linux-user: add pselect6 syscall support
[qemu.git] / hw / slavio_timer.c
blob5511313687c2048ce130ec13cc6a8a8be18db21e
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "sun4m.h"
26 #include "qemu-timer.h"
27 #include "sysbus.h"
28 #include "trace.h"
31 * Registers of hardware timer in sun4m.
33 * This is the timer/counter part of chip STP2001 (Slave I/O), also
34 * produced as NCR89C105. See
35 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
37 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
38 * are zero. Bit 31 is 1 when count has been reached.
40 * Per-CPU timers interrupt local CPU, system timer uses normal
41 * interrupt routing.
45 #define MAX_CPUS 16
47 typedef struct CPUTimerState {
48 qemu_irq irq;
49 ptimer_state *timer;
50 uint32_t count, counthigh, reached;
51 uint64_t limit;
52 // processor only
53 uint32_t running;
54 } CPUTimerState;
56 typedef struct SLAVIO_TIMERState {
57 SysBusDevice busdev;
58 uint32_t num_cpus;
59 CPUTimerState cputimer[MAX_CPUS + 1];
60 uint32_t cputimer_mode;
61 } SLAVIO_TIMERState;
63 typedef struct TimerContext {
64 SLAVIO_TIMERState *s;
65 unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
66 } TimerContext;
68 #define SYS_TIMER_SIZE 0x14
69 #define CPU_TIMER_SIZE 0x10
71 #define TIMER_LIMIT 0
72 #define TIMER_COUNTER 1
73 #define TIMER_COUNTER_NORST 2
74 #define TIMER_STATUS 3
75 #define TIMER_MODE 4
77 #define TIMER_COUNT_MASK32 0xfffffe00
78 #define TIMER_LIMIT_MASK32 0x7fffffff
79 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
80 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
81 #define TIMER_REACHED 0x80000000
82 #define TIMER_PERIOD 500ULL // 500ns
83 #define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1)
84 #define PERIODS_TO_LIMIT(l) (((l) + 1) << 9)
86 static int slavio_timer_is_user(TimerContext *tc)
88 SLAVIO_TIMERState *s = tc->s;
89 unsigned int timer_index = tc->timer_index;
91 return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
94 // Update count, set irq, update expire_time
95 // Convert from ptimer countdown units
96 static void slavio_timer_get_out(CPUTimerState *t)
98 uint64_t count, limit;
100 if (t->limit == 0) { /* free-run system or processor counter */
101 limit = TIMER_MAX_COUNT32;
102 } else {
103 limit = t->limit;
105 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
107 trace_slavio_timer_get_out(t->limit, t->counthigh, t->count);
108 t->count = count & TIMER_COUNT_MASK32;
109 t->counthigh = count >> 32;
112 // timer callback
113 static void slavio_timer_irq(void *opaque)
115 TimerContext *tc = opaque;
116 SLAVIO_TIMERState *s = tc->s;
117 CPUTimerState *t = &s->cputimer[tc->timer_index];
119 slavio_timer_get_out(t);
120 trace_slavio_timer_irq(t->counthigh, t->count);
121 /* if limit is 0 (free-run), there will be no match */
122 if (t->limit != 0) {
123 t->reached = TIMER_REACHED;
125 /* there is no interrupt if user timer or free-run */
126 if (!slavio_timer_is_user(tc) && t->limit != 0) {
127 qemu_irq_raise(t->irq);
131 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
133 TimerContext *tc = opaque;
134 SLAVIO_TIMERState *s = tc->s;
135 uint32_t saddr, ret;
136 unsigned int timer_index = tc->timer_index;
137 CPUTimerState *t = &s->cputimer[timer_index];
139 saddr = addr >> 2;
140 switch (saddr) {
141 case TIMER_LIMIT:
142 // read limit (system counter mode) or read most signifying
143 // part of counter (user mode)
144 if (slavio_timer_is_user(tc)) {
145 // read user timer MSW
146 slavio_timer_get_out(t);
147 ret = t->counthigh | t->reached;
148 } else {
149 // read limit
150 // clear irq
151 qemu_irq_lower(t->irq);
152 t->reached = 0;
153 ret = t->limit & TIMER_LIMIT_MASK32;
155 break;
156 case TIMER_COUNTER:
157 // read counter and reached bit (system mode) or read lsbits
158 // of counter (user mode)
159 slavio_timer_get_out(t);
160 if (slavio_timer_is_user(tc)) { // read user timer LSW
161 ret = t->count & TIMER_MAX_COUNT64;
162 } else { // read limit
163 ret = (t->count & TIMER_MAX_COUNT32) |
164 t->reached;
166 break;
167 case TIMER_STATUS:
168 // only available in processor counter/timer
169 // read start/stop status
170 if (timer_index > 0) {
171 ret = t->running;
172 } else {
173 ret = 0;
175 break;
176 case TIMER_MODE:
177 // only available in system counter
178 // read user/system mode
179 ret = s->cputimer_mode;
180 break;
181 default:
182 trace_slavio_timer_mem_readl_invalid(addr);
183 ret = 0;
184 break;
186 trace_slavio_timer_mem_readl(addr, ret);
187 return ret;
190 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
191 uint32_t val)
193 TimerContext *tc = opaque;
194 SLAVIO_TIMERState *s = tc->s;
195 uint32_t saddr;
196 unsigned int timer_index = tc->timer_index;
197 CPUTimerState *t = &s->cputimer[timer_index];
199 trace_slavio_timer_mem_writel(addr, val);
200 saddr = addr >> 2;
201 switch (saddr) {
202 case TIMER_LIMIT:
203 if (slavio_timer_is_user(tc)) {
204 uint64_t count;
206 // set user counter MSW, reset counter
207 t->limit = TIMER_MAX_COUNT64;
208 t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
209 t->reached = 0;
210 count = ((uint64_t)t->counthigh << 32) | t->count;
211 trace_slavio_timer_mem_writel_limit(timer_index, count);
212 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
213 } else {
214 // set limit, reset counter
215 qemu_irq_lower(t->irq);
216 t->limit = val & TIMER_MAX_COUNT32;
217 if (t->timer) {
218 if (t->limit == 0) { /* free-run */
219 ptimer_set_limit(t->timer,
220 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
221 } else {
222 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
226 break;
227 case TIMER_COUNTER:
228 if (slavio_timer_is_user(tc)) {
229 uint64_t count;
231 // set user counter LSW, reset counter
232 t->limit = TIMER_MAX_COUNT64;
233 t->count = val & TIMER_MAX_COUNT64;
234 t->reached = 0;
235 count = ((uint64_t)t->counthigh) << 32 | t->count;
236 trace_slavio_timer_mem_writel_limit(timer_index, count);
237 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
238 } else {
239 trace_slavio_timer_mem_writel_counter_invalid();
241 break;
242 case TIMER_COUNTER_NORST:
243 // set limit without resetting counter
244 t->limit = val & TIMER_MAX_COUNT32;
245 if (t->limit == 0) { /* free-run */
246 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
247 } else {
248 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
250 break;
251 case TIMER_STATUS:
252 if (slavio_timer_is_user(tc)) {
253 // start/stop user counter
254 if ((val & 1) && !t->running) {
255 trace_slavio_timer_mem_writel_status_start(timer_index);
256 ptimer_run(t->timer, 0);
257 t->running = 1;
258 } else if (!(val & 1) && t->running) {
259 trace_slavio_timer_mem_writel_status_stop(timer_index);
260 ptimer_stop(t->timer);
261 t->running = 0;
264 break;
265 case TIMER_MODE:
266 if (timer_index == 0) {
267 unsigned int i;
269 for (i = 0; i < s->num_cpus; i++) {
270 unsigned int processor = 1 << i;
271 CPUTimerState *curr_timer = &s->cputimer[i + 1];
273 // check for a change in timer mode for this processor
274 if ((val & processor) != (s->cputimer_mode & processor)) {
275 if (val & processor) { // counter -> user timer
276 qemu_irq_lower(curr_timer->irq);
277 // counters are always running
278 ptimer_stop(curr_timer->timer);
279 curr_timer->running = 0;
280 // user timer limit is always the same
281 curr_timer->limit = TIMER_MAX_COUNT64;
282 ptimer_set_limit(curr_timer->timer,
283 LIMIT_TO_PERIODS(curr_timer->limit),
285 // set this processors user timer bit in config
286 // register
287 s->cputimer_mode |= processor;
288 trace_slavio_timer_mem_writel_mode_user(timer_index);
289 } else { // user timer -> counter
290 // stop the user timer if it is running
291 if (curr_timer->running) {
292 ptimer_stop(curr_timer->timer);
294 // start the counter
295 ptimer_run(curr_timer->timer, 0);
296 curr_timer->running = 1;
297 // clear this processors user timer bit in config
298 // register
299 s->cputimer_mode &= ~processor;
300 trace_slavio_timer_mem_writel_mode_counter(timer_index);
304 } else {
305 trace_slavio_timer_mem_writel_mode_invalid();
307 break;
308 default:
309 trace_slavio_timer_mem_writel_invalid(addr);
310 break;
314 static CPUReadMemoryFunc * const slavio_timer_mem_read[3] = {
315 NULL,
316 NULL,
317 slavio_timer_mem_readl,
320 static CPUWriteMemoryFunc * const slavio_timer_mem_write[3] = {
321 NULL,
322 NULL,
323 slavio_timer_mem_writel,
326 static const VMStateDescription vmstate_timer = {
327 .name ="timer",
328 .version_id = 3,
329 .minimum_version_id = 3,
330 .minimum_version_id_old = 3,
331 .fields = (VMStateField []) {
332 VMSTATE_UINT64(limit, CPUTimerState),
333 VMSTATE_UINT32(count, CPUTimerState),
334 VMSTATE_UINT32(counthigh, CPUTimerState),
335 VMSTATE_UINT32(reached, CPUTimerState),
336 VMSTATE_UINT32(running, CPUTimerState),
337 VMSTATE_PTIMER(timer, CPUTimerState),
338 VMSTATE_END_OF_LIST()
342 static const VMStateDescription vmstate_slavio_timer = {
343 .name ="slavio_timer",
344 .version_id = 3,
345 .minimum_version_id = 3,
346 .minimum_version_id_old = 3,
347 .fields = (VMStateField []) {
348 VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3,
349 vmstate_timer, CPUTimerState),
350 VMSTATE_END_OF_LIST()
354 static void slavio_timer_reset(DeviceState *d)
356 SLAVIO_TIMERState *s = container_of(d, SLAVIO_TIMERState, busdev.qdev);
357 unsigned int i;
358 CPUTimerState *curr_timer;
360 for (i = 0; i <= MAX_CPUS; i++) {
361 curr_timer = &s->cputimer[i];
362 curr_timer->limit = 0;
363 curr_timer->count = 0;
364 curr_timer->reached = 0;
365 if (i <= s->num_cpus) {
366 ptimer_set_limit(curr_timer->timer,
367 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
368 ptimer_run(curr_timer->timer, 0);
369 curr_timer->running = 1;
372 s->cputimer_mode = 0;
375 static int slavio_timer_init1(SysBusDevice *dev)
377 int io;
378 SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
379 QEMUBH *bh;
380 unsigned int i;
381 TimerContext *tc;
383 for (i = 0; i <= MAX_CPUS; i++) {
384 tc = qemu_mallocz(sizeof(TimerContext));
385 tc->s = s;
386 tc->timer_index = i;
388 bh = qemu_bh_new(slavio_timer_irq, tc);
389 s->cputimer[i].timer = ptimer_init(bh);
390 ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
392 io = cpu_register_io_memory(slavio_timer_mem_read,
393 slavio_timer_mem_write, tc,
394 DEVICE_NATIVE_ENDIAN);
395 if (i == 0) {
396 sysbus_init_mmio(dev, SYS_TIMER_SIZE, io);
397 } else {
398 sysbus_init_mmio(dev, CPU_TIMER_SIZE, io);
401 sysbus_init_irq(dev, &s->cputimer[i].irq);
404 return 0;
407 static SysBusDeviceInfo slavio_timer_info = {
408 .init = slavio_timer_init1,
409 .qdev.name = "slavio_timer",
410 .qdev.size = sizeof(SLAVIO_TIMERState),
411 .qdev.vmsd = &vmstate_slavio_timer,
412 .qdev.reset = slavio_timer_reset,
413 .qdev.props = (Property[]) {
414 DEFINE_PROP_UINT32("num_cpus", SLAVIO_TIMERState, num_cpus, 0),
415 DEFINE_PROP_END_OF_LIST(),
419 static void slavio_timer_register_devices(void)
421 sysbus_register_withprop(&slavio_timer_info);
424 device_init(slavio_timer_register_devices)