->active_tc.gpr[n]);
1038 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1039 if (n >= 38 && n < 70) {
1040 if (env->CP0_Status & (1 << CP0St_FR))
1041 GET_REGL(env->active_fpu.fpr[n - 38].d);
1042 else
1043 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1045 switch (n) {
1046 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1047 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1050 switch (n) {
1051 case 32: GET_REGL((int32_t)env->CP0_Status);
1052 case 33: GET_REGL(env->active_tc.LO[0]);
1053 case 34: GET_REGL(env->active_tc.HI[0]);
1054 case 35: GET_REGL(env->CP0_BadVAddr);
1055 case 36: GET_REGL((int32_t)env->CP0_Cause);
1056 case 37: GET_REGL(env->active_tc.PC);
1057 case 72: GET_REGL(0); /* fp */
1058 case 89: GET_REGL((int32_t)env->CP0_PRid);
1060 if (n >= 73 && n <= 88) {
1061 /* 16 embedded regs. */
1062 GET_REGL(0);
1065 return 0;
1068 /* convert MIPS rounding mode in FCR31 to IEEE library */
1069 static unsigned int ieee_rm[] =
1071 float_round_nearest_even,
1072 float_round_to_zero,
1073 float_round_up,
1074 float_round_down
1076 #define RESTORE_ROUNDING_MODE \
1077 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1079 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1081 target_ulong tmp;
1083 tmp = ldtul_p(mem_buf);
1085 if (n < 32) {
1086 env->active_tc.gpr[n] = tmp;
1087 return sizeof(target_ulong);
1089 if (env->CP0_Config1 & (1 << CP0C1_FP)
1090 && n >= 38 && n < 73) {
1091 if (n < 70) {
1092 if (env->CP0_Status & (1 << CP0St_FR))
1093 env->active_fpu.fpr[n - 38].d = tmp;
1094 else
1095 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1097 switch (n) {
1098 case 70:
1099 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1100 /* set rounding mode */
1101 RESTORE_ROUNDING_MODE;
1102 #ifndef CONFIG_SOFTFLOAT
1103 /* no floating point exception for native float */
1104 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1105 #endif
1106 break;
1107 case 71: env->active_fpu.fcr0 = tmp; break;
1109 return sizeof(target_ulong);
1111 switch (n) {
1112 case 32: env->CP0_Status = tmp; break;
1113 case 33: env->active_tc.LO[0] = tmp; break;
1114 case 34: env->active_tc.HI[0] = tmp; break;
1115 case 35: env->CP0_BadVAddr = tmp; break;
1116 case 36: env->CP0_Cause = tmp; break;
1117 case 37: env->active_tc.PC = tmp; break;
1118 case 72: /* fp, ignored */ break;
1119 default:
1120 if (n > 89)
1121 return 0;
1122 /* Other registers are readonly. Ignore writes. */
1123 break;
1126 return sizeof(target_ulong);
1128 #elif defined (TARGET_SH4)
1130 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1131 /* FIXME: We should use XML for this. */
1133 #define NUM_CORE_REGS 59
1135 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1137 if (n < 8) {
1138 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1139 GET_REGL(env->gregs[n + 16]);
1140 } else {
1141 GET_REGL(env->gregs[n]);
1143 } else if (n < 16) {
1144 GET_REGL(env->gregs[n - 8]);
1145 } else if (n >= 25 && n < 41) {
1146 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1147 } else if (n >= 43 && n < 51) {
1148 GET_REGL(env->gregs[n - 43]);
1149 } else if (n >= 51 && n < 59) {
1150 GET_REGL(env->gregs[n - (51 - 16)]);
1152 switch (n) {
1153 case 16: GET_REGL(env->pc);
1154 case 17: GET_REGL(env->pr);
1155 case 18: GET_REGL(env->gbr);
1156 case 19: GET_REGL(env->vbr);
1157 case 20: GET_REGL(env->mach);
1158 case 21: GET_REGL(env->macl);
1159 case 22: GET_REGL(env->sr);
1160 case 23: GET_REGL(env->fpul);
1161 case 24: GET_REGL(env->fpscr);
1162 case 41: GET_REGL(env->ssr);
1163 case 42: GET_REGL(env->spc);
1166 return 0;
1169 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1171 uint32_t tmp;
1173 tmp = ldl_p(mem_buf);
1175 if (n < 8) {
1176 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1177 env->gregs[n + 16] = tmp;
1178 } else {
1179 env->gregs[n] = tmp;
1181 return 4;
1182 } else if (n < 16) {
1183 env->gregs[n - 8] = tmp;
1184 return 4;
1185 } else if (n >= 25 && n < 41) {
1186 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1187 } else if (n >= 43 && n < 51) {
1188 env->gregs[n - 43] = tmp;
1189 return 4;
1190 } else if (n >= 51 && n < 59) {
1191 env->gregs[n - (51 - 16)] = tmp;
1192 return 4;
1194 switch (n) {
1195 case 16: env->pc = tmp;
1196 case 17: env->pr = tmp;
1197 case 18: env->gbr = tmp;
1198 case 19: env->vbr = tmp;
1199 case 20: env->mach = tmp;
1200 case 21: env->macl = tmp;
1201 case 22: env->sr = tmp;
1202 case 23: env->fpul = tmp;
1203 case 24: env->fpscr = tmp;
1204 case 41: env->ssr = tmp;
1205 case 42: env->spc = tmp;
1206 default: return 0;
1209 return 4;
1211 #elif defined (TARGET_MICROBLAZE)
1213 #define NUM_CORE_REGS (32 + 5)
1215 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1217 if (n < 32) {
1218 GET_REG32(env->regs[n]);
1219 } else {
1220 GET_REG32(env->sregs[n - 32]);
1222 return 0;
1225 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1227 uint32_t tmp;
1229 if (n > NUM_CORE_REGS)
1230 return 0;
1232 tmp = ldl_p(mem_buf);
1234 if (n < 32) {
1235 env->regs[n] = tmp;
1236 } else {
1237 env->sregs[n - 32] = tmp;
1239 return 4;
1241 #elif defined (TARGET_CRIS)
1243 #define NUM_CORE_REGS 49
1245 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1247 uint8_t srs;
1249 srs = env->pregs[PR_SRS];
1250 if (n < 16) {
1251 GET_REG32(env->regs[n]);
1254 if (n >= 21 && n < 32) {
1255 GET_REG32(env->pregs[n - 16]);
1257 if (n >= 33 && n < 49) {
1258 GET_REG32(env->sregs[srs][n - 33]);
1260 switch (n) {
1261 case 16: GET_REG8(env->pregs[0]);
1262 case 17: GET_REG8(env->pregs[1]);
1263 case 18: GET_REG32(env->pregs[2]);
1264 case 19: GET_REG8(srs);
1265 case 20: GET_REG16(env->pregs[4]);
1266 case 32: GET_REG32(env->pc);
1269 return 0;
1272 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1274 uint32_t tmp;
1276 if (n > 49)
1277 return 0;
1279 tmp = ldl_p(mem_buf);
1281 if (n < 16) {
1282 env->regs[n] = tmp;
1285 if (n >= 21 && n < 32) {
1286 env->pregs[n - 16] = tmp;
1289 /* FIXME: Should support function regs be writable? */
1290 switch (n) {
1291 case 16: return 1;
1292 case 17: return 1;
1293 case 18: env->pregs[PR_PID] = tmp; break;
1294 case 19: return 1;
1295 case 20: return 2;
1296 case 32: env->pc = tmp; break;
1299 return 4;
1301 #elif defined (TARGET_ALPHA)
1303 #define NUM_CORE_REGS 65
1305 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1307 if (n < 31) {
1308 GET_REGL(env->ir[n]);
1310 else if (n == 31) {
1311 GET_REGL(0);
1313 else if (n<63) {
1314 uint64_t val;
1316 val = *((uint64_t *)&env->fir[n-32]);
1317 GET_REGL(val);
1319 else if (n==63) {
1320 GET_REGL(env->fpcr);
1322 else if (n==64) {
1323 GET_REGL(env->pc);
1325 else {
1326 GET_REGL(0);
1329 return 0;
1332 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1334 target_ulong tmp;
1335 tmp = ldtul_p(mem_buf);
1337 if (n < 31) {
1338 env->ir[n] = tmp;
1341 if (n > 31 && n < 63) {
1342 env->fir[n - 32] = ldfl_p(mem_buf);
1345 if (n == 64 ) {
1346 env->pc=tmp;
1349 return 8;
1351 #elif defined (TARGET_S390X)
1353 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1355 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1357 switch (n) {
1358 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1359 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1360 case S390_R0_REGNUM ... S390_R15_REGNUM:
1361 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1362 case S390_A0_REGNUM ... S390_A15_REGNUM:
1363 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1364 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1365 case S390_F0_REGNUM ... S390_F15_REGNUM:
1366 /* XXX */
1367 break;
1368 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1369 case S390_CC_REGNUM: GET_REG32(env->cc); break;
1372 return 0;
1375 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1377 target_ulong tmpl;
1378 uint32_t tmp32;
1379 int r = 8;
1380 tmpl = ldtul_p(mem_buf);
1381 tmp32 = ldl_p(mem_buf);
1383 switch (n) {
1384 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1385 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1386 case S390_R0_REGNUM ... S390_R15_REGNUM:
1387 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1388 case S390_A0_REGNUM ... S390_A15_REGNUM:
1389 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1390 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1391 case S390_F0_REGNUM ... S390_F15_REGNUM:
1392 /* XXX */
1393 break;
1394 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1395 case S390_CC_REGNUM: env->cc = tmp32; r=4; break;
1398 return r;
1400 #else
1402 #define NUM_CORE_REGS 0
1404 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1406 return 0;
1409 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1411 return 0;
1414 #endif
1416 static int num_g_regs = NUM_CORE_REGS;
1418 #ifdef GDB_CORE_XML
1419 /* Encode data using the encoding for 'x' packets. */
1420 static int memtox(char *buf, const char *mem, int len)
1422 char *p = buf;
1423 char c;
1425 while (len--) {
1426 c = *(mem++);
1427 switch (c) {
1428 case '#': case '$': case '*': case '}':
1429 *(p++) = '}';
1430 *(p++) = c ^ 0x20;
1431 break;
1432 default:
1433 *(p++) = c;
1434 break;
1437 return p - buf;
1440 static const char *get_feature_xml(const char *p, const char **newp)
1442 extern const char *const xml_builtin[][2];
1443 size_t len;
1444 int i;
1445 const char *name;
1446 static char target_xml[1024];
1448 len = 0;
1449 while (p[len] && p[len] != ':')
1450 len++;
1451 *newp = p + len;
1453 name = NULL;
1454 if (strncmp(p, "target.xml", len) == 0) {
1455 /* Generate the XML description for this CPU. */
1456 if (!target_xml[0]) {
1457 GDBRegisterState *r;
1459 snprintf(target_xml, sizeof(target_xml),
1460 "<?xml version=\"1.0\"?>"
1461 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1462 "<target>"
1463 "<xi:include href=\"%s\"/>",
1464 GDB_CORE_XML);
1466 for (r = first_cpu->gdb_regs; r; r = r->next) {
1467 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1468 pstrcat(target_xml, sizeof(target_xml), r->xml);
1469 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1471 pstrcat(target_xml, sizeof(target_xml), "</target>");
1473 return target_xml;
1475 for (i = 0; ; i++) {
1476 name = xml_builtin[i][0];
1477 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1478 break;
1480 return name ? xml_builtin[i][1] : NULL;
1482 #endif
1484 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1486 GDBRegisterState *r;
1488 if (reg < NUM_CORE_REGS)
1489 return cpu_gdb_read_register(env, mem_buf, reg);
1491 for (r = env->gdb_regs; r; r = r->next) {
1492 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1493 return r->get_reg(env, mem_buf, reg - r->base_reg);
1496 return 0;
1499 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1501 GDBRegisterState *r;
1503 if (reg < NUM_CORE_REGS)
1504 return cpu_gdb_write_register(env, mem_buf, reg);
1506 for (r = env->gdb_regs; r; r = r->next) {
1507 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1508 return r->set_reg(env, mem_buf, reg - r->base_reg);
1511 return 0;
1514 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1515 specifies the first register number and these registers are included in
1516 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1517 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1520 void gdb_register_coprocessor(CPUState * env,
1521 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1522 int num_regs, const char *xml, int g_pos)
1524 GDBRegisterState *s;
1525 GDBRegisterState **p;
1526 static int last_reg = NUM_CORE_REGS;
1528 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1529 s->base_reg = last_reg;
1530 s->num_regs = num_regs;
1531 s->get_reg = get_reg;
1532 s->set_reg = set_reg;
1533 s->xml = xml;
1534 p = &env->gdb_regs;
1535 while (*p) {
1536 /* Check for duplicates. */
1537 if (strcmp((*p)->xml, xml) == 0)
1538 return;
1539 p = &(*p)->next;
1541 /* Add to end of list. */
1542 last_reg += num_regs;
1543 *p = s;
1544 if (g_pos) {
1545 if (g_pos != s->base_reg) {
1546 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1547 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1548 } else {
1549 num_g_regs = last_reg;
1554 #ifndef CONFIG_USER_ONLY
1555 static const int xlat_gdb_type[] = {
1556 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1557 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1558 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1560 #endif
1562 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1564 CPUState *env;
1565 int err = 0;
1567 if (kvm_enabled())
1568 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1570 switch (type) {
1571 case GDB_BREAKPOINT_SW:
1572 case GDB_BREAKPOINT_HW:
1573 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1574 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1575 if (err)
1576 break;
1578 return err;
1579 #ifndef CONFIG_USER_ONLY
1580 case GDB_WATCHPOINT_WRITE:
1581 case GDB_WATCHPOINT_READ:
1582 case GDB_WATCHPOINT_ACCESS:
1583 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1584 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1585 NULL);
1586 if (err)
1587 break;
1589 return err;
1590 #endif
1591 default:
1592 return -ENOSYS;
1596 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1598 CPUState *env;
1599 int err = 0;
1601 if (kvm_enabled())
1602 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1604 switch (type) {
1605 case GDB_BREAKPOINT_SW:
1606 case GDB_BREAKPOINT_HW:
1607 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1608 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1609 if (err)
1610 break;
1612 return err;
1613 #ifndef CONFIG_USER_ONLY
1614 case GDB_WATCHPOINT_WRITE:
1615 case GDB_WATCHPOINT_READ:
1616 case GDB_WATCHPOINT_ACCESS:
1617 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1618 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1619 if (err)
1620 break;
1622 return err;
1623 #endif
1624 default:
1625 return -ENOSYS;
1629 static void gdb_breakpoint_remove_all(void)
1631 CPUState *env;
1633 if (kvm_enabled()) {
1634 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1635 return;
1638 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1639 cpu_breakpoint_remove_all(env, BP_GDB);
1640 #ifndef CONFIG_USER_ONLY
1641 cpu_watchpoint_remove_all(env, BP_GDB);
1642 #endif
1646 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1648 #if defined(TARGET_I386)
1649 cpu_synchronize_state(s->c_cpu);
1650 s->c_cpu->eip = pc;
1651 #elif defined (TARGET_PPC)
1652 s->c_cpu->nip = pc;
1653 #elif defined (TARGET_SPARC)
1654 s->c_cpu->pc = pc;
1655 s->c_cpu->npc = pc + 4;
1656 #elif defined (TARGET_ARM)
1657 s->c_cpu->regs[15] = pc;
1658 #elif defined (TARGET_SH4)
1659 s->c_cpu->pc = pc;
1660 #elif defined (TARGET_MIPS)
1661 s->c_cpu->active_tc.PC = pc;
1662 #elif defined (TARGET_MICROBLAZE)
1663 s->c_cpu->sregs[SR_PC] = pc;
1664 #elif defined (TARGET_CRIS)
1665 s->c_cpu->pc = pc;
1666 #elif defined (TARGET_ALPHA)
1667 s->c_cpu->pc = pc;
1668 #elif defined (TARGET_S390X)
1669 cpu_synchronize_state(s->c_cpu);
1670 s->c_cpu->psw.addr = pc;
1671 #endif
1674 static inline int gdb_id(CPUState *env)
1676 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1677 return env->host_tid;
1678 #else
1679 return env->cpu_index + 1;
1680 #endif
1683 static CPUState *find_cpu(uint32_t thread_id)
1685 CPUState *env;
1687 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1688 if (gdb_id(env) == thread_id) {
1689 return env;
1693 return NULL;
1696 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1698 CPUState *env;
1699 const char *p;
1700 uint32_t thread;
1701 int ch, reg_size, type, res;
1702 char buf[MAX_PACKET_LENGTH];
1703 uint8_t mem_buf[MAX_PACKET_LENGTH];
1704 uint8_t *registers;
1705 target_ulong addr, len;
1707 #ifdef DEBUG_GDB
1708 printf("command='%s'\n", line_buf);
1709 #endif
1710 p = line_buf;
1711 ch = *p++;
1712 switch(ch) {
1713 case '?':
1714 /* TODO: Make this return the correct value for user-mode. */
1715 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1716 gdb_id(s->c_cpu));
1717 put_packet(s, buf);
1718 /* Remove all the breakpoints when this query is issued,
1719 * because gdb is doing and initial connect and the state
1720 * should be cleaned up.
1722 gdb_breakpoint_remove_all();
1723 break;
1724 case 'c':
1725 if (*p != '\0') {
1726 addr = strtoull(p, (char **)&p, 16);
1727 gdb_set_cpu_pc(s, addr);
1729 s->signal = 0;
1730 gdb_continue(s);
1731 return RS_IDLE;
1732 case 'C':
1733 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1734 if (s->signal == -1)
1735 s->signal = 0;
1736 gdb_continue(s);
1737 return RS_IDLE;
1738 case 'v':
1739 if (strncmp(p, "Cont", 4) == 0) {
1740 int res_signal, res_thread;
1742 p += 4;
1743 if (*p == '?') {
1744 put_packet(s, "vCont;c;C;s;S");
1745 break;
1747 res = 0;
1748 res_signal = 0;
1749 res_thread = 0;
1750 while (*p) {
1751 int action, signal;
1753 if (*p++ != ';') {
1754 res = 0;
1755 break;
1757 action = *p++;
1758 signal = 0;
1759 if (action == 'C' || action == 'S') {
1760 signal = strtoul(p, (char **)&p, 16);
1761 } else if (action != 'c' && action != 's') {
1762 res = 0;
1763 break;
1765 thread = 0;
1766 if (*p == ':') {
1767 thread = strtoull(p+1, (char **)&p, 16);
1769 action = tolower(action);
1770 if (res == 0 || (res == 'c' && action == 's')) {
1771 res = action;
1772 res_signal = signal;
1773 res_thread = thread;
1776 if (res) {
1777 if (res_thread != -1 && res_thread != 0) {
1778 env = find_cpu(res_thread);
1779 if (env == NULL) {
1780 put_packet(s, "E22");
1781 break;
1783 s->c_cpu = env;
1785 if (res == 's') {
1786 cpu_single_step(s->c_cpu, sstep_flags);
1788 s->signal = res_signal;
1789 gdb_continue(s);
1790 return RS_IDLE;
1792 break;
1793 } else {
1794 goto unknown_command;
1796 case 'k':
1797 /* Kill the target */
1798 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1799 exit(0);
1800 case 'D':
1801 /* Detach packet */
1802 gdb_breakpoint_remove_all();
1803 gdb_continue(s);
1804 put_packet(s, "OK");
1805 break;
1806 case 's':
1807 if (*p != '\0') {
1808 addr = strtoull(p, (char **)&p, 16);
1809 gdb_set_cpu_pc(s, addr);
1811 cpu_single_step(s->c_cpu, sstep_flags);
1812 gdb_continue(s);
1813 return RS_IDLE;
1814 case 'F':
1816 target_ulong ret;
1817 target_ulong err;
1819 ret = strtoull(p, (char **)&p, 16);
1820 if (*p == ',') {
1821 p++;
1822 err = strtoull(p, (char **)&p, 16);
1823 } else {
1824 err = 0;
1826 if (*p == ',')
1827 p++;
1828 type = *p;
1829 if (gdb_current_syscall_cb)
1830 gdb_current_syscall_cb(s->c_cpu, ret, err);
1831 if (type == 'C') {
1832 put_packet(s, "T02");
1833 } else {
1834 gdb_continue(s);
1837 break;
1838 case 'g':
1839 cpu_synchronize_state(s->g_cpu);
1840 len = 0;
1841 for (addr = 0; addr < num_g_regs; addr++) {
1842 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1843 len += reg_size;
1845 memtohex(buf, mem_buf, len);
1846 put_packet(s, buf);
1847 break;
1848 case 'G':
1849 cpu_synchronize_state(s->g_cpu);
1850 registers = mem_buf;
1851 len = strlen(p) / 2;
1852 hextomem((uint8_t *)registers, p, len);
1853 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1854 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1855 len -= reg_size;
1856 registers += reg_size;
1858 put_packet(s, "OK");
1859 break;
1860 case 'm':
1861 addr = strtoull(p, (char **)&p, 16);
1862 if (*p == ',')
1863 p++;
1864 len = strtoull(p, NULL, 16);
1865 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1866 put_packet (s, "E14");
1867 } else {
1868 memtohex(buf, mem_buf, len);
1869 put_packet(s, buf);
1871 break;
1872 case 'M':
1873 addr = strtoull(p, (char **)&p, 16);
1874 if (*p == ',')
1875 p++;
1876 len = strtoull(p, (char **)&p, 16);
1877 if (*p == ':')
1878 p++;
1879 hextomem(mem_buf, p, len);
1880 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1881 put_packet(s, "E14");
1882 else
1883 put_packet(s, "OK");
1884 break;
1885 case 'p':
1886 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1887 This works, but can be very slow. Anything new enough to
1888 understand XML also knows how to use this properly. */
1889 if (!gdb_has_xml)
1890 goto unknown_command;
1891 addr = strtoull(p, (char **)&p, 16);
1892 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1893 if (reg_size) {
1894 memtohex(buf, mem_buf, reg_size);
1895 put_packet(s, buf);
1896 } else {
1897 put_packet(s, "E14");
1899 break;
1900 case 'P':
1901 if (!gdb_has_xml)
1902 goto unknown_command;
1903 addr = strtoull(p, (char **)&p, 16);
1904 if (*p == '=')
1905 p++;
1906 reg_size = strlen(p) / 2;
1907 hextomem(mem_buf, p, reg_size);
1908 gdb_write_register(s->g_cpu, mem_buf, addr);
1909 put_packet(s, "OK");
1910 break;
1911 case 'Z':
1912 case 'z':
1913 type = strtoul(p, (char **)&p, 16);
1914 if (*p == ',')
1915 p++;
1916 addr = strtoull(p, (char **)&p, 16);
1917 if (*p == ',')
1918 p++;
1919 len = strtoull(p, (char **)&p, 16);
1920 if (ch == 'Z')
1921 res = gdb_breakpoint_insert(addr, len, type);
1922 else
1923 res = gdb_breakpoint_remove(addr, len, type);
1924 if (res >= 0)
1925 put_packet(s, "OK");
1926 else if (res == -ENOSYS)
1927 put_packet(s, "");
1928 else
1929 put_packet(s, "E22");
1930 break;
1931 case 'H':
1932 type = *p++;
1933 thread = strtoull(p, (char **)&p, 16);
1934 if (thread == -1 || thread == 0) {
1935 put_packet(s, "OK");
1936 break;
1938 env = find_cpu(thread);
1939 if (env == NULL) {
1940 put_packet(s, "E22");
1941 break;
1943 switch (type) {
1944 case 'c':
1945 s->c_cpu = env;
1946 put_packet(s, "OK");
1947 break;
1948 case 'g':
1949 s->g_cpu = env;
1950 put_packet(s, "OK");
1951 break;
1952 default:
1953 put_packet(s, "E22");
1954 break;
1956 break;
1957 case 'T':
1958 thread = strtoull(p, (char **)&p, 16);
1959 env = find_cpu(thread);
1961 if (env != NULL) {
1962 put_packet(s, "OK");
1963 } else {
1964 put_packet(s, "E22");
1966 break;
1967 case 'q':
1968 case 'Q':
1969 /* parse any 'q' packets here */
1970 if (!strcmp(p,"qemu.sstepbits")) {
1971 /* Query Breakpoint bit definitions */
1972 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1973 SSTEP_ENABLE,
1974 SSTEP_NOIRQ,
1975 SSTEP_NOTIMER);
1976 put_packet(s, buf);
1977 break;
1978 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1979 /* Display or change the sstep_flags */
1980 p += 10;
1981 if (*p != '=') {
1982 /* Display current setting */
1983 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1984 put_packet(s, buf);
1985 break;
1987 p++;
1988 type = strtoul(p, (char **)&p, 16);
1989 sstep_flags = type;
1990 put_packet(s, "OK");
1991 break;
1992 } else if (strcmp(p,"C") == 0) {
1993 /* "Current thread" remains vague in the spec, so always return
1994 * the first CPU (gdb returns the first thread). */
1995 put_packet(s, "QC1");
1996 break;
1997 } else if (strcmp(p,"fThreadInfo") == 0) {
1998 s->query_cpu = first_cpu;
1999 goto report_cpuinfo;
2000 } else if (strcmp(p,"sThreadInfo") == 0) {
2001 report_cpuinfo:
2002 if (s->query_cpu) {
2003 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2004 put_packet(s, buf);
2005 s->query_cpu = s->query_cpu->next_cpu;
2006 } else
2007 put_packet(s, "l");
2008 break;
2009 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2010 thread = strtoull(p+16, (char **)&p, 16);
2011 env = find_cpu(thread);
2012 if (env != NULL) {
2013 cpu_synchronize_state(env);
2014 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2015 "CPU#%d [%s]", env->cpu_index,
2016 env->halted ? "halted " : "running");
2017 memtohex(buf, mem_buf, len);
2018 put_packet(s, buf);
2020 break;
2022 #ifdef CONFIG_USER_ONLY
2023 else if (strncmp(p, "Offsets", 7) == 0) {
2024 TaskState *ts = s->c_cpu->opaque;
2026 snprintf(buf, sizeof(buf),
2027 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2028 ";Bss=" TARGET_ABI_FMT_lx,
2029 ts->info->code_offset,
2030 ts->info->data_offset,
2031 ts->info->data_offset);
2032 put_packet(s, buf);
2033 break;
2035 #else /* !CONFIG_USER_ONLY */
2036 else if (strncmp(p, "Rcmd,", 5) == 0) {
2037 int len = strlen(p + 5);
2039 if ((len % 2) != 0) {
2040 put_packet(s, "E01");
2041 break;
2043 hextomem(mem_buf, p + 5, len);
2044 len = len / 2;
2045 mem_buf[len++] = 0;
2046 qemu_chr_read(s->mon_chr, mem_buf, len);
2047 put_packet(s, "OK");
2048 break;
2050 #endif /* !CONFIG_USER_ONLY */
2051 if (strncmp(p, "Supported", 9) == 0) {
2052 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2053 #ifdef GDB_CORE_XML
2054 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2055 #endif
2056 put_packet(s, buf);
2057 break;
2059 #ifdef GDB_CORE_XML
2060 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2061 const char *xml;
2062 target_ulong total_len;
2064 gdb_has_xml = 1;
2065 p += 19;
2066 xml = get_feature_xml(p, &p);
2067 if (!xml) {
2068 snprintf(buf, sizeof(buf), "E00");
2069 put_packet(s, buf);
2070 break;
2073 if (*p == ':')
2074 p++;
2075 addr = strtoul(p, (char **)&p, 16);
2076 if (*p == ',')
2077 p++;
2078 len = strtoul(p, (char **)&p, 16);
2080 total_len = strlen(xml);
2081 if (addr > total_len) {
2082 snprintf(buf, sizeof(buf), "E00");
2083 put_packet(s, buf);
2084 break;
2086 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2087 len = (MAX_PACKET_LENGTH - 5) / 2;
2088 if (len < total_len - addr) {
2089 buf[0] = 'm';
2090 len = memtox(buf + 1, xml + addr, len);
2091 } else {
2092 buf[0] = 'l';
2093 len = memtox(buf + 1, xml + addr, total_len - addr);
2095 put_packet_binary(s, buf, len + 1);
2096 break;
2098 #endif
2099 /* Unrecognised 'q' command. */
2100 goto unknown_command;
2102 default:
2103 unknown_command:
2104 /* put empty packet */
2105 buf[0] = '\0';
2106 put_packet(s, buf);
2107 break;
2109 return RS_IDLE;
2112 void gdb_set_stop_cpu(CPUState *env)
2114 gdbserver_state->c_cpu = env;
2115 gdbserver_state->g_cpu = env;
2118 #ifndef CONFIG_USER_ONLY
2119 static void gdb_vm_state_change(void *opaque, int running, int reason)
2121 GDBState *s = gdbserver_state;
2122 CPUState *env = s->c_cpu;
2123 char buf[256];
2124 const char *type;
2125 int ret;
2127 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
2128 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
2129 return;
2131 /* disable single step if it was enable */
2132 cpu_single_step(env, 0);
2134 if (reason == EXCP_DEBUG) {
2135 if (env->watchpoint_hit) {
2136 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2137 case BP_MEM_READ:
2138 type = "r";
2139 break;
2140 case BP_MEM_ACCESS:
2141 type = "a";
2142 break;
2143 default:
2144 type = "";
2145 break;
2147 snprintf(buf, sizeof(buf),
2148 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2149 GDB_SIGNAL_TRAP, gdb_id(env), type,
2150 env->watchpoint_hit->vaddr);
2151 put_packet(s, buf);
2152 env->watchpoint_hit = NULL;
2153 return;
2155 tb_flush(env);
2156 ret = GDB_SIGNAL_TRAP;
2157 } else {
2158 ret = GDB_SIGNAL_INT;
2160 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2161 put_packet(s, buf);
2163 #endif
2165 /* Send a gdb syscall request.
2166 This accepts limited printf-style format specifiers, specifically:
2167 %x - target_ulong argument printed in hex.
2168 %lx - 64-bit argument printed in hex.
2169 %s - string pointer (target_ulong) and length (int) pair. */
2170 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2172 va_list va;
2173 char buf[256];
2174 char *p;
2175 target_ulong addr;
2176 uint64_t i64;
2177 GDBState *s;
2179 s = gdbserver_state;
2180 if (!s)
2181 return;
2182 gdb_current_syscall_cb = cb;
2183 s->state = RS_SYSCALL;
2184 #ifndef CONFIG_USER_ONLY
2185 vm_stop(EXCP_DEBUG);
2186 #endif
2187 s->state = RS_IDLE;
2188 va_start(va, fmt);
2189 p = buf;
2190 *(p++) = 'F';
2191 while (*fmt) {
2192 if (*fmt == '%') {
2193 fmt++;
2194 switch (*fmt++) {
2195 case 'x':
2196 addr = va_arg(va, target_ulong);
2197 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2198 break;
2199 case 'l':
2200 if (*(fmt++) != 'x')
2201 goto bad_format;
2202 i64 = va_arg(va, uint64_t);
2203 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2204 break;
2205 case 's':
2206 addr = va_arg(va, target_ulong);
2207 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2208 addr, va_arg(va, int));
2209 break;
2210 default:
2211 bad_format:
2212 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2213 fmt - 1);
2214 break;
2216 } else {
2217 *(p++) = *(fmt++);
2220 *p = 0;
2221 va_end(va);
2222 put_packet(s, buf);
2223 #ifdef CONFIG_USER_ONLY
2224 gdb_handlesig(s->c_cpu, 0);
2225 #else
2226 cpu_exit(s->c_cpu);
2227 #endif
2230 static void gdb_read_byte(GDBState *s, int ch)
2232 int i, csum;
2233 uint8_t reply;
2235 #ifndef CONFIG_USER_ONLY
2236 if (s->last_packet_len) {
2237 /* Waiting for a response to the last packet. If we see the start
2238 of a new command then abandon the previous response. */
2239 if (ch == '-') {
2240 #ifdef DEBUG_GDB
2241 printf("Got NACK, retransmitting\n");
2242 #endif
2243 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2245 #ifdef DEBUG_GDB
2246 else if (ch == '+')
2247 printf("Got ACK\n");
2248 else
2249 printf("Got '%c' when expecting ACK/NACK\n", ch);
2250 #endif
2251 if (ch == '+' || ch == '$')
2252 s->last_packet_len = 0;
2253 if (ch != '$')
2254 return;
2256 if (vm_running) {
2257 /* when the CPU is running, we cannot do anything except stop
2258 it when receiving a char */
2259 vm_stop(EXCP_INTERRUPT);
2260 } else
2261 #endif
2263 switch(s->state) {
2264 case RS_IDLE:
2265 if (ch == '$') {
2266 s->line_buf_index = 0;
2267 s->state = RS_GETLINE;
2269 break;
2270 case RS_GETLINE:
2271 if (ch == '#') {
2272 s->state = RS_CHKSUM1;
2273 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2274 s->state = RS_IDLE;
2275 } else {
2276 s->line_buf[s->line_buf_index++] = ch;
2278 break;
2279 case RS_CHKSUM1:
2280 s->line_buf[s->line_buf_index] = '\0';
2281 s->line_csum = fromhex(ch) << 4;
2282 s->state = RS_CHKSUM2;
2283 break;
2284 case RS_CHKSUM2:
2285 s->line_csum |= fromhex(ch);
2286 csum = 0;
2287 for(i = 0; i < s->line_buf_index; i++) {
2288 csum += s->line_buf[i];
2290 if (s->line_csum != (csum & 0xff)) {
2291 reply = '-';
2292 put_buffer(s, &reply, 1);
2293 s->state = RS_IDLE;
2294 } else {
2295 reply = '+';
2296 put_buffer(s, &reply, 1);
2297 s->state = gdb_handle_packet(s, s->line_buf);
2299 break;
2300 default:
2301 abort();
2306 #ifdef CONFIG_USER_ONLY
2308 gdb_queuesig (void)
2310 GDBState *s;
2312 s = gdbserver_state;
2314 if (gdbserver_fd < 0 || s->fd < 0)
2315 return 0;
2316 else
2317 return 1;
2321 gdb_handlesig (CPUState *env, int sig)
2323 GDBState *s;
2324 char buf[256];
2325 int n;
2327 s = gdbserver_state;
2328 if (gdbserver_fd < 0 || s->fd < 0)
2329 return sig;
2331 /* disable single step if it was enabled */
2332 cpu_single_step(env, 0);
2333 tb_flush(env);
2335 if (sig != 0)
2337 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2338 put_packet(s, buf);
2340 /* put_packet() might have detected that the peer terminated the
2341 connection. */
2342 if (s->fd < 0)
2343 return sig;
2345 sig = 0;
2346 s->state = RS_IDLE;
2347 s->running_state = 0;
2348 while (s->running_state == 0) {
2349 n = read (s->fd, buf, 256);
2350 if (n > 0)
2352 int i;
2354 for (i = 0; i < n; i++)
2355 gdb_read_byte (s, buf[i]);
2357 else if (n == 0 || errno != EAGAIN)
2359 /* XXX: Connection closed. Should probably wait for annother
2360 connection before continuing. */
2361 return sig;
2364 sig = s->signal;
2365 s->signal = 0;
2366 return sig;
2369 /* Tell the remote gdb that the process has exited. */
2370 void gdb_exit(CPUState *env, int code)
2372 GDBState *s;
2373 char buf[4];
2375 s = gdbserver_state;
2376 if (gdbserver_fd < 0 || s->fd < 0)
2377 return;
2379 snprintf(buf, sizeof(buf), "W%02x", code);
2380 put_packet(s, buf);
2383 /* Tell the remote gdb that the process has exited due to SIG. */
2384 void gdb_signalled(CPUState *env, int sig)
2386 GDBState *s;
2387 char buf[4];
2389 s = gdbserver_state;
2390 if (gdbserver_fd < 0 || s->fd < 0)
2391 return;
2393 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2394 put_packet(s, buf);
2397 static void gdb_accept(void)
2399 GDBState *s;
2400 struct sockaddr_in sockaddr;
2401 socklen_t len;
2402 int val, fd;
2404 for(;;) {
2405 len = sizeof(sockaddr);
2406 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2407 if (fd < 0 && errno != EINTR) {
2408 perror("accept");
2409 return;
2410 } else if (fd >= 0) {
2411 #ifndef _WIN32
2412 fcntl(fd, F_SETFD, FD_CLOEXEC);
2413 #endif
2414 break;
2418 /* set short latency */
2419 val = 1;
2420 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2422 s = qemu_mallocz(sizeof(GDBState));
2423 s->c_cpu = first_cpu;
2424 s->g_cpu = first_cpu;
2425 s->fd = fd;
2426 gdb_has_xml = 0;
2428 gdbserver_state = s;
2430 fcntl(fd, F_SETFL, O_NONBLOCK);
2433 static int gdbserver_open(int port)
2435 struct sockaddr_in sockaddr;
2436 int fd, val, ret;
2438 fd = socket(PF_INET, SOCK_STREAM, 0);
2439 if (fd < 0) {
2440 perror("socket");
2441 return -1;
2443 #ifndef _WIN32
2444 fcntl(fd, F_SETFD, FD_CLOEXEC);
2445 #endif
2447 /* allow fast reuse */
2448 val = 1;
2449 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2451 sockaddr.sin_family = AF_INET;
2452 sockaddr.sin_port = htons(port);
2453 sockaddr.sin_addr.s_addr = 0;
2454 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2455 if (ret < 0) {
2456 perror("bind");
2457 return -1;
2459 ret = listen(fd, 0);
2460 if (ret < 0) {
2461 perror("listen");
2462 return -1;
2464 return fd;
2467 int gdbserver_start(int port)
2469 gdbserver_fd = gdbserver_open(port);
2470 if (gdbserver_fd < 0)
2471 return -1;
2472 /* accept connections */
2473 gdb_accept();
2474 return 0;
2477 /* Disable gdb stub for child processes. */
2478 void gdbserver_fork(CPUState *env)
2480 GDBState *s = gdbserver_state;
2481 if (gdbserver_fd < 0 || s->fd < 0)
2482 return;
2483 close(s->fd);
2484 s->fd = -1;
2485 cpu_breakpoint_remove_all(env, BP_GDB);
2486 cpu_watchpoint_remove_all(env, BP_GDB);
2488 #else
2489 static int gdb_chr_can_receive(void *opaque)
2491 /* We can handle an arbitrarily large amount of data.
2492 Pick the maximum packet size, which is as good as anything. */
2493 return MAX_PACKET_LENGTH;
2496 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2498 int i;
2500 for (i = 0; i < size; i++) {
2501 gdb_read_byte(gdbserver_state, buf[i]);
2505 static void gdb_chr_event(void *opaque, int event)
2507 switch (event) {
2508 case CHR_EVENT_OPENED:
2509 vm_stop(EXCP_INTERRUPT);
2510 gdb_has_xml = 0;
2511 break;
2512 default:
2513 break;
2517 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2519 char buf[MAX_PACKET_LENGTH];
2521 buf[0] = 'O';
2522 if (len > (MAX_PACKET_LENGTH/2) - 1)
2523 len = (MAX_PACKET_LENGTH/2) - 1;
2524 memtohex(buf + 1, (uint8_t *)msg, len);
2525 put_packet(s, buf);
2528 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2530 const char *p = (const char *)buf;
2531 int max_sz;
2533 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2534 for (;;) {
2535 if (len <= max_sz) {
2536 gdb_monitor_output(gdbserver_state, p, len);
2537 break;
2539 gdb_monitor_output(gdbserver_state, p, max_sz);
2540 p += max_sz;
2541 len -= max_sz;
2543 return len;
2546 #ifndef _WIN32
2547 static void gdb_sigterm_handler(int signal)
2549 if (vm_running)
2550 vm_stop(EXCP_INTERRUPT);
2552 #endif
2554 int gdbserver_start(const char *device)
2556 GDBState *s;
2557 char gdbstub_device_name[128];
2558 CharDriverState *chr = NULL;
2559 CharDriverState *mon_chr;
2561 if (!device)
2562 return -1;
2563 if (strcmp(device, "none") != 0) {
2564 if (strstart(device, "tcp:", NULL)) {
2565 /* enforce required TCP attributes */
2566 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2567 "%s,nowait,nodelay,server", device);
2568 device = gdbstub_device_name;
2570 #ifndef _WIN32
2571 else if (strcmp(device, "stdio") == 0) {
2572 struct sigaction act;
2574 memset(&act, 0, sizeof(act));
2575 act.sa_handler = gdb_sigterm_handler;
2576 sigaction(SIGINT, &act, NULL);
2578 #endif
2579 chr = qemu_chr_open("gdb", device, NULL);
2580 if (!chr)
2581 return -1;
2583 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2584 gdb_chr_event, NULL);
2587 s = gdbserver_state;
2588 if (!s) {
2589 s = qemu_mallocz(sizeof(GDBState));
2590 gdbserver_state = s;
2592 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2594 /* Initialize a monitor terminal for gdb */
2595 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2596 mon_chr->chr_write = gdb_monitor_write;
2597 monitor_init(mon_chr, 0);
2598 } else {
2599 if (s->chr)
2600 qemu_chr_close(s->chr);
2601 mon_chr = s->mon_chr;
2602 memset(s, 0, sizeof(GDBState));
2604 s->c_cpu = first_cpu;
2605 s->g_cpu = first_cpu;
2606 s->chr = chr;
2607 s->state = chr ? RS_IDLE : RS_INACTIVE;
2608 s->mon_chr = mon_chr;
2610 return 0;
2612 #endif