4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
59 #include "migration/vmstate.h"
61 #include "qemu/range.h"
63 #include "qemu/mmap-alloc.h"
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
72 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
74 static MemoryRegion
*system_memory
;
75 static MemoryRegion
*system_io
;
77 AddressSpace address_space_io
;
78 AddressSpace address_space_memory
;
80 MemoryRegion io_mem_rom
, io_mem_notdirty
;
81 static MemoryRegion io_mem_unassigned
;
83 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84 #define RAM_PREALLOC (1 << 0)
86 /* RAM is mmap-ed with MAP_SHARED */
87 #define RAM_SHARED (1 << 1)
89 /* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
92 #define RAM_RESIZEABLE (1 << 2)
96 #ifdef TARGET_PAGE_BITS_VARY
98 bool target_page_bits_decided
;
101 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
102 /* current CPU in the current thread. It is only valid inside
104 __thread CPUState
*current_cpu
;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
110 bool set_preferred_target_page_bits(int bits
)
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
117 #ifdef TARGET_PAGE_BITS_VARY
118 assert(bits
>= TARGET_PAGE_BITS_MIN
);
119 if (target_page_bits
== 0 || target_page_bits
> bits
) {
120 if (target_page_bits_decided
) {
123 target_page_bits
= bits
;
129 #if !defined(CONFIG_USER_ONLY)
131 static void finalize_target_page_bits(void)
133 #ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits
== 0) {
135 target_page_bits
= TARGET_PAGE_BITS_MIN
;
137 target_page_bits_decided
= true;
141 typedef struct PhysPageEntry PhysPageEntry
;
143 struct PhysPageEntry
{
144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152 /* Size of the L2 (and L3, etc) page tables. */
153 #define ADDR_SPACE_BITS 64
156 #define P_L2_SIZE (1 << P_L2_BITS)
158 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160 typedef PhysPageEntry Node
[P_L2_SIZE
];
162 typedef struct PhysPageMap
{
165 unsigned sections_nb
;
166 unsigned sections_nb_alloc
;
168 unsigned nodes_nb_alloc
;
170 MemoryRegionSection
*sections
;
173 struct AddressSpaceDispatch
{
176 MemoryRegionSection
*mru_section
;
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
180 PhysPageEntry phys_map
;
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t
{
190 uint16_t sub_section
[];
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_commit(MemoryListener
*listener
);
202 static MemoryRegion io_mem_watch
;
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 struct CPUAddressSpace
{
214 struct AddressSpaceDispatch
*memory_dispatch
;
215 MemoryListener tcg_as_listener
;
220 #if !defined(CONFIG_USER_ONLY)
222 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
224 static unsigned alloc_hint
= 16;
225 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
226 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
227 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
228 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
229 alloc_hint
= map
->nodes_nb_alloc
;
233 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
240 ret
= map
->nodes_nb
++;
242 assert(ret
!= PHYS_MAP_NODE_NIL
);
243 assert(ret
!= map
->nodes_nb_alloc
);
245 e
.skip
= leaf
? 0 : 1;
246 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
247 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
248 memcpy(&p
[i
], &e
, sizeof(e
));
253 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
254 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
258 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
260 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
261 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
263 p
= map
->nodes
[lp
->ptr
];
264 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
266 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
267 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
273 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
279 static void phys_page_set(AddressSpaceDispatch
*d
,
280 hwaddr index
, hwaddr nb
,
283 /* Wildly overreserve - it doesn't matter much. */
284 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
286 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
289 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
292 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
294 unsigned valid_ptr
= P_L2_SIZE
;
299 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
304 for (i
= 0; i
< P_L2_SIZE
; i
++) {
305 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
312 phys_page_compact(&p
[i
], nodes
);
316 /* We can only compress if there's only one child. */
321 assert(valid_ptr
< P_L2_SIZE
);
323 /* Don't compress if it won't fit in the # of bits we have. */
324 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
328 lp
->ptr
= p
[valid_ptr
].ptr
;
329 if (!p
[valid_ptr
].skip
) {
330 /* If our only child is a leaf, make this a leaf. */
331 /* By design, we should have made this node a leaf to begin with so we
332 * should never reach here.
333 * But since it's so simple to handle this, let's do it just in case we
338 lp
->skip
+= p
[valid_ptr
].skip
;
342 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
344 if (d
->phys_map
.skip
) {
345 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
349 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
352 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
353 * the section must cover the entire address space.
355 return int128_gethi(section
->size
) ||
356 range_covers_byte(section
->offset_within_address_space
,
357 int128_getlo(section
->size
), addr
);
360 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
361 Node
*nodes
, MemoryRegionSection
*sections
)
364 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
367 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
368 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
369 return §ions
[PHYS_SECTION_UNASSIGNED
];
372 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
375 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
376 return §ions
[lp
.ptr
];
378 return §ions
[PHYS_SECTION_UNASSIGNED
];
382 bool memory_region_is_unassigned(MemoryRegion
*mr
)
384 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
385 && mr
!= &io_mem_watch
;
388 /* Called from RCU critical section */
389 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
391 bool resolve_subpage
)
393 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
397 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
398 section_covers_addr(section
, addr
)) {
401 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
405 if (resolve_subpage
&& section
->mr
->subpage
) {
406 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
407 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
410 atomic_set(&d
->mru_section
, section
);
415 /* Called from RCU critical section */
416 static MemoryRegionSection
*
417 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
418 hwaddr
*plen
, bool resolve_subpage
)
420 MemoryRegionSection
*section
;
424 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
425 /* Compute offset within MemoryRegionSection */
426 addr
-= section
->offset_within_address_space
;
428 /* Compute offset within MemoryRegion */
429 *xlat
= addr
+ section
->offset_within_region
;
433 /* MMIO registers can be expected to perform full-width accesses based only
434 * on their address, without considering adjacent registers that could
435 * decode to completely different MemoryRegions. When such registers
436 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
437 * regions overlap wildly. For this reason we cannot clamp the accesses
440 * If the length is small (as is the case for address_space_ldl/stl),
441 * everything works fine. If the incoming length is large, however,
442 * the caller really has to do the clamping through memory_access_size.
444 if (memory_region_is_ram(mr
)) {
445 diff
= int128_sub(section
->size
, int128_make64(addr
));
446 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
451 /* Called from RCU critical section */
452 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
453 hwaddr
*xlat
, hwaddr
*plen
,
457 MemoryRegionSection
*section
;
461 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
462 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
465 if (!mr
->iommu_ops
) {
469 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
470 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
471 | (addr
& iotlb
.addr_mask
));
472 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
473 if (!(iotlb
.perm
& (1 << is_write
))) {
474 mr
= &io_mem_unassigned
;
478 as
= iotlb
.target_as
;
481 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
482 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
483 *plen
= MIN(page
, *plen
);
490 /* Called from RCU critical section */
491 MemoryRegionSection
*
492 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
493 hwaddr
*xlat
, hwaddr
*plen
)
495 MemoryRegionSection
*section
;
496 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
498 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
500 assert(!section
->mr
->iommu_ops
);
505 #if !defined(CONFIG_USER_ONLY)
507 static int cpu_common_post_load(void *opaque
, int version_id
)
509 CPUState
*cpu
= opaque
;
511 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
512 version_id is increased. */
513 cpu
->interrupt_request
&= ~0x01;
519 static int cpu_common_pre_load(void *opaque
)
521 CPUState
*cpu
= opaque
;
523 cpu
->exception_index
= -1;
528 static bool cpu_common_exception_index_needed(void *opaque
)
530 CPUState
*cpu
= opaque
;
532 return tcg_enabled() && cpu
->exception_index
!= -1;
535 static const VMStateDescription vmstate_cpu_common_exception_index
= {
536 .name
= "cpu_common/exception_index",
538 .minimum_version_id
= 1,
539 .needed
= cpu_common_exception_index_needed
,
540 .fields
= (VMStateField
[]) {
541 VMSTATE_INT32(exception_index
, CPUState
),
542 VMSTATE_END_OF_LIST()
546 static bool cpu_common_crash_occurred_needed(void *opaque
)
548 CPUState
*cpu
= opaque
;
550 return cpu
->crash_occurred
;
553 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
554 .name
= "cpu_common/crash_occurred",
556 .minimum_version_id
= 1,
557 .needed
= cpu_common_crash_occurred_needed
,
558 .fields
= (VMStateField
[]) {
559 VMSTATE_BOOL(crash_occurred
, CPUState
),
560 VMSTATE_END_OF_LIST()
564 const VMStateDescription vmstate_cpu_common
= {
565 .name
= "cpu_common",
567 .minimum_version_id
= 1,
568 .pre_load
= cpu_common_pre_load
,
569 .post_load
= cpu_common_post_load
,
570 .fields
= (VMStateField
[]) {
571 VMSTATE_UINT32(halted
, CPUState
),
572 VMSTATE_UINT32(interrupt_request
, CPUState
),
573 VMSTATE_END_OF_LIST()
575 .subsections
= (const VMStateDescription
*[]) {
576 &vmstate_cpu_common_exception_index
,
577 &vmstate_cpu_common_crash_occurred
,
584 CPUState
*qemu_get_cpu(int index
)
589 if (cpu
->cpu_index
== index
) {
597 #if !defined(CONFIG_USER_ONLY)
598 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
600 CPUAddressSpace
*newas
;
602 /* Target code should have set num_ases before calling us */
603 assert(asidx
< cpu
->num_ases
);
606 /* address space 0 gets the convenience alias */
610 /* KVM cannot currently support multiple address spaces. */
611 assert(asidx
== 0 || !kvm_enabled());
613 if (!cpu
->cpu_ases
) {
614 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
617 newas
= &cpu
->cpu_ases
[asidx
];
621 newas
->tcg_as_listener
.commit
= tcg_commit
;
622 memory_listener_register(&newas
->tcg_as_listener
, as
);
626 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
628 /* Return the AddressSpace corresponding to the specified index */
629 return cpu
->cpu_ases
[asidx
].as
;
633 void cpu_exec_unrealizefn(CPUState
*cpu
)
635 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
637 cpu_list_remove(cpu
);
639 if (cc
->vmsd
!= NULL
) {
640 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
642 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
643 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
647 void cpu_exec_initfn(CPUState
*cpu
)
652 #ifndef CONFIG_USER_ONLY
653 cpu
->thread_id
= qemu_get_thread_id();
655 /* This is a softmmu CPU object, so create a property for it
656 * so users can wire up its memory. (This can't go in qom/cpu.c
657 * because that file is compiled only once for both user-mode
658 * and system builds.) The default if no link is set up is to use
659 * the system address space.
661 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
662 (Object
**)&cpu
->memory
,
663 qdev_prop_allow_set_link_before_realize
,
664 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
666 cpu
->memory
= system_memory
;
667 object_ref(OBJECT(cpu
->memory
));
671 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
673 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
677 #ifndef CONFIG_USER_ONLY
678 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
679 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
681 if (cc
->vmsd
!= NULL
) {
682 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
687 #if defined(CONFIG_USER_ONLY)
688 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
692 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
697 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
700 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
701 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
703 /* Locks grabbed by tb_invalidate_phys_addr */
704 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
705 phys
| (pc
& ~TARGET_PAGE_MASK
));
710 #if defined(CONFIG_USER_ONLY)
711 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
716 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
722 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
726 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
727 int flags
, CPUWatchpoint
**watchpoint
)
732 /* Add a watchpoint. */
733 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
734 int flags
, CPUWatchpoint
**watchpoint
)
738 /* forbid ranges which are empty or run off the end of the address space */
739 if (len
== 0 || (addr
+ len
- 1) < addr
) {
740 error_report("tried to set invalid watchpoint at %"
741 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
744 wp
= g_malloc(sizeof(*wp
));
750 /* keep all GDB-injected watchpoints in front */
751 if (flags
& BP_GDB
) {
752 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
754 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
757 tlb_flush_page(cpu
, addr
);
764 /* Remove a specific watchpoint. */
765 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
770 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
771 if (addr
== wp
->vaddr
&& len
== wp
->len
772 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
773 cpu_watchpoint_remove_by_ref(cpu
, wp
);
780 /* Remove a specific watchpoint by reference. */
781 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
783 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
785 tlb_flush_page(cpu
, watchpoint
->vaddr
);
790 /* Remove all matching watchpoints. */
791 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
793 CPUWatchpoint
*wp
, *next
;
795 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
796 if (wp
->flags
& mask
) {
797 cpu_watchpoint_remove_by_ref(cpu
, wp
);
802 /* Return true if this watchpoint address matches the specified
803 * access (ie the address range covered by the watchpoint overlaps
804 * partially or completely with the address range covered by the
807 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
811 /* We know the lengths are non-zero, but a little caution is
812 * required to avoid errors in the case where the range ends
813 * exactly at the top of the address space and so addr + len
814 * wraps round to zero.
816 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
817 vaddr addrend
= addr
+ len
- 1;
819 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
824 /* Add a breakpoint. */
825 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
826 CPUBreakpoint
**breakpoint
)
830 bp
= g_malloc(sizeof(*bp
));
835 /* keep all GDB-injected breakpoints in front */
836 if (flags
& BP_GDB
) {
837 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
839 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
842 breakpoint_invalidate(cpu
, pc
);
850 /* Remove a specific breakpoint. */
851 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
855 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
856 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
857 cpu_breakpoint_remove_by_ref(cpu
, bp
);
864 /* Remove a specific breakpoint by reference. */
865 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
867 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
869 breakpoint_invalidate(cpu
, breakpoint
->pc
);
874 /* Remove all matching breakpoints. */
875 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
877 CPUBreakpoint
*bp
, *next
;
879 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
880 if (bp
->flags
& mask
) {
881 cpu_breakpoint_remove_by_ref(cpu
, bp
);
886 /* enable or disable single step mode. EXCP_DEBUG is returned by the
887 CPU loop after each instruction */
888 void cpu_single_step(CPUState
*cpu
, int enabled
)
890 if (cpu
->singlestep_enabled
!= enabled
) {
891 cpu
->singlestep_enabled
= enabled
;
893 kvm_update_guest_debug(cpu
, 0);
895 /* must flush all the translated code to avoid inconsistencies */
896 /* XXX: only flush what is necessary */
902 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
909 fprintf(stderr
, "qemu: fatal: ");
910 vfprintf(stderr
, fmt
, ap
);
911 fprintf(stderr
, "\n");
912 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
913 if (qemu_log_separate()) {
914 qemu_log("qemu: fatal: ");
915 qemu_log_vprintf(fmt
, ap2
);
917 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
924 #if defined(CONFIG_USER_ONLY)
926 struct sigaction act
;
927 sigfillset(&act
.sa_mask
);
928 act
.sa_handler
= SIG_DFL
;
929 sigaction(SIGABRT
, &act
, NULL
);
935 #if !defined(CONFIG_USER_ONLY)
936 /* Called from RCU critical section */
937 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
941 block
= atomic_rcu_read(&ram_list
.mru_block
);
942 if (block
&& addr
- block
->offset
< block
->max_length
) {
945 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
946 if (addr
- block
->offset
< block
->max_length
) {
951 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
955 /* It is safe to write mru_block outside the iothread lock. This
960 * xxx removed from list
964 * call_rcu(reclaim_ramblock, xxx);
967 * atomic_rcu_set is not needed here. The block was already published
968 * when it was placed into the list. Here we're just making an extra
969 * copy of the pointer.
971 ram_list
.mru_block
= block
;
975 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
982 end
= TARGET_PAGE_ALIGN(start
+ length
);
983 start
&= TARGET_PAGE_MASK
;
986 block
= qemu_get_ram_block(start
);
987 assert(block
== qemu_get_ram_block(end
- 1));
988 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
990 tlb_reset_dirty(cpu
, start1
, length
);
995 /* Note: start and end must be within the same ram block. */
996 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1000 DirtyMemoryBlocks
*blocks
;
1001 unsigned long end
, page
;
1008 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1009 page
= start
>> TARGET_PAGE_BITS
;
1013 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1015 while (page
< end
) {
1016 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1017 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1018 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1020 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1027 if (dirty
&& tcg_enabled()) {
1028 tlb_reset_dirty_range_all(start
, length
);
1034 /* Called from RCU critical section */
1035 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1036 MemoryRegionSection
*section
,
1038 hwaddr paddr
, hwaddr xlat
,
1040 target_ulong
*address
)
1045 if (memory_region_is_ram(section
->mr
)) {
1047 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1048 if (!section
->readonly
) {
1049 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1051 iotlb
|= PHYS_SECTION_ROM
;
1054 AddressSpaceDispatch
*d
;
1056 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1057 iotlb
= section
- d
->map
.sections
;
1061 /* Make accesses to pages with watchpoints go via the
1062 watchpoint trap routines. */
1063 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1064 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1065 /* Avoid trapping reads of pages with a write breakpoint. */
1066 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1067 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1068 *address
|= TLB_MMIO
;
1076 #endif /* defined(CONFIG_USER_ONLY) */
1078 #if !defined(CONFIG_USER_ONLY)
1080 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1082 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1084 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1085 qemu_anon_ram_alloc
;
1088 * Set a custom physical guest memory alloator.
1089 * Accelerators with unusual needs may need this. Hopefully, we can
1090 * get rid of it eventually.
1092 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1094 phys_mem_alloc
= alloc
;
1097 static uint16_t phys_section_add(PhysPageMap
*map
,
1098 MemoryRegionSection
*section
)
1100 /* The physical section number is ORed with a page-aligned
1101 * pointer to produce the iotlb entries. Thus it should
1102 * never overflow into the page-aligned value.
1104 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1106 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1107 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1108 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1109 map
->sections_nb_alloc
);
1111 map
->sections
[map
->sections_nb
] = *section
;
1112 memory_region_ref(section
->mr
);
1113 return map
->sections_nb
++;
1116 static void phys_section_destroy(MemoryRegion
*mr
)
1118 bool have_sub_page
= mr
->subpage
;
1120 memory_region_unref(mr
);
1122 if (have_sub_page
) {
1123 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1124 object_unref(OBJECT(&subpage
->iomem
));
1129 static void phys_sections_free(PhysPageMap
*map
)
1131 while (map
->sections_nb
> 0) {
1132 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1133 phys_section_destroy(section
->mr
);
1135 g_free(map
->sections
);
1139 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1142 hwaddr base
= section
->offset_within_address_space
1144 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1145 d
->map
.nodes
, d
->map
.sections
);
1146 MemoryRegionSection subsection
= {
1147 .offset_within_address_space
= base
,
1148 .size
= int128_make64(TARGET_PAGE_SIZE
),
1152 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1154 if (!(existing
->mr
->subpage
)) {
1155 subpage
= subpage_init(d
->as
, base
);
1156 subsection
.address_space
= d
->as
;
1157 subsection
.mr
= &subpage
->iomem
;
1158 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1159 phys_section_add(&d
->map
, &subsection
));
1161 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1163 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1164 end
= start
+ int128_get64(section
->size
) - 1;
1165 subpage_register(subpage
, start
, end
,
1166 phys_section_add(&d
->map
, section
));
1170 static void register_multipage(AddressSpaceDispatch
*d
,
1171 MemoryRegionSection
*section
)
1173 hwaddr start_addr
= section
->offset_within_address_space
;
1174 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1175 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1179 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1182 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1184 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1185 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1186 MemoryRegionSection now
= *section
, remain
= *section
;
1187 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1189 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1190 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1191 - now
.offset_within_address_space
;
1193 now
.size
= int128_min(int128_make64(left
), now
.size
);
1194 register_subpage(d
, &now
);
1196 now
.size
= int128_zero();
1198 while (int128_ne(remain
.size
, now
.size
)) {
1199 remain
.size
= int128_sub(remain
.size
, now
.size
);
1200 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1201 remain
.offset_within_region
+= int128_get64(now
.size
);
1203 if (int128_lt(remain
.size
, page_size
)) {
1204 register_subpage(d
, &now
);
1205 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1206 now
.size
= page_size
;
1207 register_subpage(d
, &now
);
1209 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1210 register_multipage(d
, &now
);
1215 void qemu_flush_coalesced_mmio_buffer(void)
1218 kvm_flush_coalesced_mmio_buffer();
1221 void qemu_mutex_lock_ramlist(void)
1223 qemu_mutex_lock(&ram_list
.mutex
);
1226 void qemu_mutex_unlock_ramlist(void)
1228 qemu_mutex_unlock(&ram_list
.mutex
);
1232 static void *file_ram_alloc(RAMBlock
*block
,
1237 bool unlink_on_error
= false;
1239 char *sanitized_name
;
1241 void *area
= MAP_FAILED
;
1244 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1246 "host lacks kvm mmu notifiers, -mem-path unsupported");
1251 fd
= open(path
, O_RDWR
);
1253 /* @path names an existing file, use it */
1256 if (errno
== ENOENT
) {
1257 /* @path names a file that doesn't exist, create it */
1258 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1260 unlink_on_error
= true;
1263 } else if (errno
== EISDIR
) {
1264 /* @path names a directory, create a file there */
1265 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1266 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1267 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1273 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1275 g_free(sanitized_name
);
1277 fd
= mkstemp(filename
);
1285 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1286 error_setg_errno(errp
, errno
,
1287 "can't open backing store %s for guest RAM",
1292 * Try again on EINTR and EEXIST. The latter happens when
1293 * something else creates the file between our two open().
1297 block
->page_size
= qemu_fd_getpagesize(fd
);
1298 block
->mr
->align
= block
->page_size
;
1299 #if defined(__s390x__)
1300 if (kvm_enabled()) {
1301 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1305 if (memory
< block
->page_size
) {
1306 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1307 "or larger than page size 0x%zx",
1308 memory
, block
->page_size
);
1312 memory
= ROUND_UP(memory
, block
->page_size
);
1315 * ftruncate is not supported by hugetlbfs in older
1316 * hosts, so don't bother bailing out on errors.
1317 * If anything goes wrong with it under other filesystems,
1320 if (ftruncate(fd
, memory
)) {
1321 perror("ftruncate");
1324 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1325 block
->flags
& RAM_SHARED
);
1326 if (area
== MAP_FAILED
) {
1327 error_setg_errno(errp
, errno
,
1328 "unable to map backing store for guest RAM");
1333 os_mem_prealloc(fd
, area
, memory
, errp
);
1334 if (errp
&& *errp
) {
1343 if (area
!= MAP_FAILED
) {
1344 qemu_ram_munmap(area
, memory
);
1346 if (unlink_on_error
) {
1356 /* Called with the ramlist lock held. */
1357 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1359 RAMBlock
*block
, *next_block
;
1360 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1362 assert(size
!= 0); /* it would hand out same offset multiple times */
1364 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1368 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1369 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1371 end
= block
->offset
+ block
->max_length
;
1373 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1374 if (next_block
->offset
>= end
) {
1375 next
= MIN(next
, next_block
->offset
);
1378 if (next
- end
>= size
&& next
- end
< mingap
) {
1380 mingap
= next
- end
;
1384 if (offset
== RAM_ADDR_MAX
) {
1385 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1393 ram_addr_t
last_ram_offset(void)
1396 ram_addr_t last
= 0;
1399 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1400 last
= MAX(last
, block
->offset
+ block
->max_length
);
1406 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1410 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1411 if (!machine_dump_guest_core(current_machine
)) {
1412 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1414 perror("qemu_madvise");
1415 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1416 "but dump_guest_core=off specified\n");
1421 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1426 /* Called with iothread lock held. */
1427 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1432 assert(!new_block
->idstr
[0]);
1435 char *id
= qdev_get_dev_path(dev
);
1437 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1441 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1444 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1445 if (block
!= new_block
&&
1446 !strcmp(block
->idstr
, new_block
->idstr
)) {
1447 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1455 /* Called with iothread lock held. */
1456 void qemu_ram_unset_idstr(RAMBlock
*block
)
1458 /* FIXME: arch_init.c assumes that this is not called throughout
1459 * migration. Ignore the problem since hot-unplug during migration
1460 * does not work anyway.
1463 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1467 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1469 return rb
->page_size
;
1472 static int memory_try_enable_merging(void *addr
, size_t len
)
1474 if (!machine_mem_merge(current_machine
)) {
1475 /* disabled by the user */
1479 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1482 /* Only legal before guest might have detected the memory size: e.g. on
1483 * incoming migration, or right after reset.
1485 * As memory core doesn't know how is memory accessed, it is up to
1486 * resize callback to update device state and/or add assertions to detect
1487 * misuse, if necessary.
1489 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1493 newsize
= HOST_PAGE_ALIGN(newsize
);
1495 if (block
->used_length
== newsize
) {
1499 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1500 error_setg_errno(errp
, EINVAL
,
1501 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1502 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1503 newsize
, block
->used_length
);
1507 if (block
->max_length
< newsize
) {
1508 error_setg_errno(errp
, EINVAL
,
1509 "Length too large: %s: 0x" RAM_ADDR_FMT
1510 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1511 newsize
, block
->max_length
);
1515 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1516 block
->used_length
= newsize
;
1517 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1519 memory_region_set_size(block
->mr
, newsize
);
1520 if (block
->resized
) {
1521 block
->resized(block
->idstr
, newsize
, block
->host
);
1526 /* Called with ram_list.mutex held */
1527 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1528 ram_addr_t new_ram_size
)
1530 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1531 DIRTY_MEMORY_BLOCK_SIZE
);
1532 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1533 DIRTY_MEMORY_BLOCK_SIZE
);
1536 /* Only need to extend if block count increased */
1537 if (new_num_blocks
<= old_num_blocks
) {
1541 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1542 DirtyMemoryBlocks
*old_blocks
;
1543 DirtyMemoryBlocks
*new_blocks
;
1546 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1547 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1548 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1550 if (old_num_blocks
) {
1551 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1552 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1555 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1556 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1559 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1562 g_free_rcu(old_blocks
, rcu
);
1567 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1570 RAMBlock
*last_block
= NULL
;
1571 ram_addr_t old_ram_size
, new_ram_size
;
1574 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1576 qemu_mutex_lock_ramlist();
1577 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1579 if (!new_block
->host
) {
1580 if (xen_enabled()) {
1581 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1582 new_block
->mr
, &err
);
1584 error_propagate(errp
, err
);
1585 qemu_mutex_unlock_ramlist();
1589 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1590 &new_block
->mr
->align
);
1591 if (!new_block
->host
) {
1592 error_setg_errno(errp
, errno
,
1593 "cannot set up guest memory '%s'",
1594 memory_region_name(new_block
->mr
));
1595 qemu_mutex_unlock_ramlist();
1598 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1602 new_ram_size
= MAX(old_ram_size
,
1603 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1604 if (new_ram_size
> old_ram_size
) {
1605 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1606 dirty_memory_extend(old_ram_size
, new_ram_size
);
1608 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1609 * QLIST (which has an RCU-friendly variant) does not have insertion at
1610 * tail, so save the last element in last_block.
1612 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1614 if (block
->max_length
< new_block
->max_length
) {
1619 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1620 } else if (last_block
) {
1621 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1622 } else { /* list is empty */
1623 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1625 ram_list
.mru_block
= NULL
;
1627 /* Write list before version */
1630 qemu_mutex_unlock_ramlist();
1632 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1633 new_block
->used_length
,
1636 if (new_block
->host
) {
1637 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1638 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1639 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1640 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1645 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1646 bool share
, const char *mem_path
,
1649 RAMBlock
*new_block
;
1650 Error
*local_err
= NULL
;
1652 if (xen_enabled()) {
1653 error_setg(errp
, "-mem-path not supported with Xen");
1657 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1659 * file_ram_alloc() needs to allocate just like
1660 * phys_mem_alloc, but we haven't bothered to provide
1664 "-mem-path not supported with this accelerator");
1668 size
= HOST_PAGE_ALIGN(size
);
1669 new_block
= g_malloc0(sizeof(*new_block
));
1671 new_block
->used_length
= size
;
1672 new_block
->max_length
= size
;
1673 new_block
->flags
= share
? RAM_SHARED
: 0;
1674 new_block
->host
= file_ram_alloc(new_block
, size
,
1676 if (!new_block
->host
) {
1681 ram_block_add(new_block
, &local_err
);
1684 error_propagate(errp
, local_err
);
1692 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1693 void (*resized
)(const char*,
1696 void *host
, bool resizeable
,
1697 MemoryRegion
*mr
, Error
**errp
)
1699 RAMBlock
*new_block
;
1700 Error
*local_err
= NULL
;
1702 size
= HOST_PAGE_ALIGN(size
);
1703 max_size
= HOST_PAGE_ALIGN(max_size
);
1704 new_block
= g_malloc0(sizeof(*new_block
));
1706 new_block
->resized
= resized
;
1707 new_block
->used_length
= size
;
1708 new_block
->max_length
= max_size
;
1709 assert(max_size
>= size
);
1711 new_block
->page_size
= getpagesize();
1712 new_block
->host
= host
;
1714 new_block
->flags
|= RAM_PREALLOC
;
1717 new_block
->flags
|= RAM_RESIZEABLE
;
1719 ram_block_add(new_block
, &local_err
);
1722 error_propagate(errp
, local_err
);
1728 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1729 MemoryRegion
*mr
, Error
**errp
)
1731 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1734 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1736 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1739 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1740 void (*resized
)(const char*,
1743 MemoryRegion
*mr
, Error
**errp
)
1745 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1748 static void reclaim_ramblock(RAMBlock
*block
)
1750 if (block
->flags
& RAM_PREALLOC
) {
1752 } else if (xen_enabled()) {
1753 xen_invalidate_map_cache_entry(block
->host
);
1755 } else if (block
->fd
>= 0) {
1756 qemu_ram_munmap(block
->host
, block
->max_length
);
1760 qemu_anon_ram_free(block
->host
, block
->max_length
);
1765 void qemu_ram_free(RAMBlock
*block
)
1771 qemu_mutex_lock_ramlist();
1772 QLIST_REMOVE_RCU(block
, next
);
1773 ram_list
.mru_block
= NULL
;
1774 /* Write list before version */
1777 call_rcu(block
, reclaim_ramblock
, rcu
);
1778 qemu_mutex_unlock_ramlist();
1782 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1789 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1790 offset
= addr
- block
->offset
;
1791 if (offset
< block
->max_length
) {
1792 vaddr
= ramblock_ptr(block
, offset
);
1793 if (block
->flags
& RAM_PREALLOC
) {
1795 } else if (xen_enabled()) {
1799 if (block
->fd
>= 0) {
1800 flags
|= (block
->flags
& RAM_SHARED
?
1801 MAP_SHARED
: MAP_PRIVATE
);
1802 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1803 flags
, block
->fd
, offset
);
1806 * Remap needs to match alloc. Accelerators that
1807 * set phys_mem_alloc never remap. If they did,
1808 * we'd need a remap hook here.
1810 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1812 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1813 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1816 if (area
!= vaddr
) {
1817 fprintf(stderr
, "Could not remap addr: "
1818 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1822 memory_try_enable_merging(vaddr
, length
);
1823 qemu_ram_setup_dump(vaddr
, length
);
1828 #endif /* !_WIN32 */
1830 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1831 * This should not be used for general purpose DMA. Use address_space_map
1832 * or address_space_rw instead. For local memory (e.g. video ram) that the
1833 * device owns, use memory_region_get_ram_ptr.
1835 * Called within RCU critical section.
1837 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1839 RAMBlock
*block
= ram_block
;
1841 if (block
== NULL
) {
1842 block
= qemu_get_ram_block(addr
);
1843 addr
-= block
->offset
;
1846 if (xen_enabled() && block
->host
== NULL
) {
1847 /* We need to check if the requested address is in the RAM
1848 * because we don't want to map the entire memory in QEMU.
1849 * In that case just map until the end of the page.
1851 if (block
->offset
== 0) {
1852 return xen_map_cache(addr
, 0, 0);
1855 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1857 return ramblock_ptr(block
, addr
);
1860 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1861 * but takes a size argument.
1863 * Called within RCU critical section.
1865 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1868 RAMBlock
*block
= ram_block
;
1873 if (block
== NULL
) {
1874 block
= qemu_get_ram_block(addr
);
1875 addr
-= block
->offset
;
1877 *size
= MIN(*size
, block
->max_length
- addr
);
1879 if (xen_enabled() && block
->host
== NULL
) {
1880 /* We need to check if the requested address is in the RAM
1881 * because we don't want to map the entire memory in QEMU.
1882 * In that case just map the requested area.
1884 if (block
->offset
== 0) {
1885 return xen_map_cache(addr
, *size
, 1);
1888 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1891 return ramblock_ptr(block
, addr
);
1895 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1898 * ptr: Host pointer to look up
1899 * round_offset: If true round the result offset down to a page boundary
1900 * *ram_addr: set to result ram_addr
1901 * *offset: set to result offset within the RAMBlock
1903 * Returns: RAMBlock (or NULL if not found)
1905 * By the time this function returns, the returned pointer is not protected
1906 * by RCU anymore. If the caller is not within an RCU critical section and
1907 * does not hold the iothread lock, it must have other means of protecting the
1908 * pointer, such as a reference to the region that includes the incoming
1911 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1915 uint8_t *host
= ptr
;
1917 if (xen_enabled()) {
1918 ram_addr_t ram_addr
;
1920 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1921 block
= qemu_get_ram_block(ram_addr
);
1923 *offset
= ram_addr
- block
->offset
;
1930 block
= atomic_rcu_read(&ram_list
.mru_block
);
1931 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1935 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1936 /* This case append when the block is not mapped. */
1937 if (block
->host
== NULL
) {
1940 if (host
- block
->host
< block
->max_length
) {
1949 *offset
= (host
- block
->host
);
1951 *offset
&= TARGET_PAGE_MASK
;
1958 * Finds the named RAMBlock
1960 * name: The name of RAMBlock to find
1962 * Returns: RAMBlock (or NULL if not found)
1964 RAMBlock
*qemu_ram_block_by_name(const char *name
)
1968 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1969 if (!strcmp(name
, block
->idstr
)) {
1977 /* Some of the softmmu routines need to translate from a host pointer
1978 (typically a TLB entry) back to a ram offset. */
1979 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
1984 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
1986 return RAM_ADDR_INVALID
;
1989 return block
->offset
+ offset
;
1992 /* Called within RCU critical section. */
1993 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1994 uint64_t val
, unsigned size
)
1996 bool locked
= false;
1998 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2001 tb_invalidate_phys_page_fast(ram_addr
, size
);
2005 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2008 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2011 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2021 /* Set both VGA and migration bits for simplicity and to remove
2022 * the notdirty callback faster.
2024 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2025 DIRTY_CLIENTS_NOCODE
);
2026 /* we remove the notdirty callback only if the code has been
2028 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2029 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2033 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2034 unsigned size
, bool is_write
)
2039 static const MemoryRegionOps notdirty_mem_ops
= {
2040 .write
= notdirty_mem_write
,
2041 .valid
.accepts
= notdirty_mem_accepts
,
2042 .endianness
= DEVICE_NATIVE_ENDIAN
,
2045 /* Generate a debug exception if a watchpoint has been hit. */
2046 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2048 CPUState
*cpu
= current_cpu
;
2049 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2050 CPUArchState
*env
= cpu
->env_ptr
;
2051 target_ulong pc
, cs_base
;
2056 if (cpu
->watchpoint_hit
) {
2057 /* We re-entered the check after replacing the TB. Now raise
2058 * the debug interrupt so that is will trigger after the
2059 * current instruction. */
2060 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2063 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2064 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2065 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2066 && (wp
->flags
& flags
)) {
2067 if (flags
== BP_MEM_READ
) {
2068 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2070 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2072 wp
->hitaddr
= vaddr
;
2073 wp
->hitattrs
= attrs
;
2074 if (!cpu
->watchpoint_hit
) {
2075 if (wp
->flags
& BP_CPU
&&
2076 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2077 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2080 cpu
->watchpoint_hit
= wp
;
2082 /* The tb_lock will be reset when cpu_loop_exit or
2083 * cpu_loop_exit_noexc longjmp back into the cpu_exec
2087 tb_check_watchpoint(cpu
);
2088 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2089 cpu
->exception_index
= EXCP_DEBUG
;
2092 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2093 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2094 cpu_loop_exit_noexc(cpu
);
2098 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2103 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2104 so these check for a hit then pass through to the normal out-of-line
2106 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2107 unsigned size
, MemTxAttrs attrs
)
2111 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2112 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2114 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2117 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2120 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2123 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2131 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2132 uint64_t val
, unsigned size
,
2136 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2137 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2139 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2142 address_space_stb(as
, addr
, val
, attrs
, &res
);
2145 address_space_stw(as
, addr
, val
, attrs
, &res
);
2148 address_space_stl(as
, addr
, val
, attrs
, &res
);
2155 static const MemoryRegionOps watch_mem_ops
= {
2156 .read_with_attrs
= watch_mem_read
,
2157 .write_with_attrs
= watch_mem_write
,
2158 .endianness
= DEVICE_NATIVE_ENDIAN
,
2161 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2162 unsigned len
, MemTxAttrs attrs
)
2164 subpage_t
*subpage
= opaque
;
2168 #if defined(DEBUG_SUBPAGE)
2169 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2170 subpage
, len
, addr
);
2172 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2179 *data
= ldub_p(buf
);
2182 *data
= lduw_p(buf
);
2195 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2196 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2198 subpage_t
*subpage
= opaque
;
2201 #if defined(DEBUG_SUBPAGE)
2202 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2203 " value %"PRIx64
"\n",
2204 __func__
, subpage
, len
, addr
, value
);
2222 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2226 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2227 unsigned len
, bool is_write
)
2229 subpage_t
*subpage
= opaque
;
2230 #if defined(DEBUG_SUBPAGE)
2231 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2232 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2235 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2239 static const MemoryRegionOps subpage_ops
= {
2240 .read_with_attrs
= subpage_read
,
2241 .write_with_attrs
= subpage_write
,
2242 .impl
.min_access_size
= 1,
2243 .impl
.max_access_size
= 8,
2244 .valid
.min_access_size
= 1,
2245 .valid
.max_access_size
= 8,
2246 .valid
.accepts
= subpage_accepts
,
2247 .endianness
= DEVICE_NATIVE_ENDIAN
,
2250 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2255 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2257 idx
= SUBPAGE_IDX(start
);
2258 eidx
= SUBPAGE_IDX(end
);
2259 #if defined(DEBUG_SUBPAGE)
2260 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2261 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2263 for (; idx
<= eidx
; idx
++) {
2264 mmio
->sub_section
[idx
] = section
;
2270 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2274 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2277 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2278 NULL
, TARGET_PAGE_SIZE
);
2279 mmio
->iomem
.subpage
= true;
2280 #if defined(DEBUG_SUBPAGE)
2281 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2282 mmio
, base
, TARGET_PAGE_SIZE
);
2284 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2289 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2293 MemoryRegionSection section
= {
2294 .address_space
= as
,
2296 .offset_within_address_space
= 0,
2297 .offset_within_region
= 0,
2298 .size
= int128_2_64(),
2301 return phys_section_add(map
, §ion
);
2304 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2306 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2307 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2308 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2309 MemoryRegionSection
*sections
= d
->map
.sections
;
2311 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2314 static void io_mem_init(void)
2316 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2317 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2319 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2321 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2325 static void mem_begin(MemoryListener
*listener
)
2327 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2328 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2331 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2332 assert(n
== PHYS_SECTION_UNASSIGNED
);
2333 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2334 assert(n
== PHYS_SECTION_NOTDIRTY
);
2335 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2336 assert(n
== PHYS_SECTION_ROM
);
2337 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2338 assert(n
== PHYS_SECTION_WATCH
);
2340 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2342 as
->next_dispatch
= d
;
2345 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2347 phys_sections_free(&d
->map
);
2351 static void mem_commit(MemoryListener
*listener
)
2353 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2354 AddressSpaceDispatch
*cur
= as
->dispatch
;
2355 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2357 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2359 atomic_rcu_set(&as
->dispatch
, next
);
2361 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2365 static void tcg_commit(MemoryListener
*listener
)
2367 CPUAddressSpace
*cpuas
;
2368 AddressSpaceDispatch
*d
;
2370 /* since each CPU stores ram addresses in its TLB cache, we must
2371 reset the modified entries */
2372 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2373 cpu_reloading_memory_map();
2374 /* The CPU and TLB are protected by the iothread lock.
2375 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2376 * may have split the RCU critical section.
2378 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2379 cpuas
->memory_dispatch
= d
;
2380 tlb_flush(cpuas
->cpu
, 1);
2383 void address_space_init_dispatch(AddressSpace
*as
)
2385 as
->dispatch
= NULL
;
2386 as
->dispatch_listener
= (MemoryListener
) {
2388 .commit
= mem_commit
,
2389 .region_add
= mem_add
,
2390 .region_nop
= mem_add
,
2393 memory_listener_register(&as
->dispatch_listener
, as
);
2396 void address_space_unregister(AddressSpace
*as
)
2398 memory_listener_unregister(&as
->dispatch_listener
);
2401 void address_space_destroy_dispatch(AddressSpace
*as
)
2403 AddressSpaceDispatch
*d
= as
->dispatch
;
2405 atomic_rcu_set(&as
->dispatch
, NULL
);
2407 call_rcu(d
, address_space_dispatch_free
, rcu
);
2411 static void memory_map_init(void)
2413 system_memory
= g_malloc(sizeof(*system_memory
));
2415 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2416 address_space_init(&address_space_memory
, system_memory
, "memory");
2418 system_io
= g_malloc(sizeof(*system_io
));
2419 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2421 address_space_init(&address_space_io
, system_io
, "I/O");
2424 MemoryRegion
*get_system_memory(void)
2426 return system_memory
;
2429 MemoryRegion
*get_system_io(void)
2434 #endif /* !defined(CONFIG_USER_ONLY) */
2436 /* physical memory access (slow version, mainly for debug) */
2437 #if defined(CONFIG_USER_ONLY)
2438 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2439 uint8_t *buf
, int len
, int is_write
)
2446 page
= addr
& TARGET_PAGE_MASK
;
2447 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2450 flags
= page_get_flags(page
);
2451 if (!(flags
& PAGE_VALID
))
2454 if (!(flags
& PAGE_WRITE
))
2456 /* XXX: this code should not depend on lock_user */
2457 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2460 unlock_user(p
, addr
, l
);
2462 if (!(flags
& PAGE_READ
))
2464 /* XXX: this code should not depend on lock_user */
2465 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2468 unlock_user(p
, addr
, 0);
2479 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2482 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2483 addr
+= memory_region_get_ram_addr(mr
);
2485 /* No early return if dirty_log_mask is or becomes 0, because
2486 * cpu_physical_memory_set_dirty_range will still call
2487 * xen_modified_memory.
2489 if (dirty_log_mask
) {
2491 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2493 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2495 tb_invalidate_phys_range(addr
, addr
+ length
);
2497 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2499 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2502 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2504 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2506 /* Regions are assumed to support 1-4 byte accesses unless
2507 otherwise specified. */
2508 if (access_size_max
== 0) {
2509 access_size_max
= 4;
2512 /* Bound the maximum access by the alignment of the address. */
2513 if (!mr
->ops
->impl
.unaligned
) {
2514 unsigned align_size_max
= addr
& -addr
;
2515 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2516 access_size_max
= align_size_max
;
2520 /* Don't attempt accesses larger than the maximum. */
2521 if (l
> access_size_max
) {
2522 l
= access_size_max
;
2529 static bool prepare_mmio_access(MemoryRegion
*mr
)
2531 bool unlocked
= !qemu_mutex_iothread_locked();
2532 bool release_lock
= false;
2534 if (unlocked
&& mr
->global_locking
) {
2535 qemu_mutex_lock_iothread();
2537 release_lock
= true;
2539 if (mr
->flush_coalesced_mmio
) {
2541 qemu_mutex_lock_iothread();
2543 qemu_flush_coalesced_mmio_buffer();
2545 qemu_mutex_unlock_iothread();
2549 return release_lock
;
2552 /* Called within RCU critical section. */
2553 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2556 int len
, hwaddr addr1
,
2557 hwaddr l
, MemoryRegion
*mr
)
2561 MemTxResult result
= MEMTX_OK
;
2562 bool release_lock
= false;
2565 if (!memory_access_is_direct(mr
, true)) {
2566 release_lock
|= prepare_mmio_access(mr
);
2567 l
= memory_access_size(mr
, l
, addr1
);
2568 /* XXX: could force current_cpu to NULL to avoid
2572 /* 64 bit write access */
2574 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2578 /* 32 bit write access */
2580 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2584 /* 16 bit write access */
2586 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2590 /* 8 bit write access */
2592 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2600 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2601 memcpy(ptr
, buf
, l
);
2602 invalidate_and_set_dirty(mr
, addr1
, l
);
2606 qemu_mutex_unlock_iothread();
2607 release_lock
= false;
2619 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2625 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2626 const uint8_t *buf
, int len
)
2631 MemTxResult result
= MEMTX_OK
;
2636 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2637 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2645 /* Called within RCU critical section. */
2646 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2647 MemTxAttrs attrs
, uint8_t *buf
,
2648 int len
, hwaddr addr1
, hwaddr l
,
2653 MemTxResult result
= MEMTX_OK
;
2654 bool release_lock
= false;
2657 if (!memory_access_is_direct(mr
, false)) {
2659 release_lock
|= prepare_mmio_access(mr
);
2660 l
= memory_access_size(mr
, l
, addr1
);
2663 /* 64 bit read access */
2664 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2669 /* 32 bit read access */
2670 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2675 /* 16 bit read access */
2676 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2681 /* 8 bit read access */
2682 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2691 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2692 memcpy(buf
, ptr
, l
);
2696 qemu_mutex_unlock_iothread();
2697 release_lock
= false;
2709 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2715 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2716 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2721 MemTxResult result
= MEMTX_OK
;
2726 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2727 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2735 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2736 uint8_t *buf
, int len
, bool is_write
)
2739 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2741 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2745 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2746 int len
, int is_write
)
2748 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2749 buf
, len
, is_write
);
2752 enum write_rom_type
{
2757 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2758 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2768 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2770 if (!(memory_region_is_ram(mr
) ||
2771 memory_region_is_romd(mr
))) {
2772 l
= memory_access_size(mr
, l
, addr1
);
2775 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2778 memcpy(ptr
, buf
, l
);
2779 invalidate_and_set_dirty(mr
, addr1
, l
);
2782 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2793 /* used for ROM loading : can write in RAM and ROM */
2794 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2795 const uint8_t *buf
, int len
)
2797 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2800 void cpu_flush_icache_range(hwaddr start
, int len
)
2803 * This function should do the same thing as an icache flush that was
2804 * triggered from within the guest. For TCG we are always cache coherent,
2805 * so there is no need to flush anything. For KVM / Xen we need to flush
2806 * the host's instruction cache at least.
2808 if (tcg_enabled()) {
2812 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2813 start
, NULL
, len
, FLUSH_CACHE
);
2824 static BounceBuffer bounce
;
2826 typedef struct MapClient
{
2828 QLIST_ENTRY(MapClient
) link
;
2831 QemuMutex map_client_list_lock
;
2832 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2833 = QLIST_HEAD_INITIALIZER(map_client_list
);
2835 static void cpu_unregister_map_client_do(MapClient
*client
)
2837 QLIST_REMOVE(client
, link
);
2841 static void cpu_notify_map_clients_locked(void)
2845 while (!QLIST_EMPTY(&map_client_list
)) {
2846 client
= QLIST_FIRST(&map_client_list
);
2847 qemu_bh_schedule(client
->bh
);
2848 cpu_unregister_map_client_do(client
);
2852 void cpu_register_map_client(QEMUBH
*bh
)
2854 MapClient
*client
= g_malloc(sizeof(*client
));
2856 qemu_mutex_lock(&map_client_list_lock
);
2858 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2859 if (!atomic_read(&bounce
.in_use
)) {
2860 cpu_notify_map_clients_locked();
2862 qemu_mutex_unlock(&map_client_list_lock
);
2865 void cpu_exec_init_all(void)
2867 qemu_mutex_init(&ram_list
.mutex
);
2868 /* The data structures we set up here depend on knowing the page size,
2869 * so no more changes can be made after this point.
2870 * In an ideal world, nothing we did before we had finished the
2871 * machine setup would care about the target page size, and we could
2872 * do this much later, rather than requiring board models to state
2873 * up front what their requirements are.
2875 finalize_target_page_bits();
2878 qemu_mutex_init(&map_client_list_lock
);
2881 void cpu_unregister_map_client(QEMUBH
*bh
)
2885 qemu_mutex_lock(&map_client_list_lock
);
2886 QLIST_FOREACH(client
, &map_client_list
, link
) {
2887 if (client
->bh
== bh
) {
2888 cpu_unregister_map_client_do(client
);
2892 qemu_mutex_unlock(&map_client_list_lock
);
2895 static void cpu_notify_map_clients(void)
2897 qemu_mutex_lock(&map_client_list_lock
);
2898 cpu_notify_map_clients_locked();
2899 qemu_mutex_unlock(&map_client_list_lock
);
2902 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2910 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2911 if (!memory_access_is_direct(mr
, is_write
)) {
2912 l
= memory_access_size(mr
, l
, addr
);
2913 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2925 /* Map a physical memory region into a host virtual address.
2926 * May map a subset of the requested range, given by and returned in *plen.
2927 * May return NULL if resources needed to perform the mapping are exhausted.
2928 * Use only for reads OR writes - not for read-modify-write operations.
2929 * Use cpu_register_map_client() to know when retrying the map operation is
2930 * likely to succeed.
2932 void *address_space_map(AddressSpace
*as
,
2939 hwaddr l
, xlat
, base
;
2940 MemoryRegion
*mr
, *this_mr
;
2949 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2951 if (!memory_access_is_direct(mr
, is_write
)) {
2952 if (atomic_xchg(&bounce
.in_use
, true)) {
2956 /* Avoid unbounded allocations */
2957 l
= MIN(l
, TARGET_PAGE_SIZE
);
2958 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2962 memory_region_ref(mr
);
2965 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2971 return bounce
.buffer
;
2985 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2986 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2991 memory_region_ref(mr
);
2993 ptr
= qemu_ram_ptr_length(mr
->ram_block
, base
, plen
);
2999 /* Unmaps a memory region previously mapped by address_space_map().
3000 * Will also mark the memory as dirty if is_write == 1. access_len gives
3001 * the amount of memory that was actually read or written by the caller.
3003 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3004 int is_write
, hwaddr access_len
)
3006 if (buffer
!= bounce
.buffer
) {
3010 mr
= memory_region_from_host(buffer
, &addr1
);
3013 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3015 if (xen_enabled()) {
3016 xen_invalidate_map_cache_entry(buffer
);
3018 memory_region_unref(mr
);
3022 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3023 bounce
.buffer
, access_len
);
3025 qemu_vfree(bounce
.buffer
);
3026 bounce
.buffer
= NULL
;
3027 memory_region_unref(bounce
.mr
);
3028 atomic_mb_set(&bounce
.in_use
, false);
3029 cpu_notify_map_clients();
3032 void *cpu_physical_memory_map(hwaddr addr
,
3036 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3039 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3040 int is_write
, hwaddr access_len
)
3042 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3045 /* warning: addr must be aligned */
3046 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3048 MemTxResult
*result
,
3049 enum device_endian endian
)
3057 bool release_lock
= false;
3060 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3061 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3062 release_lock
|= prepare_mmio_access(mr
);
3065 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3066 #if defined(TARGET_WORDS_BIGENDIAN)
3067 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3071 if (endian
== DEVICE_BIG_ENDIAN
) {
3077 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3079 case DEVICE_LITTLE_ENDIAN
:
3080 val
= ldl_le_p(ptr
);
3082 case DEVICE_BIG_ENDIAN
:
3083 val
= ldl_be_p(ptr
);
3095 qemu_mutex_unlock_iothread();
3101 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3102 MemTxAttrs attrs
, MemTxResult
*result
)
3104 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3105 DEVICE_NATIVE_ENDIAN
);
3108 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3109 MemTxAttrs attrs
, MemTxResult
*result
)
3111 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3112 DEVICE_LITTLE_ENDIAN
);
3115 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3116 MemTxAttrs attrs
, MemTxResult
*result
)
3118 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3122 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3124 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3127 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3129 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3132 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3134 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3137 /* warning: addr must be aligned */
3138 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3140 MemTxResult
*result
,
3141 enum device_endian endian
)
3149 bool release_lock
= false;
3152 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3154 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3155 release_lock
|= prepare_mmio_access(mr
);
3158 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3159 #if defined(TARGET_WORDS_BIGENDIAN)
3160 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3164 if (endian
== DEVICE_BIG_ENDIAN
) {
3170 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3172 case DEVICE_LITTLE_ENDIAN
:
3173 val
= ldq_le_p(ptr
);
3175 case DEVICE_BIG_ENDIAN
:
3176 val
= ldq_be_p(ptr
);
3188 qemu_mutex_unlock_iothread();
3194 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3195 MemTxAttrs attrs
, MemTxResult
*result
)
3197 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3198 DEVICE_NATIVE_ENDIAN
);
3201 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3202 MemTxAttrs attrs
, MemTxResult
*result
)
3204 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3205 DEVICE_LITTLE_ENDIAN
);
3208 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3209 MemTxAttrs attrs
, MemTxResult
*result
)
3211 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3215 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3217 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3220 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3222 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3225 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3227 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3231 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3232 MemTxAttrs attrs
, MemTxResult
*result
)
3237 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3244 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3246 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3249 /* warning: addr must be aligned */
3250 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3253 MemTxResult
*result
,
3254 enum device_endian endian
)
3262 bool release_lock
= false;
3265 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3267 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3268 release_lock
|= prepare_mmio_access(mr
);
3271 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3272 #if defined(TARGET_WORDS_BIGENDIAN)
3273 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3277 if (endian
== DEVICE_BIG_ENDIAN
) {
3283 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3285 case DEVICE_LITTLE_ENDIAN
:
3286 val
= lduw_le_p(ptr
);
3288 case DEVICE_BIG_ENDIAN
:
3289 val
= lduw_be_p(ptr
);
3301 qemu_mutex_unlock_iothread();
3307 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3308 MemTxAttrs attrs
, MemTxResult
*result
)
3310 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3311 DEVICE_NATIVE_ENDIAN
);
3314 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3315 MemTxAttrs attrs
, MemTxResult
*result
)
3317 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3318 DEVICE_LITTLE_ENDIAN
);
3321 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3322 MemTxAttrs attrs
, MemTxResult
*result
)
3324 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3328 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3330 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3333 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3335 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3338 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3340 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3343 /* warning: addr must be aligned. The ram page is not masked as dirty
3344 and the code inside is not invalidated. It is useful if the dirty
3345 bits are used to track modified PTEs */
3346 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3347 MemTxAttrs attrs
, MemTxResult
*result
)
3354 uint8_t dirty_log_mask
;
3355 bool release_lock
= false;
3358 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3360 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3361 release_lock
|= prepare_mmio_access(mr
);
3363 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3365 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3368 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3369 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3370 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
3378 qemu_mutex_unlock_iothread();
3383 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3385 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3388 /* warning: addr must be aligned */
3389 static inline void address_space_stl_internal(AddressSpace
*as
,
3390 hwaddr addr
, uint32_t val
,
3392 MemTxResult
*result
,
3393 enum device_endian endian
)
3400 bool release_lock
= false;
3403 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3405 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3406 release_lock
|= prepare_mmio_access(mr
);
3408 #if defined(TARGET_WORDS_BIGENDIAN)
3409 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3413 if (endian
== DEVICE_BIG_ENDIAN
) {
3417 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3420 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3422 case DEVICE_LITTLE_ENDIAN
:
3425 case DEVICE_BIG_ENDIAN
:
3432 invalidate_and_set_dirty(mr
, addr1
, 4);
3439 qemu_mutex_unlock_iothread();
3444 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3445 MemTxAttrs attrs
, MemTxResult
*result
)
3447 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3448 DEVICE_NATIVE_ENDIAN
);
3451 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3452 MemTxAttrs attrs
, MemTxResult
*result
)
3454 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3455 DEVICE_LITTLE_ENDIAN
);
3458 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3459 MemTxAttrs attrs
, MemTxResult
*result
)
3461 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3465 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3467 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3470 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3472 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3475 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3477 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3481 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3482 MemTxAttrs attrs
, MemTxResult
*result
)
3487 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3493 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3495 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3498 /* warning: addr must be aligned */
3499 static inline void address_space_stw_internal(AddressSpace
*as
,
3500 hwaddr addr
, uint32_t val
,
3502 MemTxResult
*result
,
3503 enum device_endian endian
)
3510 bool release_lock
= false;
3513 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3514 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3515 release_lock
|= prepare_mmio_access(mr
);
3517 #if defined(TARGET_WORDS_BIGENDIAN)
3518 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3522 if (endian
== DEVICE_BIG_ENDIAN
) {
3526 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3529 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3531 case DEVICE_LITTLE_ENDIAN
:
3534 case DEVICE_BIG_ENDIAN
:
3541 invalidate_and_set_dirty(mr
, addr1
, 2);
3548 qemu_mutex_unlock_iothread();
3553 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3554 MemTxAttrs attrs
, MemTxResult
*result
)
3556 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3557 DEVICE_NATIVE_ENDIAN
);
3560 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3561 MemTxAttrs attrs
, MemTxResult
*result
)
3563 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3564 DEVICE_LITTLE_ENDIAN
);
3567 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3568 MemTxAttrs attrs
, MemTxResult
*result
)
3570 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3574 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3576 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3579 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3581 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3584 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3586 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3590 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3591 MemTxAttrs attrs
, MemTxResult
*result
)
3595 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3601 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3602 MemTxAttrs attrs
, MemTxResult
*result
)
3605 val
= cpu_to_le64(val
);
3606 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3611 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3612 MemTxAttrs attrs
, MemTxResult
*result
)
3615 val
= cpu_to_be64(val
);
3616 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3622 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3624 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3627 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3629 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3632 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3634 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3637 /* virtual memory access for debug (includes writing to ROM) */
3638 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3639 uint8_t *buf
, int len
, int is_write
)
3649 page
= addr
& TARGET_PAGE_MASK
;
3650 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3651 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3652 /* if no physical page mapped, return an error */
3653 if (phys_addr
== -1)
3655 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3658 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3660 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3663 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3664 MEMTXATTRS_UNSPECIFIED
,
3675 * Allows code that needs to deal with migration bitmaps etc to still be built
3676 * target independent.
3678 size_t qemu_target_page_bits(void)
3680 return TARGET_PAGE_BITS
;
3686 * A helper function for the _utterly broken_ virtio device model to find out if
3687 * it's running on a big endian machine. Don't do this at home kids!
3689 bool target_words_bigendian(void);
3690 bool target_words_bigendian(void)
3692 #if defined(TARGET_WORDS_BIGENDIAN)
3699 #ifndef CONFIG_USER_ONLY
3700 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3707 mr
= address_space_translate(&address_space_memory
,
3708 phys_addr
, &phys_addr
, &l
, false);
3710 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3715 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3721 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3722 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3723 block
->used_length
, opaque
);