2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
42 #include "hw/fw-path-provider.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_vio.h"
65 #include "hw/qdev-properties.h"
66 #include "hw/pci-host/spapr.h"
67 #include "hw/pci/msi.h"
69 #include "hw/pci/pci.h"
70 #include "hw/scsi/scsi.h"
71 #include "hw/virtio/virtio-scsi.h"
72 #include "hw/virtio/vhost-scsi-common.h"
74 #include "exec/ram_addr.h"
76 #include "qemu/config-file.h"
77 #include "qemu/error-report.h"
80 #include "hw/intc/intc.h"
82 #include "hw/ppc/spapr_cpu_core.h"
83 #include "hw/mem/memory-device.h"
84 #include "hw/ppc/spapr_tpm_proxy.h"
85 #include "hw/ppc/spapr_nvdimm.h"
86 #include "hw/ppc/spapr_numa.h"
87 #include "hw/ppc/pef.h"
89 #include "monitor/monitor.h"
93 /* SLOF memory layout:
95 * SLOF raw image loaded at 0, copies its romfs right below the flat
96 * device-tree, then position SLOF itself 31M below that
98 * So we set FW_OVERHEAD to 40MB which should account for all of that
101 * We load our kernel at 4M, leaving space for SLOF initial image
103 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
104 #define FW_MAX_SIZE 0x400000
105 #define FW_FILE_NAME "slof.bin"
106 #define FW_FILE_NAME_VOF "vof.bin"
107 #define FW_OVERHEAD 0x2800000
108 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
110 #define MIN_RMA_SLOF (128 * MiB)
112 #define PHANDLE_INTC 0x00001111
114 /* These two functions implement the VCPU id numbering: one to compute them
115 * all and one to identify thread 0 of a VCORE. Any change to the first one
116 * is likely to have an impact on the second one, so let's keep them close.
118 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
120 MachineState
*ms
= MACHINE(spapr
);
121 unsigned int smp_threads
= ms
->smp
.threads
;
125 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
127 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
131 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
134 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
136 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
137 * and newer QEMUs don't even have them. In both cases, we don't want
138 * to send anything on the wire.
143 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
144 .name
= "icp/server",
146 .minimum_version_id
= 1,
147 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
148 .fields
= (VMStateField
[]) {
149 VMSTATE_UNUSED(4), /* uint32_t xirr */
150 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
151 VMSTATE_UNUSED(1), /* uint8_t mfrr */
152 VMSTATE_END_OF_LIST()
156 static void pre_2_10_vmstate_register_dummy_icp(int i
)
158 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
159 (void *)(uintptr_t) i
);
162 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
164 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
165 (void *)(uintptr_t) i
);
168 int spapr_max_server_number(SpaprMachineState
*spapr
)
170 MachineState
*ms
= MACHINE(spapr
);
173 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
176 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
180 g_autofree
uint32_t *servers_prop
= g_new(uint32_t, smt_threads
);
181 g_autofree
uint32_t *gservers_prop
= g_new(uint32_t, smt_threads
* 2);
182 int index
= spapr_get_vcpu_id(cpu
);
184 if (cpu
->compat_pvr
) {
185 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
191 /* Build interrupt servers and gservers properties */
192 for (i
= 0; i
< smt_threads
; i
++) {
193 servers_prop
[i
] = cpu_to_be32(index
+ i
);
194 /* Hack, direct the group queues back to cpu 0 */
195 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
196 gservers_prop
[i
*2 + 1] = 0;
198 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
199 servers_prop
, sizeof(*servers_prop
) * smt_threads
);
203 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
204 gservers_prop
, sizeof(*gservers_prop
) * smt_threads
* 2);
209 static void spapr_dt_pa_features(SpaprMachineState
*spapr
,
211 void *fdt
, int offset
)
213 uint8_t pa_features_206
[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207
[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300
[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features
= NULL
;
248 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
249 pa_features
= pa_features_206
;
250 pa_size
= sizeof(pa_features_206
);
252 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
253 pa_features
= pa_features_207
;
254 pa_size
= sizeof(pa_features_207
);
256 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
257 pa_features
= pa_features_300
;
258 pa_size
= sizeof(pa_features_300
);
264 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features
[3] |= 0x20;
274 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
275 pa_features
[24] |= 0x80; /* Transactional memory support */
277 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
287 static hwaddr
spapr_node0_size(MachineState
*machine
)
289 if (machine
->numa_state
->num_nodes
) {
291 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
292 if (machine
->numa_state
->nodes
[i
].node_mem
) {
293 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
298 return machine
->ram_size
;
301 static void add_str(GString
*s
, const gchar
*s1
)
303 g_string_append_len(s
, s1
, strlen(s1
) + 1);
306 static int spapr_dt_memory_node(SpaprMachineState
*spapr
, void *fdt
, int nodeid
,
307 hwaddr start
, hwaddr size
)
310 uint64_t mem_reg_property
[2];
313 mem_reg_property
[0] = cpu_to_be64(start
);
314 mem_reg_property
[1] = cpu_to_be64(size
);
316 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
317 off
= fdt_add_subnode(fdt
, 0, mem_name
);
319 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
320 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
321 sizeof(mem_reg_property
))));
322 spapr_numa_write_associativity_dt(spapr
, fdt
, off
, nodeid
);
326 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
328 MemoryDeviceInfoList
*info
;
330 for (info
= list
; info
; info
= info
->next
) {
331 MemoryDeviceInfo
*value
= info
->value
;
333 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
334 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
336 if (addr
>= pcdimm_info
->addr
&&
337 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
338 return pcdimm_info
->node
;
346 struct sPAPRDrconfCellV2
{
354 typedef struct DrconfCellQueue
{
355 struct sPAPRDrconfCellV2 cell
;
356 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
359 static DrconfCellQueue
*
360 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
361 uint32_t drc_index
, uint32_t aa_index
,
364 DrconfCellQueue
*elem
;
366 elem
= g_malloc0(sizeof(*elem
));
367 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
368 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
369 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
370 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
371 elem
->cell
.flags
= cpu_to_be32(flags
);
376 static int spapr_dt_dynamic_memory_v2(SpaprMachineState
*spapr
, void *fdt
,
377 int offset
, MemoryDeviceInfoList
*dimms
)
379 MachineState
*machine
= MACHINE(spapr
);
380 uint8_t *int_buf
, *cur_index
;
382 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
383 uint64_t addr
, cur_addr
, size
;
384 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
385 uint64_t mem_end
= machine
->device_memory
->base
+
386 memory_region_size(&machine
->device_memory
->mr
);
387 uint32_t node
, buf_len
, nr_entries
= 0;
389 DrconfCellQueue
*elem
, *next
;
390 MemoryDeviceInfoList
*info
;
391 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
392 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
394 /* Entry to cover RAM and the gap area */
395 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
396 SPAPR_LMB_FLAGS_RESERVED
|
397 SPAPR_LMB_FLAGS_DRC_INVALID
);
398 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
401 cur_addr
= machine
->device_memory
->base
;
402 for (info
= dimms
; info
; info
= info
->next
) {
403 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
410 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
411 * area is marked hotpluggable in the next iteration for the bigger
412 * chunk including the NVDIMM occupied area.
414 if (info
->value
->type
== MEMORY_DEVICE_INFO_KIND_NVDIMM
)
417 /* Entry for hot-pluggable area */
418 if (cur_addr
< addr
) {
419 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
421 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
422 cur_addr
, spapr_drc_index(drc
), -1, 0);
423 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
428 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
430 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
431 spapr_drc_index(drc
), node
,
432 (SPAPR_LMB_FLAGS_ASSIGNED
|
433 SPAPR_LMB_FLAGS_HOTREMOVABLE
));
434 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
436 cur_addr
= addr
+ size
;
439 /* Entry for remaining hotpluggable area */
440 if (cur_addr
< mem_end
) {
441 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
443 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
444 cur_addr
, spapr_drc_index(drc
), -1, 0);
445 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
449 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
450 int_buf
= cur_index
= g_malloc0(buf_len
);
451 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
452 cur_index
+= sizeof(nr_entries
);
454 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
455 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
456 cur_index
+= sizeof(elem
->cell
);
457 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
461 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
469 static int spapr_dt_dynamic_memory(SpaprMachineState
*spapr
, void *fdt
,
470 int offset
, MemoryDeviceInfoList
*dimms
)
472 MachineState
*machine
= MACHINE(spapr
);
474 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
475 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
476 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
477 memory_region_size(&machine
->device_memory
->mr
)) /
479 uint32_t *int_buf
, *cur_index
, buf_len
;
482 * Allocate enough buffer size to fit in ibm,dynamic-memory
484 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
485 cur_index
= int_buf
= g_malloc0(buf_len
);
486 int_buf
[0] = cpu_to_be32(nr_lmbs
);
488 for (i
= 0; i
< nr_lmbs
; i
++) {
489 uint64_t addr
= i
* lmb_size
;
490 uint32_t *dynamic_memory
= cur_index
;
492 if (i
>= device_lmb_start
) {
495 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
498 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
499 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
500 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
501 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
502 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
503 if (memory_region_present(get_system_memory(), addr
)) {
504 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
506 dynamic_memory
[5] = cpu_to_be32(0);
510 * LMB information for RMA, boot time RAM and gap b/n RAM and
511 * device memory region -- all these are marked as reserved
512 * and as having no valid DRC.
514 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
515 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
516 dynamic_memory
[2] = cpu_to_be32(0);
517 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory
[4] = cpu_to_be32(-1);
519 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
520 SPAPR_LMB_FLAGS_DRC_INVALID
);
523 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
525 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
534 * Adds ibm,dynamic-reconfiguration-memory node.
535 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
536 * of this device tree node.
538 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState
*spapr
,
541 MachineState
*machine
= MACHINE(spapr
);
543 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
544 uint32_t prop_lmb_size
[] = {cpu_to_be32(lmb_size
>> 32),
545 cpu_to_be32(lmb_size
& 0xffffffff)};
546 MemoryDeviceInfoList
*dimms
= NULL
;
549 * Don't create the node if there is no device memory
551 if (machine
->ram_size
== machine
->maxram_size
) {
555 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
557 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
558 sizeof(prop_lmb_size
));
563 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
568 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574 dimms
= qmp_memory_device_list();
575 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
576 ret
= spapr_dt_dynamic_memory_v2(spapr
, fdt
, offset
, dimms
);
578 ret
= spapr_dt_dynamic_memory(spapr
, fdt
, offset
, dimms
);
580 qapi_free_MemoryDeviceInfoList(dimms
);
586 ret
= spapr_numa_write_assoc_lookup_arrays(spapr
, fdt
, offset
);
591 static int spapr_dt_memory(SpaprMachineState
*spapr
, void *fdt
)
593 MachineState
*machine
= MACHINE(spapr
);
594 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
595 hwaddr mem_start
, node_size
;
596 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
597 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
599 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
600 if (!nodes
[i
].node_mem
) {
603 if (mem_start
>= machine
->ram_size
) {
606 node_size
= nodes
[i
].node_mem
;
607 if (node_size
> machine
->ram_size
- mem_start
) {
608 node_size
= machine
->ram_size
- mem_start
;
612 /* spapr_machine_init() checks for rma_size <= node0_size
614 spapr_dt_memory_node(spapr
, fdt
, i
, 0, spapr
->rma_size
);
615 mem_start
+= spapr
->rma_size
;
616 node_size
-= spapr
->rma_size
;
618 for ( ; node_size
; ) {
619 hwaddr sizetmp
= pow2floor(node_size
);
621 /* mem_start != 0 here */
622 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
623 sizetmp
= 1ULL << ctzl(mem_start
);
626 spapr_dt_memory_node(spapr
, fdt
, i
, mem_start
, sizetmp
);
627 node_size
-= sizetmp
;
628 mem_start
+= sizetmp
;
632 /* Generate ibm,dynamic-reconfiguration-memory node if required */
633 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRCONF_MEMORY
)) {
636 g_assert(smc
->dr_lmb_enabled
);
637 ret
= spapr_dt_dynamic_reconfiguration_memory(spapr
, fdt
);
646 static void spapr_dt_cpu(CPUState
*cs
, void *fdt
, int offset
,
647 SpaprMachineState
*spapr
)
649 MachineState
*ms
= MACHINE(spapr
);
650 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
651 CPUPPCState
*env
= &cpu
->env
;
652 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
653 int index
= spapr_get_vcpu_id(cpu
);
654 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
655 0xffffffff, 0xffffffff};
656 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
657 : SPAPR_TIMEBASE_FREQ
;
658 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659 uint32_t page_sizes_prop
[64];
660 size_t page_sizes_prop_size
;
661 unsigned int smp_threads
= ms
->smp
.threads
;
662 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
663 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
664 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
667 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
670 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
672 drc_index
= spapr_drc_index(drc
);
673 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
676 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
677 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
679 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
680 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
681 env
->dcache_line_size
)));
682 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
683 env
->dcache_line_size
)));
684 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
685 env
->icache_line_size
)));
686 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
687 env
->icache_line_size
)));
689 if (pcc
->l1_dcache_size
) {
690 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
691 pcc
->l1_dcache_size
)));
693 warn_report("Unknown L1 dcache size for cpu");
695 if (pcc
->l1_icache_size
) {
696 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
697 pcc
->l1_icache_size
)));
699 warn_report("Unknown L1 icache size for cpu");
702 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
703 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
704 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
705 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
706 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
707 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
709 if (ppc_has_spr(cpu
, SPR_PURR
)) {
710 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
712 if (ppc_has_spr(cpu
, SPR_PURR
)) {
713 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
716 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
717 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
718 segs
, sizeof(segs
))));
721 /* Advertise VSX (vector extensions) if available
722 * 1 == VMX / Altivec available
725 * Only CPUs for which we create core types in spapr_cpu_core.c
726 * are possible, and all of those have VMX */
727 if (env
->insns_flags
& PPC_ALTIVEC
) {
728 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
729 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
731 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
735 /* Advertise DFP (Decimal Floating Point) if available
736 * 0 / no property == no DFP
737 * 1 == DFP available */
738 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
739 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
742 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
743 sizeof(page_sizes_prop
));
744 if (page_sizes_prop_size
) {
745 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
746 page_sizes_prop
, page_sizes_prop_size
)));
749 spapr_dt_pa_features(spapr
, cpu
, fdt
, offset
);
751 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
752 cs
->cpu_index
/ vcpus_per_socket
)));
754 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
755 pft_size_prop
, sizeof(pft_size_prop
))));
757 if (ms
->numa_state
->num_nodes
> 1) {
758 _FDT(spapr_numa_fixup_cpu_dt(spapr
, fdt
, offset
, cpu
));
761 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
763 if (pcc
->radix_page_info
) {
764 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
765 radix_AP_encodings
[i
] =
766 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
768 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
770 pcc
->radix_page_info
->count
*
771 sizeof(radix_AP_encodings
[0]))));
775 * We set this property to let the guest know that it can use the large
776 * decrementer and its width in bits.
778 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
779 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
780 pcc
->lrg_decr_bits
)));
783 static void spapr_dt_cpus(void *fdt
, SpaprMachineState
*spapr
)
791 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
793 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
794 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
797 * We walk the CPUs in reverse order to ensure that CPU DT nodes
798 * created by fdt_add_subnode() end up in the right order in FDT
799 * for the guest kernel the enumerate the CPUs correctly.
801 * The CPU list cannot be traversed in reverse order, so we need
807 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
811 for (i
= n_cpus
- 1; i
>= 0; i
--) {
812 CPUState
*cs
= rev
[i
];
813 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
814 int index
= spapr_get_vcpu_id(cpu
);
815 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
816 g_autofree
char *nodename
= NULL
;
819 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
823 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
824 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
826 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
832 static int spapr_dt_rng(void *fdt
)
837 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
841 ret
= fdt_setprop_string(fdt
, node
, "device_type",
842 "ibm,platform-facilities");
843 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
844 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
846 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
850 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
855 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
857 MachineState
*ms
= MACHINE(spapr
);
859 GString
*hypertas
= g_string_sized_new(256);
860 GString
*qemu_hypertas
= g_string_sized_new(256);
861 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
862 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
863 uint32_t lrdr_capacity
[] = {
864 cpu_to_be32(max_device_addr
>> 32),
865 cpu_to_be32(max_device_addr
& 0xffffffff),
866 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
>> 32),
867 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
& 0xffffffff),
868 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
871 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
874 add_str(hypertas
, "hcall-pft");
875 add_str(hypertas
, "hcall-term");
876 add_str(hypertas
, "hcall-dabr");
877 add_str(hypertas
, "hcall-interrupt");
878 add_str(hypertas
, "hcall-tce");
879 add_str(hypertas
, "hcall-vio");
880 add_str(hypertas
, "hcall-splpar");
881 add_str(hypertas
, "hcall-join");
882 add_str(hypertas
, "hcall-bulk");
883 add_str(hypertas
, "hcall-set-mode");
884 add_str(hypertas
, "hcall-sprg0");
885 add_str(hypertas
, "hcall-copy");
886 add_str(hypertas
, "hcall-debug");
887 add_str(hypertas
, "hcall-vphn");
888 if (spapr_get_cap(spapr
, SPAPR_CAP_RPT_INVALIDATE
) == SPAPR_CAP_ON
) {
889 add_str(hypertas
, "hcall-rpt-invalidate");
892 add_str(qemu_hypertas
, "hcall-memop1");
894 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895 add_str(hypertas
, "hcall-multi-tce");
898 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
899 add_str(hypertas
, "hcall-hpt-resize");
902 add_str(hypertas
, "hcall-watchdog");
904 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
905 hypertas
->str
, hypertas
->len
));
906 g_string_free(hypertas
, TRUE
);
907 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
908 qemu_hypertas
->str
, qemu_hypertas
->len
));
909 g_string_free(qemu_hypertas
, TRUE
);
911 spapr_numa_write_rtas_dt(spapr
, fdt
, rtas
);
914 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
915 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
917 * The system reset requirements are driven by existing Linux and PowerVM
918 * implementation which (contrary to PAPR) saves r3 in the error log
919 * structure like machine check, so Linux expects to find the saved r3
920 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
921 * does not look at the error value).
923 * System reset interrupts are not subject to interlock like machine
924 * check, so this memory area could be corrupted if the sreset is
925 * interrupted by a machine check (or vice versa) if it was shared. To
926 * prevent this, system reset uses per-CPU areas for the sreset save
927 * area. A system reset that interrupts a system reset handler could
928 * still overwrite this area, but Linux doesn't try to recover in that
931 * The extra 8 bytes is required because Linux's FWNMI error log check
934 * RTAS_MIN_SIZE is required for the RTAS blob itself.
936 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-size", RTAS_MIN_SIZE
+
938 ms
->smp
.max_cpus
* sizeof(uint64_t) * 2 +
940 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
941 RTAS_ERROR_LOG_MAX
));
942 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
943 RTAS_EVENT_SCAN_RATE
));
945 g_assert(msi_nonbroken
);
946 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
949 * According to PAPR, rtas ibm,os-term does not guarantee a return
950 * back to the guest cpu.
952 * While an additional ibm,extended-os-term property indicates
953 * that rtas call return will always occur. Set this property.
955 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
957 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
958 lrdr_capacity
, sizeof(lrdr_capacity
)));
960 spapr_dt_rtas_tokens(fdt
, rtas
);
964 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
965 * and the XIVE features that the guest may request and thus the valid
966 * values for bytes 23..26 of option vector 5:
968 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
971 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
974 23, 0x00, /* XICS / XIVE mode */
975 24, 0x00, /* Hash/Radix, filled in below. */
976 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
977 26, 0x40, /* Radix options: GTSE == yes. */
980 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
981 val
[1] = SPAPR_OV5_XIVE_BOTH
;
982 } else if (spapr
->irq
->xive
) {
983 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
985 assert(spapr
->irq
->xics
);
986 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
989 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
990 first_ppc_cpu
->compat_pvr
)) {
992 * If we're in a pre POWER9 compat mode then the guest should
993 * do hash and use the legacy interrupt mode
995 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
996 val
[3] = 0x00; /* Hash */
997 spapr_check_mmu_mode(false);
998 } else if (kvm_enabled()) {
999 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1000 val
[3] = 0x80; /* OV5_MMU_BOTH */
1001 } else if (kvmppc_has_cap_mmu_radix()) {
1002 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
1004 val
[3] = 0x00; /* Hash */
1007 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1010 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1014 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
, bool reset
)
1016 MachineState
*machine
= MACHINE(spapr
);
1017 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1018 uint8_t rng_seed
[32];
1021 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1024 const char *boot_device
= spapr
->boot_device
;
1025 g_autofree
char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1027 g_autofree
char *bootlist
= get_boot_devices_list(&cb
);
1029 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1030 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1031 machine
->kernel_cmdline
));
1034 if (spapr
->initrd_size
) {
1035 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1036 spapr
->initrd_base
));
1037 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1038 spapr
->initrd_base
+ spapr
->initrd_size
));
1041 if (spapr
->kernel_size
) {
1042 uint64_t kprop
[2] = { cpu_to_be64(spapr
->kernel_addr
),
1043 cpu_to_be64(spapr
->kernel_size
) };
1045 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1046 &kprop
, sizeof(kprop
)));
1047 if (spapr
->kernel_le
) {
1048 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1051 if (machine
->boot_config
.has_menu
&& machine
->boot_config
.menu
) {
1052 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", true)));
1054 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1055 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1056 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1058 if (cb
&& bootlist
) {
1061 for (i
= 0; i
< cb
; i
++) {
1062 if (bootlist
[i
] == '\n') {
1066 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1069 if (boot_device
&& strlen(boot_device
)) {
1070 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1073 if (spapr
->want_stdout_path
&& stdout_path
) {
1075 * "linux,stdout-path" and "stdout" properties are
1076 * deprecated by linux kernel. New platforms should only
1077 * use the "stdout-path" property. Set the new property
1078 * and continue using older property to remain compatible
1079 * with the existing firmware.
1081 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1082 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1086 * We can deal with BAR reallocation just fine, advertise it
1089 if (smc
->linux_pci_probe
) {
1090 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1093 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1096 qemu_guest_getrandom_nofail(rng_seed
, sizeof(rng_seed
));
1097 _FDT(fdt_setprop(fdt
, chosen
, "rng-seed", rng_seed
, sizeof(rng_seed
)));
1099 _FDT(spapr_dt_ovec(fdt
, chosen
, spapr
->ov5_cas
, "ibm,architecture-vec-5"));
1102 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1104 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1105 * KVM to work under pHyp with some guest co-operation */
1107 uint8_t hypercall
[16];
1109 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1110 /* indicate KVM hypercall interface */
1111 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1112 if (kvmppc_has_cap_fixup_hcalls()) {
1114 * Older KVM versions with older guest kernels were broken
1115 * with the magic page, don't allow the guest to map it.
1117 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1118 sizeof(hypercall
))) {
1119 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1120 hypercall
, sizeof(hypercall
)));
1125 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1127 MachineState
*machine
= MACHINE(spapr
);
1128 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1129 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1130 uint32_t root_drc_type_mask
= 0;
1136 fdt
= g_malloc0(space
);
1137 _FDT((fdt_create_empty_tree(fdt
, space
)));
1140 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1141 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1142 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1144 /* Guest UUID & Name*/
1145 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1146 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1147 if (qemu_uuid_set
) {
1148 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1152 if (qemu_get_vm_name()) {
1153 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1154 qemu_get_vm_name()));
1157 /* Host Model & Serial Number */
1158 if (spapr
->host_model
) {
1159 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1160 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1161 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1165 if (spapr
->host_serial
) {
1166 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1167 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1168 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1172 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1173 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1175 /* /interrupt controller */
1176 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1178 ret
= spapr_dt_memory(spapr
, fdt
);
1180 error_report("couldn't setup memory nodes in fdt");
1185 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1187 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1188 ret
= spapr_dt_rng(fdt
);
1190 error_report("could not set up rng device in the fdt");
1195 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1196 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1198 error_report("couldn't setup PCI devices in fdt");
1203 spapr_dt_cpus(fdt
, spapr
);
1205 /* ibm,drc-indexes and friends */
1206 if (smc
->dr_lmb_enabled
) {
1207 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_LMB
;
1209 if (smc
->dr_phb_enabled
) {
1210 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PHB
;
1212 if (mc
->nvdimm_supported
) {
1213 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PMEM
;
1215 if (root_drc_type_mask
) {
1216 _FDT(spapr_dt_drc(fdt
, 0, NULL
, root_drc_type_mask
));
1219 if (mc
->has_hotpluggable_cpus
) {
1220 int offset
= fdt_path_offset(fdt
, "/cpus");
1221 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1223 error_report("Couldn't set up CPU DR device tree properties");
1228 /* /event-sources */
1229 spapr_dt_events(spapr
, fdt
);
1232 spapr_dt_rtas(spapr
, fdt
);
1235 spapr_dt_chosen(spapr
, fdt
, reset
);
1238 if (kvm_enabled()) {
1239 spapr_dt_hypervisor(spapr
, fdt
);
1242 /* Build memory reserve map */
1244 if (spapr
->kernel_size
) {
1245 _FDT((fdt_add_mem_rsv(fdt
, spapr
->kernel_addr
,
1246 spapr
->kernel_size
)));
1248 if (spapr
->initrd_size
) {
1249 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1250 spapr
->initrd_size
)));
1254 /* NVDIMM devices */
1255 if (mc
->nvdimm_supported
) {
1256 spapr_dt_persistent_memory(spapr
, fdt
);
1262 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1264 SpaprMachineState
*spapr
= opaque
;
1266 return (addr
& 0x0fffffff) + spapr
->kernel_addr
;
1269 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1272 CPUPPCState
*env
= &cpu
->env
;
1274 /* The TCG path should also be holding the BQL at this point */
1275 g_assert(qemu_mutex_iothread_locked());
1277 g_assert(!vhyp_cpu_in_nested(cpu
));
1279 if (FIELD_EX64(env
->msr
, MSR
, PR
)) {
1280 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1281 env
->gpr
[3] = H_PRIVILEGE
;
1283 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1287 struct LPCRSyncState
{
1292 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1294 struct LPCRSyncState
*s
= arg
.host_ptr
;
1295 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1296 CPUPPCState
*env
= &cpu
->env
;
1299 cpu_synchronize_state(cs
);
1300 lpcr
= env
->spr
[SPR_LPCR
];
1303 ppc_store_lpcr(cpu
, lpcr
);
1306 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1309 struct LPCRSyncState s
= {
1314 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1318 static bool spapr_get_pate(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
,
1319 target_ulong lpid
, ppc_v3_pate_t
*entry
)
1321 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1322 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
1324 if (!spapr_cpu
->in_nested
) {
1327 /* Copy PATE1:GR into PATE0:HR */
1328 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1329 entry
->dw1
= spapr
->patb_entry
;
1332 uint64_t patb
, pats
;
1336 patb
= spapr
->nested_ptcr
& PTCR_PATB
;
1337 pats
= spapr
->nested_ptcr
& PTCR_PATS
;
1339 /* Check if partition table is properly aligned */
1340 if (patb
& MAKE_64BIT_MASK(0, pats
+ 12)) {
1344 /* Calculate number of entries */
1345 pats
= 1ull << (pats
+ 12 - 4);
1352 entry
->dw0
= ldq_phys(CPU(cpu
)->as
, patb
);
1353 entry
->dw1
= ldq_phys(CPU(cpu
)->as
, patb
+ 8);
1359 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1360 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1361 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1362 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1363 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1366 * Get the fd to access the kernel htab, re-opening it if necessary
1368 static int get_htab_fd(SpaprMachineState
*spapr
)
1370 Error
*local_err
= NULL
;
1372 if (spapr
->htab_fd
>= 0) {
1373 return spapr
->htab_fd
;
1376 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1377 if (spapr
->htab_fd
< 0) {
1378 error_report_err(local_err
);
1381 return spapr
->htab_fd
;
1384 void close_htab_fd(SpaprMachineState
*spapr
)
1386 if (spapr
->htab_fd
>= 0) {
1387 close(spapr
->htab_fd
);
1389 spapr
->htab_fd
= -1;
1392 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1394 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1396 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1399 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1401 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1403 assert(kvm_enabled());
1409 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1412 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1415 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1416 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1420 * HTAB is controlled by KVM. Fetch into temporary buffer
1422 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1423 kvmppc_read_hptes(hptes
, ptex
, n
);
1428 * HTAB is controlled by QEMU. Just point to the internally
1431 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1434 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1435 const ppc_hash_pte64_t
*hptes
,
1438 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1441 g_free((void *)hptes
);
1444 /* Nothing to do for qemu managed HPT */
1447 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1448 uint64_t pte0
, uint64_t pte1
)
1450 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1451 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1454 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1456 if (pte0
& HPTE64_V_VALID
) {
1457 stq_p(spapr
->htab
+ offset
+ HPTE64_DW1
, pte1
);
1459 * When setting valid, we write PTE1 first. This ensures
1460 * proper synchronization with the reading code in
1461 * ppc_hash64_pteg_search()
1464 stq_p(spapr
->htab
+ offset
, pte0
);
1466 stq_p(spapr
->htab
+ offset
, pte0
);
1468 * When clearing it we set PTE0 first. This ensures proper
1469 * synchronization with the reading code in
1470 * ppc_hash64_pteg_search()
1473 stq_p(spapr
->htab
+ offset
+ HPTE64_DW1
, pte1
);
1478 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1481 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ HPTE64_DW1_C
;
1482 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1485 /* There should always be a hash table when this is called */
1486 error_report("spapr_hpte_set_c called with no hash table !");
1490 /* The HW performs a non-atomic byte update */
1491 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1494 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1497 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ HPTE64_DW1_R
;
1498 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1501 /* There should always be a hash table when this is called */
1502 error_report("spapr_hpte_set_r called with no hash table !");
1506 /* The HW performs a non-atomic byte update */
1507 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1510 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1514 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1515 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1516 * that's much more than is needed for Linux guests */
1517 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1518 shift
= MAX(shift
, 18); /* Minimum architected size */
1519 shift
= MIN(shift
, 46); /* Maximum architected size */
1523 void spapr_free_hpt(SpaprMachineState
*spapr
)
1525 qemu_vfree(spapr
->htab
);
1527 spapr
->htab_shift
= 0;
1528 close_htab_fd(spapr
);
1531 int spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
, Error
**errp
)
1536 /* Clean up any HPT info from a previous boot */
1537 spapr_free_hpt(spapr
);
1539 rc
= kvmppc_reset_htab(shift
);
1541 if (rc
== -EOPNOTSUPP
) {
1542 error_setg(errp
, "HPT not supported in nested guests");
1547 /* kernel-side HPT needed, but couldn't allocate one */
1548 error_setg_errno(errp
, errno
, "Failed to allocate KVM HPT of order %d",
1550 error_append_hint(errp
, "Try smaller maxmem?\n");
1552 } else if (rc
> 0) {
1553 /* kernel-side HPT allocated */
1556 "Requested order %d HPT, but kernel allocated order %ld",
1558 error_append_hint(errp
, "Try smaller maxmem?\n");
1562 spapr
->htab_shift
= shift
;
1565 /* kernel-side HPT not needed, allocate in userspace instead */
1566 size_t size
= 1ULL << shift
;
1569 spapr
->htab
= qemu_memalign(size
, size
);
1570 memset(spapr
->htab
, 0, size
);
1571 spapr
->htab_shift
= shift
;
1573 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1574 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1577 /* We're setting up a hash table, so that means we're not radix */
1578 spapr
->patb_entry
= 0;
1579 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1583 void spapr_setup_hpt(SpaprMachineState
*spapr
)
1587 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
1588 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1590 uint64_t current_ram_size
;
1592 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1593 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1595 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1597 if (kvm_enabled()) {
1598 hwaddr vrma_limit
= kvmppc_vrma_limit(spapr
->htab_shift
);
1600 /* Check our RMA fits in the possible VRMA */
1601 if (vrma_limit
< spapr
->rma_size
) {
1602 error_report("Unable to create %" HWADDR_PRIu
1603 "MiB RMA (VRMA only allows %" HWADDR_PRIu
"MiB",
1604 spapr
->rma_size
/ MiB
, vrma_limit
/ MiB
);
1610 void spapr_check_mmu_mode(bool guest_radix
)
1613 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1614 error_report("Guest requested unavailable MMU mode (radix).");
1618 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1619 && !kvmppc_has_cap_mmu_hash_v3()) {
1620 error_report("Guest requested unavailable MMU mode (hash).");
1626 static void spapr_machine_reset(MachineState
*machine
, ShutdownCause reason
)
1628 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1629 PowerPCCPU
*first_ppc_cpu
;
1634 pef_kvm_reset(machine
->cgs
, &error_fatal
);
1635 spapr_caps_apply(spapr
);
1637 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1638 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1639 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1640 spapr
->max_compat_pvr
)) {
1642 * If using KVM with radix mode available, VCPUs can be started
1643 * without a HPT because KVM will start them in radix mode.
1644 * Set the GR bit in PATE so that we know there is no HPT.
1646 spapr
->patb_entry
= PATE1_GR
;
1647 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1649 spapr_setup_hpt(spapr
);
1652 qemu_devices_reset(reason
);
1654 spapr_ovec_cleanup(spapr
->ov5_cas
);
1655 spapr
->ov5_cas
= spapr_ovec_new();
1657 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1660 * This is fixing some of the default configuration of the XIVE
1661 * devices. To be called after the reset of the machine devices.
1663 spapr_irq_reset(spapr
, &error_fatal
);
1666 * There is no CAS under qtest. Simulate one to please the code that
1667 * depends on spapr->ov5_cas. This is especially needed to test device
1668 * unplug, so we do that before resetting the DRCs.
1670 if (qtest_enabled()) {
1671 spapr_ovec_cleanup(spapr
->ov5_cas
);
1672 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1675 spapr_nvdimm_finish_flushes();
1677 /* DRC reset may cause a device to be unplugged. This will cause troubles
1678 * if this device is used by another device (eg, a running vhost backend
1679 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1680 * situations, we reset DRCs after all devices have been reset.
1682 spapr_drc_reset_all(spapr
);
1684 spapr_clear_pending_events(spapr
);
1687 * We place the device tree just below either the top of the RMA,
1688 * or just below 2GB, whichever is lower, so that it can be
1689 * processed with 32-bit real mode code if necessary
1691 fdt_addr
= MIN(spapr
->rma_size
, FDT_MAX_ADDR
) - FDT_MAX_SIZE
;
1693 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1695 spapr_vof_reset(spapr
, fdt
, &error_fatal
);
1697 * Do not pack the FDT as the client may change properties.
1698 * VOF client does not expect the FDT so we do not load it to the VM.
1702 /* Should only fail if we've built a corrupted tree */
1705 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
,
1707 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1709 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1711 g_free(spapr
->fdt_blob
);
1712 spapr
->fdt_size
= fdt_totalsize(fdt
);
1713 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1714 spapr
->fdt_blob
= fdt
;
1716 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1719 /* Set up the entry state */
1720 first_ppc_cpu
->env
.gpr
[5] = 0;
1722 spapr
->fwnmi_system_reset_addr
= -1;
1723 spapr
->fwnmi_machine_check_addr
= -1;
1724 spapr
->fwnmi_machine_check_interlock
= -1;
1726 /* Signal all vCPUs waiting on this condition */
1727 qemu_cond_broadcast(&spapr
->fwnmi_machine_check_interlock_cond
);
1729 migrate_del_blocker(spapr
->fwnmi_migration_blocker
);
1732 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1734 DeviceState
*dev
= qdev_new("spapr-nvram");
1735 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1738 qdev_prop_set_drive_err(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1742 qdev_realize_and_unref(dev
, &spapr
->vio_bus
->bus
, &error_fatal
);
1744 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1747 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1749 object_initialize_child_with_props(OBJECT(spapr
), "rtc", &spapr
->rtc
,
1750 sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1751 &error_fatal
, NULL
);
1752 qdev_realize(DEVICE(&spapr
->rtc
), NULL
, &error_fatal
);
1753 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1757 /* Returns whether we want to use VGA or not */
1758 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1760 vga_interface_created
= true;
1761 switch (vga_interface_type
) {
1769 return pci_vga_init(pci_bus
) != NULL
;
1772 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1777 static int spapr_pre_load(void *opaque
)
1781 rc
= spapr_caps_pre_load(opaque
);
1789 static int spapr_post_load(void *opaque
, int version_id
)
1791 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1794 err
= spapr_caps_post_migration(spapr
);
1800 * In earlier versions, there was no separate qdev for the PAPR
1801 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1802 * So when migrating from those versions, poke the incoming offset
1803 * value into the RTC device
1805 if (version_id
< 3) {
1806 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1812 if (kvm_enabled() && spapr
->patb_entry
) {
1813 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1814 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1815 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1818 * Update LPCR:HR and UPRT as they may not be set properly in
1821 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1822 LPCR_HR
| LPCR_UPRT
);
1824 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1826 error_report("Process table config unsupported by the host");
1831 err
= spapr_irq_post_load(spapr
, version_id
);
1839 static int spapr_pre_save(void *opaque
)
1843 rc
= spapr_caps_pre_save(opaque
);
1851 static bool version_before_3(void *opaque
, int version_id
)
1853 return version_id
< 3;
1856 static bool spapr_pending_events_needed(void *opaque
)
1858 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1859 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1862 static const VMStateDescription vmstate_spapr_event_entry
= {
1863 .name
= "spapr_event_log_entry",
1865 .minimum_version_id
= 1,
1866 .fields
= (VMStateField
[]) {
1867 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1868 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1869 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1870 NULL
, extended_length
),
1871 VMSTATE_END_OF_LIST()
1875 static const VMStateDescription vmstate_spapr_pending_events
= {
1876 .name
= "spapr_pending_events",
1878 .minimum_version_id
= 1,
1879 .needed
= spapr_pending_events_needed
,
1880 .fields
= (VMStateField
[]) {
1881 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1882 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1883 VMSTATE_END_OF_LIST()
1887 static bool spapr_ov5_cas_needed(void *opaque
)
1889 SpaprMachineState
*spapr
= opaque
;
1890 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1893 /* Prior to the introduction of SpaprOptionVector, we had two option
1894 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1895 * Both of these options encode machine topology into the device-tree
1896 * in such a way that the now-booted OS should still be able to interact
1897 * appropriately with QEMU regardless of what options were actually
1898 * negotiatied on the source side.
1900 * As such, we can avoid migrating the CAS-negotiated options if these
1901 * are the only options available on the current machine/platform.
1902 * Since these are the only options available for pseries-2.7 and
1903 * earlier, this allows us to maintain old->new/new->old migration
1906 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1907 * via default pseries-2.8 machines and explicit command-line parameters.
1908 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1909 * of the actual CAS-negotiated values to continue working properly. For
1910 * example, availability of memory unplug depends on knowing whether
1911 * OV5_HP_EVT was negotiated via CAS.
1913 * Thus, for any cases where the set of available CAS-negotiatable
1914 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1915 * include the CAS-negotiated options in the migration stream, unless
1916 * if they affect boot time behaviour only.
1918 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1919 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1920 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1922 /* We need extra information if we have any bits outside the mask
1924 cas_needed
= !spapr_ovec_subset(spapr
->ov5
, ov5_mask
);
1926 spapr_ovec_cleanup(ov5_mask
);
1931 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1932 .name
= "spapr_option_vector_ov5_cas",
1934 .minimum_version_id
= 1,
1935 .needed
= spapr_ov5_cas_needed
,
1936 .fields
= (VMStateField
[]) {
1937 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1938 vmstate_spapr_ovec
, SpaprOptionVector
),
1939 VMSTATE_END_OF_LIST()
1943 static bool spapr_patb_entry_needed(void *opaque
)
1945 SpaprMachineState
*spapr
= opaque
;
1947 return !!spapr
->patb_entry
;
1950 static const VMStateDescription vmstate_spapr_patb_entry
= {
1951 .name
= "spapr_patb_entry",
1953 .minimum_version_id
= 1,
1954 .needed
= spapr_patb_entry_needed
,
1955 .fields
= (VMStateField
[]) {
1956 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1957 VMSTATE_END_OF_LIST()
1961 static bool spapr_irq_map_needed(void *opaque
)
1963 SpaprMachineState
*spapr
= opaque
;
1965 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1968 static const VMStateDescription vmstate_spapr_irq_map
= {
1969 .name
= "spapr_irq_map",
1971 .minimum_version_id
= 1,
1972 .needed
= spapr_irq_map_needed
,
1973 .fields
= (VMStateField
[]) {
1974 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1975 VMSTATE_END_OF_LIST()
1979 static bool spapr_dtb_needed(void *opaque
)
1981 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1983 return smc
->update_dt_enabled
;
1986 static int spapr_dtb_pre_load(void *opaque
)
1988 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1990 g_free(spapr
->fdt_blob
);
1991 spapr
->fdt_blob
= NULL
;
1992 spapr
->fdt_size
= 0;
1997 static const VMStateDescription vmstate_spapr_dtb
= {
1998 .name
= "spapr_dtb",
2000 .minimum_version_id
= 1,
2001 .needed
= spapr_dtb_needed
,
2002 .pre_load
= spapr_dtb_pre_load
,
2003 .fields
= (VMStateField
[]) {
2004 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
2005 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
2006 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
2008 VMSTATE_END_OF_LIST()
2012 static bool spapr_fwnmi_needed(void *opaque
)
2014 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
2016 return spapr
->fwnmi_machine_check_addr
!= -1;
2019 static int spapr_fwnmi_pre_save(void *opaque
)
2021 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
2024 * Check if machine check handling is in progress and print a
2027 if (spapr
->fwnmi_machine_check_interlock
!= -1) {
2028 warn_report("A machine check is being handled during migration. The"
2029 "handler may run and log hardware error on the destination");
2035 static const VMStateDescription vmstate_spapr_fwnmi
= {
2036 .name
= "spapr_fwnmi",
2038 .minimum_version_id
= 1,
2039 .needed
= spapr_fwnmi_needed
,
2040 .pre_save
= spapr_fwnmi_pre_save
,
2041 .fields
= (VMStateField
[]) {
2042 VMSTATE_UINT64(fwnmi_system_reset_addr
, SpaprMachineState
),
2043 VMSTATE_UINT64(fwnmi_machine_check_addr
, SpaprMachineState
),
2044 VMSTATE_INT32(fwnmi_machine_check_interlock
, SpaprMachineState
),
2045 VMSTATE_END_OF_LIST()
2049 static const VMStateDescription vmstate_spapr
= {
2052 .minimum_version_id
= 1,
2053 .pre_load
= spapr_pre_load
,
2054 .post_load
= spapr_post_load
,
2055 .pre_save
= spapr_pre_save
,
2056 .fields
= (VMStateField
[]) {
2057 /* used to be @next_irq */
2058 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
2061 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
2063 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
2064 VMSTATE_END_OF_LIST()
2066 .subsections
= (const VMStateDescription
*[]) {
2067 &vmstate_spapr_ov5_cas
,
2068 &vmstate_spapr_patb_entry
,
2069 &vmstate_spapr_pending_events
,
2070 &vmstate_spapr_cap_htm
,
2071 &vmstate_spapr_cap_vsx
,
2072 &vmstate_spapr_cap_dfp
,
2073 &vmstate_spapr_cap_cfpc
,
2074 &vmstate_spapr_cap_sbbc
,
2075 &vmstate_spapr_cap_ibs
,
2076 &vmstate_spapr_cap_hpt_maxpagesize
,
2077 &vmstate_spapr_irq_map
,
2078 &vmstate_spapr_cap_nested_kvm_hv
,
2080 &vmstate_spapr_cap_large_decr
,
2081 &vmstate_spapr_cap_ccf_assist
,
2082 &vmstate_spapr_cap_fwnmi
,
2083 &vmstate_spapr_fwnmi
,
2084 &vmstate_spapr_cap_rpt_invalidate
,
2089 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2091 SpaprMachineState
*spapr
= opaque
;
2093 /* "Iteration" header */
2094 if (!spapr
->htab_shift
) {
2095 qemu_put_be32(f
, -1);
2097 qemu_put_be32(f
, spapr
->htab_shift
);
2101 spapr
->htab_save_index
= 0;
2102 spapr
->htab_first_pass
= true;
2104 if (spapr
->htab_shift
) {
2105 assert(kvm_enabled());
2113 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2114 int chunkstart
, int n_valid
, int n_invalid
)
2116 qemu_put_be32(f
, chunkstart
);
2117 qemu_put_be16(f
, n_valid
);
2118 qemu_put_be16(f
, n_invalid
);
2119 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2120 HASH_PTE_SIZE_64
* n_valid
);
2123 static void htab_save_end_marker(QEMUFile
*f
)
2125 qemu_put_be32(f
, 0);
2126 qemu_put_be16(f
, 0);
2127 qemu_put_be16(f
, 0);
2130 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2133 bool has_timeout
= max_ns
!= -1;
2134 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2135 int index
= spapr
->htab_save_index
;
2136 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2138 assert(spapr
->htab_first_pass
);
2143 /* Consume invalid HPTEs */
2144 while ((index
< htabslots
)
2145 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2146 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2150 /* Consume valid HPTEs */
2152 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2153 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2154 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2158 if (index
> chunkstart
) {
2159 int n_valid
= index
- chunkstart
;
2161 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2164 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2168 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2170 if (index
>= htabslots
) {
2171 assert(index
== htabslots
);
2173 spapr
->htab_first_pass
= false;
2175 spapr
->htab_save_index
= index
;
2178 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2181 bool final
= max_ns
< 0;
2182 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2183 int examined
= 0, sent
= 0;
2184 int index
= spapr
->htab_save_index
;
2185 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2187 assert(!spapr
->htab_first_pass
);
2190 int chunkstart
, invalidstart
;
2192 /* Consume non-dirty HPTEs */
2193 while ((index
< htabslots
)
2194 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2200 /* Consume valid dirty HPTEs */
2201 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2202 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2203 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2204 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2209 invalidstart
= index
;
2210 /* Consume invalid dirty HPTEs */
2211 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2212 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2213 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2214 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2219 if (index
> chunkstart
) {
2220 int n_valid
= invalidstart
- chunkstart
;
2221 int n_invalid
= index
- invalidstart
;
2223 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2224 sent
+= index
- chunkstart
;
2226 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2231 if (examined
>= htabslots
) {
2235 if (index
>= htabslots
) {
2236 assert(index
== htabslots
);
2239 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2241 if (index
>= htabslots
) {
2242 assert(index
== htabslots
);
2246 spapr
->htab_save_index
= index
;
2248 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2251 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2252 #define MAX_KVM_BUF_SIZE 2048
2254 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2256 SpaprMachineState
*spapr
= opaque
;
2260 /* Iteration header */
2261 if (!spapr
->htab_shift
) {
2262 qemu_put_be32(f
, -1);
2265 qemu_put_be32(f
, 0);
2269 assert(kvm_enabled());
2271 fd
= get_htab_fd(spapr
);
2276 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2280 } else if (spapr
->htab_first_pass
) {
2281 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2283 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2286 htab_save_end_marker(f
);
2291 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2293 SpaprMachineState
*spapr
= opaque
;
2296 /* Iteration header */
2297 if (!spapr
->htab_shift
) {
2298 qemu_put_be32(f
, -1);
2301 qemu_put_be32(f
, 0);
2307 assert(kvm_enabled());
2309 fd
= get_htab_fd(spapr
);
2314 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2319 if (spapr
->htab_first_pass
) {
2320 htab_save_first_pass(f
, spapr
, -1);
2322 htab_save_later_pass(f
, spapr
, -1);
2326 htab_save_end_marker(f
);
2331 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2333 SpaprMachineState
*spapr
= opaque
;
2334 uint32_t section_hdr
;
2336 Error
*local_err
= NULL
;
2338 if (version_id
< 1 || version_id
> 1) {
2339 error_report("htab_load() bad version");
2343 section_hdr
= qemu_get_be32(f
);
2345 if (section_hdr
== -1) {
2346 spapr_free_hpt(spapr
);
2353 /* First section gives the htab size */
2354 ret
= spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2356 error_report_err(local_err
);
2363 assert(kvm_enabled());
2365 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2367 error_report_err(local_err
);
2374 uint16_t n_valid
, n_invalid
;
2376 index
= qemu_get_be32(f
);
2377 n_valid
= qemu_get_be16(f
);
2378 n_invalid
= qemu_get_be16(f
);
2380 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2385 if ((index
+ n_valid
+ n_invalid
) >
2386 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2387 /* Bad index in stream */
2389 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2390 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2396 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2397 HASH_PTE_SIZE_64
* n_valid
);
2400 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2401 HASH_PTE_SIZE_64
* n_invalid
);
2408 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
,
2411 error_report_err(local_err
);
2425 static void htab_save_cleanup(void *opaque
)
2427 SpaprMachineState
*spapr
= opaque
;
2429 close_htab_fd(spapr
);
2432 static SaveVMHandlers savevm_htab_handlers
= {
2433 .save_setup
= htab_save_setup
,
2434 .save_live_iterate
= htab_save_iterate
,
2435 .save_live_complete_precopy
= htab_save_complete
,
2436 .save_cleanup
= htab_save_cleanup
,
2437 .load_state
= htab_load
,
2440 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2443 SpaprMachineState
*spapr
= SPAPR_MACHINE(opaque
);
2445 g_free(spapr
->boot_device
);
2446 spapr
->boot_device
= g_strdup(boot_device
);
2449 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2451 MachineState
*machine
= MACHINE(spapr
);
2452 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2453 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2456 for (i
= 0; i
< nr_lmbs
; i
++) {
2459 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2460 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2466 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2467 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2468 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2470 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2474 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2475 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2476 " is not aligned to %" PRIu64
" MiB",
2478 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2482 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2483 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2484 " is not aligned to %" PRIu64
" MiB",
2486 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2490 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2491 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2493 "Node %d memory size 0x%" PRIx64
2494 " is not aligned to %" PRIu64
" MiB",
2495 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2496 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2502 /* find cpu slot in machine->possible_cpus by core_id */
2503 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2505 int index
= id
/ ms
->smp
.threads
;
2507 if (index
>= ms
->possible_cpus
->len
) {
2513 return &ms
->possible_cpus
->cpus
[index
];
2516 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2518 MachineState
*ms
= MACHINE(spapr
);
2519 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2520 Error
*local_err
= NULL
;
2521 bool vsmt_user
= !!spapr
->vsmt
;
2522 int kvm_smt
= kvmppc_smt_threads();
2524 unsigned int smp_threads
= ms
->smp
.threads
;
2526 if (!kvm_enabled() && (smp_threads
> 1)) {
2527 error_setg(errp
, "TCG cannot support more than 1 thread/core "
2528 "on a pseries machine");
2531 if (!is_power_of_2(smp_threads
)) {
2532 error_setg(errp
, "Cannot support %d threads/core on a pseries "
2533 "machine because it must be a power of 2", smp_threads
);
2537 /* Detemine the VSMT mode to use: */
2539 if (spapr
->vsmt
< smp_threads
) {
2540 error_setg(errp
, "Cannot support VSMT mode %d"
2541 " because it must be >= threads/core (%d)",
2542 spapr
->vsmt
, smp_threads
);
2545 /* In this case, spapr->vsmt has been set by the command line */
2546 } else if (!smc
->smp_threads_vsmt
) {
2548 * Default VSMT value is tricky, because we need it to be as
2549 * consistent as possible (for migration), but this requires
2550 * changing it for at least some existing cases. We pick 8 as
2551 * the value that we'd get with KVM on POWER8, the
2552 * overwhelmingly common case in production systems.
2554 spapr
->vsmt
= MAX(8, smp_threads
);
2556 spapr
->vsmt
= smp_threads
;
2559 /* KVM: If necessary, set the SMT mode: */
2560 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2561 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2563 /* Looks like KVM isn't able to change VSMT mode */
2564 error_setg(&local_err
,
2565 "Failed to set KVM's VSMT mode to %d (errno %d)",
2567 /* We can live with that if the default one is big enough
2568 * for the number of threads, and a submultiple of the one
2569 * we want. In this case we'll waste some vcpu ids, but
2570 * behaviour will be correct */
2571 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2572 warn_report_err(local_err
);
2575 error_append_hint(&local_err
,
2576 "On PPC, a VM with %d threads/core"
2577 " on a host with %d threads/core"
2578 " requires the use of VSMT mode %d.\n",
2579 smp_threads
, kvm_smt
, spapr
->vsmt
);
2581 kvmppc_error_append_smt_possible_hint(&local_err
);
2582 error_propagate(errp
, local_err
);
2586 /* else TCG: nothing to do currently */
2589 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2591 MachineState
*machine
= MACHINE(spapr
);
2592 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2593 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2594 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2595 const CPUArchIdList
*possible_cpus
;
2596 unsigned int smp_cpus
= machine
->smp
.cpus
;
2597 unsigned int smp_threads
= machine
->smp
.threads
;
2598 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2599 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2602 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2603 if (mc
->has_hotpluggable_cpus
) {
2604 if (smp_cpus
% smp_threads
) {
2605 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2606 smp_cpus
, smp_threads
);
2609 if (max_cpus
% smp_threads
) {
2610 error_report("max_cpus (%u) must be multiple of threads (%u)",
2611 max_cpus
, smp_threads
);
2615 if (max_cpus
!= smp_cpus
) {
2616 error_report("This machine version does not support CPU hotplug");
2619 boot_cores_nr
= possible_cpus
->len
;
2622 if (smc
->pre_2_10_has_unused_icps
) {
2625 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2626 /* Dummy entries get deregistered when real ICPState objects
2627 * are registered during CPU core hotplug.
2629 pre_2_10_vmstate_register_dummy_icp(i
);
2633 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2634 int core_id
= i
* smp_threads
;
2636 if (mc
->has_hotpluggable_cpus
) {
2637 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2638 spapr_vcpu_id(spapr
, core_id
));
2641 if (i
< boot_cores_nr
) {
2642 Object
*core
= object_new(type
);
2643 int nr_threads
= smp_threads
;
2645 /* Handle the partially filled core for older machine types */
2646 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2647 nr_threads
= smp_cpus
- i
* smp_threads
;
2650 object_property_set_int(core
, "nr-threads", nr_threads
,
2652 object_property_set_int(core
, CPU_CORE_PROP_CORE_ID
, core_id
,
2654 qdev_realize(DEVICE(core
), NULL
, &error_fatal
);
2661 static PCIHostState
*spapr_create_default_phb(void)
2665 dev
= qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE
);
2666 qdev_prop_set_uint32(dev
, "index", 0);
2667 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
2669 return PCI_HOST_BRIDGE(dev
);
2672 static hwaddr
spapr_rma_size(SpaprMachineState
*spapr
, Error
**errp
)
2674 MachineState
*machine
= MACHINE(spapr
);
2675 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2676 hwaddr rma_size
= machine
->ram_size
;
2677 hwaddr node0_size
= spapr_node0_size(machine
);
2679 /* RMA has to fit in the first NUMA node */
2680 rma_size
= MIN(rma_size
, node0_size
);
2683 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2686 rma_size
= MIN(rma_size
, 1 * TiB
);
2689 * Clamp the RMA size based on machine type. This is for
2690 * migration compatibility with older qemu versions, which limited
2691 * the RMA size for complicated and mostly bad reasons.
2693 if (smc
->rma_limit
) {
2694 rma_size
= MIN(rma_size
, smc
->rma_limit
);
2697 if (rma_size
< MIN_RMA_SLOF
) {
2699 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2700 "ldMiB guest RMA (Real Mode Area memory)",
2701 MIN_RMA_SLOF
/ MiB
);
2708 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState
*spapr
)
2710 MachineState
*machine
= MACHINE(spapr
);
2713 for (i
= 0; i
< machine
->ram_slots
; i
++) {
2714 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_PMEM
, i
);
2718 /* pSeries LPAR / sPAPR hardware init */
2719 static void spapr_machine_init(MachineState
*machine
)
2721 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2722 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2723 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2724 const char *bios_default
= spapr
->vof
? FW_FILE_NAME_VOF
: FW_FILE_NAME
;
2725 const char *bios_name
= machine
->firmware
?: bios_default
;
2726 g_autofree
char *filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2727 const char *kernel_filename
= machine
->kernel_filename
;
2728 const char *initrd_filename
= machine
->initrd_filename
;
2732 MemoryRegion
*sysmem
= get_system_memory();
2733 long load_limit
, fw_size
;
2734 Error
*resize_hpt_err
= NULL
;
2737 error_report("Could not find LPAR firmware '%s'", bios_name
);
2740 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2742 error_report("Could not load LPAR firmware '%s'", filename
);
2747 * if Secure VM (PEF) support is configured, then initialize it
2749 pef_kvm_init(machine
->cgs
, &error_fatal
);
2751 msi_nonbroken
= true;
2753 QLIST_INIT(&spapr
->phbs
);
2754 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2756 /* Determine capabilities to run with */
2757 spapr_caps_init(spapr
);
2759 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2760 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2762 * If the user explicitly requested a mode we should either
2763 * supply it, or fail completely (which we do below). But if
2764 * it's not set explicitly, we reset our mode to something
2767 if (resize_hpt_err
) {
2768 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2769 error_free(resize_hpt_err
);
2770 resize_hpt_err
= NULL
;
2772 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2776 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2778 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2780 * User requested HPT resize, but this host can't supply it. Bail out
2782 error_report_err(resize_hpt_err
);
2785 error_free(resize_hpt_err
);
2787 spapr
->rma_size
= spapr_rma_size(spapr
, &error_fatal
);
2789 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2790 load_limit
= MIN(spapr
->rma_size
, FDT_MAX_ADDR
) - FW_OVERHEAD
;
2793 * VSMT must be set in order to be able to compute VCPU ids, ie to
2794 * call spapr_max_server_number() or spapr_vcpu_id().
2796 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2798 /* Set up Interrupt Controller before we create the VCPUs */
2799 spapr_irq_init(spapr
, &error_fatal
);
2801 /* Set up containers for ibm,client-architecture-support negotiated options
2803 spapr
->ov5
= spapr_ovec_new();
2804 spapr
->ov5_cas
= spapr_ovec_new();
2806 if (smc
->dr_lmb_enabled
) {
2807 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2808 spapr_validate_node_memory(machine
, &error_fatal
);
2811 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2813 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2814 if (!smc
->pre_6_2_numa_affinity
) {
2815 spapr_ovec_set(spapr
->ov5
, OV5_FORM2_AFFINITY
);
2818 /* advertise support for dedicated HP event source to guests */
2819 if (spapr
->use_hotplug_event_source
) {
2820 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2823 /* advertise support for HPT resizing */
2824 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2825 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2828 /* advertise support for ibm,dyamic-memory-v2 */
2829 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2831 /* advertise XIVE on POWER9 machines */
2832 if (spapr
->irq
->xive
) {
2833 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2837 spapr_init_cpus(spapr
);
2839 spapr
->gpu_numa_id
= spapr_numa_initial_nvgpu_numa_id(machine
);
2841 /* Init numa_assoc_array */
2842 spapr_numa_associativity_init(spapr
, machine
);
2844 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2845 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2846 spapr
->max_compat_pvr
)) {
2847 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_300
);
2848 /* KVM and TCG always allow GTSE with radix... */
2849 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2851 /* ... but not with hash (currently). */
2853 if (kvm_enabled()) {
2854 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2855 kvmppc_enable_logical_ci_hcalls();
2856 kvmppc_enable_set_mode_hcall();
2858 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2859 kvmppc_enable_clear_ref_mod_hcalls();
2861 /* Enable H_PAGE_INIT */
2862 kvmppc_enable_h_page_init();
2866 memory_region_add_subregion(sysmem
, 0, machine
->ram
);
2868 /* always allocate the device memory information */
2869 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2871 /* initialize hotplug memory address space */
2872 if (machine
->ram_size
< machine
->maxram_size
) {
2873 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2875 * Limit the number of hotpluggable memory slots to half the number
2876 * slots that KVM supports, leaving the other half for PCI and other
2877 * devices. However ensure that number of slots doesn't drop below 32.
2879 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2880 SPAPR_MAX_RAM_SLOTS
;
2882 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2883 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2885 if (machine
->ram_slots
> max_memslots
) {
2886 error_report("Specified number of memory slots %"
2887 PRIu64
" exceeds max supported %d",
2888 machine
->ram_slots
, max_memslots
);
2892 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2893 SPAPR_DEVICE_MEM_ALIGN
);
2894 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2895 "device-memory", device_mem_size
);
2896 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2897 &machine
->device_memory
->mr
);
2900 if (smc
->dr_lmb_enabled
) {
2901 spapr_create_lmb_dr_connectors(spapr
);
2904 if (spapr_get_cap(spapr
, SPAPR_CAP_FWNMI
) == SPAPR_CAP_ON
) {
2905 /* Create the error string for live migration blocker */
2906 error_setg(&spapr
->fwnmi_migration_blocker
,
2907 "A machine check is being handled during migration. The handler"
2908 "may run and log hardware error on the destination");
2911 if (mc
->nvdimm_supported
) {
2912 spapr_create_nvdimm_dr_connectors(spapr
);
2915 /* Set up RTAS event infrastructure */
2916 spapr_events_init(spapr
);
2918 /* Set up the RTC RTAS interfaces */
2919 spapr_rtc_create(spapr
);
2921 /* Set up VIO bus */
2922 spapr
->vio_bus
= spapr_vio_bus_init();
2924 for (i
= 0; serial_hd(i
); i
++) {
2925 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2928 /* We always have at least the nvram device on VIO */
2929 spapr_create_nvram(spapr
);
2932 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2933 * connectors (described in root DT node's "ibm,drc-types" property)
2934 * are pre-initialized here. additional child connectors (such as
2935 * connectors for a PHBs PCI slots) are added as needed during their
2936 * parent's realization.
2938 if (smc
->dr_phb_enabled
) {
2939 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2940 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2945 spapr_pci_rtas_init();
2947 phb
= spapr_create_default_phb();
2949 for (i
= 0; i
< nb_nics
; i
++) {
2950 NICInfo
*nd
= &nd_table
[i
];
2953 nd
->model
= g_strdup("spapr-vlan");
2956 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2957 g_str_equal(nd
->model
, "ibmveth")) {
2958 spapr_vlan_create(spapr
->vio_bus
, nd
);
2960 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2964 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2965 spapr_vscsi_create(spapr
->vio_bus
);
2969 has_vga
= spapr_vga_init(phb
->bus
, &error_fatal
);
2971 spapr
->want_stdout_path
= !machine
->enable_graphics
;
2972 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2974 spapr
->want_stdout_path
= true;
2978 if (smc
->use_ohci_by_default
) {
2979 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2981 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2985 USBBus
*usb_bus
= usb_bus_find(-1);
2987 usb_create_simple(usb_bus
, "usb-kbd");
2988 usb_create_simple(usb_bus
, "usb-mouse");
2992 if (kernel_filename
) {
2993 uint64_t loaded_addr
= 0;
2995 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2996 translate_kernel_address
, spapr
,
2997 NULL
, &loaded_addr
, NULL
, NULL
, 1,
2998 PPC_ELF_MACHINE
, 0, 0);
2999 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
3000 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
3001 translate_kernel_address
, spapr
,
3002 NULL
, &loaded_addr
, NULL
, NULL
, 0,
3003 PPC_ELF_MACHINE
, 0, 0);
3004 spapr
->kernel_le
= spapr
->kernel_size
> 0;
3006 if (spapr
->kernel_size
< 0) {
3007 error_report("error loading %s: %s", kernel_filename
,
3008 load_elf_strerror(spapr
->kernel_size
));
3012 if (spapr
->kernel_addr
!= loaded_addr
) {
3013 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3015 spapr
->kernel_addr
, loaded_addr
);
3016 spapr
->kernel_addr
= loaded_addr
;
3020 if (initrd_filename
) {
3021 /* Try to locate the initrd in the gap between the kernel
3022 * and the firmware. Add a bit of space just in case
3024 spapr
->initrd_base
= (spapr
->kernel_addr
+ spapr
->kernel_size
3025 + 0x1ffff) & ~0xffff;
3026 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
3029 - spapr
->initrd_base
);
3030 if (spapr
->initrd_size
< 0) {
3031 error_report("could not load initial ram disk '%s'",
3038 /* FIXME: Should register things through the MachineState's qdev
3039 * interface, this is a legacy from the sPAPREnvironment structure
3040 * which predated MachineState but had a similar function */
3041 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
3042 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY
, 1,
3043 &savevm_htab_handlers
, spapr
);
3045 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
));
3047 qemu_register_boot_set(spapr_boot_set
, spapr
);
3050 * Nothing needs to be done to resume a suspended guest because
3051 * suspending does not change the machine state, so no need for
3052 * a ->wakeup method.
3054 qemu_register_wakeup_support();
3056 if (kvm_enabled()) {
3057 /* to stop and start vmclock */
3058 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
3061 kvmppc_spapr_enable_inkernel_multitce();
3064 qemu_cond_init(&spapr
->fwnmi_machine_check_interlock_cond
);
3066 spapr
->vof
->fw_size
= fw_size
; /* for claim() on itself */
3067 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT
, spapr_h_vof_client
);
3070 spapr_watchdog_init(spapr
);
3073 #define DEFAULT_KVM_TYPE "auto"
3074 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3077 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3078 * accomodate the 'HV' and 'PV' formats that exists in the
3079 * wild. The 'auto' mode is being introduced already as
3080 * lower-case, thus we don't need to bother checking for
3083 if (!vm_type
|| !strcmp(vm_type
, DEFAULT_KVM_TYPE
)) {
3087 if (!g_ascii_strcasecmp(vm_type
, "hv")) {
3091 if (!g_ascii_strcasecmp(vm_type
, "pr")) {
3095 error_report("Unknown kvm-type specified '%s'", vm_type
);
3100 * Implementation of an interface to adjust firmware path
3101 * for the bootindex property handling.
3103 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3106 #define CAST(type, obj, name) \
3107 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3108 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3109 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3110 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3111 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3114 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3115 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3116 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3120 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3121 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3122 * 0x8000 | (target << 8) | (bus << 5) | lun
3123 * (see the "Logical unit addressing format" table in SAM5)
3125 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3126 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3127 (uint64_t)id
<< 48);
3128 } else if (virtio
) {
3130 * We use SRP luns of the form 01000000 | (target << 8) | lun
3131 * in the top 32 bits of the 64-bit LUN
3132 * Note: the quote above is from SLOF and it is wrong,
3133 * the actual binding is:
3134 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3136 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3137 if (d
->lun
>= 256) {
3138 /* Use the LUN "flat space addressing method" */
3141 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3142 (uint64_t)id
<< 32);
3145 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3146 * in the top 32 bits of the 64-bit LUN
3148 unsigned usb_port
= atoi(usb
->port
->path
);
3149 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3150 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3151 (uint64_t)id
<< 32);
3156 * SLOF probes the USB devices, and if it recognizes that the device is a
3157 * storage device, it changes its name to "storage" instead of "usb-host",
3158 * and additionally adds a child node for the SCSI LUN, so the correct
3159 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3161 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3162 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3163 if (usb_device_is_scsi_storage(usbdev
)) {
3164 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3169 /* Replace "pci" with "pci@800000020000000" */
3170 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3174 /* Same logic as virtio above */
3175 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3176 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3179 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3180 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3181 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3182 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3186 return spapr_pci_fw_dev_name(pcidev
);
3192 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3194 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3196 return g_strdup(spapr
->kvm_type
);
3199 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3201 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3203 g_free(spapr
->kvm_type
);
3204 spapr
->kvm_type
= g_strdup(value
);
3207 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3209 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3211 return spapr
->use_hotplug_event_source
;
3214 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3217 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3219 spapr
->use_hotplug_event_source
= value
;
3222 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3227 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3229 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3231 switch (spapr
->resize_hpt
) {
3232 case SPAPR_RESIZE_HPT_DEFAULT
:
3233 return g_strdup("default");
3234 case SPAPR_RESIZE_HPT_DISABLED
:
3235 return g_strdup("disabled");
3236 case SPAPR_RESIZE_HPT_ENABLED
:
3237 return g_strdup("enabled");
3238 case SPAPR_RESIZE_HPT_REQUIRED
:
3239 return g_strdup("required");
3241 g_assert_not_reached();
3244 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3246 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3248 if (strcmp(value
, "default") == 0) {
3249 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3250 } else if (strcmp(value
, "disabled") == 0) {
3251 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3252 } else if (strcmp(value
, "enabled") == 0) {
3253 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3254 } else if (strcmp(value
, "required") == 0) {
3255 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3257 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3261 static bool spapr_get_vof(Object
*obj
, Error
**errp
)
3263 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3265 return spapr
->vof
!= NULL
;
3268 static void spapr_set_vof(Object
*obj
, bool value
, Error
**errp
)
3270 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3273 vof_cleanup(spapr
->vof
);
3280 spapr
->vof
= g_malloc0(sizeof(*spapr
->vof
));
3283 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3285 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3287 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3288 return g_strdup("legacy");
3289 } else if (spapr
->irq
== &spapr_irq_xics
) {
3290 return g_strdup("xics");
3291 } else if (spapr
->irq
== &spapr_irq_xive
) {
3292 return g_strdup("xive");
3293 } else if (spapr
->irq
== &spapr_irq_dual
) {
3294 return g_strdup("dual");
3296 g_assert_not_reached();
3299 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3301 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3303 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3304 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3308 /* The legacy IRQ backend can not be set */
3309 if (strcmp(value
, "xics") == 0) {
3310 spapr
->irq
= &spapr_irq_xics
;
3311 } else if (strcmp(value
, "xive") == 0) {
3312 spapr
->irq
= &spapr_irq_xive
;
3313 } else if (strcmp(value
, "dual") == 0) {
3314 spapr
->irq
= &spapr_irq_dual
;
3316 error_setg(errp
, "Bad value for \"ic-mode\" property");
3320 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3322 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3324 return g_strdup(spapr
->host_model
);
3327 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3329 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3331 g_free(spapr
->host_model
);
3332 spapr
->host_model
= g_strdup(value
);
3335 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3337 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3339 return g_strdup(spapr
->host_serial
);
3342 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3344 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3346 g_free(spapr
->host_serial
);
3347 spapr
->host_serial
= g_strdup(value
);
3350 static void spapr_instance_init(Object
*obj
)
3352 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3353 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3354 MachineState
*ms
= MACHINE(spapr
);
3355 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
3358 * NVDIMM support went live in 5.1 without considering that, in
3359 * other archs, the user needs to enable NVDIMM support with the
3360 * 'nvdimm' machine option and the default behavior is NVDIMM
3361 * support disabled. It is too late to roll back to the standard
3362 * behavior without breaking 5.1 guests.
3364 if (mc
->nvdimm_supported
) {
3365 ms
->nvdimms_state
->is_enabled
= true;
3368 spapr
->htab_fd
= -1;
3369 spapr
->use_hotplug_event_source
= true;
3370 spapr
->kvm_type
= g_strdup(DEFAULT_KVM_TYPE
);
3371 object_property_add_str(obj
, "kvm-type",
3372 spapr_get_kvm_type
, spapr_set_kvm_type
);
3373 object_property_set_description(obj
, "kvm-type",
3374 "Specifies the KVM virtualization mode (auto,"
3375 " hv, pr). Defaults to 'auto'. This mode will use"
3376 " any available KVM module loaded in the host,"
3377 " where kvm_hv takes precedence if both kvm_hv and"
3378 " kvm_pr are loaded.");
3379 object_property_add_bool(obj
, "modern-hotplug-events",
3380 spapr_get_modern_hotplug_events
,
3381 spapr_set_modern_hotplug_events
);
3382 object_property_set_description(obj
, "modern-hotplug-events",
3383 "Use dedicated hotplug event mechanism in"
3384 " place of standard EPOW events when possible"
3385 " (required for memory hot-unplug support)");
3386 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3387 "Maximum permitted CPU compatibility mode");
3389 object_property_add_str(obj
, "resize-hpt",
3390 spapr_get_resize_hpt
, spapr_set_resize_hpt
);
3391 object_property_set_description(obj
, "resize-hpt",
3392 "Resizing of the Hash Page Table (enabled, disabled, required)");
3393 object_property_add_uint32_ptr(obj
, "vsmt",
3394 &spapr
->vsmt
, OBJ_PROP_FLAG_READWRITE
);
3395 object_property_set_description(obj
, "vsmt",
3396 "Virtual SMT: KVM behaves as if this were"
3397 " the host's SMT mode");
3399 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3400 spapr_get_msix_emulation
, NULL
);
3402 object_property_add_uint64_ptr(obj
, "kernel-addr",
3403 &spapr
->kernel_addr
, OBJ_PROP_FLAG_READWRITE
);
3404 object_property_set_description(obj
, "kernel-addr",
3405 stringify(KERNEL_LOAD_ADDR
)
3406 " for -kernel is the default");
3407 spapr
->kernel_addr
= KERNEL_LOAD_ADDR
;
3409 object_property_add_bool(obj
, "x-vof", spapr_get_vof
, spapr_set_vof
);
3410 object_property_set_description(obj
, "x-vof",
3411 "Enable Virtual Open Firmware (experimental)");
3413 /* The machine class defines the default interrupt controller mode */
3414 spapr
->irq
= smc
->irq
;
3415 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3417 object_property_set_description(obj
, "ic-mode",
3418 "Specifies the interrupt controller mode (xics, xive, dual)");
3420 object_property_add_str(obj
, "host-model",
3421 spapr_get_host_model
, spapr_set_host_model
);
3422 object_property_set_description(obj
, "host-model",
3423 "Host model to advertise in guest device tree");
3424 object_property_add_str(obj
, "host-serial",
3425 spapr_get_host_serial
, spapr_set_host_serial
);
3426 object_property_set_description(obj
, "host-serial",
3427 "Host serial number to advertise in guest device tree");
3430 static void spapr_machine_finalizefn(Object
*obj
)
3432 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3434 g_free(spapr
->kvm_type
);
3437 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3439 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3440 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3441 CPUPPCState
*env
= &cpu
->env
;
3443 cpu_synchronize_state(cs
);
3444 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3445 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3446 uint64_t rtas_addr
, addr
;
3448 /* get rtas addr from fdt */
3449 rtas_addr
= spapr_get_rtas_addr();
3451 qemu_system_guest_panicked(NULL
);
3455 addr
= rtas_addr
+ RTAS_ERROR_LOG_MAX
+ cs
->cpu_index
* sizeof(uint64_t)*2;
3456 stq_be_phys(&address_space_memory
, addr
, env
->gpr
[3]);
3457 stq_be_phys(&address_space_memory
, addr
+ sizeof(uint64_t), 0);
3460 ppc_cpu_do_system_reset(cs
);
3461 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3462 env
->nip
= spapr
->fwnmi_system_reset_addr
;
3466 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3471 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3475 int spapr_lmb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3476 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3481 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3482 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3484 *fdt_start_offset
= spapr_dt_memory_node(spapr
, fdt
, node
, addr
,
3485 SPAPR_MEMORY_BLOCK_SIZE
);
3489 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3490 bool dedicated_hp_event_source
)
3493 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3495 uint64_t addr
= addr_start
;
3496 bool hotplugged
= spapr_drc_hotplugged(dev
);
3498 for (i
= 0; i
< nr_lmbs
; i
++) {
3499 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3500 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3504 * memory_device_get_free_addr() provided a range of free addresses
3505 * that doesn't overlap with any existing mapping at pre-plug. The
3506 * corresponding LMB DRCs are thus assumed to be all attachable.
3508 spapr_drc_attach(drc
, dev
);
3510 spapr_drc_reset(drc
);
3512 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3514 /* send hotplug notification to the
3515 * guest only in case of hotplugged memory
3518 if (dedicated_hp_event_source
) {
3519 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3520 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3522 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3524 spapr_drc_index(drc
));
3526 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3532 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3534 SpaprMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3535 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3536 uint64_t size
, addr
;
3538 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3540 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3542 pc_dimm_plug(dimm
, MACHINE(ms
));
3545 addr
= object_property_get_uint(OBJECT(dimm
),
3546 PC_DIMM_ADDR_PROP
, &error_abort
);
3547 spapr_add_lmbs(dev
, addr
, size
,
3548 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
));
3550 slot
= object_property_get_int(OBJECT(dimm
),
3551 PC_DIMM_SLOT_PROP
, &error_abort
);
3552 /* We should have valid slot number at this point */
3553 g_assert(slot
>= 0);
3554 spapr_add_nvdimm(dev
, slot
);
3558 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3561 const SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3562 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3563 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3564 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3565 Error
*local_err
= NULL
;
3570 if (!smc
->dr_lmb_enabled
) {
3571 error_setg(errp
, "Memory hotplug not supported for this machine");
3575 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3577 error_propagate(errp
, local_err
);
3582 if (!spapr_nvdimm_validate(hotplug_dev
, NVDIMM(dev
), size
, errp
)) {
3585 } else if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3586 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3587 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3591 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3593 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3594 if (!spapr_check_pagesize(spapr
, pagesize
, errp
)) {
3598 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3601 struct SpaprDimmState
{
3604 QTAILQ_ENTRY(SpaprDimmState
) next
;
3607 static SpaprDimmState
*spapr_pending_dimm_unplugs_find(SpaprMachineState
*s
,
3610 SpaprDimmState
*dimm_state
= NULL
;
3612 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3613 if (dimm_state
->dimm
== dimm
) {
3620 static SpaprDimmState
*spapr_pending_dimm_unplugs_add(SpaprMachineState
*spapr
,
3624 SpaprDimmState
*ds
= NULL
;
3627 * If this request is for a DIMM whose removal had failed earlier
3628 * (due to guest's refusal to remove the LMBs), we would have this
3629 * dimm already in the pending_dimm_unplugs list. In that
3630 * case don't add again.
3632 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3634 ds
= g_new0(SpaprDimmState
, 1);
3635 ds
->nr_lmbs
= nr_lmbs
;
3637 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3642 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState
*spapr
,
3643 SpaprDimmState
*dimm_state
)
3645 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3649 static SpaprDimmState
*spapr_recover_pending_dimm_state(SpaprMachineState
*ms
,
3653 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3655 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3656 uint32_t avail_lmbs
= 0;
3657 uint64_t addr_start
, addr
;
3660 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3664 for (i
= 0; i
< nr_lmbs
; i
++) {
3665 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3666 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3671 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3674 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3677 void spapr_memory_unplug_rollback(SpaprMachineState
*spapr
, DeviceState
*dev
)
3683 uint64_t size
, addr_start
, addr
;
3684 g_autofree
char *qapi_error
= NULL
;
3691 dimm
= PC_DIMM(dev
);
3692 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3695 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3696 * unplug state, but one of its DRC is marked as unplug_requested.
3697 * This is bad and weird enough to g_assert() out.
3701 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3703 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3704 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3706 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3710 for (i
= 0; i
< nr_lmbs
; i
++) {
3711 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3712 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3715 drc
->unplug_requested
= false;
3716 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3720 * Tell QAPI that something happened and the memory
3721 * hotunplug wasn't successful. Keep sending
3722 * MEM_UNPLUG_ERROR even while sending
3723 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3724 * MEM_UNPLUG_ERROR is due.
3726 qapi_error
= g_strdup_printf("Memory hotunplug rejected by the guest "
3727 "for device %s", dev
->id
);
3729 qapi_event_send_mem_unplug_error(dev
->id
? : "", qapi_error
);
3731 qapi_event_send_device_unplug_guest_error(dev
->id
,
3732 dev
->canonical_path
);
3735 /* Callback to be called during DRC release. */
3736 void spapr_lmb_release(DeviceState
*dev
)
3738 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3739 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3740 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3742 /* This information will get lost if a migration occurs
3743 * during the unplug process. In this case recover it. */
3745 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3747 /* The DRC being examined by the caller at least must be counted */
3748 g_assert(ds
->nr_lmbs
);
3751 if (--ds
->nr_lmbs
) {
3756 * Now that all the LMBs have been removed by the guest, call the
3757 * unplug handler chain. This can never fail.
3759 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3760 object_unparent(OBJECT(dev
));
3763 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3765 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3766 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3768 /* We really shouldn't get this far without anything to unplug */
3771 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3772 qdev_unrealize(dev
);
3773 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3776 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3777 DeviceState
*dev
, Error
**errp
)
3779 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3780 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3782 uint64_t size
, addr_start
, addr
;
3786 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
3787 error_setg(errp
, "nvdimm device hot unplug is not supported yet.");
3791 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3792 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3794 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3798 * An existing pending dimm state for this DIMM means that there is an
3799 * unplug operation in progress, waiting for the spapr_lmb_release
3800 * callback to complete the job (BQL can't cover that far). In this case,
3801 * bail out to avoid detaching DRCs that were already released.
3803 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3804 error_setg(errp
, "Memory unplug already in progress for device %s",
3809 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3812 for (i
= 0; i
< nr_lmbs
; i
++) {
3813 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3814 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3817 spapr_drc_unplug_request(drc
);
3818 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3821 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3822 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3823 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3824 nr_lmbs
, spapr_drc_index(drc
));
3827 /* Callback to be called during DRC release. */
3828 void spapr_core_release(DeviceState
*dev
)
3830 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3832 /* Call the unplug handler chain. This can never fail. */
3833 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3834 object_unparent(OBJECT(dev
));
3837 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3839 MachineState
*ms
= MACHINE(hotplug_dev
);
3840 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3841 CPUCore
*cc
= CPU_CORE(dev
);
3842 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3844 if (smc
->pre_2_10_has_unused_icps
) {
3845 SpaprCpuCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3848 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3849 CPUState
*cs
= CPU(sc
->threads
[i
]);
3851 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3856 core_slot
->cpu
= NULL
;
3857 qdev_unrealize(dev
);
3861 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3864 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3867 CPUCore
*cc
= CPU_CORE(dev
);
3869 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3870 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3875 error_setg(errp
, "Boot CPU core may not be unplugged");
3879 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3880 spapr_vcpu_id(spapr
, cc
->core_id
));
3883 if (!spapr_drc_unplug_requested(drc
)) {
3884 spapr_drc_unplug_request(drc
);
3888 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3889 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3890 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3891 * attempt (e.g. the kernel will refuse to remove the last online
3892 * CPU), we will never attempt it again because unplug_requested
3893 * will still be 'true' in that case.
3895 spapr_hotplug_req_remove_by_index(drc
);
3898 int spapr_core_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3899 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3901 SpaprCpuCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3902 CPUState
*cs
= CPU(core
->threads
[0]);
3903 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3904 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3905 int id
= spapr_get_vcpu_id(cpu
);
3906 g_autofree
char *nodename
= NULL
;
3909 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3910 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3912 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
3915 * spapr_dt_cpu() does not fill the 'name' property in the
3916 * CPU node. The function is called during boot process, before
3917 * and after CAS, and overwriting the 'name' property written
3918 * by SLOF is not allowed.
3920 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3921 * CPUs more compatible with the coldplugged ones, which have
3922 * the 'name' property. Linux Kernel also relies on this
3923 * property to identify CPU nodes.
3925 _FDT((fdt_setprop_string(fdt
, offset
, "name", nodename
)));
3927 *fdt_start_offset
= offset
;
3931 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3933 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3934 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3935 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3936 SpaprCpuCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3937 CPUCore
*cc
= CPU_CORE(dev
);
3940 CPUArchId
*core_slot
;
3942 bool hotplugged
= spapr_drc_hotplugged(dev
);
3945 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3946 g_assert(core_slot
); /* Already checked in spapr_core_pre_plug() */
3948 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3949 spapr_vcpu_id(spapr
, cc
->core_id
));
3951 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3955 * spapr_core_pre_plug() already buys us this is a brand new
3956 * core being plugged into a free slot. Nothing should already
3957 * be attached to the corresponding DRC.
3959 spapr_drc_attach(drc
, dev
);
3963 * Send hotplug notification interrupt to the guest only
3964 * in case of hotplugged CPUs.
3966 spapr_hotplug_req_add_by_index(drc
);
3968 spapr_drc_reset(drc
);
3972 core_slot
->cpu
= OBJECT(dev
);
3975 * Set compatibility mode to match the boot CPU, which was either set
3976 * by the machine reset code or by CAS. This really shouldn't fail at
3980 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3981 ppc_set_compat(core
->threads
[i
], POWERPC_CPU(first_cpu
)->compat_pvr
,
3986 if (smc
->pre_2_10_has_unused_icps
) {
3987 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3988 cs
= CPU(core
->threads
[i
]);
3989 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3994 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3997 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3998 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3999 CPUCore
*cc
= CPU_CORE(dev
);
4000 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4001 const char *type
= object_get_typename(OBJECT(dev
));
4002 CPUArchId
*core_slot
;
4004 unsigned int smp_threads
= machine
->smp
.threads
;
4006 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
4007 error_setg(errp
, "CPU hotplug not supported for this machine");
4011 if (strcmp(base_core_type
, type
)) {
4012 error_setg(errp
, "CPU core type should be %s", base_core_type
);
4016 if (cc
->core_id
% smp_threads
) {
4017 error_setg(errp
, "invalid core id %d", cc
->core_id
);
4022 * In general we should have homogeneous threads-per-core, but old
4023 * (pre hotplug support) machine types allow the last core to have
4024 * reduced threads as a compatibility hack for when we allowed
4025 * total vcpus not a multiple of threads-per-core.
4027 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
4028 error_setg(errp
, "invalid nr-threads %d, must be %d", cc
->nr_threads
,
4033 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
4035 error_setg(errp
, "core id %d out of range", cc
->core_id
);
4039 if (core_slot
->cpu
) {
4040 error_setg(errp
, "core %d already populated", cc
->core_id
);
4044 numa_cpu_pre_plug(core_slot
, dev
, errp
);
4047 int spapr_phb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
4048 void *fdt
, int *fdt_start_offset
, Error
**errp
)
4050 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
4053 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
4054 if (intc_phandle
<= 0) {
4058 if (spapr_dt_phb(spapr
, sphb
, intc_phandle
, fdt
, fdt_start_offset
)) {
4059 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
4063 /* generally SLOF creates these, for hotplug it's up to QEMU */
4064 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
4069 static bool spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
4072 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4073 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4074 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
4075 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
4078 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
4079 error_setg(errp
, "PHB hotplug not supported for this machine");
4083 if (sphb
->index
== (uint32_t)-1) {
4084 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
4088 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4089 if (drc
&& drc
->dev
) {
4090 error_setg(errp
, "PHB %d already attached", sphb
->index
);
4095 * This will check that sphb->index doesn't exceed the maximum number of
4096 * PHBs for the current machine type.
4099 smc
->phb_placement(spapr
, sphb
->index
,
4100 &sphb
->buid
, &sphb
->io_win_addr
,
4101 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
4102 windows_supported
, sphb
->dma_liobn
,
4103 &sphb
->nv2_gpa_win_addr
, &sphb
->nv2_atsd_win_addr
,
4107 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4109 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4110 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
4111 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4113 bool hotplugged
= spapr_drc_hotplugged(dev
);
4115 if (!smc
->dr_phb_enabled
) {
4119 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4120 /* hotplug hooks should check it's enabled before getting this far */
4123 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4124 spapr_drc_attach(drc
, dev
);
4127 spapr_hotplug_req_add_by_index(drc
);
4129 spapr_drc_reset(drc
);
4133 void spapr_phb_release(DeviceState
*dev
)
4135 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
4137 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
4138 object_unparent(OBJECT(dev
));
4141 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4143 qdev_unrealize(dev
);
4146 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
4147 DeviceState
*dev
, Error
**errp
)
4149 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4152 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4155 if (!spapr_drc_unplug_requested(drc
)) {
4156 spapr_drc_unplug_request(drc
);
4157 spapr_hotplug_req_remove_by_index(drc
);
4160 "PCI Host Bridge unplug already in progress for device %s",
4166 bool spapr_tpm_proxy_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
4169 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4171 if (spapr
->tpm_proxy
!= NULL
) {
4172 error_setg(errp
, "Only one TPM proxy can be specified for this machine");
4179 static void spapr_tpm_proxy_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4181 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4182 SpaprTpmProxy
*tpm_proxy
= SPAPR_TPM_PROXY(dev
);
4184 /* Already checked in spapr_tpm_proxy_pre_plug() */
4185 g_assert(spapr
->tpm_proxy
== NULL
);
4187 spapr
->tpm_proxy
= tpm_proxy
;
4190 static void spapr_tpm_proxy_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4192 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4194 qdev_unrealize(dev
);
4195 object_unparent(OBJECT(dev
));
4196 spapr
->tpm_proxy
= NULL
;
4199 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
4200 DeviceState
*dev
, Error
**errp
)
4202 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4203 spapr_memory_plug(hotplug_dev
, dev
);
4204 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4205 spapr_core_plug(hotplug_dev
, dev
);
4206 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4207 spapr_phb_plug(hotplug_dev
, dev
);
4208 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4209 spapr_tpm_proxy_plug(hotplug_dev
, dev
);
4213 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
4214 DeviceState
*dev
, Error
**errp
)
4216 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4217 spapr_memory_unplug(hotplug_dev
, dev
);
4218 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4219 spapr_core_unplug(hotplug_dev
, dev
);
4220 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4221 spapr_phb_unplug(hotplug_dev
, dev
);
4222 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4223 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4227 bool spapr_memory_hot_unplug_supported(SpaprMachineState
*spapr
)
4229 return spapr_ovec_test(spapr
->ov5_cas
, OV5_HP_EVT
) ||
4231 * CAS will process all pending unplug requests.
4233 * HACK: a guest could theoretically have cleared all bits in OV5,
4234 * but none of the guests we care for do.
4236 spapr_ovec_empty(spapr
->ov5_cas
);
4239 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
4240 DeviceState
*dev
, Error
**errp
)
4242 SpaprMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4243 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4244 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4246 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4247 if (spapr_memory_hot_unplug_supported(sms
)) {
4248 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4250 error_setg(errp
, "Memory hot unplug not supported for this guest");
4252 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4253 if (!mc
->has_hotpluggable_cpus
) {
4254 error_setg(errp
, "CPU hot unplug not supported on this machine");
4257 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4258 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4259 if (!smc
->dr_phb_enabled
) {
4260 error_setg(errp
, "PHB hot unplug not supported on this machine");
4263 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4264 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4265 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4269 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4270 DeviceState
*dev
, Error
**errp
)
4272 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4273 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4274 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4275 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4276 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4277 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4278 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4279 spapr_tpm_proxy_pre_plug(hotplug_dev
, dev
, errp
);
4283 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4286 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4287 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4288 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
) ||
4289 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4290 return HOTPLUG_HANDLER(machine
);
4292 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
4293 PCIDevice
*pcidev
= PCI_DEVICE(dev
);
4294 PCIBus
*root
= pci_device_root_bus(pcidev
);
4295 SpaprPhbState
*phb
=
4296 (SpaprPhbState
*)object_dynamic_cast(OBJECT(BUS(root
)->parent
),
4297 TYPE_SPAPR_PCI_HOST_BRIDGE
);
4300 return HOTPLUG_HANDLER(phb
);
4306 static CpuInstanceProperties
4307 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4309 CPUArchId
*core_slot
;
4310 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4312 /* make sure possible_cpu are intialized */
4313 mc
->possible_cpu_arch_ids(machine
);
4314 /* get CPU core slot containing thread that matches cpu_index */
4315 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4317 return core_slot
->props
;
4320 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4322 return idx
/ ms
->smp
.cores
% ms
->numa_state
->num_nodes
;
4325 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4328 unsigned int smp_threads
= machine
->smp
.threads
;
4329 unsigned int smp_cpus
= machine
->smp
.cpus
;
4330 const char *core_type
;
4331 int spapr_max_cores
= machine
->smp
.max_cpus
/ smp_threads
;
4332 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4334 if (!mc
->has_hotpluggable_cpus
) {
4335 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4337 if (machine
->possible_cpus
) {
4338 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4339 return machine
->possible_cpus
;
4342 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4344 error_report("Unable to find sPAPR CPU Core definition");
4348 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4349 sizeof(CPUArchId
) * spapr_max_cores
);
4350 machine
->possible_cpus
->len
= spapr_max_cores
;
4351 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4352 int core_id
= i
* smp_threads
;
4354 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4355 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4356 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4357 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4358 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4360 return machine
->possible_cpus
;
4363 static bool spapr_phb_placement(SpaprMachineState
*spapr
, uint32_t index
,
4364 uint64_t *buid
, hwaddr
*pio
,
4365 hwaddr
*mmio32
, hwaddr
*mmio64
,
4366 unsigned n_dma
, uint32_t *liobns
,
4367 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4370 * New-style PHB window placement.
4372 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4373 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4376 * Some guest kernels can't work with MMIO windows above 1<<46
4377 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4379 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4380 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4381 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4382 * 1TiB 64-bit MMIO windows for each PHB.
4384 const uint64_t base_buid
= 0x800000020000000ULL
;
4387 /* Sanity check natural alignments */
4388 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4389 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4390 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4391 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4392 /* Sanity check bounds */
4393 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4394 SPAPR_PCI_MEM32_WIN_SIZE
);
4395 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4396 SPAPR_PCI_MEM64_WIN_SIZE
);
4398 if (index
>= SPAPR_MAX_PHBS
) {
4399 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4400 SPAPR_MAX_PHBS
- 1);
4404 *buid
= base_buid
+ index
;
4405 for (i
= 0; i
< n_dma
; ++i
) {
4406 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4409 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4410 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4411 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4413 *nv2gpa
= SPAPR_PCI_NV2RAM64_WIN_BASE
+ index
* SPAPR_PCI_NV2RAM64_WIN_SIZE
;
4414 *nv2atsd
= SPAPR_PCI_NV2ATSD_WIN_BASE
+ index
* SPAPR_PCI_NV2ATSD_WIN_SIZE
;
4418 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4420 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4422 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4425 static void spapr_ics_resend(XICSFabric
*dev
)
4427 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4429 ics_resend(spapr
->ics
);
4432 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4434 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4436 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4439 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4442 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
4444 spapr_irq_print_info(spapr
, mon
);
4445 monitor_printf(mon
, "irqchip: %s\n",
4446 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4450 * This is a XIVE only operation
4452 static int spapr_match_nvt(XiveFabric
*xfb
, uint8_t format
,
4453 uint8_t nvt_blk
, uint32_t nvt_idx
,
4454 bool cam_ignore
, uint8_t priority
,
4455 uint32_t logic_serv
, XiveTCTXMatch
*match
)
4457 SpaprMachineState
*spapr
= SPAPR_MACHINE(xfb
);
4458 XivePresenter
*xptr
= XIVE_PRESENTER(spapr
->active_intc
);
4459 XivePresenterClass
*xpc
= XIVE_PRESENTER_GET_CLASS(xptr
);
4462 count
= xpc
->match_nvt(xptr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
4463 priority
, logic_serv
, match
);
4469 * When we implement the save and restore of the thread interrupt
4470 * contexts in the enter/exit CPU handlers of the machine and the
4471 * escalations in QEMU, we should be able to handle non dispatched
4474 * Until this is done, the sPAPR machine should find at least one
4475 * matching context always.
4478 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is not dispatched\n",
4485 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4487 return cpu
->vcpu_id
;
4490 bool spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4492 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4493 MachineState
*ms
= MACHINE(spapr
);
4496 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4498 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4499 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4500 error_append_hint(errp
, "Adjust the number of cpus to %d "
4501 "or try to raise the number of threads per core\n",
4502 vcpu_id
* ms
->smp
.threads
/ spapr
->vsmt
);
4506 cpu
->vcpu_id
= vcpu_id
;
4510 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4515 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4517 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4525 static bool spapr_cpu_in_nested(PowerPCCPU
*cpu
)
4527 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4529 return spapr_cpu
->in_nested
;
4532 static void spapr_cpu_exec_enter(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4534 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4536 /* These are only called by TCG, KVM maintains dispatch state */
4538 spapr_cpu
->prod
= false;
4539 if (spapr_cpu
->vpa_addr
) {
4540 CPUState
*cs
= CPU(cpu
);
4543 dispatch
= ldl_be_phys(cs
->as
,
4544 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4546 if ((dispatch
& 1) != 0) {
4547 qemu_log_mask(LOG_GUEST_ERROR
,
4548 "VPA: incorrect dispatch counter value for "
4549 "dispatched partition %u, correcting.\n", dispatch
);
4553 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4557 static void spapr_cpu_exec_exit(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4559 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4561 if (spapr_cpu
->vpa_addr
) {
4562 CPUState
*cs
= CPU(cpu
);
4565 dispatch
= ldl_be_phys(cs
->as
,
4566 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4568 if ((dispatch
& 1) != 1) {
4569 qemu_log_mask(LOG_GUEST_ERROR
,
4570 "VPA: incorrect dispatch counter value for "
4571 "preempted partition %u, correcting.\n", dispatch
);
4575 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4579 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4581 MachineClass
*mc
= MACHINE_CLASS(oc
);
4582 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4583 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4584 NMIClass
*nc
= NMI_CLASS(oc
);
4585 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4586 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4587 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4588 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4589 XiveFabricClass
*xfc
= XIVE_FABRIC_CLASS(oc
);
4590 VofMachineIfClass
*vmc
= VOF_MACHINE_CLASS(oc
);
4592 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4593 mc
->ignore_boot_device_suffixes
= true;
4596 * We set up the default / latest behaviour here. The class_init
4597 * functions for the specific versioned machine types can override
4598 * these details for backwards compatibility
4600 mc
->init
= spapr_machine_init
;
4601 mc
->reset
= spapr_machine_reset
;
4602 mc
->block_default_type
= IF_SCSI
;
4605 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4606 * should be limited by the host capability instead of hardcoded.
4607 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4608 * guests are welcome to have as many CPUs as the host are capable
4611 mc
->max_cpus
= INT32_MAX
;
4613 mc
->no_parallel
= 1;
4614 mc
->default_boot_order
= "";
4615 mc
->default_ram_size
= 512 * MiB
;
4616 mc
->default_ram_id
= "ppc_spapr.ram";
4617 mc
->default_display
= "std";
4618 mc
->kvm_type
= spapr_kvm_type
;
4619 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4620 mc
->pci_allow_0_address
= true;
4621 assert(!mc
->get_hotplug_handler
);
4622 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4623 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4624 hc
->plug
= spapr_machine_device_plug
;
4625 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4626 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4627 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4628 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4629 hc
->unplug
= spapr_machine_device_unplug
;
4631 smc
->dr_lmb_enabled
= true;
4632 smc
->update_dt_enabled
= true;
4633 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4634 mc
->has_hotpluggable_cpus
= true;
4635 mc
->nvdimm_supported
= true;
4636 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4637 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4638 nc
->nmi_monitor_handler
= spapr_nmi
;
4639 smc
->phb_placement
= spapr_phb_placement
;
4640 vhc
->cpu_in_nested
= spapr_cpu_in_nested
;
4641 vhc
->deliver_hv_excp
= spapr_exit_nested
;
4642 vhc
->hypercall
= emulate_spapr_hypercall
;
4643 vhc
->hpt_mask
= spapr_hpt_mask
;
4644 vhc
->map_hptes
= spapr_map_hptes
;
4645 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4646 vhc
->hpte_set_c
= spapr_hpte_set_c
;
4647 vhc
->hpte_set_r
= spapr_hpte_set_r
;
4648 vhc
->get_pate
= spapr_get_pate
;
4649 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4650 vhc
->cpu_exec_enter
= spapr_cpu_exec_enter
;
4651 vhc
->cpu_exec_exit
= spapr_cpu_exec_exit
;
4652 xic
->ics_get
= spapr_ics_get
;
4653 xic
->ics_resend
= spapr_ics_resend
;
4654 xic
->icp_get
= spapr_icp_get
;
4655 ispc
->print_info
= spapr_pic_print_info
;
4656 /* Force NUMA node memory size to be a multiple of
4657 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4658 * in which LMBs are represented and hot-added
4660 mc
->numa_mem_align_shift
= 28;
4661 mc
->auto_enable_numa
= true;
4663 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4664 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4665 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4666 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4667 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4668 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_WORKAROUND
;
4669 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4670 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4671 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4672 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_ON
;
4673 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_ON
;
4674 smc
->default_caps
.caps
[SPAPR_CAP_RPT_INVALIDATE
] = SPAPR_CAP_OFF
;
4675 spapr_caps_add_properties(smc
);
4676 smc
->irq
= &spapr_irq_dual
;
4677 smc
->dr_phb_enabled
= true;
4678 smc
->linux_pci_probe
= true;
4679 smc
->smp_threads_vsmt
= true;
4680 smc
->nr_xirqs
= SPAPR_NR_XIRQS
;
4681 xfc
->match_nvt
= spapr_match_nvt
;
4682 vmc
->client_architecture_support
= spapr_vof_client_architecture_support
;
4683 vmc
->quiesce
= spapr_vof_quiesce
;
4684 vmc
->setprop
= spapr_vof_setprop
;
4687 static const TypeInfo spapr_machine_info
= {
4688 .name
= TYPE_SPAPR_MACHINE
,
4689 .parent
= TYPE_MACHINE
,
4691 .instance_size
= sizeof(SpaprMachineState
),
4692 .instance_init
= spapr_instance_init
,
4693 .instance_finalize
= spapr_machine_finalizefn
,
4694 .class_size
= sizeof(SpaprMachineClass
),
4695 .class_init
= spapr_machine_class_init
,
4696 .interfaces
= (InterfaceInfo
[]) {
4697 { TYPE_FW_PATH_PROVIDER
},
4699 { TYPE_HOTPLUG_HANDLER
},
4700 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4701 { TYPE_XICS_FABRIC
},
4702 { TYPE_INTERRUPT_STATS_PROVIDER
},
4703 { TYPE_XIVE_FABRIC
},
4704 { TYPE_VOF_MACHINE_IF
},
4709 static void spapr_machine_latest_class_options(MachineClass
*mc
)
4711 mc
->alias
= "pseries";
4712 mc
->is_default
= true;
4715 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4716 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4719 MachineClass *mc = MACHINE_CLASS(oc); \
4720 spapr_machine_##suffix##_class_options(mc); \
4722 spapr_machine_latest_class_options(mc); \
4725 static const TypeInfo spapr_machine_##suffix##_info = { \
4726 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4727 .parent = TYPE_SPAPR_MACHINE, \
4728 .class_init = spapr_machine_##suffix##_class_init, \
4730 static void spapr_machine_register_##suffix(void) \
4732 type_register(&spapr_machine_##suffix##_info); \
4734 type_init(spapr_machine_register_##suffix)
4739 static void spapr_machine_7_2_class_options(MachineClass
*mc
)
4741 /* Defaults for the latest behaviour inherited from the base class */
4744 DEFINE_SPAPR_MACHINE(7_2
, "7.2", true);
4749 static void spapr_machine_7_1_class_options(MachineClass
*mc
)
4751 spapr_machine_7_2_class_options(mc
);
4752 compat_props_add(mc
->compat_props
, hw_compat_7_1
, hw_compat_7_1_len
);
4755 DEFINE_SPAPR_MACHINE(7_1
, "7.1", false);
4760 static void spapr_machine_7_0_class_options(MachineClass
*mc
)
4762 spapr_machine_7_1_class_options(mc
);
4763 compat_props_add(mc
->compat_props
, hw_compat_7_0
, hw_compat_7_0_len
);
4766 DEFINE_SPAPR_MACHINE(7_0
, "7.0", false);
4771 static void spapr_machine_6_2_class_options(MachineClass
*mc
)
4773 spapr_machine_7_0_class_options(mc
);
4774 compat_props_add(mc
->compat_props
, hw_compat_6_2
, hw_compat_6_2_len
);
4777 DEFINE_SPAPR_MACHINE(6_2
, "6.2", false);
4782 static void spapr_machine_6_1_class_options(MachineClass
*mc
)
4784 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4786 spapr_machine_6_2_class_options(mc
);
4787 compat_props_add(mc
->compat_props
, hw_compat_6_1
, hw_compat_6_1_len
);
4788 smc
->pre_6_2_numa_affinity
= true;
4789 mc
->smp_props
.prefer_sockets
= true;
4792 DEFINE_SPAPR_MACHINE(6_1
, "6.1", false);
4797 static void spapr_machine_6_0_class_options(MachineClass
*mc
)
4799 spapr_machine_6_1_class_options(mc
);
4800 compat_props_add(mc
->compat_props
, hw_compat_6_0
, hw_compat_6_0_len
);
4803 DEFINE_SPAPR_MACHINE(6_0
, "6.0", false);
4808 static void spapr_machine_5_2_class_options(MachineClass
*mc
)
4810 spapr_machine_6_0_class_options(mc
);
4811 compat_props_add(mc
->compat_props
, hw_compat_5_2
, hw_compat_5_2_len
);
4814 DEFINE_SPAPR_MACHINE(5_2
, "5.2", false);
4819 static void spapr_machine_5_1_class_options(MachineClass
*mc
)
4821 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4823 spapr_machine_5_2_class_options(mc
);
4824 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
4825 smc
->pre_5_2_numa_associativity
= true;
4828 DEFINE_SPAPR_MACHINE(5_1
, "5.1", false);
4833 static void spapr_machine_5_0_class_options(MachineClass
*mc
)
4835 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4836 static GlobalProperty compat
[] = {
4837 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-5.1-associativity", "on" },
4840 spapr_machine_5_1_class_options(mc
);
4841 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
4842 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4843 mc
->numa_mem_supported
= true;
4844 smc
->pre_5_1_assoc_refpoints
= true;
4847 DEFINE_SPAPR_MACHINE(5_0
, "5.0", false);
4852 static void spapr_machine_4_2_class_options(MachineClass
*mc
)
4854 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4856 spapr_machine_5_0_class_options(mc
);
4857 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
4858 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_OFF
;
4859 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_OFF
;
4860 smc
->rma_limit
= 16 * GiB
;
4861 mc
->nvdimm_supported
= false;
4864 DEFINE_SPAPR_MACHINE(4_2
, "4.2", false);
4869 static void spapr_machine_4_1_class_options(MachineClass
*mc
)
4871 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4872 static GlobalProperty compat
[] = {
4873 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4874 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pgsz", "0x11000" },
4877 spapr_machine_4_2_class_options(mc
);
4878 smc
->linux_pci_probe
= false;
4879 smc
->smp_threads_vsmt
= false;
4880 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
4881 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4884 DEFINE_SPAPR_MACHINE(4_1
, "4.1", false);
4889 static bool phb_placement_4_0(SpaprMachineState
*spapr
, uint32_t index
,
4890 uint64_t *buid
, hwaddr
*pio
,
4891 hwaddr
*mmio32
, hwaddr
*mmio64
,
4892 unsigned n_dma
, uint32_t *liobns
,
4893 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4895 if (!spapr_phb_placement(spapr
, index
, buid
, pio
, mmio32
, mmio64
, n_dma
,
4896 liobns
, nv2gpa
, nv2atsd
, errp
)) {
4904 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4906 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4908 spapr_machine_4_1_class_options(mc
);
4909 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
4910 smc
->phb_placement
= phb_placement_4_0
;
4911 smc
->irq
= &spapr_irq_xics
;
4912 smc
->pre_4_1_migration
= true;
4915 DEFINE_SPAPR_MACHINE(4_0
, "4.0", false);
4920 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4922 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4924 spapr_machine_4_0_class_options(mc
);
4925 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4927 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4928 smc
->update_dt_enabled
= false;
4929 smc
->dr_phb_enabled
= false;
4930 smc
->broken_host_serial_model
= true;
4931 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4932 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4933 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4934 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4937 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4943 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4945 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4947 spapr_machine_3_1_class_options(mc
);
4948 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4950 smc
->legacy_irq_allocation
= true;
4951 smc
->nr_xirqs
= 0x400;
4952 smc
->irq
= &spapr_irq_xics_legacy
;
4955 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4960 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4962 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4963 static GlobalProperty compat
[] = {
4964 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4965 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4968 spapr_machine_3_0_class_options(mc
);
4969 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4970 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4972 /* We depend on kvm_enabled() to choose a default value for the
4973 * hpt-max-page-size capability. Of course we can't do it here
4974 * because this is too early and the HW accelerator isn't initialzed
4975 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4977 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4980 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4982 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4984 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4986 spapr_machine_2_12_class_options(mc
);
4987 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4988 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4989 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4992 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4998 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
5000 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5002 spapr_machine_2_12_class_options(mc
);
5003 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
5004 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
5007 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
5013 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
5015 spapr_machine_2_11_class_options(mc
);
5016 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
5019 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
5025 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
5027 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5028 static GlobalProperty compat
[] = {
5029 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
5032 spapr_machine_2_10_class_options(mc
);
5033 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
5034 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5035 smc
->pre_2_10_has_unused_icps
= true;
5036 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
5039 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
5045 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
5047 static GlobalProperty compat
[] = {
5048 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
5051 spapr_machine_2_9_class_options(mc
);
5052 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
5053 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5054 mc
->numa_mem_align_shift
= 23;
5057 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
5063 static bool phb_placement_2_7(SpaprMachineState
*spapr
, uint32_t index
,
5064 uint64_t *buid
, hwaddr
*pio
,
5065 hwaddr
*mmio32
, hwaddr
*mmio64
,
5066 unsigned n_dma
, uint32_t *liobns
,
5067 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
5069 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5070 const uint64_t base_buid
= 0x800000020000000ULL
;
5071 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
5072 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
5073 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
5074 const uint32_t max_index
= 255;
5075 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
5077 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
5078 hwaddr phb0_base
, phb_base
;
5081 /* Do we have device memory? */
5082 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
5083 /* Can't just use maxram_size, because there may be an
5084 * alignment gap between normal and device memory regions
5086 ram_top
= MACHINE(spapr
)->device_memory
->base
+
5087 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
5090 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
5092 if (index
> max_index
) {
5093 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
5098 *buid
= base_buid
+ index
;
5099 for (i
= 0; i
< n_dma
; ++i
) {
5100 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
5103 phb_base
= phb0_base
+ index
* phb_spacing
;
5104 *pio
= phb_base
+ pio_offset
;
5105 *mmio32
= phb_base
+ mmio_offset
;
5107 * We don't set the 64-bit MMIO window, relying on the PHB's
5108 * fallback behaviour of automatically splitting a large "32-bit"
5109 * window into contiguous 32-bit and 64-bit windows
5117 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
5119 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5120 static GlobalProperty compat
[] = {
5121 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
5122 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
5123 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
5124 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
5127 spapr_machine_2_8_class_options(mc
);
5128 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
5129 mc
->default_machine_opts
= "modern-hotplug-events=off";
5130 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
5131 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5132 smc
->phb_placement
= phb_placement_2_7
;
5135 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
5141 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
5143 static GlobalProperty compat
[] = {
5144 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
5147 spapr_machine_2_7_class_options(mc
);
5148 mc
->has_hotpluggable_cpus
= false;
5149 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
5150 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5153 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
5159 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
5161 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5162 static GlobalProperty compat
[] = {
5163 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5166 spapr_machine_2_6_class_options(mc
);
5167 smc
->use_ohci_by_default
= true;
5168 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
5169 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5172 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
5178 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
5180 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5182 spapr_machine_2_5_class_options(mc
);
5183 smc
->dr_lmb_enabled
= false;
5184 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
5187 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
5193 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
5195 static GlobalProperty compat
[] = {
5196 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5198 spapr_machine_2_4_class_options(mc
);
5199 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
5200 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5202 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
5208 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
5210 static GlobalProperty compat
[] = {
5211 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
5214 spapr_machine_2_3_class_options(mc
);
5215 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
5216 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5217 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
5219 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
5225 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
5227 spapr_machine_2_2_class_options(mc
);
5228 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
5230 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
5232 static void spapr_machine_register_types(void)
5234 type_register_static(&spapr_machine_info
);
5237 type_init(spapr_machine_register_types
)