4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
32 #include <sys/types.h>
38 #include <sys/mount.h>
40 #include <sys/fsuid.h>
41 #include <sys/personality.h>
42 #include <sys/prctl.h>
43 #include <sys/resource.h>
49 int __clone2(int (*fn
)(void *), void *child_stack_base
,
50 size_t stack_size
, int flags
, void *arg
, ...);
52 #include <sys/socket.h>
56 #include <sys/times.h>
59 #include <sys/statfs.h>
61 #include <sys/sysinfo.h>
62 #include <sys/utsname.h>
63 //#include <sys/user.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 #include <linux/wireless.h>
67 #include <linux/icmp.h>
68 #include "qemu-common.h"
73 #include <sys/eventfd.h>
76 #include <sys/epoll.h>
79 #include "qemu/xattr.h"
81 #ifdef CONFIG_SENDFILE
82 #include <sys/sendfile.h>
85 #define termios host_termios
86 #define winsize host_winsize
87 #define termio host_termio
88 #define sgttyb host_sgttyb /* same as target */
89 #define tchars host_tchars /* same as target */
90 #define ltchars host_ltchars /* same as target */
92 #include <linux/termios.h>
93 #include <linux/unistd.h>
94 #include <linux/utsname.h>
95 #include <linux/cdrom.h>
96 #include <linux/hdreg.h>
97 #include <linux/soundcard.h>
99 #include <linux/mtio.h>
100 #include <linux/fs.h>
101 #if defined(CONFIG_FIEMAP)
102 #include <linux/fiemap.h>
104 #include <linux/fb.h>
105 #include <linux/vt.h>
106 #include <linux/dm-ioctl.h>
107 #include <linux/reboot.h>
108 #include <linux/route.h>
109 #include "linux_loop.h"
110 #include "cpu-uname.h"
114 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \
115 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)
119 //#include <linux/msdos_fs.h>
120 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
121 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
132 #define _syscall0(type,name) \
133 static type name (void) \
135 return syscall(__NR_##name); \
138 #define _syscall1(type,name,type1,arg1) \
139 static type name (type1 arg1) \
141 return syscall(__NR_##name, arg1); \
144 #define _syscall2(type,name,type1,arg1,type2,arg2) \
145 static type name (type1 arg1,type2 arg2) \
147 return syscall(__NR_##name, arg1, arg2); \
150 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
151 static type name (type1 arg1,type2 arg2,type3 arg3) \
153 return syscall(__NR_##name, arg1, arg2, arg3); \
156 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
157 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
159 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
162 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
164 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
166 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
170 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
171 type5,arg5,type6,arg6) \
172 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
175 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
179 #define __NR_sys_uname __NR_uname
180 #define __NR_sys_getcwd1 __NR_getcwd
181 #define __NR_sys_getdents __NR_getdents
182 #define __NR_sys_getdents64 __NR_getdents64
183 #define __NR_sys_getpriority __NR_getpriority
184 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
185 #define __NR_sys_syslog __NR_syslog
186 #define __NR_sys_tgkill __NR_tgkill
187 #define __NR_sys_tkill __NR_tkill
188 #define __NR_sys_futex __NR_futex
189 #define __NR_sys_inotify_init __NR_inotify_init
190 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
191 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
193 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
195 #define __NR__llseek __NR_lseek
199 _syscall0(int, gettid
)
201 /* This is a replacement for the host gettid() and must return a host
203 static int gettid(void) {
208 _syscall3(int, sys_getdents
, uint
, fd
, struct linux_dirent
*, dirp
, uint
, count
);
210 #if !defined(__NR_getdents) || \
211 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
212 _syscall3(int, sys_getdents64
, uint
, fd
, struct linux_dirent64
*, dirp
, uint
, count
);
214 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
215 _syscall5(int, _llseek
, uint
, fd
, ulong
, hi
, ulong
, lo
,
216 loff_t
*, res
, uint
, wh
);
218 _syscall3(int,sys_rt_sigqueueinfo
,int,pid
,int,sig
,siginfo_t
*,uinfo
)
219 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
220 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
221 _syscall3(int,sys_tgkill
,int,tgid
,int,pid
,int,sig
)
223 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
224 _syscall2(int,sys_tkill
,int,tid
,int,sig
)
226 #ifdef __NR_exit_group
227 _syscall1(int,exit_group
,int,error_code
)
229 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
230 _syscall1(int,set_tid_address
,int *,tidptr
)
232 #if defined(TARGET_NR_futex) && defined(__NR_futex)
233 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
234 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
236 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
237 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
238 unsigned long *, user_mask_ptr
);
239 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
240 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
241 unsigned long *, user_mask_ptr
);
242 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
245 static bitmask_transtbl fcntl_flags_tbl
[] = {
246 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
247 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
248 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
249 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
250 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
251 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
252 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
253 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
254 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
255 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
256 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
257 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
258 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
259 #if defined(O_DIRECT)
260 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
262 #if defined(O_NOATIME)
263 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
265 #if defined(O_CLOEXEC)
266 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
269 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
271 /* Don't terminate the list prematurely on 64-bit host+guest. */
272 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
273 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
278 #define COPY_UTSNAME_FIELD(dest, src) \
280 /* __NEW_UTS_LEN doesn't include terminating null */ \
281 (void) strncpy((dest), (src), __NEW_UTS_LEN); \
282 (dest)[__NEW_UTS_LEN] = '\0'; \
285 static int sys_uname(struct new_utsname
*buf
)
287 struct utsname uts_buf
;
289 if (uname(&uts_buf
) < 0)
293 * Just in case these have some differences, we
294 * translate utsname to new_utsname (which is the
295 * struct linux kernel uses).
298 memset(buf
, 0, sizeof(*buf
));
299 COPY_UTSNAME_FIELD(buf
->sysname
, uts_buf
.sysname
);
300 COPY_UTSNAME_FIELD(buf
->nodename
, uts_buf
.nodename
);
301 COPY_UTSNAME_FIELD(buf
->release
, uts_buf
.release
);
302 COPY_UTSNAME_FIELD(buf
->version
, uts_buf
.version
);
303 COPY_UTSNAME_FIELD(buf
->machine
, uts_buf
.machine
);
305 COPY_UTSNAME_FIELD(buf
->domainname
, uts_buf
.domainname
);
309 #undef COPY_UTSNAME_FIELD
312 static int sys_getcwd1(char *buf
, size_t size
)
314 if (getcwd(buf
, size
) == NULL
) {
315 /* getcwd() sets errno */
318 return strlen(buf
)+1;
321 #ifdef TARGET_NR_openat
322 static int sys_openat(int dirfd
, const char *pathname
, int flags
, mode_t mode
)
325 * open(2) has extra parameter 'mode' when called with
328 if ((flags
& O_CREAT
) != 0) {
329 return (openat(dirfd
, pathname
, flags
, mode
));
331 return (openat(dirfd
, pathname
, flags
));
335 #ifdef TARGET_NR_utimensat
336 #ifdef CONFIG_UTIMENSAT
337 static int sys_utimensat(int dirfd
, const char *pathname
,
338 const struct timespec times
[2], int flags
)
340 if (pathname
== NULL
)
341 return futimens(dirfd
, times
);
343 return utimensat(dirfd
, pathname
, times
, flags
);
345 #elif defined(__NR_utimensat)
346 #define __NR_sys_utimensat __NR_utimensat
347 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
348 const struct timespec
*,tsp
,int,flags
)
350 static int sys_utimensat(int dirfd
, const char *pathname
,
351 const struct timespec times
[2], int flags
)
357 #endif /* TARGET_NR_utimensat */
359 #ifdef CONFIG_INOTIFY
360 #include <sys/inotify.h>
362 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
363 static int sys_inotify_init(void)
365 return (inotify_init());
368 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
369 static int sys_inotify_add_watch(int fd
,const char *pathname
, int32_t mask
)
371 return (inotify_add_watch(fd
, pathname
, mask
));
374 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
375 static int sys_inotify_rm_watch(int fd
, int32_t wd
)
377 return (inotify_rm_watch(fd
, wd
));
380 #ifdef CONFIG_INOTIFY1
381 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
382 static int sys_inotify_init1(int flags
)
384 return (inotify_init1(flags
));
389 /* Userspace can usually survive runtime without inotify */
390 #undef TARGET_NR_inotify_init
391 #undef TARGET_NR_inotify_init1
392 #undef TARGET_NR_inotify_add_watch
393 #undef TARGET_NR_inotify_rm_watch
394 #endif /* CONFIG_INOTIFY */
396 #if defined(TARGET_NR_ppoll)
398 # define __NR_ppoll -1
400 #define __NR_sys_ppoll __NR_ppoll
401 _syscall5(int, sys_ppoll
, struct pollfd
*, fds
, nfds_t
, nfds
,
402 struct timespec
*, timeout
, const __sigset_t
*, sigmask
,
406 #if defined(TARGET_NR_pselect6)
407 #ifndef __NR_pselect6
408 # define __NR_pselect6 -1
410 #define __NR_sys_pselect6 __NR_pselect6
411 _syscall6(int, sys_pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
,
412 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
);
415 #if defined(TARGET_NR_prlimit64)
416 #ifndef __NR_prlimit64
417 # define __NR_prlimit64 -1
419 #define __NR_sys_prlimit64 __NR_prlimit64
420 /* The glibc rlimit structure may not be that used by the underlying syscall */
421 struct host_rlimit64
{
425 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
426 const struct host_rlimit64
*, new_limit
,
427 struct host_rlimit64
*, old_limit
)
430 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
432 static inline int regpairs_aligned(void *cpu_env
) {
433 return ((((CPUARMState
*)cpu_env
)->eabi
) == 1) ;
435 #elif defined(TARGET_MIPS)
436 static inline int regpairs_aligned(void *cpu_env
) { return 1; }
437 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
438 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
439 * of registers which translates to the same as ARM/MIPS, because we start with
441 static inline int regpairs_aligned(void *cpu_env
) { return 1; }
443 static inline int regpairs_aligned(void *cpu_env
) { return 0; }
446 #define ERRNO_TABLE_SIZE 1200
448 /* target_to_host_errno_table[] is initialized from
449 * host_to_target_errno_table[] in syscall_init(). */
450 static uint16_t target_to_host_errno_table
[ERRNO_TABLE_SIZE
] = {
454 * This list is the union of errno values overridden in asm-<arch>/errno.h
455 * minus the errnos that are not actually generic to all archs.
457 static uint16_t host_to_target_errno_table
[ERRNO_TABLE_SIZE
] = {
458 [EIDRM
] = TARGET_EIDRM
,
459 [ECHRNG
] = TARGET_ECHRNG
,
460 [EL2NSYNC
] = TARGET_EL2NSYNC
,
461 [EL3HLT
] = TARGET_EL3HLT
,
462 [EL3RST
] = TARGET_EL3RST
,
463 [ELNRNG
] = TARGET_ELNRNG
,
464 [EUNATCH
] = TARGET_EUNATCH
,
465 [ENOCSI
] = TARGET_ENOCSI
,
466 [EL2HLT
] = TARGET_EL2HLT
,
467 [EDEADLK
] = TARGET_EDEADLK
,
468 [ENOLCK
] = TARGET_ENOLCK
,
469 [EBADE
] = TARGET_EBADE
,
470 [EBADR
] = TARGET_EBADR
,
471 [EXFULL
] = TARGET_EXFULL
,
472 [ENOANO
] = TARGET_ENOANO
,
473 [EBADRQC
] = TARGET_EBADRQC
,
474 [EBADSLT
] = TARGET_EBADSLT
,
475 [EBFONT
] = TARGET_EBFONT
,
476 [ENOSTR
] = TARGET_ENOSTR
,
477 [ENODATA
] = TARGET_ENODATA
,
478 [ETIME
] = TARGET_ETIME
,
479 [ENOSR
] = TARGET_ENOSR
,
480 [ENONET
] = TARGET_ENONET
,
481 [ENOPKG
] = TARGET_ENOPKG
,
482 [EREMOTE
] = TARGET_EREMOTE
,
483 [ENOLINK
] = TARGET_ENOLINK
,
484 [EADV
] = TARGET_EADV
,
485 [ESRMNT
] = TARGET_ESRMNT
,
486 [ECOMM
] = TARGET_ECOMM
,
487 [EPROTO
] = TARGET_EPROTO
,
488 [EDOTDOT
] = TARGET_EDOTDOT
,
489 [EMULTIHOP
] = TARGET_EMULTIHOP
,
490 [EBADMSG
] = TARGET_EBADMSG
,
491 [ENAMETOOLONG
] = TARGET_ENAMETOOLONG
,
492 [EOVERFLOW
] = TARGET_EOVERFLOW
,
493 [ENOTUNIQ
] = TARGET_ENOTUNIQ
,
494 [EBADFD
] = TARGET_EBADFD
,
495 [EREMCHG
] = TARGET_EREMCHG
,
496 [ELIBACC
] = TARGET_ELIBACC
,
497 [ELIBBAD
] = TARGET_ELIBBAD
,
498 [ELIBSCN
] = TARGET_ELIBSCN
,
499 [ELIBMAX
] = TARGET_ELIBMAX
,
500 [ELIBEXEC
] = TARGET_ELIBEXEC
,
501 [EILSEQ
] = TARGET_EILSEQ
,
502 [ENOSYS
] = TARGET_ENOSYS
,
503 [ELOOP
] = TARGET_ELOOP
,
504 [ERESTART
] = TARGET_ERESTART
,
505 [ESTRPIPE
] = TARGET_ESTRPIPE
,
506 [ENOTEMPTY
] = TARGET_ENOTEMPTY
,
507 [EUSERS
] = TARGET_EUSERS
,
508 [ENOTSOCK
] = TARGET_ENOTSOCK
,
509 [EDESTADDRREQ
] = TARGET_EDESTADDRREQ
,
510 [EMSGSIZE
] = TARGET_EMSGSIZE
,
511 [EPROTOTYPE
] = TARGET_EPROTOTYPE
,
512 [ENOPROTOOPT
] = TARGET_ENOPROTOOPT
,
513 [EPROTONOSUPPORT
] = TARGET_EPROTONOSUPPORT
,
514 [ESOCKTNOSUPPORT
] = TARGET_ESOCKTNOSUPPORT
,
515 [EOPNOTSUPP
] = TARGET_EOPNOTSUPP
,
516 [EPFNOSUPPORT
] = TARGET_EPFNOSUPPORT
,
517 [EAFNOSUPPORT
] = TARGET_EAFNOSUPPORT
,
518 [EADDRINUSE
] = TARGET_EADDRINUSE
,
519 [EADDRNOTAVAIL
] = TARGET_EADDRNOTAVAIL
,
520 [ENETDOWN
] = TARGET_ENETDOWN
,
521 [ENETUNREACH
] = TARGET_ENETUNREACH
,
522 [ENETRESET
] = TARGET_ENETRESET
,
523 [ECONNABORTED
] = TARGET_ECONNABORTED
,
524 [ECONNRESET
] = TARGET_ECONNRESET
,
525 [ENOBUFS
] = TARGET_ENOBUFS
,
526 [EISCONN
] = TARGET_EISCONN
,
527 [ENOTCONN
] = TARGET_ENOTCONN
,
528 [EUCLEAN
] = TARGET_EUCLEAN
,
529 [ENOTNAM
] = TARGET_ENOTNAM
,
530 [ENAVAIL
] = TARGET_ENAVAIL
,
531 [EISNAM
] = TARGET_EISNAM
,
532 [EREMOTEIO
] = TARGET_EREMOTEIO
,
533 [ESHUTDOWN
] = TARGET_ESHUTDOWN
,
534 [ETOOMANYREFS
] = TARGET_ETOOMANYREFS
,
535 [ETIMEDOUT
] = TARGET_ETIMEDOUT
,
536 [ECONNREFUSED
] = TARGET_ECONNREFUSED
,
537 [EHOSTDOWN
] = TARGET_EHOSTDOWN
,
538 [EHOSTUNREACH
] = TARGET_EHOSTUNREACH
,
539 [EALREADY
] = TARGET_EALREADY
,
540 [EINPROGRESS
] = TARGET_EINPROGRESS
,
541 [ESTALE
] = TARGET_ESTALE
,
542 [ECANCELED
] = TARGET_ECANCELED
,
543 [ENOMEDIUM
] = TARGET_ENOMEDIUM
,
544 [EMEDIUMTYPE
] = TARGET_EMEDIUMTYPE
,
546 [ENOKEY
] = TARGET_ENOKEY
,
549 [EKEYEXPIRED
] = TARGET_EKEYEXPIRED
,
552 [EKEYREVOKED
] = TARGET_EKEYREVOKED
,
555 [EKEYREJECTED
] = TARGET_EKEYREJECTED
,
558 [EOWNERDEAD
] = TARGET_EOWNERDEAD
,
560 #ifdef ENOTRECOVERABLE
561 [ENOTRECOVERABLE
] = TARGET_ENOTRECOVERABLE
,
565 static inline int host_to_target_errno(int err
)
567 if(host_to_target_errno_table
[err
])
568 return host_to_target_errno_table
[err
];
572 static inline int target_to_host_errno(int err
)
574 if (target_to_host_errno_table
[err
])
575 return target_to_host_errno_table
[err
];
579 static inline abi_long
get_errno(abi_long ret
)
582 return -host_to_target_errno(errno
);
587 static inline int is_error(abi_long ret
)
589 return (abi_ulong
)ret
>= (abi_ulong
)(-4096);
592 char *target_strerror(int err
)
594 if ((err
>= ERRNO_TABLE_SIZE
) || (err
< 0)) {
597 return strerror(target_to_host_errno(err
));
600 static abi_ulong target_brk
;
601 static abi_ulong target_original_brk
;
602 static abi_ulong brk_page
;
604 void target_set_brk(abi_ulong new_brk
)
606 target_original_brk
= target_brk
= HOST_PAGE_ALIGN(new_brk
);
607 brk_page
= HOST_PAGE_ALIGN(target_brk
);
610 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
611 #define DEBUGF_BRK(message, args...)
613 /* do_brk() must return target values and target errnos. */
614 abi_long
do_brk(abi_ulong new_brk
)
616 abi_long mapped_addr
;
619 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx
") -> ", new_brk
);
622 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (!new_brk)\n", target_brk
);
625 if (new_brk
< target_original_brk
) {
626 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk < target_original_brk)\n",
631 /* If the new brk is less than the highest page reserved to the
632 * target heap allocation, set it and we're almost done... */
633 if (new_brk
<= brk_page
) {
634 /* Heap contents are initialized to zero, as for anonymous
636 if (new_brk
> target_brk
) {
637 memset(g2h(target_brk
), 0, new_brk
- target_brk
);
639 target_brk
= new_brk
;
640 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk <= brk_page)\n", target_brk
);
644 /* We need to allocate more memory after the brk... Note that
645 * we don't use MAP_FIXED because that will map over the top of
646 * any existing mapping (like the one with the host libc or qemu
647 * itself); instead we treat "mapped but at wrong address" as
648 * a failure and unmap again.
650 new_alloc_size
= HOST_PAGE_ALIGN(new_brk
- brk_page
);
651 mapped_addr
= get_errno(target_mmap(brk_page
, new_alloc_size
,
652 PROT_READ
|PROT_WRITE
,
653 MAP_ANON
|MAP_PRIVATE
, 0, 0));
655 if (mapped_addr
== brk_page
) {
656 /* Heap contents are initialized to zero, as for anonymous
657 * mapped pages. Technically the new pages are already
658 * initialized to zero since they *are* anonymous mapped
659 * pages, however we have to take care with the contents that
660 * come from the remaining part of the previous page: it may
661 * contains garbage data due to a previous heap usage (grown
663 memset(g2h(target_brk
), 0, brk_page
- target_brk
);
665 target_brk
= new_brk
;
666 brk_page
= HOST_PAGE_ALIGN(target_brk
);
667 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr == brk_page)\n",
670 } else if (mapped_addr
!= -1) {
671 /* Mapped but at wrong address, meaning there wasn't actually
672 * enough space for this brk.
674 target_munmap(mapped_addr
, new_alloc_size
);
676 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr != -1)\n", target_brk
);
679 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (otherwise)\n", target_brk
);
682 #if defined(TARGET_ALPHA)
683 /* We (partially) emulate OSF/1 on Alpha, which requires we
684 return a proper errno, not an unchanged brk value. */
685 return -TARGET_ENOMEM
;
687 /* For everything else, return the previous break. */
691 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
692 abi_ulong target_fds_addr
,
696 abi_ulong b
, *target_fds
;
698 nw
= (n
+ TARGET_ABI_BITS
- 1) / TARGET_ABI_BITS
;
699 if (!(target_fds
= lock_user(VERIFY_READ
,
701 sizeof(abi_ulong
) * nw
,
703 return -TARGET_EFAULT
;
707 for (i
= 0; i
< nw
; i
++) {
708 /* grab the abi_ulong */
709 __get_user(b
, &target_fds
[i
]);
710 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
711 /* check the bit inside the abi_ulong */
718 unlock_user(target_fds
, target_fds_addr
, 0);
723 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
724 abi_ulong target_fds_addr
,
727 if (target_fds_addr
) {
728 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
729 return -TARGET_EFAULT
;
737 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
743 abi_ulong
*target_fds
;
745 nw
= (n
+ TARGET_ABI_BITS
- 1) / TARGET_ABI_BITS
;
746 if (!(target_fds
= lock_user(VERIFY_WRITE
,
748 sizeof(abi_ulong
) * nw
,
750 return -TARGET_EFAULT
;
753 for (i
= 0; i
< nw
; i
++) {
755 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
756 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
759 __put_user(v
, &target_fds
[i
]);
762 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
767 #if defined(__alpha__)
773 static inline abi_long
host_to_target_clock_t(long ticks
)
775 #if HOST_HZ == TARGET_HZ
778 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
782 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
783 const struct rusage
*rusage
)
785 struct target_rusage
*target_rusage
;
787 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
788 return -TARGET_EFAULT
;
789 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
790 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
791 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
792 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
793 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
794 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
795 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
796 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
797 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
798 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
799 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
800 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
801 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
802 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
803 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
804 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
805 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
806 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
807 unlock_user_struct(target_rusage
, target_addr
, 1);
812 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
814 abi_ulong target_rlim_swap
;
817 target_rlim_swap
= tswapal(target_rlim
);
818 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
819 return RLIM_INFINITY
;
821 result
= target_rlim_swap
;
822 if (target_rlim_swap
!= (rlim_t
)result
)
823 return RLIM_INFINITY
;
828 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
830 abi_ulong target_rlim_swap
;
833 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
834 target_rlim_swap
= TARGET_RLIM_INFINITY
;
836 target_rlim_swap
= rlim
;
837 result
= tswapal(target_rlim_swap
);
842 static inline int target_to_host_resource(int code
)
845 case TARGET_RLIMIT_AS
:
847 case TARGET_RLIMIT_CORE
:
849 case TARGET_RLIMIT_CPU
:
851 case TARGET_RLIMIT_DATA
:
853 case TARGET_RLIMIT_FSIZE
:
855 case TARGET_RLIMIT_LOCKS
:
857 case TARGET_RLIMIT_MEMLOCK
:
858 return RLIMIT_MEMLOCK
;
859 case TARGET_RLIMIT_MSGQUEUE
:
860 return RLIMIT_MSGQUEUE
;
861 case TARGET_RLIMIT_NICE
:
863 case TARGET_RLIMIT_NOFILE
:
864 return RLIMIT_NOFILE
;
865 case TARGET_RLIMIT_NPROC
:
867 case TARGET_RLIMIT_RSS
:
869 case TARGET_RLIMIT_RTPRIO
:
870 return RLIMIT_RTPRIO
;
871 case TARGET_RLIMIT_SIGPENDING
:
872 return RLIMIT_SIGPENDING
;
873 case TARGET_RLIMIT_STACK
:
880 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
881 abi_ulong target_tv_addr
)
883 struct target_timeval
*target_tv
;
885 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1))
886 return -TARGET_EFAULT
;
888 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
889 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
891 unlock_user_struct(target_tv
, target_tv_addr
, 0);
896 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
897 const struct timeval
*tv
)
899 struct target_timeval
*target_tv
;
901 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0))
902 return -TARGET_EFAULT
;
904 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
905 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
907 unlock_user_struct(target_tv
, target_tv_addr
, 1);
912 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
915 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
916 abi_ulong target_mq_attr_addr
)
918 struct target_mq_attr
*target_mq_attr
;
920 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
921 target_mq_attr_addr
, 1))
922 return -TARGET_EFAULT
;
924 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
925 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
926 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
927 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
929 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
934 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
935 const struct mq_attr
*attr
)
937 struct target_mq_attr
*target_mq_attr
;
939 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
940 target_mq_attr_addr
, 0))
941 return -TARGET_EFAULT
;
943 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
944 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
945 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
946 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
948 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
954 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
955 /* do_select() must return target values and target errnos. */
956 static abi_long
do_select(int n
,
957 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
958 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
960 fd_set rfds
, wfds
, efds
;
961 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
962 struct timeval tv
, *tv_ptr
;
965 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
969 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
973 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
978 if (target_tv_addr
) {
979 if (copy_from_user_timeval(&tv
, target_tv_addr
))
980 return -TARGET_EFAULT
;
986 ret
= get_errno(select(n
, rfds_ptr
, wfds_ptr
, efds_ptr
, tv_ptr
));
988 if (!is_error(ret
)) {
989 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
990 return -TARGET_EFAULT
;
991 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
992 return -TARGET_EFAULT
;
993 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
994 return -TARGET_EFAULT
;
996 if (target_tv_addr
&& copy_to_user_timeval(target_tv_addr
, &tv
))
997 return -TARGET_EFAULT
;
1004 static abi_long
do_pipe2(int host_pipe
[], int flags
)
1007 return pipe2(host_pipe
, flags
);
1013 static abi_long
do_pipe(void *cpu_env
, abi_ulong pipedes
,
1014 int flags
, int is_pipe2
)
1018 ret
= flags
? do_pipe2(host_pipe
, flags
) : pipe(host_pipe
);
1021 return get_errno(ret
);
1023 /* Several targets have special calling conventions for the original
1024 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1026 #if defined(TARGET_ALPHA)
1027 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = host_pipe
[1];
1028 return host_pipe
[0];
1029 #elif defined(TARGET_MIPS)
1030 ((CPUMIPSState
*)cpu_env
)->active_tc
.gpr
[3] = host_pipe
[1];
1031 return host_pipe
[0];
1032 #elif defined(TARGET_SH4)
1033 ((CPUSH4State
*)cpu_env
)->gregs
[1] = host_pipe
[1];
1034 return host_pipe
[0];
1035 #elif defined(TARGET_SPARC)
1036 ((CPUSPARCState
*)cpu_env
)->regwptr
[1] = host_pipe
[1];
1037 return host_pipe
[0];
1041 if (put_user_s32(host_pipe
[0], pipedes
)
1042 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(host_pipe
[0])))
1043 return -TARGET_EFAULT
;
1044 return get_errno(ret
);
1047 static inline abi_long
target_to_host_ip_mreq(struct ip_mreqn
*mreqn
,
1048 abi_ulong target_addr
,
1051 struct target_ip_mreqn
*target_smreqn
;
1053 target_smreqn
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1055 return -TARGET_EFAULT
;
1056 mreqn
->imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
1057 mreqn
->imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
1058 if (len
== sizeof(struct target_ip_mreqn
))
1059 mreqn
->imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
1060 unlock_user(target_smreqn
, target_addr
, 0);
1065 static inline abi_long
target_to_host_sockaddr(struct sockaddr
*addr
,
1066 abi_ulong target_addr
,
1069 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1070 sa_family_t sa_family
;
1071 struct target_sockaddr
*target_saddr
;
1073 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1075 return -TARGET_EFAULT
;
1077 sa_family
= tswap16(target_saddr
->sa_family
);
1079 /* Oops. The caller might send a incomplete sun_path; sun_path
1080 * must be terminated by \0 (see the manual page), but
1081 * unfortunately it is quite common to specify sockaddr_un
1082 * length as "strlen(x->sun_path)" while it should be
1083 * "strlen(...) + 1". We'll fix that here if needed.
1084 * Linux kernel has a similar feature.
1087 if (sa_family
== AF_UNIX
) {
1088 if (len
< unix_maxlen
&& len
> 0) {
1089 char *cp
= (char*)target_saddr
;
1091 if ( cp
[len
-1] && !cp
[len
] )
1094 if (len
> unix_maxlen
)
1098 memcpy(addr
, target_saddr
, len
);
1099 addr
->sa_family
= sa_family
;
1100 unlock_user(target_saddr
, target_addr
, 0);
1105 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1106 struct sockaddr
*addr
,
1109 struct target_sockaddr
*target_saddr
;
1111 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1113 return -TARGET_EFAULT
;
1114 memcpy(target_saddr
, addr
, len
);
1115 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1116 unlock_user(target_saddr
, target_addr
, len
);
1121 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1122 struct target_msghdr
*target_msgh
)
1124 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1125 abi_long msg_controllen
;
1126 abi_ulong target_cmsg_addr
;
1127 struct target_cmsghdr
*target_cmsg
;
1128 socklen_t space
= 0;
1130 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1131 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1133 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1134 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1136 return -TARGET_EFAULT
;
1138 while (cmsg
&& target_cmsg
) {
1139 void *data
= CMSG_DATA(cmsg
);
1140 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1142 int len
= tswapal(target_cmsg
->cmsg_len
)
1143 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr
));
1145 space
+= CMSG_SPACE(len
);
1146 if (space
> msgh
->msg_controllen
) {
1147 space
-= CMSG_SPACE(len
);
1148 gemu_log("Host cmsg overflow\n");
1152 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1153 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1154 cmsg
->cmsg_len
= CMSG_LEN(len
);
1156 if (cmsg
->cmsg_level
!= TARGET_SOL_SOCKET
|| cmsg
->cmsg_type
!= SCM_RIGHTS
) {
1157 gemu_log("Unsupported ancillary data: %d/%d\n", cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1158 memcpy(data
, target_data
, len
);
1160 int *fd
= (int *)data
;
1161 int *target_fd
= (int *)target_data
;
1162 int i
, numfds
= len
/ sizeof(int);
1164 for (i
= 0; i
< numfds
; i
++)
1165 fd
[i
] = tswap32(target_fd
[i
]);
1168 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1169 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
);
1171 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1173 msgh
->msg_controllen
= space
;
1177 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1178 struct msghdr
*msgh
)
1180 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1181 abi_long msg_controllen
;
1182 abi_ulong target_cmsg_addr
;
1183 struct target_cmsghdr
*target_cmsg
;
1184 socklen_t space
= 0;
1186 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1187 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1189 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1190 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1192 return -TARGET_EFAULT
;
1194 while (cmsg
&& target_cmsg
) {
1195 void *data
= CMSG_DATA(cmsg
);
1196 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1198 int len
= cmsg
->cmsg_len
- CMSG_ALIGN(sizeof (struct cmsghdr
));
1200 space
+= TARGET_CMSG_SPACE(len
);
1201 if (space
> msg_controllen
) {
1202 space
-= TARGET_CMSG_SPACE(len
);
1203 gemu_log("Target cmsg overflow\n");
1207 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1208 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1209 target_cmsg
->cmsg_len
= tswapal(TARGET_CMSG_LEN(len
));
1211 if ((cmsg
->cmsg_level
== TARGET_SOL_SOCKET
) &&
1212 (cmsg
->cmsg_type
== SCM_RIGHTS
)) {
1213 int *fd
= (int *)data
;
1214 int *target_fd
= (int *)target_data
;
1215 int i
, numfds
= len
/ sizeof(int);
1217 for (i
= 0; i
< numfds
; i
++)
1218 target_fd
[i
] = tswap32(fd
[i
]);
1219 } else if ((cmsg
->cmsg_level
== TARGET_SOL_SOCKET
) &&
1220 (cmsg
->cmsg_type
== SO_TIMESTAMP
) &&
1221 (len
== sizeof(struct timeval
))) {
1222 /* copy struct timeval to target */
1223 struct timeval
*tv
= (struct timeval
*)data
;
1224 struct target_timeval
*target_tv
=
1225 (struct target_timeval
*)target_data
;
1227 target_tv
->tv_sec
= tswapal(tv
->tv_sec
);
1228 target_tv
->tv_usec
= tswapal(tv
->tv_usec
);
1230 gemu_log("Unsupported ancillary data: %d/%d\n",
1231 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1232 memcpy(target_data
, data
, len
);
1235 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1236 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
);
1238 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
1240 target_msgh
->msg_controllen
= tswapal(space
);
1244 /* do_setsockopt() Must return target values and target errnos. */
1245 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
1246 abi_ulong optval_addr
, socklen_t optlen
)
1250 struct ip_mreqn
*ip_mreq
;
1251 struct ip_mreq_source
*ip_mreq_source
;
1255 /* TCP options all take an 'int' value. */
1256 if (optlen
< sizeof(uint32_t))
1257 return -TARGET_EINVAL
;
1259 if (get_user_u32(val
, optval_addr
))
1260 return -TARGET_EFAULT
;
1261 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
1268 case IP_ROUTER_ALERT
:
1272 case IP_MTU_DISCOVER
:
1278 case IP_MULTICAST_TTL
:
1279 case IP_MULTICAST_LOOP
:
1281 if (optlen
>= sizeof(uint32_t)) {
1282 if (get_user_u32(val
, optval_addr
))
1283 return -TARGET_EFAULT
;
1284 } else if (optlen
>= 1) {
1285 if (get_user_u8(val
, optval_addr
))
1286 return -TARGET_EFAULT
;
1288 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
1290 case IP_ADD_MEMBERSHIP
:
1291 case IP_DROP_MEMBERSHIP
:
1292 if (optlen
< sizeof (struct target_ip_mreq
) ||
1293 optlen
> sizeof (struct target_ip_mreqn
))
1294 return -TARGET_EINVAL
;
1296 ip_mreq
= (struct ip_mreqn
*) alloca(optlen
);
1297 target_to_host_ip_mreq(ip_mreq
, optval_addr
, optlen
);
1298 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq
, optlen
));
1301 case IP_BLOCK_SOURCE
:
1302 case IP_UNBLOCK_SOURCE
:
1303 case IP_ADD_SOURCE_MEMBERSHIP
:
1304 case IP_DROP_SOURCE_MEMBERSHIP
:
1305 if (optlen
!= sizeof (struct target_ip_mreq_source
))
1306 return -TARGET_EINVAL
;
1308 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
1309 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
1310 unlock_user (ip_mreq_source
, optval_addr
, 0);
1320 /* struct icmp_filter takes an u32 value */
1321 if (optlen
< sizeof(uint32_t)) {
1322 return -TARGET_EINVAL
;
1325 if (get_user_u32(val
, optval_addr
)) {
1326 return -TARGET_EFAULT
;
1328 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
1329 &val
, sizeof(val
)));
1336 case TARGET_SOL_SOCKET
:
1338 case TARGET_SO_RCVTIMEO
:
1342 optname
= SO_RCVTIMEO
;
1345 if (optlen
!= sizeof(struct target_timeval
)) {
1346 return -TARGET_EINVAL
;
1349 if (copy_from_user_timeval(&tv
, optval_addr
)) {
1350 return -TARGET_EFAULT
;
1353 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
1357 case TARGET_SO_SNDTIMEO
:
1358 optname
= SO_SNDTIMEO
;
1360 /* Options with 'int' argument. */
1361 case TARGET_SO_DEBUG
:
1364 case TARGET_SO_REUSEADDR
:
1365 optname
= SO_REUSEADDR
;
1367 case TARGET_SO_TYPE
:
1370 case TARGET_SO_ERROR
:
1373 case TARGET_SO_DONTROUTE
:
1374 optname
= SO_DONTROUTE
;
1376 case TARGET_SO_BROADCAST
:
1377 optname
= SO_BROADCAST
;
1379 case TARGET_SO_SNDBUF
:
1380 optname
= SO_SNDBUF
;
1382 case TARGET_SO_RCVBUF
:
1383 optname
= SO_RCVBUF
;
1385 case TARGET_SO_KEEPALIVE
:
1386 optname
= SO_KEEPALIVE
;
1388 case TARGET_SO_OOBINLINE
:
1389 optname
= SO_OOBINLINE
;
1391 case TARGET_SO_NO_CHECK
:
1392 optname
= SO_NO_CHECK
;
1394 case TARGET_SO_PRIORITY
:
1395 optname
= SO_PRIORITY
;
1398 case TARGET_SO_BSDCOMPAT
:
1399 optname
= SO_BSDCOMPAT
;
1402 case TARGET_SO_PASSCRED
:
1403 optname
= SO_PASSCRED
;
1405 case TARGET_SO_TIMESTAMP
:
1406 optname
= SO_TIMESTAMP
;
1408 case TARGET_SO_RCVLOWAT
:
1409 optname
= SO_RCVLOWAT
;
1415 if (optlen
< sizeof(uint32_t))
1416 return -TARGET_EINVAL
;
1418 if (get_user_u32(val
, optval_addr
))
1419 return -TARGET_EFAULT
;
1420 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
1424 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level
, optname
);
1425 ret
= -TARGET_ENOPROTOOPT
;
1430 /* do_getsockopt() Must return target values and target errnos. */
1431 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
1432 abi_ulong optval_addr
, abi_ulong optlen
)
1439 case TARGET_SOL_SOCKET
:
1442 /* These don't just return a single integer */
1443 case TARGET_SO_LINGER
:
1444 case TARGET_SO_RCVTIMEO
:
1445 case TARGET_SO_SNDTIMEO
:
1446 case TARGET_SO_PEERNAME
:
1448 case TARGET_SO_PEERCRED
: {
1451 struct target_ucred
*tcr
;
1453 if (get_user_u32(len
, optlen
)) {
1454 return -TARGET_EFAULT
;
1457 return -TARGET_EINVAL
;
1461 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
1469 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
1470 return -TARGET_EFAULT
;
1472 __put_user(cr
.pid
, &tcr
->pid
);
1473 __put_user(cr
.uid
, &tcr
->uid
);
1474 __put_user(cr
.gid
, &tcr
->gid
);
1475 unlock_user_struct(tcr
, optval_addr
, 1);
1476 if (put_user_u32(len
, optlen
)) {
1477 return -TARGET_EFAULT
;
1481 /* Options with 'int' argument. */
1482 case TARGET_SO_DEBUG
:
1485 case TARGET_SO_REUSEADDR
:
1486 optname
= SO_REUSEADDR
;
1488 case TARGET_SO_TYPE
:
1491 case TARGET_SO_ERROR
:
1494 case TARGET_SO_DONTROUTE
:
1495 optname
= SO_DONTROUTE
;
1497 case TARGET_SO_BROADCAST
:
1498 optname
= SO_BROADCAST
;
1500 case TARGET_SO_SNDBUF
:
1501 optname
= SO_SNDBUF
;
1503 case TARGET_SO_RCVBUF
:
1504 optname
= SO_RCVBUF
;
1506 case TARGET_SO_KEEPALIVE
:
1507 optname
= SO_KEEPALIVE
;
1509 case TARGET_SO_OOBINLINE
:
1510 optname
= SO_OOBINLINE
;
1512 case TARGET_SO_NO_CHECK
:
1513 optname
= SO_NO_CHECK
;
1515 case TARGET_SO_PRIORITY
:
1516 optname
= SO_PRIORITY
;
1519 case TARGET_SO_BSDCOMPAT
:
1520 optname
= SO_BSDCOMPAT
;
1523 case TARGET_SO_PASSCRED
:
1524 optname
= SO_PASSCRED
;
1526 case TARGET_SO_TIMESTAMP
:
1527 optname
= SO_TIMESTAMP
;
1529 case TARGET_SO_RCVLOWAT
:
1530 optname
= SO_RCVLOWAT
;
1537 /* TCP options all take an 'int' value. */
1539 if (get_user_u32(len
, optlen
))
1540 return -TARGET_EFAULT
;
1542 return -TARGET_EINVAL
;
1544 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
1550 if (put_user_u32(val
, optval_addr
))
1551 return -TARGET_EFAULT
;
1553 if (put_user_u8(val
, optval_addr
))
1554 return -TARGET_EFAULT
;
1556 if (put_user_u32(len
, optlen
))
1557 return -TARGET_EFAULT
;
1564 case IP_ROUTER_ALERT
:
1568 case IP_MTU_DISCOVER
:
1574 case IP_MULTICAST_TTL
:
1575 case IP_MULTICAST_LOOP
:
1576 if (get_user_u32(len
, optlen
))
1577 return -TARGET_EFAULT
;
1579 return -TARGET_EINVAL
;
1581 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
1584 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
1586 if (put_user_u32(len
, optlen
)
1587 || put_user_u8(val
, optval_addr
))
1588 return -TARGET_EFAULT
;
1590 if (len
> sizeof(int))
1592 if (put_user_u32(len
, optlen
)
1593 || put_user_u32(val
, optval_addr
))
1594 return -TARGET_EFAULT
;
1598 ret
= -TARGET_ENOPROTOOPT
;
1604 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
1606 ret
= -TARGET_EOPNOTSUPP
;
1612 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
1613 int count
, int copy
)
1615 struct target_iovec
*target_vec
;
1617 abi_ulong total_len
, max_len
;
1624 if (count
< 0 || count
> IOV_MAX
) {
1629 vec
= calloc(count
, sizeof(struct iovec
));
1635 target_vec
= lock_user(VERIFY_READ
, target_addr
,
1636 count
* sizeof(struct target_iovec
), 1);
1637 if (target_vec
== NULL
) {
1642 /* ??? If host page size > target page size, this will result in a
1643 value larger than what we can actually support. */
1644 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
1647 for (i
= 0; i
< count
; i
++) {
1648 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
1649 abi_long len
= tswapal(target_vec
[i
].iov_len
);
1654 } else if (len
== 0) {
1655 /* Zero length pointer is ignored. */
1656 vec
[i
].iov_base
= 0;
1658 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
1659 if (!vec
[i
].iov_base
) {
1663 if (len
> max_len
- total_len
) {
1664 len
= max_len
- total_len
;
1667 vec
[i
].iov_len
= len
;
1671 unlock_user(target_vec
, target_addr
, 0);
1677 unlock_user(target_vec
, target_addr
, 0);
1681 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
1682 int count
, int copy
)
1684 struct target_iovec
*target_vec
;
1687 target_vec
= lock_user(VERIFY_READ
, target_addr
,
1688 count
* sizeof(struct target_iovec
), 1);
1690 for (i
= 0; i
< count
; i
++) {
1691 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
1692 abi_long len
= tswapal(target_vec
[i
].iov_base
);
1696 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
1698 unlock_user(target_vec
, target_addr
, 0);
1704 static inline void target_to_host_sock_type(int *type
)
1707 int target_type
= *type
;
1709 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
1710 case TARGET_SOCK_DGRAM
:
1711 host_type
= SOCK_DGRAM
;
1713 case TARGET_SOCK_STREAM
:
1714 host_type
= SOCK_STREAM
;
1717 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
1720 if (target_type
& TARGET_SOCK_CLOEXEC
) {
1721 host_type
|= SOCK_CLOEXEC
;
1723 if (target_type
& TARGET_SOCK_NONBLOCK
) {
1724 host_type
|= SOCK_NONBLOCK
;
1729 /* do_socket() Must return target values and target errnos. */
1730 static abi_long
do_socket(int domain
, int type
, int protocol
)
1732 target_to_host_sock_type(&type
);
1734 if (domain
== PF_NETLINK
)
1735 return -EAFNOSUPPORT
; /* do not NETLINK socket connections possible */
1736 return get_errno(socket(domain
, type
, protocol
));
1739 /* do_bind() Must return target values and target errnos. */
1740 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
1746 if ((int)addrlen
< 0) {
1747 return -TARGET_EINVAL
;
1750 addr
= alloca(addrlen
+1);
1752 ret
= target_to_host_sockaddr(addr
, target_addr
, addrlen
);
1756 return get_errno(bind(sockfd
, addr
, addrlen
));
1759 /* do_connect() Must return target values and target errnos. */
1760 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
1766 if ((int)addrlen
< 0) {
1767 return -TARGET_EINVAL
;
1770 addr
= alloca(addrlen
);
1772 ret
= target_to_host_sockaddr(addr
, target_addr
, addrlen
);
1776 return get_errno(connect(sockfd
, addr
, addrlen
));
1779 /* do_sendrecvmsg() Must return target values and target errnos. */
1780 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
1781 int flags
, int send
)
1784 struct target_msghdr
*msgp
;
1788 abi_ulong target_vec
;
1791 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
1795 return -TARGET_EFAULT
;
1796 if (msgp
->msg_name
) {
1797 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
1798 msg
.msg_name
= alloca(msg
.msg_namelen
);
1799 ret
= target_to_host_sockaddr(msg
.msg_name
, tswapal(msgp
->msg_name
),
1805 msg
.msg_name
= NULL
;
1806 msg
.msg_namelen
= 0;
1808 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
1809 msg
.msg_control
= alloca(msg
.msg_controllen
);
1810 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
1812 count
= tswapal(msgp
->msg_iovlen
);
1813 target_vec
= tswapal(msgp
->msg_iov
);
1814 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
1815 target_vec
, count
, send
);
1817 ret
= -host_to_target_errno(errno
);
1820 msg
.msg_iovlen
= count
;
1824 ret
= target_to_host_cmsg(&msg
, msgp
);
1826 ret
= get_errno(sendmsg(fd
, &msg
, flags
));
1828 ret
= get_errno(recvmsg(fd
, &msg
, flags
));
1829 if (!is_error(ret
)) {
1831 ret
= host_to_target_cmsg(msgp
, &msg
);
1832 if (!is_error(ret
)) {
1833 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
1834 if (msg
.msg_name
!= NULL
) {
1835 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
1836 msg
.msg_name
, msg
.msg_namelen
);
1848 unlock_iovec(vec
, target_vec
, count
, !send
);
1850 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
1854 /* If we don't have a system accept4() then just call accept.
1855 * The callsites to do_accept4() will ensure that they don't
1856 * pass a non-zero flags argument in this config.
1858 #ifndef CONFIG_ACCEPT4
1859 static inline int accept4(int sockfd
, struct sockaddr
*addr
,
1860 socklen_t
*addrlen
, int flags
)
1863 return accept(sockfd
, addr
, addrlen
);
1867 /* do_accept4() Must return target values and target errnos. */
1868 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
1869 abi_ulong target_addrlen_addr
, int flags
)
1875 if (target_addr
== 0) {
1876 return get_errno(accept4(fd
, NULL
, NULL
, flags
));
1879 /* linux returns EINVAL if addrlen pointer is invalid */
1880 if (get_user_u32(addrlen
, target_addrlen_addr
))
1881 return -TARGET_EINVAL
;
1883 if ((int)addrlen
< 0) {
1884 return -TARGET_EINVAL
;
1887 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
1888 return -TARGET_EINVAL
;
1890 addr
= alloca(addrlen
);
1892 ret
= get_errno(accept4(fd
, addr
, &addrlen
, flags
));
1893 if (!is_error(ret
)) {
1894 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
1895 if (put_user_u32(addrlen
, target_addrlen_addr
))
1896 ret
= -TARGET_EFAULT
;
1901 /* do_getpeername() Must return target values and target errnos. */
1902 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
1903 abi_ulong target_addrlen_addr
)
1909 if (get_user_u32(addrlen
, target_addrlen_addr
))
1910 return -TARGET_EFAULT
;
1912 if ((int)addrlen
< 0) {
1913 return -TARGET_EINVAL
;
1916 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
1917 return -TARGET_EFAULT
;
1919 addr
= alloca(addrlen
);
1921 ret
= get_errno(getpeername(fd
, addr
, &addrlen
));
1922 if (!is_error(ret
)) {
1923 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
1924 if (put_user_u32(addrlen
, target_addrlen_addr
))
1925 ret
= -TARGET_EFAULT
;
1930 /* do_getsockname() Must return target values and target errnos. */
1931 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
1932 abi_ulong target_addrlen_addr
)
1938 if (get_user_u32(addrlen
, target_addrlen_addr
))
1939 return -TARGET_EFAULT
;
1941 if ((int)addrlen
< 0) {
1942 return -TARGET_EINVAL
;
1945 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
1946 return -TARGET_EFAULT
;
1948 addr
= alloca(addrlen
);
1950 ret
= get_errno(getsockname(fd
, addr
, &addrlen
));
1951 if (!is_error(ret
)) {
1952 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
1953 if (put_user_u32(addrlen
, target_addrlen_addr
))
1954 ret
= -TARGET_EFAULT
;
1959 /* do_socketpair() Must return target values and target errnos. */
1960 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
1961 abi_ulong target_tab_addr
)
1966 target_to_host_sock_type(&type
);
1968 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
1969 if (!is_error(ret
)) {
1970 if (put_user_s32(tab
[0], target_tab_addr
)
1971 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
1972 ret
= -TARGET_EFAULT
;
1977 /* do_sendto() Must return target values and target errnos. */
1978 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
1979 abi_ulong target_addr
, socklen_t addrlen
)
1985 if ((int)addrlen
< 0) {
1986 return -TARGET_EINVAL
;
1989 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
1991 return -TARGET_EFAULT
;
1993 addr
= alloca(addrlen
);
1994 ret
= target_to_host_sockaddr(addr
, target_addr
, addrlen
);
1996 unlock_user(host_msg
, msg
, 0);
1999 ret
= get_errno(sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
2001 ret
= get_errno(send(fd
, host_msg
, len
, flags
));
2003 unlock_user(host_msg
, msg
, 0);
2007 /* do_recvfrom() Must return target values and target errnos. */
2008 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
2009 abi_ulong target_addr
,
2010 abi_ulong target_addrlen
)
2017 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
2019 return -TARGET_EFAULT
;
2021 if (get_user_u32(addrlen
, target_addrlen
)) {
2022 ret
= -TARGET_EFAULT
;
2025 if ((int)addrlen
< 0) {
2026 ret
= -TARGET_EINVAL
;
2029 addr
= alloca(addrlen
);
2030 ret
= get_errno(recvfrom(fd
, host_msg
, len
, flags
, addr
, &addrlen
));
2032 addr
= NULL
; /* To keep compiler quiet. */
2033 ret
= get_errno(qemu_recv(fd
, host_msg
, len
, flags
));
2035 if (!is_error(ret
)) {
2037 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
2038 if (put_user_u32(addrlen
, target_addrlen
)) {
2039 ret
= -TARGET_EFAULT
;
2043 unlock_user(host_msg
, msg
, len
);
2046 unlock_user(host_msg
, msg
, 0);
2051 #ifdef TARGET_NR_socketcall
2052 /* do_socketcall() Must return target values and target errnos. */
2053 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
2056 const int n
= sizeof(abi_ulong
);
2061 abi_ulong domain
, type
, protocol
;
2063 if (get_user_ual(domain
, vptr
)
2064 || get_user_ual(type
, vptr
+ n
)
2065 || get_user_ual(protocol
, vptr
+ 2 * n
))
2066 return -TARGET_EFAULT
;
2068 ret
= do_socket(domain
, type
, protocol
);
2074 abi_ulong target_addr
;
2077 if (get_user_ual(sockfd
, vptr
)
2078 || get_user_ual(target_addr
, vptr
+ n
)
2079 || get_user_ual(addrlen
, vptr
+ 2 * n
))
2080 return -TARGET_EFAULT
;
2082 ret
= do_bind(sockfd
, target_addr
, addrlen
);
2085 case SOCKOP_connect
:
2088 abi_ulong target_addr
;
2091 if (get_user_ual(sockfd
, vptr
)
2092 || get_user_ual(target_addr
, vptr
+ n
)
2093 || get_user_ual(addrlen
, vptr
+ 2 * n
))
2094 return -TARGET_EFAULT
;
2096 ret
= do_connect(sockfd
, target_addr
, addrlen
);
2101 abi_ulong sockfd
, backlog
;
2103 if (get_user_ual(sockfd
, vptr
)
2104 || get_user_ual(backlog
, vptr
+ n
))
2105 return -TARGET_EFAULT
;
2107 ret
= get_errno(listen(sockfd
, backlog
));
2113 abi_ulong target_addr
, target_addrlen
;
2115 if (get_user_ual(sockfd
, vptr
)
2116 || get_user_ual(target_addr
, vptr
+ n
)
2117 || get_user_ual(target_addrlen
, vptr
+ 2 * n
))
2118 return -TARGET_EFAULT
;
2120 ret
= do_accept4(sockfd
, target_addr
, target_addrlen
, 0);
2123 case SOCKOP_getsockname
:
2126 abi_ulong target_addr
, target_addrlen
;
2128 if (get_user_ual(sockfd
, vptr
)
2129 || get_user_ual(target_addr
, vptr
+ n
)
2130 || get_user_ual(target_addrlen
, vptr
+ 2 * n
))
2131 return -TARGET_EFAULT
;
2133 ret
= do_getsockname(sockfd
, target_addr
, target_addrlen
);
2136 case SOCKOP_getpeername
:
2139 abi_ulong target_addr
, target_addrlen
;
2141 if (get_user_ual(sockfd
, vptr
)
2142 || get_user_ual(target_addr
, vptr
+ n
)
2143 || get_user_ual(target_addrlen
, vptr
+ 2 * n
))
2144 return -TARGET_EFAULT
;
2146 ret
= do_getpeername(sockfd
, target_addr
, target_addrlen
);
2149 case SOCKOP_socketpair
:
2151 abi_ulong domain
, type
, protocol
;
2154 if (get_user_ual(domain
, vptr
)
2155 || get_user_ual(type
, vptr
+ n
)
2156 || get_user_ual(protocol
, vptr
+ 2 * n
)
2157 || get_user_ual(tab
, vptr
+ 3 * n
))
2158 return -TARGET_EFAULT
;
2160 ret
= do_socketpair(domain
, type
, protocol
, tab
);
2170 if (get_user_ual(sockfd
, vptr
)
2171 || get_user_ual(msg
, vptr
+ n
)
2172 || get_user_ual(len
, vptr
+ 2 * n
)
2173 || get_user_ual(flags
, vptr
+ 3 * n
))
2174 return -TARGET_EFAULT
;
2176 ret
= do_sendto(sockfd
, msg
, len
, flags
, 0, 0);
2186 if (get_user_ual(sockfd
, vptr
)
2187 || get_user_ual(msg
, vptr
+ n
)
2188 || get_user_ual(len
, vptr
+ 2 * n
)
2189 || get_user_ual(flags
, vptr
+ 3 * n
))
2190 return -TARGET_EFAULT
;
2192 ret
= do_recvfrom(sockfd
, msg
, len
, flags
, 0, 0);
2204 if (get_user_ual(sockfd
, vptr
)
2205 || get_user_ual(msg
, vptr
+ n
)
2206 || get_user_ual(len
, vptr
+ 2 * n
)
2207 || get_user_ual(flags
, vptr
+ 3 * n
)
2208 || get_user_ual(addr
, vptr
+ 4 * n
)
2209 || get_user_ual(addrlen
, vptr
+ 5 * n
))
2210 return -TARGET_EFAULT
;
2212 ret
= do_sendto(sockfd
, msg
, len
, flags
, addr
, addrlen
);
2215 case SOCKOP_recvfrom
:
2224 if (get_user_ual(sockfd
, vptr
)
2225 || get_user_ual(msg
, vptr
+ n
)
2226 || get_user_ual(len
, vptr
+ 2 * n
)
2227 || get_user_ual(flags
, vptr
+ 3 * n
)
2228 || get_user_ual(addr
, vptr
+ 4 * n
)
2229 || get_user_ual(addrlen
, vptr
+ 5 * n
))
2230 return -TARGET_EFAULT
;
2232 ret
= do_recvfrom(sockfd
, msg
, len
, flags
, addr
, addrlen
);
2235 case SOCKOP_shutdown
:
2237 abi_ulong sockfd
, how
;
2239 if (get_user_ual(sockfd
, vptr
)
2240 || get_user_ual(how
, vptr
+ n
))
2241 return -TARGET_EFAULT
;
2243 ret
= get_errno(shutdown(sockfd
, how
));
2246 case SOCKOP_sendmsg
:
2247 case SOCKOP_recvmsg
:
2250 abi_ulong target_msg
;
2253 if (get_user_ual(fd
, vptr
)
2254 || get_user_ual(target_msg
, vptr
+ n
)
2255 || get_user_ual(flags
, vptr
+ 2 * n
))
2256 return -TARGET_EFAULT
;
2258 ret
= do_sendrecvmsg(fd
, target_msg
, flags
,
2259 (num
== SOCKOP_sendmsg
));
2262 case SOCKOP_setsockopt
:
2270 if (get_user_ual(sockfd
, vptr
)
2271 || get_user_ual(level
, vptr
+ n
)
2272 || get_user_ual(optname
, vptr
+ 2 * n
)
2273 || get_user_ual(optval
, vptr
+ 3 * n
)
2274 || get_user_ual(optlen
, vptr
+ 4 * n
))
2275 return -TARGET_EFAULT
;
2277 ret
= do_setsockopt(sockfd
, level
, optname
, optval
, optlen
);
2280 case SOCKOP_getsockopt
:
2288 if (get_user_ual(sockfd
, vptr
)
2289 || get_user_ual(level
, vptr
+ n
)
2290 || get_user_ual(optname
, vptr
+ 2 * n
)
2291 || get_user_ual(optval
, vptr
+ 3 * n
)
2292 || get_user_ual(optlen
, vptr
+ 4 * n
))
2293 return -TARGET_EFAULT
;
2295 ret
= do_getsockopt(sockfd
, level
, optname
, optval
, optlen
);
2299 gemu_log("Unsupported socketcall: %d\n", num
);
2300 ret
= -TARGET_ENOSYS
;
2307 #define N_SHM_REGIONS 32
2309 static struct shm_region
{
2312 } shm_regions
[N_SHM_REGIONS
];
2314 struct target_ipc_perm
2321 unsigned short int mode
;
2322 unsigned short int __pad1
;
2323 unsigned short int __seq
;
2324 unsigned short int __pad2
;
2325 abi_ulong __unused1
;
2326 abi_ulong __unused2
;
2329 struct target_semid_ds
2331 struct target_ipc_perm sem_perm
;
2332 abi_ulong sem_otime
;
2333 abi_ulong __unused1
;
2334 abi_ulong sem_ctime
;
2335 abi_ulong __unused2
;
2336 abi_ulong sem_nsems
;
2337 abi_ulong __unused3
;
2338 abi_ulong __unused4
;
2341 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
2342 abi_ulong target_addr
)
2344 struct target_ipc_perm
*target_ip
;
2345 struct target_semid_ds
*target_sd
;
2347 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
2348 return -TARGET_EFAULT
;
2349 target_ip
= &(target_sd
->sem_perm
);
2350 host_ip
->__key
= tswapal(target_ip
->__key
);
2351 host_ip
->uid
= tswapal(target_ip
->uid
);
2352 host_ip
->gid
= tswapal(target_ip
->gid
);
2353 host_ip
->cuid
= tswapal(target_ip
->cuid
);
2354 host_ip
->cgid
= tswapal(target_ip
->cgid
);
2355 host_ip
->mode
= tswap16(target_ip
->mode
);
2356 unlock_user_struct(target_sd
, target_addr
, 0);
2360 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
2361 struct ipc_perm
*host_ip
)
2363 struct target_ipc_perm
*target_ip
;
2364 struct target_semid_ds
*target_sd
;
2366 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
2367 return -TARGET_EFAULT
;
2368 target_ip
= &(target_sd
->sem_perm
);
2369 target_ip
->__key
= tswapal(host_ip
->__key
);
2370 target_ip
->uid
= tswapal(host_ip
->uid
);
2371 target_ip
->gid
= tswapal(host_ip
->gid
);
2372 target_ip
->cuid
= tswapal(host_ip
->cuid
);
2373 target_ip
->cgid
= tswapal(host_ip
->cgid
);
2374 target_ip
->mode
= tswap16(host_ip
->mode
);
2375 unlock_user_struct(target_sd
, target_addr
, 1);
2379 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
2380 abi_ulong target_addr
)
2382 struct target_semid_ds
*target_sd
;
2384 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
2385 return -TARGET_EFAULT
;
2386 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
2387 return -TARGET_EFAULT
;
2388 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
2389 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
2390 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
2391 unlock_user_struct(target_sd
, target_addr
, 0);
2395 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
2396 struct semid_ds
*host_sd
)
2398 struct target_semid_ds
*target_sd
;
2400 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
2401 return -TARGET_EFAULT
;
2402 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
2403 return -TARGET_EFAULT
;
2404 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
2405 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
2406 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
2407 unlock_user_struct(target_sd
, target_addr
, 1);
2411 struct target_seminfo
{
2424 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
2425 struct seminfo
*host_seminfo
)
2427 struct target_seminfo
*target_seminfo
;
2428 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
2429 return -TARGET_EFAULT
;
2430 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
2431 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
2432 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
2433 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
2434 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
2435 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
2436 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
2437 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
2438 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
2439 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
2440 unlock_user_struct(target_seminfo
, target_addr
, 1);
2446 struct semid_ds
*buf
;
2447 unsigned short *array
;
2448 struct seminfo
*__buf
;
2451 union target_semun
{
2458 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
2459 abi_ulong target_addr
)
2462 unsigned short *array
;
2464 struct semid_ds semid_ds
;
2467 semun
.buf
= &semid_ds
;
2469 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
2471 return get_errno(ret
);
2473 nsems
= semid_ds
.sem_nsems
;
2475 *host_array
= malloc(nsems
*sizeof(unsigned short));
2476 array
= lock_user(VERIFY_READ
, target_addr
,
2477 nsems
*sizeof(unsigned short), 1);
2479 return -TARGET_EFAULT
;
2481 for(i
=0; i
<nsems
; i
++) {
2482 __get_user((*host_array
)[i
], &array
[i
]);
2484 unlock_user(array
, target_addr
, 0);
2489 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
2490 unsigned short **host_array
)
2493 unsigned short *array
;
2495 struct semid_ds semid_ds
;
2498 semun
.buf
= &semid_ds
;
2500 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
2502 return get_errno(ret
);
2504 nsems
= semid_ds
.sem_nsems
;
2506 array
= lock_user(VERIFY_WRITE
, target_addr
,
2507 nsems
*sizeof(unsigned short), 0);
2509 return -TARGET_EFAULT
;
2511 for(i
=0; i
<nsems
; i
++) {
2512 __put_user((*host_array
)[i
], &array
[i
]);
2515 unlock_user(array
, target_addr
, 1);
2520 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
2521 union target_semun target_su
)
2524 struct semid_ds dsarg
;
2525 unsigned short *array
= NULL
;
2526 struct seminfo seminfo
;
2527 abi_long ret
= -TARGET_EINVAL
;
2534 arg
.val
= tswap32(target_su
.val
);
2535 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2536 target_su
.val
= tswap32(arg
.val
);
2540 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
2544 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2545 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
2552 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
2556 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2557 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
2563 arg
.__buf
= &seminfo
;
2564 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2565 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
2573 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
2580 struct target_sembuf
{
2581 unsigned short sem_num
;
2586 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
2587 abi_ulong target_addr
,
2590 struct target_sembuf
*target_sembuf
;
2593 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
2594 nsops
*sizeof(struct target_sembuf
), 1);
2596 return -TARGET_EFAULT
;
2598 for(i
=0; i
<nsops
; i
++) {
2599 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
2600 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
2601 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
2604 unlock_user(target_sembuf
, target_addr
, 0);
2609 static inline abi_long
do_semop(int semid
, abi_long ptr
, unsigned nsops
)
2611 struct sembuf sops
[nsops
];
2613 if (target_to_host_sembuf(sops
, ptr
, nsops
))
2614 return -TARGET_EFAULT
;
2616 return get_errno(semop(semid
, sops
, nsops
));
2619 struct target_msqid_ds
2621 struct target_ipc_perm msg_perm
;
2622 abi_ulong msg_stime
;
2623 #if TARGET_ABI_BITS == 32
2624 abi_ulong __unused1
;
2626 abi_ulong msg_rtime
;
2627 #if TARGET_ABI_BITS == 32
2628 abi_ulong __unused2
;
2630 abi_ulong msg_ctime
;
2631 #if TARGET_ABI_BITS == 32
2632 abi_ulong __unused3
;
2634 abi_ulong __msg_cbytes
;
2636 abi_ulong msg_qbytes
;
2637 abi_ulong msg_lspid
;
2638 abi_ulong msg_lrpid
;
2639 abi_ulong __unused4
;
2640 abi_ulong __unused5
;
2643 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
2644 abi_ulong target_addr
)
2646 struct target_msqid_ds
*target_md
;
2648 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
2649 return -TARGET_EFAULT
;
2650 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
2651 return -TARGET_EFAULT
;
2652 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
2653 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
2654 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
2655 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
2656 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
2657 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
2658 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
2659 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
2660 unlock_user_struct(target_md
, target_addr
, 0);
2664 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
2665 struct msqid_ds
*host_md
)
2667 struct target_msqid_ds
*target_md
;
2669 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
2670 return -TARGET_EFAULT
;
2671 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
2672 return -TARGET_EFAULT
;
2673 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
2674 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
2675 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
2676 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
2677 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
2678 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
2679 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
2680 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
2681 unlock_user_struct(target_md
, target_addr
, 1);
2685 struct target_msginfo
{
2693 unsigned short int msgseg
;
2696 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
2697 struct msginfo
*host_msginfo
)
2699 struct target_msginfo
*target_msginfo
;
2700 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
2701 return -TARGET_EFAULT
;
2702 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
2703 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
2704 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
2705 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
2706 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
2707 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
2708 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
2709 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
2710 unlock_user_struct(target_msginfo
, target_addr
, 1);
2714 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
2716 struct msqid_ds dsarg
;
2717 struct msginfo msginfo
;
2718 abi_long ret
= -TARGET_EINVAL
;
2726 if (target_to_host_msqid_ds(&dsarg
,ptr
))
2727 return -TARGET_EFAULT
;
2728 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
2729 if (host_to_target_msqid_ds(ptr
,&dsarg
))
2730 return -TARGET_EFAULT
;
2733 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
2737 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
2738 if (host_to_target_msginfo(ptr
, &msginfo
))
2739 return -TARGET_EFAULT
;
2746 struct target_msgbuf
{
2751 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
2752 unsigned int msgsz
, int msgflg
)
2754 struct target_msgbuf
*target_mb
;
2755 struct msgbuf
*host_mb
;
2758 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
2759 return -TARGET_EFAULT
;
2760 host_mb
= malloc(msgsz
+sizeof(long));
2761 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
2762 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
2763 ret
= get_errno(msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
2765 unlock_user_struct(target_mb
, msgp
, 0);
2770 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
2771 unsigned int msgsz
, abi_long msgtyp
,
2774 struct target_msgbuf
*target_mb
;
2776 struct msgbuf
*host_mb
;
2779 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
2780 return -TARGET_EFAULT
;
2782 host_mb
= g_malloc(msgsz
+sizeof(long));
2783 ret
= get_errno(msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
2786 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
2787 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
2788 if (!target_mtext
) {
2789 ret
= -TARGET_EFAULT
;
2792 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
2793 unlock_user(target_mtext
, target_mtext_addr
, ret
);
2796 target_mb
->mtype
= tswapal(host_mb
->mtype
);
2800 unlock_user_struct(target_mb
, msgp
, 1);
2805 struct target_shmid_ds
2807 struct target_ipc_perm shm_perm
;
2808 abi_ulong shm_segsz
;
2809 abi_ulong shm_atime
;
2810 #if TARGET_ABI_BITS == 32
2811 abi_ulong __unused1
;
2813 abi_ulong shm_dtime
;
2814 #if TARGET_ABI_BITS == 32
2815 abi_ulong __unused2
;
2817 abi_ulong shm_ctime
;
2818 #if TARGET_ABI_BITS == 32
2819 abi_ulong __unused3
;
2823 abi_ulong shm_nattch
;
2824 unsigned long int __unused4
;
2825 unsigned long int __unused5
;
2828 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
2829 abi_ulong target_addr
)
2831 struct target_shmid_ds
*target_sd
;
2833 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
2834 return -TARGET_EFAULT
;
2835 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
2836 return -TARGET_EFAULT
;
2837 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
2838 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
2839 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
2840 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
2841 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
2842 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
2843 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
2844 unlock_user_struct(target_sd
, target_addr
, 0);
2848 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
2849 struct shmid_ds
*host_sd
)
2851 struct target_shmid_ds
*target_sd
;
2853 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
2854 return -TARGET_EFAULT
;
2855 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
2856 return -TARGET_EFAULT
;
2857 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
2858 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
2859 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
2860 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
2861 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
2862 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
2863 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
2864 unlock_user_struct(target_sd
, target_addr
, 1);
2868 struct target_shminfo
{
2876 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
2877 struct shminfo
*host_shminfo
)
2879 struct target_shminfo
*target_shminfo
;
2880 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
2881 return -TARGET_EFAULT
;
2882 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
2883 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
2884 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
2885 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
2886 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
2887 unlock_user_struct(target_shminfo
, target_addr
, 1);
2891 struct target_shm_info
{
2896 abi_ulong swap_attempts
;
2897 abi_ulong swap_successes
;
2900 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
2901 struct shm_info
*host_shm_info
)
2903 struct target_shm_info
*target_shm_info
;
2904 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
2905 return -TARGET_EFAULT
;
2906 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
2907 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
2908 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
2909 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
2910 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
2911 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
2912 unlock_user_struct(target_shm_info
, target_addr
, 1);
2916 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
2918 struct shmid_ds dsarg
;
2919 struct shminfo shminfo
;
2920 struct shm_info shm_info
;
2921 abi_long ret
= -TARGET_EINVAL
;
2929 if (target_to_host_shmid_ds(&dsarg
, buf
))
2930 return -TARGET_EFAULT
;
2931 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
2932 if (host_to_target_shmid_ds(buf
, &dsarg
))
2933 return -TARGET_EFAULT
;
2936 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
2937 if (host_to_target_shminfo(buf
, &shminfo
))
2938 return -TARGET_EFAULT
;
2941 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
2942 if (host_to_target_shm_info(buf
, &shm_info
))
2943 return -TARGET_EFAULT
;
2948 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
2955 static inline abi_ulong
do_shmat(int shmid
, abi_ulong shmaddr
, int shmflg
)
2959 struct shmid_ds shm_info
;
2962 /* find out the length of the shared memory segment */
2963 ret
= get_errno(shmctl(shmid
, IPC_STAT
, &shm_info
));
2964 if (is_error(ret
)) {
2965 /* can't get length, bail out */
2972 host_raddr
= shmat(shmid
, (void *)g2h(shmaddr
), shmflg
);
2974 abi_ulong mmap_start
;
2976 mmap_start
= mmap_find_vma(0, shm_info
.shm_segsz
);
2978 if (mmap_start
== -1) {
2980 host_raddr
= (void *)-1;
2982 host_raddr
= shmat(shmid
, g2h(mmap_start
), shmflg
| SHM_REMAP
);
2985 if (host_raddr
== (void *)-1) {
2987 return get_errno((long)host_raddr
);
2989 raddr
=h2g((unsigned long)host_raddr
);
2991 page_set_flags(raddr
, raddr
+ shm_info
.shm_segsz
,
2992 PAGE_VALID
| PAGE_READ
|
2993 ((shmflg
& SHM_RDONLY
)? 0 : PAGE_WRITE
));
2995 for (i
= 0; i
< N_SHM_REGIONS
; i
++) {
2996 if (shm_regions
[i
].start
== 0) {
2997 shm_regions
[i
].start
= raddr
;
2998 shm_regions
[i
].size
= shm_info
.shm_segsz
;
3008 static inline abi_long
do_shmdt(abi_ulong shmaddr
)
3012 for (i
= 0; i
< N_SHM_REGIONS
; ++i
) {
3013 if (shm_regions
[i
].start
== shmaddr
) {
3014 shm_regions
[i
].start
= 0;
3015 page_set_flags(shmaddr
, shmaddr
+ shm_regions
[i
].size
, 0);
3020 return get_errno(shmdt(g2h(shmaddr
)));
3023 #ifdef TARGET_NR_ipc
3024 /* ??? This only works with linear mappings. */
3025 /* do_ipc() must return target values and target errnos. */
3026 static abi_long
do_ipc(unsigned int call
, int first
,
3027 int second
, int third
,
3028 abi_long ptr
, abi_long fifth
)
3033 version
= call
>> 16;
3038 ret
= do_semop(first
, ptr
, second
);
3042 ret
= get_errno(semget(first
, second
, third
));
3046 ret
= do_semctl(first
, second
, third
, (union target_semun
)(abi_ulong
) ptr
);
3050 ret
= get_errno(msgget(first
, second
));
3054 ret
= do_msgsnd(first
, ptr
, second
, third
);
3058 ret
= do_msgctl(first
, second
, ptr
);
3065 struct target_ipc_kludge
{
3070 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
3071 ret
= -TARGET_EFAULT
;
3075 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
3077 unlock_user_struct(tmp
, ptr
, 0);
3081 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
3090 raddr
= do_shmat(first
, ptr
, second
);
3091 if (is_error(raddr
))
3092 return get_errno(raddr
);
3093 if (put_user_ual(raddr
, third
))
3094 return -TARGET_EFAULT
;
3098 ret
= -TARGET_EINVAL
;
3103 ret
= do_shmdt(ptr
);
3107 /* IPC_* flag values are the same on all linux platforms */
3108 ret
= get_errno(shmget(first
, second
, third
));
3111 /* IPC_* and SHM_* command values are the same on all linux platforms */
3113 ret
= do_shmctl(first
, second
, third
);
3116 gemu_log("Unsupported ipc call: %d (version %d)\n", call
, version
);
3117 ret
= -TARGET_ENOSYS
;
3124 /* kernel structure types definitions */
3126 #define STRUCT(name, ...) STRUCT_ ## name,
3127 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
3129 #include "syscall_types.h"
3132 #undef STRUCT_SPECIAL
3134 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
3135 #define STRUCT_SPECIAL(name)
3136 #include "syscall_types.h"
3138 #undef STRUCT_SPECIAL
3140 typedef struct IOCTLEntry IOCTLEntry
;
3142 typedef abi_long
do_ioctl_fn(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3143 int fd
, abi_long cmd
, abi_long arg
);
3146 unsigned int target_cmd
;
3147 unsigned int host_cmd
;
3150 do_ioctl_fn
*do_ioctl
;
3151 const argtype arg_type
[5];
3154 #define IOC_R 0x0001
3155 #define IOC_W 0x0002
3156 #define IOC_RW (IOC_R | IOC_W)
3158 #define MAX_STRUCT_SIZE 4096
3160 #ifdef CONFIG_FIEMAP
3161 /* So fiemap access checks don't overflow on 32 bit systems.
3162 * This is very slightly smaller than the limit imposed by
3163 * the underlying kernel.
3165 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
3166 / sizeof(struct fiemap_extent))
3168 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3169 int fd
, abi_long cmd
, abi_long arg
)
3171 /* The parameter for this ioctl is a struct fiemap followed
3172 * by an array of struct fiemap_extent whose size is set
3173 * in fiemap->fm_extent_count. The array is filled in by the
3176 int target_size_in
, target_size_out
;
3178 const argtype
*arg_type
= ie
->arg_type
;
3179 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
3182 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
3186 assert(arg_type
[0] == TYPE_PTR
);
3187 assert(ie
->access
== IOC_RW
);
3189 target_size_in
= thunk_type_size(arg_type
, 0);
3190 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
3192 return -TARGET_EFAULT
;
3194 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3195 unlock_user(argptr
, arg
, 0);
3196 fm
= (struct fiemap
*)buf_temp
;
3197 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
3198 return -TARGET_EINVAL
;
3201 outbufsz
= sizeof (*fm
) +
3202 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
3204 if (outbufsz
> MAX_STRUCT_SIZE
) {
3205 /* We can't fit all the extents into the fixed size buffer.
3206 * Allocate one that is large enough and use it instead.
3208 fm
= malloc(outbufsz
);
3210 return -TARGET_ENOMEM
;
3212 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
3215 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, fm
));
3216 if (!is_error(ret
)) {
3217 target_size_out
= target_size_in
;
3218 /* An extent_count of 0 means we were only counting the extents
3219 * so there are no structs to copy
3221 if (fm
->fm_extent_count
!= 0) {
3222 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
3224 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
3226 ret
= -TARGET_EFAULT
;
3228 /* Convert the struct fiemap */
3229 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
3230 if (fm
->fm_extent_count
!= 0) {
3231 p
= argptr
+ target_size_in
;
3232 /* ...and then all the struct fiemap_extents */
3233 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
3234 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
3239 unlock_user(argptr
, arg
, target_size_out
);
3249 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3250 int fd
, abi_long cmd
, abi_long arg
)
3252 const argtype
*arg_type
= ie
->arg_type
;
3256 struct ifconf
*host_ifconf
;
3258 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
3259 int target_ifreq_size
;
3264 abi_long target_ifc_buf
;
3268 assert(arg_type
[0] == TYPE_PTR
);
3269 assert(ie
->access
== IOC_RW
);
3272 target_size
= thunk_type_size(arg_type
, 0);
3274 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3276 return -TARGET_EFAULT
;
3277 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3278 unlock_user(argptr
, arg
, 0);
3280 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
3281 target_ifc_len
= host_ifconf
->ifc_len
;
3282 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
3284 target_ifreq_size
= thunk_type_size(ifreq_arg_type
, 0);
3285 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
3286 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
3288 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
3289 if (outbufsz
> MAX_STRUCT_SIZE
) {
3290 /* We can't fit all the extents into the fixed size buffer.
3291 * Allocate one that is large enough and use it instead.
3293 host_ifconf
= malloc(outbufsz
);
3295 return -TARGET_ENOMEM
;
3297 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
3300 host_ifc_buf
= (char*)host_ifconf
+ sizeof(*host_ifconf
);
3302 host_ifconf
->ifc_len
= host_ifc_len
;
3303 host_ifconf
->ifc_buf
= host_ifc_buf
;
3305 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, host_ifconf
));
3306 if (!is_error(ret
)) {
3307 /* convert host ifc_len to target ifc_len */
3309 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
3310 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
3311 host_ifconf
->ifc_len
= target_ifc_len
;
3313 /* restore target ifc_buf */
3315 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
3317 /* copy struct ifconf to target user */
3319 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3321 return -TARGET_EFAULT
;
3322 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
3323 unlock_user(argptr
, arg
, target_size
);
3325 /* copy ifreq[] to target user */
3327 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
3328 for (i
= 0; i
< nb_ifreq
; i
++) {
3329 thunk_convert(argptr
+ i
* target_ifreq_size
,
3330 host_ifc_buf
+ i
* sizeof(struct ifreq
),
3331 ifreq_arg_type
, THUNK_TARGET
);
3333 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
3343 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
3344 abi_long cmd
, abi_long arg
)
3347 struct dm_ioctl
*host_dm
;
3348 abi_long guest_data
;
3349 uint32_t guest_data_size
;
3351 const argtype
*arg_type
= ie
->arg_type
;
3353 void *big_buf
= NULL
;
3357 target_size
= thunk_type_size(arg_type
, 0);
3358 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3360 ret
= -TARGET_EFAULT
;
3363 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3364 unlock_user(argptr
, arg
, 0);
3366 /* buf_temp is too small, so fetch things into a bigger buffer */
3367 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
3368 memcpy(big_buf
, buf_temp
, target_size
);
3372 guest_data
= arg
+ host_dm
->data_start
;
3373 if ((guest_data
- arg
) < 0) {
3377 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
3378 host_data
= (char*)host_dm
+ host_dm
->data_start
;
3380 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
3381 switch (ie
->host_cmd
) {
3383 case DM_LIST_DEVICES
:
3386 case DM_DEV_SUSPEND
:
3389 case DM_TABLE_STATUS
:
3390 case DM_TABLE_CLEAR
:
3392 case DM_LIST_VERSIONS
:
3396 case DM_DEV_SET_GEOMETRY
:
3397 /* data contains only strings */
3398 memcpy(host_data
, argptr
, guest_data_size
);
3401 memcpy(host_data
, argptr
, guest_data_size
);
3402 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
3406 void *gspec
= argptr
;
3407 void *cur_data
= host_data
;
3408 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
3409 int spec_size
= thunk_type_size(arg_type
, 0);
3412 for (i
= 0; i
< host_dm
->target_count
; i
++) {
3413 struct dm_target_spec
*spec
= cur_data
;
3417 thunk_convert(spec
, gspec
, arg_type
, THUNK_HOST
);
3418 slen
= strlen((char*)gspec
+ spec_size
) + 1;
3420 spec
->next
= sizeof(*spec
) + slen
;
3421 strcpy((char*)&spec
[1], gspec
+ spec_size
);
3423 cur_data
+= spec
->next
;
3428 ret
= -TARGET_EINVAL
;
3431 unlock_user(argptr
, guest_data
, 0);
3433 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3434 if (!is_error(ret
)) {
3435 guest_data
= arg
+ host_dm
->data_start
;
3436 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
3437 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
3438 switch (ie
->host_cmd
) {
3443 case DM_DEV_SUSPEND
:
3446 case DM_TABLE_CLEAR
:
3448 case DM_DEV_SET_GEOMETRY
:
3449 /* no return data */
3451 case DM_LIST_DEVICES
:
3453 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
3454 uint32_t remaining_data
= guest_data_size
;
3455 void *cur_data
= argptr
;
3456 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
3457 int nl_size
= 12; /* can't use thunk_size due to alignment */
3460 uint32_t next
= nl
->next
;
3462 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
3464 if (remaining_data
< nl
->next
) {
3465 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
3468 thunk_convert(cur_data
, nl
, arg_type
, THUNK_TARGET
);
3469 strcpy(cur_data
+ nl_size
, nl
->name
);
3470 cur_data
+= nl
->next
;
3471 remaining_data
-= nl
->next
;
3475 nl
= (void*)nl
+ next
;
3480 case DM_TABLE_STATUS
:
3482 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
3483 void *cur_data
= argptr
;
3484 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
3485 int spec_size
= thunk_type_size(arg_type
, 0);
3488 for (i
= 0; i
< host_dm
->target_count
; i
++) {
3489 uint32_t next
= spec
->next
;
3490 int slen
= strlen((char*)&spec
[1]) + 1;
3491 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
3492 if (guest_data_size
< spec
->next
) {
3493 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
3496 thunk_convert(cur_data
, spec
, arg_type
, THUNK_TARGET
);
3497 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
3498 cur_data
= argptr
+ spec
->next
;
3499 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
3505 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
3506 int count
= *(uint32_t*)hdata
;
3507 uint64_t *hdev
= hdata
+ 8;
3508 uint64_t *gdev
= argptr
+ 8;
3511 *(uint32_t*)argptr
= tswap32(count
);
3512 for (i
= 0; i
< count
; i
++) {
3513 *gdev
= tswap64(*hdev
);
3519 case DM_LIST_VERSIONS
:
3521 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
3522 uint32_t remaining_data
= guest_data_size
;
3523 void *cur_data
= argptr
;
3524 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
3525 int vers_size
= thunk_type_size(arg_type
, 0);
3528 uint32_t next
= vers
->next
;
3530 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
3532 if (remaining_data
< vers
->next
) {
3533 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
3536 thunk_convert(cur_data
, vers
, arg_type
, THUNK_TARGET
);
3537 strcpy(cur_data
+ vers_size
, vers
->name
);
3538 cur_data
+= vers
->next
;
3539 remaining_data
-= vers
->next
;
3543 vers
= (void*)vers
+ next
;
3548 ret
= -TARGET_EINVAL
;
3551 unlock_user(argptr
, guest_data
, guest_data_size
);
3553 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3555 ret
= -TARGET_EFAULT
;
3558 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
3559 unlock_user(argptr
, arg
, target_size
);
3566 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3567 int fd
, abi_long cmd
, abi_long arg
)
3569 const argtype
*arg_type
= ie
->arg_type
;
3570 const StructEntry
*se
;
3571 const argtype
*field_types
;
3572 const int *dst_offsets
, *src_offsets
;
3575 abi_ulong
*target_rt_dev_ptr
;
3576 unsigned long *host_rt_dev_ptr
;
3580 assert(ie
->access
== IOC_W
);
3581 assert(*arg_type
== TYPE_PTR
);
3583 assert(*arg_type
== TYPE_STRUCT
);
3584 target_size
= thunk_type_size(arg_type
, 0);
3585 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3587 return -TARGET_EFAULT
;
3590 assert(*arg_type
== (int)STRUCT_rtentry
);
3591 se
= struct_entries
+ *arg_type
++;
3592 assert(se
->convert
[0] == NULL
);
3593 /* convert struct here to be able to catch rt_dev string */
3594 field_types
= se
->field_types
;
3595 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
3596 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
3597 for (i
= 0; i
< se
->nb_fields
; i
++) {
3598 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
3599 assert(*field_types
== TYPE_PTRVOID
);
3600 target_rt_dev_ptr
= (abi_ulong
*)(argptr
+ src_offsets
[i
]);
3601 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
3602 if (*target_rt_dev_ptr
!= 0) {
3603 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
3604 tswapal(*target_rt_dev_ptr
));
3605 if (!*host_rt_dev_ptr
) {
3606 unlock_user(argptr
, arg
, 0);
3607 return -TARGET_EFAULT
;
3610 *host_rt_dev_ptr
= 0;
3615 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
3616 argptr
+ src_offsets
[i
],
3617 field_types
, THUNK_HOST
);
3619 unlock_user(argptr
, arg
, 0);
3621 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3622 if (*host_rt_dev_ptr
!= 0) {
3623 unlock_user((void *)*host_rt_dev_ptr
,
3624 *target_rt_dev_ptr
, 0);
3629 static IOCTLEntry ioctl_entries
[] = {
3630 #define IOCTL(cmd, access, ...) \
3631 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
3632 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
3633 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
3638 /* ??? Implement proper locking for ioctls. */
3639 /* do_ioctl() Must return target values and target errnos. */
3640 static abi_long
do_ioctl(int fd
, abi_long cmd
, abi_long arg
)
3642 const IOCTLEntry
*ie
;
3643 const argtype
*arg_type
;
3645 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
3651 if (ie
->target_cmd
== 0) {
3652 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
3653 return -TARGET_ENOSYS
;
3655 if (ie
->target_cmd
== cmd
)
3659 arg_type
= ie
->arg_type
;
3661 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd
, ie
->name
);
3664 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
3667 switch(arg_type
[0]) {
3670 ret
= get_errno(ioctl(fd
, ie
->host_cmd
));
3675 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, arg
));
3679 target_size
= thunk_type_size(arg_type
, 0);
3680 switch(ie
->access
) {
3682 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3683 if (!is_error(ret
)) {
3684 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3686 return -TARGET_EFAULT
;
3687 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
3688 unlock_user(argptr
, arg
, target_size
);
3692 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3694 return -TARGET_EFAULT
;
3695 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3696 unlock_user(argptr
, arg
, 0);
3697 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3701 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3703 return -TARGET_EFAULT
;
3704 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3705 unlock_user(argptr
, arg
, 0);
3706 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3707 if (!is_error(ret
)) {
3708 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3710 return -TARGET_EFAULT
;
3711 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
3712 unlock_user(argptr
, arg
, target_size
);
3718 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
3719 (long)cmd
, arg_type
[0]);
3720 ret
= -TARGET_ENOSYS
;
3726 static const bitmask_transtbl iflag_tbl
[] = {
3727 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
3728 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
3729 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
3730 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
3731 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
3732 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
3733 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
3734 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
3735 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
3736 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
3737 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
3738 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
3739 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
3740 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
3744 static const bitmask_transtbl oflag_tbl
[] = {
3745 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
3746 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
3747 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
3748 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
3749 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
3750 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
3751 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
3752 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
3753 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
3754 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
3755 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
3756 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
3757 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
3758 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
3759 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
3760 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
3761 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
3762 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
3763 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
3764 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
3765 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
3766 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
3767 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
3768 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
3772 static const bitmask_transtbl cflag_tbl
[] = {
3773 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
3774 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
3775 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
3776 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
3777 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
3778 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
3779 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
3780 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
3781 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
3782 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
3783 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
3784 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
3785 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
3786 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
3787 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
3788 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
3789 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
3790 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
3791 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
3792 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
3793 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
3794 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
3795 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
3796 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
3797 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
3798 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
3799 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
3800 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
3801 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
3802 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
3803 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
3807 static const bitmask_transtbl lflag_tbl
[] = {
3808 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
3809 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
3810 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
3811 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
3812 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
3813 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
3814 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
3815 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
3816 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
3817 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
3818 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
3819 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
3820 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
3821 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
3822 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
3826 static void target_to_host_termios (void *dst
, const void *src
)
3828 struct host_termios
*host
= dst
;
3829 const struct target_termios
*target
= src
;
3832 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
3834 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
3836 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
3838 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
3839 host
->c_line
= target
->c_line
;
3841 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
3842 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
3843 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
3844 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
3845 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
3846 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
3847 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
3848 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
3849 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
3850 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
3851 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
3852 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
3853 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
3854 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
3855 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
3856 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
3857 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
3858 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
3861 static void host_to_target_termios (void *dst
, const void *src
)
3863 struct target_termios
*target
= dst
;
3864 const struct host_termios
*host
= src
;
3867 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
3869 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
3871 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
3873 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
3874 target
->c_line
= host
->c_line
;
3876 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
3877 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
3878 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
3879 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
3880 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
3881 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
3882 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
3883 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
3884 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
3885 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
3886 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
3887 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
3888 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
3889 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
3890 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
3891 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
3892 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
3893 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
3896 static const StructEntry struct_termios_def
= {
3897 .convert
= { host_to_target_termios
, target_to_host_termios
},
3898 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
3899 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
3902 static bitmask_transtbl mmap_flags_tbl
[] = {
3903 { TARGET_MAP_SHARED
, TARGET_MAP_SHARED
, MAP_SHARED
, MAP_SHARED
},
3904 { TARGET_MAP_PRIVATE
, TARGET_MAP_PRIVATE
, MAP_PRIVATE
, MAP_PRIVATE
},
3905 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
3906 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
, MAP_ANONYMOUS
, MAP_ANONYMOUS
},
3907 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
, MAP_GROWSDOWN
, MAP_GROWSDOWN
},
3908 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
, MAP_DENYWRITE
, MAP_DENYWRITE
},
3909 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
, MAP_EXECUTABLE
, MAP_EXECUTABLE
},
3910 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
3914 #if defined(TARGET_I386)
3916 /* NOTE: there is really one LDT for all the threads */
3917 static uint8_t *ldt_table
;
3919 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
3926 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
3927 if (size
> bytecount
)
3929 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
3931 return -TARGET_EFAULT
;
3932 /* ??? Should this by byteswapped? */
3933 memcpy(p
, ldt_table
, size
);
3934 unlock_user(p
, ptr
, size
);
3938 /* XXX: add locking support */
3939 static abi_long
write_ldt(CPUX86State
*env
,
3940 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
3942 struct target_modify_ldt_ldt_s ldt_info
;
3943 struct target_modify_ldt_ldt_s
*target_ldt_info
;
3944 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
3945 int seg_not_present
, useable
, lm
;
3946 uint32_t *lp
, entry_1
, entry_2
;
3948 if (bytecount
!= sizeof(ldt_info
))
3949 return -TARGET_EINVAL
;
3950 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
3951 return -TARGET_EFAULT
;
3952 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
3953 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
3954 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
3955 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
3956 unlock_user_struct(target_ldt_info
, ptr
, 0);
3958 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
3959 return -TARGET_EINVAL
;
3960 seg_32bit
= ldt_info
.flags
& 1;
3961 contents
= (ldt_info
.flags
>> 1) & 3;
3962 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
3963 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
3964 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
3965 useable
= (ldt_info
.flags
>> 6) & 1;
3969 lm
= (ldt_info
.flags
>> 7) & 1;
3971 if (contents
== 3) {
3973 return -TARGET_EINVAL
;
3974 if (seg_not_present
== 0)
3975 return -TARGET_EINVAL
;
3977 /* allocate the LDT */
3979 env
->ldt
.base
= target_mmap(0,
3980 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
3981 PROT_READ
|PROT_WRITE
,
3982 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
3983 if (env
->ldt
.base
== -1)
3984 return -TARGET_ENOMEM
;
3985 memset(g2h(env
->ldt
.base
), 0,
3986 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
3987 env
->ldt
.limit
= 0xffff;
3988 ldt_table
= g2h(env
->ldt
.base
);
3991 /* NOTE: same code as Linux kernel */
3992 /* Allow LDTs to be cleared by the user. */
3993 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
3996 read_exec_only
== 1 &&
3998 limit_in_pages
== 0 &&
3999 seg_not_present
== 1 &&
4007 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
4008 (ldt_info
.limit
& 0x0ffff);
4009 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
4010 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
4011 (ldt_info
.limit
& 0xf0000) |
4012 ((read_exec_only
^ 1) << 9) |
4014 ((seg_not_present
^ 1) << 15) |
4016 (limit_in_pages
<< 23) |
4020 entry_2
|= (useable
<< 20);
4022 /* Install the new entry ... */
4024 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
4025 lp
[0] = tswap32(entry_1
);
4026 lp
[1] = tswap32(entry_2
);
4030 /* specific and weird i386 syscalls */
4031 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
4032 unsigned long bytecount
)
4038 ret
= read_ldt(ptr
, bytecount
);
4041 ret
= write_ldt(env
, ptr
, bytecount
, 1);
4044 ret
= write_ldt(env
, ptr
, bytecount
, 0);
4047 ret
= -TARGET_ENOSYS
;
4053 #if defined(TARGET_I386) && defined(TARGET_ABI32)
4054 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
4056 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
4057 struct target_modify_ldt_ldt_s ldt_info
;
4058 struct target_modify_ldt_ldt_s
*target_ldt_info
;
4059 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
4060 int seg_not_present
, useable
, lm
;
4061 uint32_t *lp
, entry_1
, entry_2
;
4064 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
4065 if (!target_ldt_info
)
4066 return -TARGET_EFAULT
;
4067 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
4068 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
4069 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
4070 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
4071 if (ldt_info
.entry_number
== -1) {
4072 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
4073 if (gdt_table
[i
] == 0) {
4074 ldt_info
.entry_number
= i
;
4075 target_ldt_info
->entry_number
= tswap32(i
);
4080 unlock_user_struct(target_ldt_info
, ptr
, 1);
4082 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
4083 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
4084 return -TARGET_EINVAL
;
4085 seg_32bit
= ldt_info
.flags
& 1;
4086 contents
= (ldt_info
.flags
>> 1) & 3;
4087 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
4088 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
4089 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
4090 useable
= (ldt_info
.flags
>> 6) & 1;
4094 lm
= (ldt_info
.flags
>> 7) & 1;
4097 if (contents
== 3) {
4098 if (seg_not_present
== 0)
4099 return -TARGET_EINVAL
;
4102 /* NOTE: same code as Linux kernel */
4103 /* Allow LDTs to be cleared by the user. */
4104 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
4105 if ((contents
== 0 &&
4106 read_exec_only
== 1 &&
4108 limit_in_pages
== 0 &&
4109 seg_not_present
== 1 &&
4117 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
4118 (ldt_info
.limit
& 0x0ffff);
4119 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
4120 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
4121 (ldt_info
.limit
& 0xf0000) |
4122 ((read_exec_only
^ 1) << 9) |
4124 ((seg_not_present
^ 1) << 15) |
4126 (limit_in_pages
<< 23) |
4131 /* Install the new entry ... */
4133 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
4134 lp
[0] = tswap32(entry_1
);
4135 lp
[1] = tswap32(entry_2
);
4139 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
4141 struct target_modify_ldt_ldt_s
*target_ldt_info
;
4142 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
4143 uint32_t base_addr
, limit
, flags
;
4144 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
4145 int seg_not_present
, useable
, lm
;
4146 uint32_t *lp
, entry_1
, entry_2
;
4148 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
4149 if (!target_ldt_info
)
4150 return -TARGET_EFAULT
;
4151 idx
= tswap32(target_ldt_info
->entry_number
);
4152 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
4153 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
4154 unlock_user_struct(target_ldt_info
, ptr
, 1);
4155 return -TARGET_EINVAL
;
4157 lp
= (uint32_t *)(gdt_table
+ idx
);
4158 entry_1
= tswap32(lp
[0]);
4159 entry_2
= tswap32(lp
[1]);
4161 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
4162 contents
= (entry_2
>> 10) & 3;
4163 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
4164 seg_32bit
= (entry_2
>> 22) & 1;
4165 limit_in_pages
= (entry_2
>> 23) & 1;
4166 useable
= (entry_2
>> 20) & 1;
4170 lm
= (entry_2
>> 21) & 1;
4172 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
4173 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
4174 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
4175 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
4176 base_addr
= (entry_1
>> 16) |
4177 (entry_2
& 0xff000000) |
4178 ((entry_2
& 0xff) << 16);
4179 target_ldt_info
->base_addr
= tswapal(base_addr
);
4180 target_ldt_info
->limit
= tswap32(limit
);
4181 target_ldt_info
->flags
= tswap32(flags
);
4182 unlock_user_struct(target_ldt_info
, ptr
, 1);
4185 #endif /* TARGET_I386 && TARGET_ABI32 */
4187 #ifndef TARGET_ABI32
4188 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
4195 case TARGET_ARCH_SET_GS
:
4196 case TARGET_ARCH_SET_FS
:
4197 if (code
== TARGET_ARCH_SET_GS
)
4201 cpu_x86_load_seg(env
, idx
, 0);
4202 env
->segs
[idx
].base
= addr
;
4204 case TARGET_ARCH_GET_GS
:
4205 case TARGET_ARCH_GET_FS
:
4206 if (code
== TARGET_ARCH_GET_GS
)
4210 val
= env
->segs
[idx
].base
;
4211 if (put_user(val
, addr
, abi_ulong
))
4212 ret
= -TARGET_EFAULT
;
4215 ret
= -TARGET_EINVAL
;
4222 #endif /* defined(TARGET_I386) */
4224 #define NEW_STACK_SIZE 0x40000
4227 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
4230 pthread_mutex_t mutex
;
4231 pthread_cond_t cond
;
4234 abi_ulong child_tidptr
;
4235 abi_ulong parent_tidptr
;
4239 static void *clone_func(void *arg
)
4241 new_thread_info
*info
= arg
;
4247 cpu
= ENV_GET_CPU(env
);
4249 ts
= (TaskState
*)env
->opaque
;
4250 info
->tid
= gettid();
4251 cpu
->host_tid
= info
->tid
;
4253 if (info
->child_tidptr
)
4254 put_user_u32(info
->tid
, info
->child_tidptr
);
4255 if (info
->parent_tidptr
)
4256 put_user_u32(info
->tid
, info
->parent_tidptr
);
4257 /* Enable signals. */
4258 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
4259 /* Signal to the parent that we're ready. */
4260 pthread_mutex_lock(&info
->mutex
);
4261 pthread_cond_broadcast(&info
->cond
);
4262 pthread_mutex_unlock(&info
->mutex
);
4263 /* Wait until the parent has finshed initializing the tls state. */
4264 pthread_mutex_lock(&clone_lock
);
4265 pthread_mutex_unlock(&clone_lock
);
4271 /* do_fork() Must return host values and target errnos (unlike most
4272 do_*() functions). */
4273 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
4274 abi_ulong parent_tidptr
, target_ulong newtls
,
4275 abi_ulong child_tidptr
)
4279 CPUArchState
*new_env
;
4280 unsigned int nptl_flags
;
4283 /* Emulate vfork() with fork() */
4284 if (flags
& CLONE_VFORK
)
4285 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
4287 if (flags
& CLONE_VM
) {
4288 TaskState
*parent_ts
= (TaskState
*)env
->opaque
;
4289 new_thread_info info
;
4290 pthread_attr_t attr
;
4292 ts
= g_malloc0(sizeof(TaskState
));
4293 init_task_state(ts
);
4294 /* we create a new CPU instance. */
4295 new_env
= cpu_copy(env
);
4296 /* Init regs that differ from the parent. */
4297 cpu_clone_regs(new_env
, newsp
);
4298 new_env
->opaque
= ts
;
4299 ts
->bprm
= parent_ts
->bprm
;
4300 ts
->info
= parent_ts
->info
;
4302 flags
&= ~CLONE_NPTL_FLAGS2
;
4304 if (nptl_flags
& CLONE_CHILD_CLEARTID
) {
4305 ts
->child_tidptr
= child_tidptr
;
4308 if (nptl_flags
& CLONE_SETTLS
)
4309 cpu_set_tls (new_env
, newtls
);
4311 /* Grab a mutex so that thread setup appears atomic. */
4312 pthread_mutex_lock(&clone_lock
);
4314 memset(&info
, 0, sizeof(info
));
4315 pthread_mutex_init(&info
.mutex
, NULL
);
4316 pthread_mutex_lock(&info
.mutex
);
4317 pthread_cond_init(&info
.cond
, NULL
);
4319 if (nptl_flags
& CLONE_CHILD_SETTID
)
4320 info
.child_tidptr
= child_tidptr
;
4321 if (nptl_flags
& CLONE_PARENT_SETTID
)
4322 info
.parent_tidptr
= parent_tidptr
;
4324 ret
= pthread_attr_init(&attr
);
4325 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
4326 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
4327 /* It is not safe to deliver signals until the child has finished
4328 initializing, so temporarily block all signals. */
4329 sigfillset(&sigmask
);
4330 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
4332 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
4333 /* TODO: Free new CPU state if thread creation failed. */
4335 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
4336 pthread_attr_destroy(&attr
);
4338 /* Wait for the child to initialize. */
4339 pthread_cond_wait(&info
.cond
, &info
.mutex
);
4341 if (flags
& CLONE_PARENT_SETTID
)
4342 put_user_u32(ret
, parent_tidptr
);
4346 pthread_mutex_unlock(&info
.mutex
);
4347 pthread_cond_destroy(&info
.cond
);
4348 pthread_mutex_destroy(&info
.mutex
);
4349 pthread_mutex_unlock(&clone_lock
);
4351 /* if no CLONE_VM, we consider it is a fork */
4352 if ((flags
& ~(CSIGNAL
| CLONE_NPTL_FLAGS2
)) != 0)
4357 /* Child Process. */
4358 cpu_clone_regs(env
, newsp
);
4360 /* There is a race condition here. The parent process could
4361 theoretically read the TID in the child process before the child
4362 tid is set. This would require using either ptrace
4363 (not implemented) or having *_tidptr to point at a shared memory
4364 mapping. We can't repeat the spinlock hack used above because
4365 the child process gets its own copy of the lock. */
4366 if (flags
& CLONE_CHILD_SETTID
)
4367 put_user_u32(gettid(), child_tidptr
);
4368 if (flags
& CLONE_PARENT_SETTID
)
4369 put_user_u32(gettid(), parent_tidptr
);
4370 ts
= (TaskState
*)env
->opaque
;
4371 if (flags
& CLONE_SETTLS
)
4372 cpu_set_tls (env
, newtls
);
4373 if (flags
& CLONE_CHILD_CLEARTID
)
4374 ts
->child_tidptr
= child_tidptr
;
4382 /* warning : doesn't handle linux specific flags... */
4383 static int target_to_host_fcntl_cmd(int cmd
)
4386 case TARGET_F_DUPFD
:
4387 case TARGET_F_GETFD
:
4388 case TARGET_F_SETFD
:
4389 case TARGET_F_GETFL
:
4390 case TARGET_F_SETFL
:
4392 case TARGET_F_GETLK
:
4394 case TARGET_F_SETLK
:
4396 case TARGET_F_SETLKW
:
4398 case TARGET_F_GETOWN
:
4400 case TARGET_F_SETOWN
:
4402 case TARGET_F_GETSIG
:
4404 case TARGET_F_SETSIG
:
4406 #if TARGET_ABI_BITS == 32
4407 case TARGET_F_GETLK64
:
4409 case TARGET_F_SETLK64
:
4411 case TARGET_F_SETLKW64
:
4414 case TARGET_F_SETLEASE
:
4416 case TARGET_F_GETLEASE
:
4418 #ifdef F_DUPFD_CLOEXEC
4419 case TARGET_F_DUPFD_CLOEXEC
:
4420 return F_DUPFD_CLOEXEC
;
4422 case TARGET_F_NOTIFY
:
4425 return -TARGET_EINVAL
;
4427 return -TARGET_EINVAL
;
4430 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
4431 static const bitmask_transtbl flock_tbl
[] = {
4432 TRANSTBL_CONVERT(F_RDLCK
),
4433 TRANSTBL_CONVERT(F_WRLCK
),
4434 TRANSTBL_CONVERT(F_UNLCK
),
4435 TRANSTBL_CONVERT(F_EXLCK
),
4436 TRANSTBL_CONVERT(F_SHLCK
),
4440 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
4443 struct target_flock
*target_fl
;
4444 struct flock64 fl64
;
4445 struct target_flock64
*target_fl64
;
4447 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
4449 if (host_cmd
== -TARGET_EINVAL
)
4453 case TARGET_F_GETLK
:
4454 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg
, 1))
4455 return -TARGET_EFAULT
;
4457 target_to_host_bitmask(tswap16(target_fl
->l_type
), flock_tbl
);
4458 fl
.l_whence
= tswap16(target_fl
->l_whence
);
4459 fl
.l_start
= tswapal(target_fl
->l_start
);
4460 fl
.l_len
= tswapal(target_fl
->l_len
);
4461 fl
.l_pid
= tswap32(target_fl
->l_pid
);
4462 unlock_user_struct(target_fl
, arg
, 0);
4463 ret
= get_errno(fcntl(fd
, host_cmd
, &fl
));
4465 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, arg
, 0))
4466 return -TARGET_EFAULT
;
4468 host_to_target_bitmask(tswap16(fl
.l_type
), flock_tbl
);
4469 target_fl
->l_whence
= tswap16(fl
.l_whence
);
4470 target_fl
->l_start
= tswapal(fl
.l_start
);
4471 target_fl
->l_len
= tswapal(fl
.l_len
);
4472 target_fl
->l_pid
= tswap32(fl
.l_pid
);
4473 unlock_user_struct(target_fl
, arg
, 1);
4477 case TARGET_F_SETLK
:
4478 case TARGET_F_SETLKW
:
4479 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg
, 1))
4480 return -TARGET_EFAULT
;
4482 target_to_host_bitmask(tswap16(target_fl
->l_type
), flock_tbl
);
4483 fl
.l_whence
= tswap16(target_fl
->l_whence
);
4484 fl
.l_start
= tswapal(target_fl
->l_start
);
4485 fl
.l_len
= tswapal(target_fl
->l_len
);
4486 fl
.l_pid
= tswap32(target_fl
->l_pid
);
4487 unlock_user_struct(target_fl
, arg
, 0);
4488 ret
= get_errno(fcntl(fd
, host_cmd
, &fl
));
4491 case TARGET_F_GETLK64
:
4492 if (!lock_user_struct(VERIFY_READ
, target_fl64
, arg
, 1))
4493 return -TARGET_EFAULT
;
4495 target_to_host_bitmask(tswap16(target_fl64
->l_type
), flock_tbl
) >> 1;
4496 fl64
.l_whence
= tswap16(target_fl64
->l_whence
);
4497 fl64
.l_start
= tswap64(target_fl64
->l_start
);
4498 fl64
.l_len
= tswap64(target_fl64
->l_len
);
4499 fl64
.l_pid
= tswap32(target_fl64
->l_pid
);
4500 unlock_user_struct(target_fl64
, arg
, 0);
4501 ret
= get_errno(fcntl(fd
, host_cmd
, &fl64
));
4503 if (!lock_user_struct(VERIFY_WRITE
, target_fl64
, arg
, 0))
4504 return -TARGET_EFAULT
;
4505 target_fl64
->l_type
=
4506 host_to_target_bitmask(tswap16(fl64
.l_type
), flock_tbl
) >> 1;
4507 target_fl64
->l_whence
= tswap16(fl64
.l_whence
);
4508 target_fl64
->l_start
= tswap64(fl64
.l_start
);
4509 target_fl64
->l_len
= tswap64(fl64
.l_len
);
4510 target_fl64
->l_pid
= tswap32(fl64
.l_pid
);
4511 unlock_user_struct(target_fl64
, arg
, 1);
4514 case TARGET_F_SETLK64
:
4515 case TARGET_F_SETLKW64
:
4516 if (!lock_user_struct(VERIFY_READ
, target_fl64
, arg
, 1))
4517 return -TARGET_EFAULT
;
4519 target_to_host_bitmask(tswap16(target_fl64
->l_type
), flock_tbl
) >> 1;
4520 fl64
.l_whence
= tswap16(target_fl64
->l_whence
);
4521 fl64
.l_start
= tswap64(target_fl64
->l_start
);
4522 fl64
.l_len
= tswap64(target_fl64
->l_len
);
4523 fl64
.l_pid
= tswap32(target_fl64
->l_pid
);
4524 unlock_user_struct(target_fl64
, arg
, 0);
4525 ret
= get_errno(fcntl(fd
, host_cmd
, &fl64
));
4528 case TARGET_F_GETFL
:
4529 ret
= get_errno(fcntl(fd
, host_cmd
, arg
));
4531 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
4535 case TARGET_F_SETFL
:
4536 ret
= get_errno(fcntl(fd
, host_cmd
, target_to_host_bitmask(arg
, fcntl_flags_tbl
)));
4539 case TARGET_F_SETOWN
:
4540 case TARGET_F_GETOWN
:
4541 case TARGET_F_SETSIG
:
4542 case TARGET_F_GETSIG
:
4543 case TARGET_F_SETLEASE
:
4544 case TARGET_F_GETLEASE
:
4545 ret
= get_errno(fcntl(fd
, host_cmd
, arg
));
4549 ret
= get_errno(fcntl(fd
, cmd
, arg
));
4557 static inline int high2lowuid(int uid
)
4565 static inline int high2lowgid(int gid
)
4573 static inline int low2highuid(int uid
)
4575 if ((int16_t)uid
== -1)
4581 static inline int low2highgid(int gid
)
4583 if ((int16_t)gid
== -1)
4588 static inline int tswapid(int id
)
4592 #else /* !USE_UID16 */
4593 static inline int high2lowuid(int uid
)
4597 static inline int high2lowgid(int gid
)
4601 static inline int low2highuid(int uid
)
4605 static inline int low2highgid(int gid
)
4609 static inline int tswapid(int id
)
4613 #endif /* USE_UID16 */
4615 void syscall_init(void)
4618 const argtype
*arg_type
;
4622 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
4623 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
4624 #include "syscall_types.h"
4626 #undef STRUCT_SPECIAL
4628 /* Build target_to_host_errno_table[] table from
4629 * host_to_target_errno_table[]. */
4630 for (i
= 0; i
< ERRNO_TABLE_SIZE
; i
++) {
4631 target_to_host_errno_table
[host_to_target_errno_table
[i
]] = i
;
4634 /* we patch the ioctl size if necessary. We rely on the fact that
4635 no ioctl has all the bits at '1' in the size field */
4637 while (ie
->target_cmd
!= 0) {
4638 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
4639 TARGET_IOC_SIZEMASK
) {
4640 arg_type
= ie
->arg_type
;
4641 if (arg_type
[0] != TYPE_PTR
) {
4642 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
4647 size
= thunk_type_size(arg_type
, 0);
4648 ie
->target_cmd
= (ie
->target_cmd
&
4649 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
4650 (size
<< TARGET_IOC_SIZESHIFT
);
4653 /* automatic consistency check if same arch */
4654 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
4655 (defined(__x86_64__) && defined(TARGET_X86_64))
4656 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
4657 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
4658 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
4665 #if TARGET_ABI_BITS == 32
4666 static inline uint64_t target_offset64(uint32_t word0
, uint32_t word1
)
4668 #ifdef TARGET_WORDS_BIGENDIAN
4669 return ((uint64_t)word0
<< 32) | word1
;
4671 return ((uint64_t)word1
<< 32) | word0
;
4674 #else /* TARGET_ABI_BITS == 32 */
4675 static inline uint64_t target_offset64(uint64_t word0
, uint64_t word1
)
4679 #endif /* TARGET_ABI_BITS != 32 */
4681 #ifdef TARGET_NR_truncate64
4682 static inline abi_long
target_truncate64(void *cpu_env
, const char *arg1
,
4687 if (regpairs_aligned(cpu_env
)) {
4691 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
4695 #ifdef TARGET_NR_ftruncate64
4696 static inline abi_long
target_ftruncate64(void *cpu_env
, abi_long arg1
,
4701 if (regpairs_aligned(cpu_env
)) {
4705 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
4709 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
4710 abi_ulong target_addr
)
4712 struct target_timespec
*target_ts
;
4714 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1))
4715 return -TARGET_EFAULT
;
4716 host_ts
->tv_sec
= tswapal(target_ts
->tv_sec
);
4717 host_ts
->tv_nsec
= tswapal(target_ts
->tv_nsec
);
4718 unlock_user_struct(target_ts
, target_addr
, 0);
4722 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
4723 struct timespec
*host_ts
)
4725 struct target_timespec
*target_ts
;
4727 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0))
4728 return -TARGET_EFAULT
;
4729 target_ts
->tv_sec
= tswapal(host_ts
->tv_sec
);
4730 target_ts
->tv_nsec
= tswapal(host_ts
->tv_nsec
);
4731 unlock_user_struct(target_ts
, target_addr
, 1);
4735 #if defined(TARGET_NR_stat64) || defined(TARGET_NR_newfstatat)
4736 static inline abi_long
host_to_target_stat64(void *cpu_env
,
4737 abi_ulong target_addr
,
4738 struct stat
*host_st
)
4741 if (((CPUARMState
*)cpu_env
)->eabi
) {
4742 struct target_eabi_stat64
*target_st
;
4744 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
4745 return -TARGET_EFAULT
;
4746 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
4747 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
4748 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
4749 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
4750 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
4752 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
4753 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
4754 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
4755 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
4756 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
4757 __put_user(host_st
->st_size
, &target_st
->st_size
);
4758 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
4759 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
4760 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
4761 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
4762 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
4763 unlock_user_struct(target_st
, target_addr
, 1);
4767 #if TARGET_ABI_BITS == 64 && !defined(TARGET_ALPHA)
4768 struct target_stat
*target_st
;
4770 struct target_stat64
*target_st
;
4773 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
4774 return -TARGET_EFAULT
;
4775 memset(target_st
, 0, sizeof(*target_st
));
4776 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
4777 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
4778 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
4779 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
4781 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
4782 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
4783 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
4784 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
4785 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
4786 /* XXX: better use of kernel struct */
4787 __put_user(host_st
->st_size
, &target_st
->st_size
);
4788 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
4789 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
4790 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
4791 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
4792 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
4793 unlock_user_struct(target_st
, target_addr
, 1);
4800 /* ??? Using host futex calls even when target atomic operations
4801 are not really atomic probably breaks things. However implementing
4802 futexes locally would make futexes shared between multiple processes
4803 tricky. However they're probably useless because guest atomic
4804 operations won't work either. */
4805 static int do_futex(target_ulong uaddr
, int op
, int val
, target_ulong timeout
,
4806 target_ulong uaddr2
, int val3
)
4808 struct timespec ts
, *pts
;
4811 /* ??? We assume FUTEX_* constants are the same on both host
4813 #ifdef FUTEX_CMD_MASK
4814 base_op
= op
& FUTEX_CMD_MASK
;
4820 case FUTEX_WAIT_BITSET
:
4823 target_to_host_timespec(pts
, timeout
);
4827 return get_errno(sys_futex(g2h(uaddr
), op
, tswap32(val
),
4830 return get_errno(sys_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
4832 return get_errno(sys_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
4834 case FUTEX_CMP_REQUEUE
:
4836 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
4837 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
4838 But the prototype takes a `struct timespec *'; insert casts
4839 to satisfy the compiler. We do not need to tswap TIMEOUT
4840 since it's not compared to guest memory. */
4841 pts
= (struct timespec
*)(uintptr_t) timeout
;
4842 return get_errno(sys_futex(g2h(uaddr
), op
, val
, pts
,
4844 (base_op
== FUTEX_CMP_REQUEUE
4848 return -TARGET_ENOSYS
;
4852 /* Map host to target signal numbers for the wait family of syscalls.
4853 Assume all other status bits are the same. */
4854 int host_to_target_waitstatus(int status
)
4856 if (WIFSIGNALED(status
)) {
4857 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
4859 if (WIFSTOPPED(status
)) {
4860 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
4866 int get_osversion(void)
4868 static int osversion
;
4869 struct new_utsname buf
;
4874 if (qemu_uname_release
&& *qemu_uname_release
) {
4875 s
= qemu_uname_release
;
4877 if (sys_uname(&buf
))
4882 for (i
= 0; i
< 3; i
++) {
4884 while (*s
>= '0' && *s
<= '9') {
4889 tmp
= (tmp
<< 8) + n
;
4898 static int open_self_maps(void *cpu_env
, int fd
)
4900 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4901 TaskState
*ts
= ((CPUArchState
*)cpu_env
)->opaque
;
4908 fp
= fopen("/proc/self/maps", "r");
4913 while ((read
= getline(&line
, &len
, fp
)) != -1) {
4914 int fields
, dev_maj
, dev_min
, inode
;
4915 uint64_t min
, max
, offset
;
4916 char flag_r
, flag_w
, flag_x
, flag_p
;
4917 char path
[512] = "";
4918 fields
= sscanf(line
, "%"PRIx64
"-%"PRIx64
" %c%c%c%c %"PRIx64
" %x:%x %d"
4919 " %512s", &min
, &max
, &flag_r
, &flag_w
, &flag_x
,
4920 &flag_p
, &offset
, &dev_maj
, &dev_min
, &inode
, path
);
4922 if ((fields
< 10) || (fields
> 11)) {
4925 if (!strncmp(path
, "[stack]", 7)) {
4928 if (h2g_valid(min
) && h2g_valid(max
)) {
4929 dprintf(fd
, TARGET_ABI_FMT_lx
"-" TARGET_ABI_FMT_lx
4930 " %c%c%c%c %08" PRIx64
" %02x:%02x %d %s%s\n",
4931 h2g(min
), h2g(max
), flag_r
, flag_w
,
4932 flag_x
, flag_p
, offset
, dev_maj
, dev_min
, inode
,
4933 path
[0] ? " " : "", path
);
4940 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4941 dprintf(fd
, "%08llx-%08llx rw-p %08llx 00:00 0 [stack]\n",
4942 (unsigned long long)ts
->info
->stack_limit
,
4943 (unsigned long long)(ts
->info
->start_stack
+
4944 (TARGET_PAGE_SIZE
- 1)) & TARGET_PAGE_MASK
,
4945 (unsigned long long)0);
4951 static int open_self_stat(void *cpu_env
, int fd
)
4953 TaskState
*ts
= ((CPUArchState
*)cpu_env
)->opaque
;
4954 abi_ulong start_stack
= ts
->info
->start_stack
;
4957 for (i
= 0; i
< 44; i
++) {
4965 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
4966 } else if (i
== 1) {
4968 snprintf(buf
, sizeof(buf
), "(%s) ", ts
->bprm
->argv
[0]);
4969 } else if (i
== 27) {
4972 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
4974 /* for the rest, there is MasterCard */
4975 snprintf(buf
, sizeof(buf
), "0%c", i
== 43 ? '\n' : ' ');
4979 if (write(fd
, buf
, len
) != len
) {
4987 static int open_self_auxv(void *cpu_env
, int fd
)
4989 TaskState
*ts
= ((CPUArchState
*)cpu_env
)->opaque
;
4990 abi_ulong auxv
= ts
->info
->saved_auxv
;
4991 abi_ulong len
= ts
->info
->auxv_len
;
4995 * Auxiliary vector is stored in target process stack.
4996 * read in whole auxv vector and copy it to file
4998 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
5002 r
= write(fd
, ptr
, len
);
5009 lseek(fd
, 0, SEEK_SET
);
5010 unlock_user(ptr
, auxv
, len
);
5016 static int is_proc_myself(const char *filename
, const char *entry
)
5018 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
5019 filename
+= strlen("/proc/");
5020 if (!strncmp(filename
, "self/", strlen("self/"))) {
5021 filename
+= strlen("self/");
5022 } else if (*filename
>= '1' && *filename
<= '9') {
5024 snprintf(myself
, sizeof(myself
), "%d/", getpid());
5025 if (!strncmp(filename
, myself
, strlen(myself
))) {
5026 filename
+= strlen(myself
);
5033 if (!strcmp(filename
, entry
)) {
5040 static int do_open(void *cpu_env
, const char *pathname
, int flags
, mode_t mode
)
5043 const char *filename
;
5044 int (*fill
)(void *cpu_env
, int fd
);
5046 const struct fake_open
*fake_open
;
5047 static const struct fake_open fakes
[] = {
5048 { "maps", open_self_maps
},
5049 { "stat", open_self_stat
},
5050 { "auxv", open_self_auxv
},
5054 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
5055 if (is_proc_myself(pathname
, fake_open
->filename
)) {
5060 if (fake_open
->filename
) {
5062 char filename
[PATH_MAX
];
5065 /* create temporary file to map stat to */
5066 tmpdir
= getenv("TMPDIR");
5069 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
5070 fd
= mkstemp(filename
);
5076 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
5080 lseek(fd
, 0, SEEK_SET
);
5085 return get_errno(open(path(pathname
), flags
, mode
));
5088 /* do_syscall() should always have a single exit point at the end so
5089 that actions, such as logging of syscall results, can be performed.
5090 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
5091 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
5092 abi_long arg2
, abi_long arg3
, abi_long arg4
,
5093 abi_long arg5
, abi_long arg6
, abi_long arg7
,
5096 CPUState
*cpu
= ENV_GET_CPU(cpu_env
);
5103 gemu_log("syscall %d", num
);
5106 print_syscall(num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
5109 case TARGET_NR_exit
:
5110 /* In old applications this may be used to implement _exit(2).
5111 However in threaded applictions it is used for thread termination,
5112 and _exit_group is used for application termination.
5113 Do thread termination if we have more then one thread. */
5114 /* FIXME: This probably breaks if a signal arrives. We should probably
5115 be disabling signals. */
5116 if (CPU_NEXT(first_cpu
)) {
5120 /* Remove the CPU from the list. */
5121 QTAILQ_REMOVE(&cpus
, cpu
, node
);
5123 ts
= ((CPUArchState
*)cpu_env
)->opaque
;
5124 if (ts
->child_tidptr
) {
5125 put_user_u32(0, ts
->child_tidptr
);
5126 sys_futex(g2h(ts
->child_tidptr
), FUTEX_WAKE
, INT_MAX
,
5130 object_unref(OBJECT(ENV_GET_CPU(cpu_env
)));
5137 gdb_exit(cpu_env
, arg1
);
5139 ret
= 0; /* avoid warning */
5141 case TARGET_NR_read
:
5145 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
5147 ret
= get_errno(read(arg1
, p
, arg3
));
5148 unlock_user(p
, arg2
, ret
);
5151 case TARGET_NR_write
:
5152 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
5154 ret
= get_errno(write(arg1
, p
, arg3
));
5155 unlock_user(p
, arg2
, 0);
5157 case TARGET_NR_open
:
5158 if (!(p
= lock_user_string(arg1
)))
5160 ret
= get_errno(do_open(cpu_env
, p
,
5161 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
5163 unlock_user(p
, arg1
, 0);
5165 #if defined(TARGET_NR_openat) && defined(__NR_openat)
5166 case TARGET_NR_openat
:
5167 if (!(p
= lock_user_string(arg2
)))
5169 ret
= get_errno(sys_openat(arg1
,
5171 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
5173 unlock_user(p
, arg2
, 0);
5176 case TARGET_NR_close
:
5177 ret
= get_errno(close(arg1
));
5182 case TARGET_NR_fork
:
5183 ret
= get_errno(do_fork(cpu_env
, SIGCHLD
, 0, 0, 0, 0));
5185 #ifdef TARGET_NR_waitpid
5186 case TARGET_NR_waitpid
:
5189 ret
= get_errno(waitpid(arg1
, &status
, arg3
));
5190 if (!is_error(ret
) && arg2
&& ret
5191 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
5196 #ifdef TARGET_NR_waitid
5197 case TARGET_NR_waitid
:
5201 ret
= get_errno(waitid(arg1
, arg2
, &info
, arg4
));
5202 if (!is_error(ret
) && arg3
&& info
.si_pid
!= 0) {
5203 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_siginfo_t
), 0)))
5205 host_to_target_siginfo(p
, &info
);
5206 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
5211 #ifdef TARGET_NR_creat /* not on alpha */
5212 case TARGET_NR_creat
:
5213 if (!(p
= lock_user_string(arg1
)))
5215 ret
= get_errno(creat(p
, arg2
));
5216 unlock_user(p
, arg1
, 0);
5219 case TARGET_NR_link
:
5222 p
= lock_user_string(arg1
);
5223 p2
= lock_user_string(arg2
);
5225 ret
= -TARGET_EFAULT
;
5227 ret
= get_errno(link(p
, p2
));
5228 unlock_user(p2
, arg2
, 0);
5229 unlock_user(p
, arg1
, 0);
5232 #if defined(TARGET_NR_linkat)
5233 case TARGET_NR_linkat
:
5238 p
= lock_user_string(arg2
);
5239 p2
= lock_user_string(arg4
);
5241 ret
= -TARGET_EFAULT
;
5243 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
5244 unlock_user(p
, arg2
, 0);
5245 unlock_user(p2
, arg4
, 0);
5249 case TARGET_NR_unlink
:
5250 if (!(p
= lock_user_string(arg1
)))
5252 ret
= get_errno(unlink(p
));
5253 unlock_user(p
, arg1
, 0);
5255 #if defined(TARGET_NR_unlinkat)
5256 case TARGET_NR_unlinkat
:
5257 if (!(p
= lock_user_string(arg2
)))
5259 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
5260 unlock_user(p
, arg2
, 0);
5263 case TARGET_NR_execve
:
5265 char **argp
, **envp
;
5268 abi_ulong guest_argp
;
5269 abi_ulong guest_envp
;
5276 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
5277 if (get_user_ual(addr
, gp
))
5285 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
5286 if (get_user_ual(addr
, gp
))
5293 argp
= alloca((argc
+ 1) * sizeof(void *));
5294 envp
= alloca((envc
+ 1) * sizeof(void *));
5296 for (gp
= guest_argp
, q
= argp
; gp
;
5297 gp
+= sizeof(abi_ulong
), q
++) {
5298 if (get_user_ual(addr
, gp
))
5302 if (!(*q
= lock_user_string(addr
)))
5304 total_size
+= strlen(*q
) + 1;
5308 for (gp
= guest_envp
, q
= envp
; gp
;
5309 gp
+= sizeof(abi_ulong
), q
++) {
5310 if (get_user_ual(addr
, gp
))
5314 if (!(*q
= lock_user_string(addr
)))
5316 total_size
+= strlen(*q
) + 1;
5320 /* This case will not be caught by the host's execve() if its
5321 page size is bigger than the target's. */
5322 if (total_size
> MAX_ARG_PAGES
* TARGET_PAGE_SIZE
) {
5323 ret
= -TARGET_E2BIG
;
5326 if (!(p
= lock_user_string(arg1
)))
5328 ret
= get_errno(execve(p
, argp
, envp
));
5329 unlock_user(p
, arg1
, 0);
5334 ret
= -TARGET_EFAULT
;
5337 for (gp
= guest_argp
, q
= argp
; *q
;
5338 gp
+= sizeof(abi_ulong
), q
++) {
5339 if (get_user_ual(addr
, gp
)
5342 unlock_user(*q
, addr
, 0);
5344 for (gp
= guest_envp
, q
= envp
; *q
;
5345 gp
+= sizeof(abi_ulong
), q
++) {
5346 if (get_user_ual(addr
, gp
)
5349 unlock_user(*q
, addr
, 0);
5353 case TARGET_NR_chdir
:
5354 if (!(p
= lock_user_string(arg1
)))
5356 ret
= get_errno(chdir(p
));
5357 unlock_user(p
, arg1
, 0);
5359 #ifdef TARGET_NR_time
5360 case TARGET_NR_time
:
5363 ret
= get_errno(time(&host_time
));
5366 && put_user_sal(host_time
, arg1
))
5371 case TARGET_NR_mknod
:
5372 if (!(p
= lock_user_string(arg1
)))
5374 ret
= get_errno(mknod(p
, arg2
, arg3
));
5375 unlock_user(p
, arg1
, 0);
5377 #if defined(TARGET_NR_mknodat)
5378 case TARGET_NR_mknodat
:
5379 if (!(p
= lock_user_string(arg2
)))
5381 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
5382 unlock_user(p
, arg2
, 0);
5385 case TARGET_NR_chmod
:
5386 if (!(p
= lock_user_string(arg1
)))
5388 ret
= get_errno(chmod(p
, arg2
));
5389 unlock_user(p
, arg1
, 0);
5391 #ifdef TARGET_NR_break
5392 case TARGET_NR_break
:
5395 #ifdef TARGET_NR_oldstat
5396 case TARGET_NR_oldstat
:
5399 case TARGET_NR_lseek
:
5400 ret
= get_errno(lseek(arg1
, arg2
, arg3
));
5402 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
5403 /* Alpha specific */
5404 case TARGET_NR_getxpid
:
5405 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = getppid();
5406 ret
= get_errno(getpid());
5409 #ifdef TARGET_NR_getpid
5410 case TARGET_NR_getpid
:
5411 ret
= get_errno(getpid());
5414 case TARGET_NR_mount
:
5416 /* need to look at the data field */
5418 p
= lock_user_string(arg1
);
5419 p2
= lock_user_string(arg2
);
5420 p3
= lock_user_string(arg3
);
5421 if (!p
|| !p2
|| !p3
)
5422 ret
= -TARGET_EFAULT
;
5424 /* FIXME - arg5 should be locked, but it isn't clear how to
5425 * do that since it's not guaranteed to be a NULL-terminated
5429 ret
= get_errno(mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
));
5431 ret
= get_errno(mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(arg5
)));
5433 unlock_user(p
, arg1
, 0);
5434 unlock_user(p2
, arg2
, 0);
5435 unlock_user(p3
, arg3
, 0);
5438 #ifdef TARGET_NR_umount
5439 case TARGET_NR_umount
:
5440 if (!(p
= lock_user_string(arg1
)))
5442 ret
= get_errno(umount(p
));
5443 unlock_user(p
, arg1
, 0);
5446 #ifdef TARGET_NR_stime /* not on alpha */
5447 case TARGET_NR_stime
:
5450 if (get_user_sal(host_time
, arg1
))
5452 ret
= get_errno(stime(&host_time
));
5456 case TARGET_NR_ptrace
:
5458 #ifdef TARGET_NR_alarm /* not on alpha */
5459 case TARGET_NR_alarm
:
5463 #ifdef TARGET_NR_oldfstat
5464 case TARGET_NR_oldfstat
:
5467 #ifdef TARGET_NR_pause /* not on alpha */
5468 case TARGET_NR_pause
:
5469 ret
= get_errno(pause());
5472 #ifdef TARGET_NR_utime
5473 case TARGET_NR_utime
:
5475 struct utimbuf tbuf
, *host_tbuf
;
5476 struct target_utimbuf
*target_tbuf
;
5478 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
5480 tbuf
.actime
= tswapal(target_tbuf
->actime
);
5481 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
5482 unlock_user_struct(target_tbuf
, arg2
, 0);
5487 if (!(p
= lock_user_string(arg1
)))
5489 ret
= get_errno(utime(p
, host_tbuf
));
5490 unlock_user(p
, arg1
, 0);
5494 case TARGET_NR_utimes
:
5496 struct timeval
*tvp
, tv
[2];
5498 if (copy_from_user_timeval(&tv
[0], arg2
)
5499 || copy_from_user_timeval(&tv
[1],
5500 arg2
+ sizeof(struct target_timeval
)))
5506 if (!(p
= lock_user_string(arg1
)))
5508 ret
= get_errno(utimes(p
, tvp
));
5509 unlock_user(p
, arg1
, 0);
5512 #if defined(TARGET_NR_futimesat)
5513 case TARGET_NR_futimesat
:
5515 struct timeval
*tvp
, tv
[2];
5517 if (copy_from_user_timeval(&tv
[0], arg3
)
5518 || copy_from_user_timeval(&tv
[1],
5519 arg3
+ sizeof(struct target_timeval
)))
5525 if (!(p
= lock_user_string(arg2
)))
5527 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
5528 unlock_user(p
, arg2
, 0);
5532 #ifdef TARGET_NR_stty
5533 case TARGET_NR_stty
:
5536 #ifdef TARGET_NR_gtty
5537 case TARGET_NR_gtty
:
5540 case TARGET_NR_access
:
5541 if (!(p
= lock_user_string(arg1
)))
5543 ret
= get_errno(access(path(p
), arg2
));
5544 unlock_user(p
, arg1
, 0);
5546 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
5547 case TARGET_NR_faccessat
:
5548 if (!(p
= lock_user_string(arg2
)))
5550 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
5551 unlock_user(p
, arg2
, 0);
5554 #ifdef TARGET_NR_nice /* not on alpha */
5555 case TARGET_NR_nice
:
5556 ret
= get_errno(nice(arg1
));
5559 #ifdef TARGET_NR_ftime
5560 case TARGET_NR_ftime
:
5563 case TARGET_NR_sync
:
5567 case TARGET_NR_kill
:
5568 ret
= get_errno(kill(arg1
, target_to_host_signal(arg2
)));
5570 case TARGET_NR_rename
:
5573 p
= lock_user_string(arg1
);
5574 p2
= lock_user_string(arg2
);
5576 ret
= -TARGET_EFAULT
;
5578 ret
= get_errno(rename(p
, p2
));
5579 unlock_user(p2
, arg2
, 0);
5580 unlock_user(p
, arg1
, 0);
5583 #if defined(TARGET_NR_renameat)
5584 case TARGET_NR_renameat
:
5587 p
= lock_user_string(arg2
);
5588 p2
= lock_user_string(arg4
);
5590 ret
= -TARGET_EFAULT
;
5592 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
5593 unlock_user(p2
, arg4
, 0);
5594 unlock_user(p
, arg2
, 0);
5598 case TARGET_NR_mkdir
:
5599 if (!(p
= lock_user_string(arg1
)))
5601 ret
= get_errno(mkdir(p
, arg2
));
5602 unlock_user(p
, arg1
, 0);
5604 #if defined(TARGET_NR_mkdirat)
5605 case TARGET_NR_mkdirat
:
5606 if (!(p
= lock_user_string(arg2
)))
5608 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
5609 unlock_user(p
, arg2
, 0);
5612 case TARGET_NR_rmdir
:
5613 if (!(p
= lock_user_string(arg1
)))
5615 ret
= get_errno(rmdir(p
));
5616 unlock_user(p
, arg1
, 0);
5619 ret
= get_errno(dup(arg1
));
5621 case TARGET_NR_pipe
:
5622 ret
= do_pipe(cpu_env
, arg1
, 0, 0);
5624 #ifdef TARGET_NR_pipe2
5625 case TARGET_NR_pipe2
:
5626 ret
= do_pipe(cpu_env
, arg1
,
5627 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
5630 case TARGET_NR_times
:
5632 struct target_tms
*tmsp
;
5634 ret
= get_errno(times(&tms
));
5636 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
5639 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
5640 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
5641 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
5642 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
5645 ret
= host_to_target_clock_t(ret
);
5648 #ifdef TARGET_NR_prof
5649 case TARGET_NR_prof
:
5652 #ifdef TARGET_NR_signal
5653 case TARGET_NR_signal
:
5656 case TARGET_NR_acct
:
5658 ret
= get_errno(acct(NULL
));
5660 if (!(p
= lock_user_string(arg1
)))
5662 ret
= get_errno(acct(path(p
)));
5663 unlock_user(p
, arg1
, 0);
5666 #ifdef TARGET_NR_umount2 /* not on alpha */
5667 case TARGET_NR_umount2
:
5668 if (!(p
= lock_user_string(arg1
)))
5670 ret
= get_errno(umount2(p
, arg2
));
5671 unlock_user(p
, arg1
, 0);
5674 #ifdef TARGET_NR_lock
5675 case TARGET_NR_lock
:
5678 case TARGET_NR_ioctl
:
5679 ret
= do_ioctl(arg1
, arg2
, arg3
);
5681 case TARGET_NR_fcntl
:
5682 ret
= do_fcntl(arg1
, arg2
, arg3
);
5684 #ifdef TARGET_NR_mpx
5688 case TARGET_NR_setpgid
:
5689 ret
= get_errno(setpgid(arg1
, arg2
));
5691 #ifdef TARGET_NR_ulimit
5692 case TARGET_NR_ulimit
:
5695 #ifdef TARGET_NR_oldolduname
5696 case TARGET_NR_oldolduname
:
5699 case TARGET_NR_umask
:
5700 ret
= get_errno(umask(arg1
));
5702 case TARGET_NR_chroot
:
5703 if (!(p
= lock_user_string(arg1
)))
5705 ret
= get_errno(chroot(p
));
5706 unlock_user(p
, arg1
, 0);
5708 case TARGET_NR_ustat
:
5710 case TARGET_NR_dup2
:
5711 ret
= get_errno(dup2(arg1
, arg2
));
5713 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
5714 case TARGET_NR_dup3
:
5715 ret
= get_errno(dup3(arg1
, arg2
, arg3
));
5718 #ifdef TARGET_NR_getppid /* not on alpha */
5719 case TARGET_NR_getppid
:
5720 ret
= get_errno(getppid());
5723 case TARGET_NR_getpgrp
:
5724 ret
= get_errno(getpgrp());
5726 case TARGET_NR_setsid
:
5727 ret
= get_errno(setsid());
5729 #ifdef TARGET_NR_sigaction
5730 case TARGET_NR_sigaction
:
5732 #if defined(TARGET_ALPHA)
5733 struct target_sigaction act
, oact
, *pact
= 0;
5734 struct target_old_sigaction
*old_act
;
5736 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
5738 act
._sa_handler
= old_act
->_sa_handler
;
5739 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
5740 act
.sa_flags
= old_act
->sa_flags
;
5741 act
.sa_restorer
= 0;
5742 unlock_user_struct(old_act
, arg2
, 0);
5745 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
5746 if (!is_error(ret
) && arg3
) {
5747 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
5749 old_act
->_sa_handler
= oact
._sa_handler
;
5750 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
5751 old_act
->sa_flags
= oact
.sa_flags
;
5752 unlock_user_struct(old_act
, arg3
, 1);
5754 #elif defined(TARGET_MIPS)
5755 struct target_sigaction act
, oact
, *pact
, *old_act
;
5758 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
5760 act
._sa_handler
= old_act
->_sa_handler
;
5761 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
5762 act
.sa_flags
= old_act
->sa_flags
;
5763 unlock_user_struct(old_act
, arg2
, 0);
5769 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
5771 if (!is_error(ret
) && arg3
) {
5772 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
5774 old_act
->_sa_handler
= oact
._sa_handler
;
5775 old_act
->sa_flags
= oact
.sa_flags
;
5776 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
5777 old_act
->sa_mask
.sig
[1] = 0;
5778 old_act
->sa_mask
.sig
[2] = 0;
5779 old_act
->sa_mask
.sig
[3] = 0;
5780 unlock_user_struct(old_act
, arg3
, 1);
5783 struct target_old_sigaction
*old_act
;
5784 struct target_sigaction act
, oact
, *pact
;
5786 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
5788 act
._sa_handler
= old_act
->_sa_handler
;
5789 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
5790 act
.sa_flags
= old_act
->sa_flags
;
5791 act
.sa_restorer
= old_act
->sa_restorer
;
5792 unlock_user_struct(old_act
, arg2
, 0);
5797 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
5798 if (!is_error(ret
) && arg3
) {
5799 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
5801 old_act
->_sa_handler
= oact
._sa_handler
;
5802 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
5803 old_act
->sa_flags
= oact
.sa_flags
;
5804 old_act
->sa_restorer
= oact
.sa_restorer
;
5805 unlock_user_struct(old_act
, arg3
, 1);
5811 case TARGET_NR_rt_sigaction
:
5813 #if defined(TARGET_ALPHA)
5814 struct target_sigaction act
, oact
, *pact
= 0;
5815 struct target_rt_sigaction
*rt_act
;
5816 /* ??? arg4 == sizeof(sigset_t). */
5818 if (!lock_user_struct(VERIFY_READ
, rt_act
, arg2
, 1))
5820 act
._sa_handler
= rt_act
->_sa_handler
;
5821 act
.sa_mask
= rt_act
->sa_mask
;
5822 act
.sa_flags
= rt_act
->sa_flags
;
5823 act
.sa_restorer
= arg5
;
5824 unlock_user_struct(rt_act
, arg2
, 0);
5827 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
5828 if (!is_error(ret
) && arg3
) {
5829 if (!lock_user_struct(VERIFY_WRITE
, rt_act
, arg3
, 0))
5831 rt_act
->_sa_handler
= oact
._sa_handler
;
5832 rt_act
->sa_mask
= oact
.sa_mask
;
5833 rt_act
->sa_flags
= oact
.sa_flags
;
5834 unlock_user_struct(rt_act
, arg3
, 1);
5837 struct target_sigaction
*act
;
5838 struct target_sigaction
*oact
;
5841 if (!lock_user_struct(VERIFY_READ
, act
, arg2
, 1))
5846 if (!lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
5847 ret
= -TARGET_EFAULT
;
5848 goto rt_sigaction_fail
;
5852 ret
= get_errno(do_sigaction(arg1
, act
, oact
));
5855 unlock_user_struct(act
, arg2
, 0);
5857 unlock_user_struct(oact
, arg3
, 1);
5861 #ifdef TARGET_NR_sgetmask /* not on alpha */
5862 case TARGET_NR_sgetmask
:
5865 abi_ulong target_set
;
5866 sigprocmask(0, NULL
, &cur_set
);
5867 host_to_target_old_sigset(&target_set
, &cur_set
);
5872 #ifdef TARGET_NR_ssetmask /* not on alpha */
5873 case TARGET_NR_ssetmask
:
5875 sigset_t set
, oset
, cur_set
;
5876 abi_ulong target_set
= arg1
;
5877 sigprocmask(0, NULL
, &cur_set
);
5878 target_to_host_old_sigset(&set
, &target_set
);
5879 sigorset(&set
, &set
, &cur_set
);
5880 sigprocmask(SIG_SETMASK
, &set
, &oset
);
5881 host_to_target_old_sigset(&target_set
, &oset
);
5886 #ifdef TARGET_NR_sigprocmask
5887 case TARGET_NR_sigprocmask
:
5889 #if defined(TARGET_ALPHA)
5890 sigset_t set
, oldset
;
5895 case TARGET_SIG_BLOCK
:
5898 case TARGET_SIG_UNBLOCK
:
5901 case TARGET_SIG_SETMASK
:
5905 ret
= -TARGET_EINVAL
;
5909 target_to_host_old_sigset(&set
, &mask
);
5911 ret
= get_errno(sigprocmask(how
, &set
, &oldset
));
5912 if (!is_error(ret
)) {
5913 host_to_target_old_sigset(&mask
, &oldset
);
5915 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0; /* force no error */
5918 sigset_t set
, oldset
, *set_ptr
;
5923 case TARGET_SIG_BLOCK
:
5926 case TARGET_SIG_UNBLOCK
:
5929 case TARGET_SIG_SETMASK
:
5933 ret
= -TARGET_EINVAL
;
5936 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
5938 target_to_host_old_sigset(&set
, p
);
5939 unlock_user(p
, arg2
, 0);
5945 ret
= get_errno(sigprocmask(how
, set_ptr
, &oldset
));
5946 if (!is_error(ret
) && arg3
) {
5947 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
5949 host_to_target_old_sigset(p
, &oldset
);
5950 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
5956 case TARGET_NR_rt_sigprocmask
:
5959 sigset_t set
, oldset
, *set_ptr
;
5963 case TARGET_SIG_BLOCK
:
5966 case TARGET_SIG_UNBLOCK
:
5969 case TARGET_SIG_SETMASK
:
5973 ret
= -TARGET_EINVAL
;
5976 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
5978 target_to_host_sigset(&set
, p
);
5979 unlock_user(p
, arg2
, 0);
5985 ret
= get_errno(sigprocmask(how
, set_ptr
, &oldset
));
5986 if (!is_error(ret
) && arg3
) {
5987 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
5989 host_to_target_sigset(p
, &oldset
);
5990 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
5994 #ifdef TARGET_NR_sigpending
5995 case TARGET_NR_sigpending
:
5998 ret
= get_errno(sigpending(&set
));
5999 if (!is_error(ret
)) {
6000 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
6002 host_to_target_old_sigset(p
, &set
);
6003 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
6008 case TARGET_NR_rt_sigpending
:
6011 ret
= get_errno(sigpending(&set
));
6012 if (!is_error(ret
)) {
6013 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
6015 host_to_target_sigset(p
, &set
);
6016 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
6020 #ifdef TARGET_NR_sigsuspend
6021 case TARGET_NR_sigsuspend
:
6024 #if defined(TARGET_ALPHA)
6025 abi_ulong mask
= arg1
;
6026 target_to_host_old_sigset(&set
, &mask
);
6028 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
6030 target_to_host_old_sigset(&set
, p
);
6031 unlock_user(p
, arg1
, 0);
6033 ret
= get_errno(sigsuspend(&set
));
6037 case TARGET_NR_rt_sigsuspend
:
6040 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
6042 target_to_host_sigset(&set
, p
);
6043 unlock_user(p
, arg1
, 0);
6044 ret
= get_errno(sigsuspend(&set
));
6047 case TARGET_NR_rt_sigtimedwait
:
6050 struct timespec uts
, *puts
;
6053 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
6055 target_to_host_sigset(&set
, p
);
6056 unlock_user(p
, arg1
, 0);
6059 target_to_host_timespec(puts
, arg3
);
6063 ret
= get_errno(sigtimedwait(&set
, &uinfo
, puts
));
6064 if (!is_error(ret
) && arg2
) {
6065 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
), 0)))
6067 host_to_target_siginfo(p
, &uinfo
);
6068 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
6072 case TARGET_NR_rt_sigqueueinfo
:
6075 if (!(p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_sigset_t
), 1)))
6077 target_to_host_siginfo(&uinfo
, p
);
6078 unlock_user(p
, arg1
, 0);
6079 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, arg2
, &uinfo
));
6082 #ifdef TARGET_NR_sigreturn
6083 case TARGET_NR_sigreturn
:
6084 /* NOTE: ret is eax, so not transcoding must be done */
6085 ret
= do_sigreturn(cpu_env
);
6088 case TARGET_NR_rt_sigreturn
:
6089 /* NOTE: ret is eax, so not transcoding must be done */
6090 ret
= do_rt_sigreturn(cpu_env
);
6092 case TARGET_NR_sethostname
:
6093 if (!(p
= lock_user_string(arg1
)))
6095 ret
= get_errno(sethostname(p
, arg2
));
6096 unlock_user(p
, arg1
, 0);
6098 case TARGET_NR_setrlimit
:
6100 int resource
= target_to_host_resource(arg1
);
6101 struct target_rlimit
*target_rlim
;
6103 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
6105 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
6106 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
6107 unlock_user_struct(target_rlim
, arg2
, 0);
6108 ret
= get_errno(setrlimit(resource
, &rlim
));
6111 case TARGET_NR_getrlimit
:
6113 int resource
= target_to_host_resource(arg1
);
6114 struct target_rlimit
*target_rlim
;
6117 ret
= get_errno(getrlimit(resource
, &rlim
));
6118 if (!is_error(ret
)) {
6119 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
6121 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
6122 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
6123 unlock_user_struct(target_rlim
, arg2
, 1);
6127 case TARGET_NR_getrusage
:
6129 struct rusage rusage
;
6130 ret
= get_errno(getrusage(arg1
, &rusage
));
6131 if (!is_error(ret
)) {
6132 host_to_target_rusage(arg2
, &rusage
);
6136 case TARGET_NR_gettimeofday
:
6139 ret
= get_errno(gettimeofday(&tv
, NULL
));
6140 if (!is_error(ret
)) {
6141 if (copy_to_user_timeval(arg1
, &tv
))
6146 case TARGET_NR_settimeofday
:
6149 if (copy_from_user_timeval(&tv
, arg1
))
6151 ret
= get_errno(settimeofday(&tv
, NULL
));
6154 #if defined(TARGET_NR_select)
6155 case TARGET_NR_select
:
6156 #if defined(TARGET_S390X) || defined(TARGET_ALPHA)
6157 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
6160 struct target_sel_arg_struct
*sel
;
6161 abi_ulong inp
, outp
, exp
, tvp
;
6164 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1))
6166 nsel
= tswapal(sel
->n
);
6167 inp
= tswapal(sel
->inp
);
6168 outp
= tswapal(sel
->outp
);
6169 exp
= tswapal(sel
->exp
);
6170 tvp
= tswapal(sel
->tvp
);
6171 unlock_user_struct(sel
, arg1
, 0);
6172 ret
= do_select(nsel
, inp
, outp
, exp
, tvp
);
6177 #ifdef TARGET_NR_pselect6
6178 case TARGET_NR_pselect6
:
6180 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
6181 fd_set rfds
, wfds
, efds
;
6182 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
6183 struct timespec ts
, *ts_ptr
;
6186 * The 6th arg is actually two args smashed together,
6187 * so we cannot use the C library.
6195 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
6196 target_sigset_t
*target_sigset
;
6204 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
6208 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
6212 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
6218 * This takes a timespec, and not a timeval, so we cannot
6219 * use the do_select() helper ...
6222 if (target_to_host_timespec(&ts
, ts_addr
)) {
6230 /* Extract the two packed args for the sigset */
6233 sig
.size
= _NSIG
/ 8;
6235 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
6239 arg_sigset
= tswapal(arg7
[0]);
6240 arg_sigsize
= tswapal(arg7
[1]);
6241 unlock_user(arg7
, arg6
, 0);
6245 if (arg_sigsize
!= sizeof(*target_sigset
)) {
6246 /* Like the kernel, we enforce correct size sigsets */
6247 ret
= -TARGET_EINVAL
;
6250 target_sigset
= lock_user(VERIFY_READ
, arg_sigset
,
6251 sizeof(*target_sigset
), 1);
6252 if (!target_sigset
) {
6255 target_to_host_sigset(&set
, target_sigset
);
6256 unlock_user(target_sigset
, arg_sigset
, 0);
6264 ret
= get_errno(sys_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
6267 if (!is_error(ret
)) {
6268 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
6270 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
6272 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
6275 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
))
6281 case TARGET_NR_symlink
:
6284 p
= lock_user_string(arg1
);
6285 p2
= lock_user_string(arg2
);
6287 ret
= -TARGET_EFAULT
;
6289 ret
= get_errno(symlink(p
, p2
));
6290 unlock_user(p2
, arg2
, 0);
6291 unlock_user(p
, arg1
, 0);
6294 #if defined(TARGET_NR_symlinkat)
6295 case TARGET_NR_symlinkat
:
6298 p
= lock_user_string(arg1
);
6299 p2
= lock_user_string(arg3
);
6301 ret
= -TARGET_EFAULT
;
6303 ret
= get_errno(symlinkat(p
, arg2
, p2
));
6304 unlock_user(p2
, arg3
, 0);
6305 unlock_user(p
, arg1
, 0);
6309 #ifdef TARGET_NR_oldlstat
6310 case TARGET_NR_oldlstat
:
6313 case TARGET_NR_readlink
:
6316 p
= lock_user_string(arg1
);
6317 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
6319 ret
= -TARGET_EFAULT
;
6320 } else if (is_proc_myself((const char *)p
, "exe")) {
6321 char real
[PATH_MAX
], *temp
;
6322 temp
= realpath(exec_path
, real
);
6323 ret
= temp
== NULL
? get_errno(-1) : strlen(real
) ;
6324 snprintf((char *)p2
, arg3
, "%s", real
);
6326 ret
= get_errno(readlink(path(p
), p2
, arg3
));
6328 unlock_user(p2
, arg2
, ret
);
6329 unlock_user(p
, arg1
, 0);
6332 #if defined(TARGET_NR_readlinkat)
6333 case TARGET_NR_readlinkat
:
6336 p
= lock_user_string(arg2
);
6337 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
6339 ret
= -TARGET_EFAULT
;
6340 } else if (is_proc_myself((const char *)p
, "exe")) {
6341 char real
[PATH_MAX
], *temp
;
6342 temp
= realpath(exec_path
, real
);
6343 ret
= temp
== NULL
? get_errno(-1) : strlen(real
) ;
6344 snprintf((char *)p2
, arg4
, "%s", real
);
6346 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
6348 unlock_user(p2
, arg3
, ret
);
6349 unlock_user(p
, arg2
, 0);
6353 #ifdef TARGET_NR_uselib
6354 case TARGET_NR_uselib
:
6357 #ifdef TARGET_NR_swapon
6358 case TARGET_NR_swapon
:
6359 if (!(p
= lock_user_string(arg1
)))
6361 ret
= get_errno(swapon(p
, arg2
));
6362 unlock_user(p
, arg1
, 0);
6365 case TARGET_NR_reboot
:
6366 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
6367 /* arg4 must be ignored in all other cases */
6368 p
= lock_user_string(arg4
);
6372 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
6373 unlock_user(p
, arg4
, 0);
6375 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
6378 #ifdef TARGET_NR_readdir
6379 case TARGET_NR_readdir
:
6382 #ifdef TARGET_NR_mmap
6383 case TARGET_NR_mmap
:
6384 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || defined(TARGET_ARM) || \
6385 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
6386 || defined(TARGET_S390X)
6389 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
6390 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
6398 unlock_user(v
, arg1
, 0);
6399 ret
= get_errno(target_mmap(v1
, v2
, v3
,
6400 target_to_host_bitmask(v4
, mmap_flags_tbl
),
6404 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
6405 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
6411 #ifdef TARGET_NR_mmap2
6412 case TARGET_NR_mmap2
:
6414 #define MMAP_SHIFT 12
6416 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
6417 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
6419 arg6
<< MMAP_SHIFT
));
6422 case TARGET_NR_munmap
:
6423 ret
= get_errno(target_munmap(arg1
, arg2
));
6425 case TARGET_NR_mprotect
:
6427 TaskState
*ts
= ((CPUArchState
*)cpu_env
)->opaque
;
6428 /* Special hack to detect libc making the stack executable. */
6429 if ((arg3
& PROT_GROWSDOWN
)
6430 && arg1
>= ts
->info
->stack_limit
6431 && arg1
<= ts
->info
->start_stack
) {
6432 arg3
&= ~PROT_GROWSDOWN
;
6433 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
6434 arg1
= ts
->info
->stack_limit
;
6437 ret
= get_errno(target_mprotect(arg1
, arg2
, arg3
));
6439 #ifdef TARGET_NR_mremap
6440 case TARGET_NR_mremap
:
6441 ret
= get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
6444 /* ??? msync/mlock/munlock are broken for softmmu. */
6445 #ifdef TARGET_NR_msync
6446 case TARGET_NR_msync
:
6447 ret
= get_errno(msync(g2h(arg1
), arg2
, arg3
));
6450 #ifdef TARGET_NR_mlock
6451 case TARGET_NR_mlock
:
6452 ret
= get_errno(mlock(g2h(arg1
), arg2
));
6455 #ifdef TARGET_NR_munlock
6456 case TARGET_NR_munlock
:
6457 ret
= get_errno(munlock(g2h(arg1
), arg2
));
6460 #ifdef TARGET_NR_mlockall
6461 case TARGET_NR_mlockall
:
6462 ret
= get_errno(mlockall(arg1
));
6465 #ifdef TARGET_NR_munlockall
6466 case TARGET_NR_munlockall
:
6467 ret
= get_errno(munlockall());
6470 case TARGET_NR_truncate
:
6471 if (!(p
= lock_user_string(arg1
)))
6473 ret
= get_errno(truncate(p
, arg2
));
6474 unlock_user(p
, arg1
, 0);
6476 case TARGET_NR_ftruncate
:
6477 ret
= get_errno(ftruncate(arg1
, arg2
));
6479 case TARGET_NR_fchmod
:
6480 ret
= get_errno(fchmod(arg1
, arg2
));
6482 #if defined(TARGET_NR_fchmodat)
6483 case TARGET_NR_fchmodat
:
6484 if (!(p
= lock_user_string(arg2
)))
6486 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
6487 unlock_user(p
, arg2
, 0);
6490 case TARGET_NR_getpriority
:
6491 /* Note that negative values are valid for getpriority, so we must
6492 differentiate based on errno settings. */
6494 ret
= getpriority(arg1
, arg2
);
6495 if (ret
== -1 && errno
!= 0) {
6496 ret
= -host_to_target_errno(errno
);
6500 /* Return value is the unbiased priority. Signal no error. */
6501 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0;
6503 /* Return value is a biased priority to avoid negative numbers. */
6507 case TARGET_NR_setpriority
:
6508 ret
= get_errno(setpriority(arg1
, arg2
, arg3
));
6510 #ifdef TARGET_NR_profil
6511 case TARGET_NR_profil
:
6514 case TARGET_NR_statfs
:
6515 if (!(p
= lock_user_string(arg1
)))
6517 ret
= get_errno(statfs(path(p
), &stfs
));
6518 unlock_user(p
, arg1
, 0);
6520 if (!is_error(ret
)) {
6521 struct target_statfs
*target_stfs
;
6523 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
6525 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
6526 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
6527 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
6528 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
6529 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
6530 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
6531 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
6532 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
6533 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
6534 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
6535 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
6536 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
6537 unlock_user_struct(target_stfs
, arg2
, 1);
6540 case TARGET_NR_fstatfs
:
6541 ret
= get_errno(fstatfs(arg1
, &stfs
));
6542 goto convert_statfs
;
6543 #ifdef TARGET_NR_statfs64
6544 case TARGET_NR_statfs64
:
6545 if (!(p
= lock_user_string(arg1
)))
6547 ret
= get_errno(statfs(path(p
), &stfs
));
6548 unlock_user(p
, arg1
, 0);
6550 if (!is_error(ret
)) {
6551 struct target_statfs64
*target_stfs
;
6553 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
6555 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
6556 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
6557 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
6558 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
6559 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
6560 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
6561 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
6562 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
6563 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
6564 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
6565 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
6566 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
6567 unlock_user_struct(target_stfs
, arg3
, 1);
6570 case TARGET_NR_fstatfs64
:
6571 ret
= get_errno(fstatfs(arg1
, &stfs
));
6572 goto convert_statfs64
;
6574 #ifdef TARGET_NR_ioperm
6575 case TARGET_NR_ioperm
:
6578 #ifdef TARGET_NR_socketcall
6579 case TARGET_NR_socketcall
:
6580 ret
= do_socketcall(arg1
, arg2
);
6583 #ifdef TARGET_NR_accept
6584 case TARGET_NR_accept
:
6585 ret
= do_accept4(arg1
, arg2
, arg3
, 0);
6588 #ifdef TARGET_NR_accept4
6589 case TARGET_NR_accept4
:
6590 #ifdef CONFIG_ACCEPT4
6591 ret
= do_accept4(arg1
, arg2
, arg3
, arg4
);
6597 #ifdef TARGET_NR_bind
6598 case TARGET_NR_bind
:
6599 ret
= do_bind(arg1
, arg2
, arg3
);
6602 #ifdef TARGET_NR_connect
6603 case TARGET_NR_connect
:
6604 ret
= do_connect(arg1
, arg2
, arg3
);
6607 #ifdef TARGET_NR_getpeername
6608 case TARGET_NR_getpeername
:
6609 ret
= do_getpeername(arg1
, arg2
, arg3
);
6612 #ifdef TARGET_NR_getsockname
6613 case TARGET_NR_getsockname
:
6614 ret
= do_getsockname(arg1
, arg2
, arg3
);
6617 #ifdef TARGET_NR_getsockopt
6618 case TARGET_NR_getsockopt
:
6619 ret
= do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
6622 #ifdef TARGET_NR_listen
6623 case TARGET_NR_listen
:
6624 ret
= get_errno(listen(arg1
, arg2
));
6627 #ifdef TARGET_NR_recv
6628 case TARGET_NR_recv
:
6629 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
6632 #ifdef TARGET_NR_recvfrom
6633 case TARGET_NR_recvfrom
:
6634 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
6637 #ifdef TARGET_NR_recvmsg
6638 case TARGET_NR_recvmsg
:
6639 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
6642 #ifdef TARGET_NR_send
6643 case TARGET_NR_send
:
6644 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
6647 #ifdef TARGET_NR_sendmsg
6648 case TARGET_NR_sendmsg
:
6649 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
6652 #ifdef TARGET_NR_sendto
6653 case TARGET_NR_sendto
:
6654 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
6657 #ifdef TARGET_NR_shutdown
6658 case TARGET_NR_shutdown
:
6659 ret
= get_errno(shutdown(arg1
, arg2
));
6662 #ifdef TARGET_NR_socket
6663 case TARGET_NR_socket
:
6664 ret
= do_socket(arg1
, arg2
, arg3
);
6667 #ifdef TARGET_NR_socketpair
6668 case TARGET_NR_socketpair
:
6669 ret
= do_socketpair(arg1
, arg2
, arg3
, arg4
);
6672 #ifdef TARGET_NR_setsockopt
6673 case TARGET_NR_setsockopt
:
6674 ret
= do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
6678 case TARGET_NR_syslog
:
6679 if (!(p
= lock_user_string(arg2
)))
6681 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
6682 unlock_user(p
, arg2
, 0);
6685 case TARGET_NR_setitimer
:
6687 struct itimerval value
, ovalue
, *pvalue
;
6691 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
6692 || copy_from_user_timeval(&pvalue
->it_value
,
6693 arg2
+ sizeof(struct target_timeval
)))
6698 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
6699 if (!is_error(ret
) && arg3
) {
6700 if (copy_to_user_timeval(arg3
,
6701 &ovalue
.it_interval
)
6702 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
6708 case TARGET_NR_getitimer
:
6710 struct itimerval value
;
6712 ret
= get_errno(getitimer(arg1
, &value
));
6713 if (!is_error(ret
) && arg2
) {
6714 if (copy_to_user_timeval(arg2
,
6716 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
6722 case TARGET_NR_stat
:
6723 if (!(p
= lock_user_string(arg1
)))
6725 ret
= get_errno(stat(path(p
), &st
));
6726 unlock_user(p
, arg1
, 0);
6728 case TARGET_NR_lstat
:
6729 if (!(p
= lock_user_string(arg1
)))
6731 ret
= get_errno(lstat(path(p
), &st
));
6732 unlock_user(p
, arg1
, 0);
6734 case TARGET_NR_fstat
:
6736 ret
= get_errno(fstat(arg1
, &st
));
6738 if (!is_error(ret
)) {
6739 struct target_stat
*target_st
;
6741 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
6743 memset(target_st
, 0, sizeof(*target_st
));
6744 __put_user(st
.st_dev
, &target_st
->st_dev
);
6745 __put_user(st
.st_ino
, &target_st
->st_ino
);
6746 __put_user(st
.st_mode
, &target_st
->st_mode
);
6747 __put_user(st
.st_uid
, &target_st
->st_uid
);
6748 __put_user(st
.st_gid
, &target_st
->st_gid
);
6749 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
6750 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
6751 __put_user(st
.st_size
, &target_st
->st_size
);
6752 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
6753 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
6754 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
6755 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
6756 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
6757 unlock_user_struct(target_st
, arg2
, 1);
6761 #ifdef TARGET_NR_olduname
6762 case TARGET_NR_olduname
:
6765 #ifdef TARGET_NR_iopl
6766 case TARGET_NR_iopl
:
6769 case TARGET_NR_vhangup
:
6770 ret
= get_errno(vhangup());
6772 #ifdef TARGET_NR_idle
6773 case TARGET_NR_idle
:
6776 #ifdef TARGET_NR_syscall
6777 case TARGET_NR_syscall
:
6778 ret
= do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
6779 arg6
, arg7
, arg8
, 0);
6782 case TARGET_NR_wait4
:
6785 abi_long status_ptr
= arg2
;
6786 struct rusage rusage
, *rusage_ptr
;
6787 abi_ulong target_rusage
= arg4
;
6789 rusage_ptr
= &rusage
;
6792 ret
= get_errno(wait4(arg1
, &status
, arg3
, rusage_ptr
));
6793 if (!is_error(ret
)) {
6794 if (status_ptr
&& ret
) {
6795 status
= host_to_target_waitstatus(status
);
6796 if (put_user_s32(status
, status_ptr
))
6800 host_to_target_rusage(target_rusage
, &rusage
);
6804 #ifdef TARGET_NR_swapoff
6805 case TARGET_NR_swapoff
:
6806 if (!(p
= lock_user_string(arg1
)))
6808 ret
= get_errno(swapoff(p
));
6809 unlock_user(p
, arg1
, 0);
6812 case TARGET_NR_sysinfo
:
6814 struct target_sysinfo
*target_value
;
6815 struct sysinfo value
;
6816 ret
= get_errno(sysinfo(&value
));
6817 if (!is_error(ret
) && arg1
)
6819 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
6821 __put_user(value
.uptime
, &target_value
->uptime
);
6822 __put_user(value
.loads
[0], &target_value
->loads
[0]);
6823 __put_user(value
.loads
[1], &target_value
->loads
[1]);
6824 __put_user(value
.loads
[2], &target_value
->loads
[2]);
6825 __put_user(value
.totalram
, &target_value
->totalram
);
6826 __put_user(value
.freeram
, &target_value
->freeram
);
6827 __put_user(value
.sharedram
, &target_value
->sharedram
);
6828 __put_user(value
.bufferram
, &target_value
->bufferram
);
6829 __put_user(value
.totalswap
, &target_value
->totalswap
);
6830 __put_user(value
.freeswap
, &target_value
->freeswap
);
6831 __put_user(value
.procs
, &target_value
->procs
);
6832 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
6833 __put_user(value
.freehigh
, &target_value
->freehigh
);
6834 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
6835 unlock_user_struct(target_value
, arg1
, 1);
6839 #ifdef TARGET_NR_ipc
6841 ret
= do_ipc(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
6844 #ifdef TARGET_NR_semget
6845 case TARGET_NR_semget
:
6846 ret
= get_errno(semget(arg1
, arg2
, arg3
));
6849 #ifdef TARGET_NR_semop
6850 case TARGET_NR_semop
:
6851 ret
= do_semop(arg1
, arg2
, arg3
);
6854 #ifdef TARGET_NR_semctl
6855 case TARGET_NR_semctl
:
6856 ret
= do_semctl(arg1
, arg2
, arg3
, (union target_semun
)(abi_ulong
)arg4
);
6859 #ifdef TARGET_NR_msgctl
6860 case TARGET_NR_msgctl
:
6861 ret
= do_msgctl(arg1
, arg2
, arg3
);
6864 #ifdef TARGET_NR_msgget
6865 case TARGET_NR_msgget
:
6866 ret
= get_errno(msgget(arg1
, arg2
));
6869 #ifdef TARGET_NR_msgrcv
6870 case TARGET_NR_msgrcv
:
6871 ret
= do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
6874 #ifdef TARGET_NR_msgsnd
6875 case TARGET_NR_msgsnd
:
6876 ret
= do_msgsnd(arg1
, arg2
, arg3
, arg4
);
6879 #ifdef TARGET_NR_shmget
6880 case TARGET_NR_shmget
:
6881 ret
= get_errno(shmget(arg1
, arg2
, arg3
));
6884 #ifdef TARGET_NR_shmctl
6885 case TARGET_NR_shmctl
:
6886 ret
= do_shmctl(arg1
, arg2
, arg3
);
6889 #ifdef TARGET_NR_shmat
6890 case TARGET_NR_shmat
:
6891 ret
= do_shmat(arg1
, arg2
, arg3
);
6894 #ifdef TARGET_NR_shmdt
6895 case TARGET_NR_shmdt
:
6896 ret
= do_shmdt(arg1
);
6899 case TARGET_NR_fsync
:
6900 ret
= get_errno(fsync(arg1
));
6902 case TARGET_NR_clone
:
6903 /* Linux manages to have three different orderings for its
6904 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
6905 * match the kernel's CONFIG_CLONE_* settings.
6906 * Microblaze is further special in that it uses a sixth
6907 * implicit argument to clone for the TLS pointer.
6909 #if defined(TARGET_MICROBLAZE)
6910 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
6911 #elif defined(TARGET_CLONE_BACKWARDS)
6912 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
6913 #elif defined(TARGET_CLONE_BACKWARDS2)
6914 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
6916 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
6919 #ifdef __NR_exit_group
6920 /* new thread calls */
6921 case TARGET_NR_exit_group
:
6925 gdb_exit(cpu_env
, arg1
);
6926 ret
= get_errno(exit_group(arg1
));
6929 case TARGET_NR_setdomainname
:
6930 if (!(p
= lock_user_string(arg1
)))
6932 ret
= get_errno(setdomainname(p
, arg2
));
6933 unlock_user(p
, arg1
, 0);
6935 case TARGET_NR_uname
:
6936 /* no need to transcode because we use the linux syscall */
6938 struct new_utsname
* buf
;
6940 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
6942 ret
= get_errno(sys_uname(buf
));
6943 if (!is_error(ret
)) {
6944 /* Overrite the native machine name with whatever is being
6946 strcpy (buf
->machine
, cpu_to_uname_machine(cpu_env
));
6947 /* Allow the user to override the reported release. */
6948 if (qemu_uname_release
&& *qemu_uname_release
)
6949 strcpy (buf
->release
, qemu_uname_release
);
6951 unlock_user_struct(buf
, arg1
, 1);
6955 case TARGET_NR_modify_ldt
:
6956 ret
= do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
6958 #if !defined(TARGET_X86_64)
6959 case TARGET_NR_vm86old
:
6961 case TARGET_NR_vm86
:
6962 ret
= do_vm86(cpu_env
, arg1
, arg2
);
6966 case TARGET_NR_adjtimex
:
6968 #ifdef TARGET_NR_create_module
6969 case TARGET_NR_create_module
:
6971 case TARGET_NR_init_module
:
6972 case TARGET_NR_delete_module
:
6973 #ifdef TARGET_NR_get_kernel_syms
6974 case TARGET_NR_get_kernel_syms
:
6977 case TARGET_NR_quotactl
:
6979 case TARGET_NR_getpgid
:
6980 ret
= get_errno(getpgid(arg1
));
6982 case TARGET_NR_fchdir
:
6983 ret
= get_errno(fchdir(arg1
));
6985 #ifdef TARGET_NR_bdflush /* not on x86_64 */
6986 case TARGET_NR_bdflush
:
6989 #ifdef TARGET_NR_sysfs
6990 case TARGET_NR_sysfs
:
6993 case TARGET_NR_personality
:
6994 ret
= get_errno(personality(arg1
));
6996 #ifdef TARGET_NR_afs_syscall
6997 case TARGET_NR_afs_syscall
:
7000 #ifdef TARGET_NR__llseek /* Not on alpha */
7001 case TARGET_NR__llseek
:
7004 #if !defined(__NR_llseek)
7005 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | arg3
, arg5
);
7007 ret
= get_errno(res
);
7012 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
7014 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
7020 case TARGET_NR_getdents
:
7021 #ifdef __NR_getdents
7022 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
7024 struct target_dirent
*target_dirp
;
7025 struct linux_dirent
*dirp
;
7026 abi_long count
= arg3
;
7028 dirp
= malloc(count
);
7030 ret
= -TARGET_ENOMEM
;
7034 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
7035 if (!is_error(ret
)) {
7036 struct linux_dirent
*de
;
7037 struct target_dirent
*tde
;
7039 int reclen
, treclen
;
7040 int count1
, tnamelen
;
7044 if (!(target_dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
7048 reclen
= de
->d_reclen
;
7049 tnamelen
= reclen
- offsetof(struct linux_dirent
, d_name
);
7050 assert(tnamelen
>= 0);
7051 treclen
= tnamelen
+ offsetof(struct target_dirent
, d_name
);
7052 assert(count1
+ treclen
<= count
);
7053 tde
->d_reclen
= tswap16(treclen
);
7054 tde
->d_ino
= tswapal(de
->d_ino
);
7055 tde
->d_off
= tswapal(de
->d_off
);
7056 memcpy(tde
->d_name
, de
->d_name
, tnamelen
);
7057 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
7059 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
7063 unlock_user(target_dirp
, arg2
, ret
);
7069 struct linux_dirent
*dirp
;
7070 abi_long count
= arg3
;
7072 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
7074 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
7075 if (!is_error(ret
)) {
7076 struct linux_dirent
*de
;
7081 reclen
= de
->d_reclen
;
7084 de
->d_reclen
= tswap16(reclen
);
7085 tswapls(&de
->d_ino
);
7086 tswapls(&de
->d_off
);
7087 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
7091 unlock_user(dirp
, arg2
, ret
);
7095 /* Implement getdents in terms of getdents64 */
7097 struct linux_dirent64
*dirp
;
7098 abi_long count
= arg3
;
7100 dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
7104 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
7105 if (!is_error(ret
)) {
7106 /* Convert the dirent64 structs to target dirent. We do this
7107 * in-place, since we can guarantee that a target_dirent is no
7108 * larger than a dirent64; however this means we have to be
7109 * careful to read everything before writing in the new format.
7111 struct linux_dirent64
*de
;
7112 struct target_dirent
*tde
;
7117 tde
= (struct target_dirent
*)dirp
;
7119 int namelen
, treclen
;
7120 int reclen
= de
->d_reclen
;
7121 uint64_t ino
= de
->d_ino
;
7122 int64_t off
= de
->d_off
;
7123 uint8_t type
= de
->d_type
;
7125 namelen
= strlen(de
->d_name
);
7126 treclen
= offsetof(struct target_dirent
, d_name
)
7128 treclen
= QEMU_ALIGN_UP(treclen
, sizeof(abi_long
));
7130 memmove(tde
->d_name
, de
->d_name
, namelen
+ 1);
7131 tde
->d_ino
= tswapal(ino
);
7132 tde
->d_off
= tswapal(off
);
7133 tde
->d_reclen
= tswap16(treclen
);
7134 /* The target_dirent type is in what was formerly a padding
7135 * byte at the end of the structure:
7137 *(((char *)tde
) + treclen
- 1) = type
;
7139 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
7140 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
7146 unlock_user(dirp
, arg2
, ret
);
7150 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
7151 case TARGET_NR_getdents64
:
7153 struct linux_dirent64
*dirp
;
7154 abi_long count
= arg3
;
7155 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
7157 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
7158 if (!is_error(ret
)) {
7159 struct linux_dirent64
*de
;
7164 reclen
= de
->d_reclen
;
7167 de
->d_reclen
= tswap16(reclen
);
7168 tswap64s((uint64_t *)&de
->d_ino
);
7169 tswap64s((uint64_t *)&de
->d_off
);
7170 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
7174 unlock_user(dirp
, arg2
, ret
);
7177 #endif /* TARGET_NR_getdents64 */
7178 #if defined(TARGET_NR__newselect)
7179 case TARGET_NR__newselect
:
7180 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
7183 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
7184 # ifdef TARGET_NR_poll
7185 case TARGET_NR_poll
:
7187 # ifdef TARGET_NR_ppoll
7188 case TARGET_NR_ppoll
:
7191 struct target_pollfd
*target_pfd
;
7192 unsigned int nfds
= arg2
;
7197 target_pfd
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_pollfd
) * nfds
, 1);
7201 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
7202 for(i
= 0; i
< nfds
; i
++) {
7203 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
7204 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
7207 # ifdef TARGET_NR_ppoll
7208 if (num
== TARGET_NR_ppoll
) {
7209 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
7210 target_sigset_t
*target_set
;
7211 sigset_t _set
, *set
= &_set
;
7214 if (target_to_host_timespec(timeout_ts
, arg3
)) {
7215 unlock_user(target_pfd
, arg1
, 0);
7223 target_set
= lock_user(VERIFY_READ
, arg4
, sizeof(target_sigset_t
), 1);
7225 unlock_user(target_pfd
, arg1
, 0);
7228 target_to_host_sigset(set
, target_set
);
7233 ret
= get_errno(sys_ppoll(pfd
, nfds
, timeout_ts
, set
, _NSIG
/8));
7235 if (!is_error(ret
) && arg3
) {
7236 host_to_target_timespec(arg3
, timeout_ts
);
7239 unlock_user(target_set
, arg4
, 0);
7243 ret
= get_errno(poll(pfd
, nfds
, timeout
));
7245 if (!is_error(ret
)) {
7246 for(i
= 0; i
< nfds
; i
++) {
7247 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
7250 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
7254 case TARGET_NR_flock
:
7255 /* NOTE: the flock constant seems to be the same for every
7257 ret
= get_errno(flock(arg1
, arg2
));
7259 case TARGET_NR_readv
:
7261 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
7263 ret
= get_errno(readv(arg1
, vec
, arg3
));
7264 unlock_iovec(vec
, arg2
, arg3
, 1);
7266 ret
= -host_to_target_errno(errno
);
7270 case TARGET_NR_writev
:
7272 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
7274 ret
= get_errno(writev(arg1
, vec
, arg3
));
7275 unlock_iovec(vec
, arg2
, arg3
, 0);
7277 ret
= -host_to_target_errno(errno
);
7281 case TARGET_NR_getsid
:
7282 ret
= get_errno(getsid(arg1
));
7284 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
7285 case TARGET_NR_fdatasync
:
7286 ret
= get_errno(fdatasync(arg1
));
7289 case TARGET_NR__sysctl
:
7290 /* We don't implement this, but ENOTDIR is always a safe
7292 ret
= -TARGET_ENOTDIR
;
7294 case TARGET_NR_sched_getaffinity
:
7296 unsigned int mask_size
;
7297 unsigned long *mask
;
7300 * sched_getaffinity needs multiples of ulong, so need to take
7301 * care of mismatches between target ulong and host ulong sizes.
7303 if (arg2
& (sizeof(abi_ulong
) - 1)) {
7304 ret
= -TARGET_EINVAL
;
7307 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
7309 mask
= alloca(mask_size
);
7310 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
7312 if (!is_error(ret
)) {
7313 if (copy_to_user(arg3
, mask
, ret
)) {
7319 case TARGET_NR_sched_setaffinity
:
7321 unsigned int mask_size
;
7322 unsigned long *mask
;
7325 * sched_setaffinity needs multiples of ulong, so need to take
7326 * care of mismatches between target ulong and host ulong sizes.
7328 if (arg2
& (sizeof(abi_ulong
) - 1)) {
7329 ret
= -TARGET_EINVAL
;
7332 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
7334 mask
= alloca(mask_size
);
7335 if (!lock_user_struct(VERIFY_READ
, p
, arg3
, 1)) {
7338 memcpy(mask
, p
, arg2
);
7339 unlock_user_struct(p
, arg2
, 0);
7341 ret
= get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
7344 case TARGET_NR_sched_setparam
:
7346 struct sched_param
*target_schp
;
7347 struct sched_param schp
;
7349 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1))
7351 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
7352 unlock_user_struct(target_schp
, arg2
, 0);
7353 ret
= get_errno(sched_setparam(arg1
, &schp
));
7356 case TARGET_NR_sched_getparam
:
7358 struct sched_param
*target_schp
;
7359 struct sched_param schp
;
7360 ret
= get_errno(sched_getparam(arg1
, &schp
));
7361 if (!is_error(ret
)) {
7362 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0))
7364 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
7365 unlock_user_struct(target_schp
, arg2
, 1);
7369 case TARGET_NR_sched_setscheduler
:
7371 struct sched_param
*target_schp
;
7372 struct sched_param schp
;
7373 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1))
7375 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
7376 unlock_user_struct(target_schp
, arg3
, 0);
7377 ret
= get_errno(sched_setscheduler(arg1
, arg2
, &schp
));
7380 case TARGET_NR_sched_getscheduler
:
7381 ret
= get_errno(sched_getscheduler(arg1
));
7383 case TARGET_NR_sched_yield
:
7384 ret
= get_errno(sched_yield());
7386 case TARGET_NR_sched_get_priority_max
:
7387 ret
= get_errno(sched_get_priority_max(arg1
));
7389 case TARGET_NR_sched_get_priority_min
:
7390 ret
= get_errno(sched_get_priority_min(arg1
));
7392 case TARGET_NR_sched_rr_get_interval
:
7395 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
7396 if (!is_error(ret
)) {
7397 host_to_target_timespec(arg2
, &ts
);
7401 case TARGET_NR_nanosleep
:
7403 struct timespec req
, rem
;
7404 target_to_host_timespec(&req
, arg1
);
7405 ret
= get_errno(nanosleep(&req
, &rem
));
7406 if (is_error(ret
) && arg2
) {
7407 host_to_target_timespec(arg2
, &rem
);
7411 #ifdef TARGET_NR_query_module
7412 case TARGET_NR_query_module
:
7415 #ifdef TARGET_NR_nfsservctl
7416 case TARGET_NR_nfsservctl
:
7419 case TARGET_NR_prctl
:
7421 case PR_GET_PDEATHSIG
:
7424 ret
= get_errno(prctl(arg1
, &deathsig
, arg3
, arg4
, arg5
));
7425 if (!is_error(ret
) && arg2
7426 && put_user_ual(deathsig
, arg2
)) {
7434 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
7438 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
7440 unlock_user(name
, arg2
, 16);
7445 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
7449 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
7451 unlock_user(name
, arg2
, 0);
7456 /* Most prctl options have no pointer arguments */
7457 ret
= get_errno(prctl(arg1
, arg2
, arg3
, arg4
, arg5
));
7461 #ifdef TARGET_NR_arch_prctl
7462 case TARGET_NR_arch_prctl
:
7463 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
7464 ret
= do_arch_prctl(cpu_env
, arg1
, arg2
);
7470 #ifdef TARGET_NR_pread64
7471 case TARGET_NR_pread64
:
7472 if (regpairs_aligned(cpu_env
)) {
7476 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
7478 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
7479 unlock_user(p
, arg2
, ret
);
7481 case TARGET_NR_pwrite64
:
7482 if (regpairs_aligned(cpu_env
)) {
7486 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
7488 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
7489 unlock_user(p
, arg2
, 0);
7492 case TARGET_NR_getcwd
:
7493 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
7495 ret
= get_errno(sys_getcwd1(p
, arg2
));
7496 unlock_user(p
, arg1
, ret
);
7498 case TARGET_NR_capget
:
7500 case TARGET_NR_capset
:
7502 case TARGET_NR_sigaltstack
:
7503 #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \
7504 defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \
7505 defined(TARGET_M68K) || defined(TARGET_S390X) || defined(TARGET_OPENRISC)
7506 ret
= do_sigaltstack(arg1
, arg2
, get_sp_from_cpustate((CPUArchState
*)cpu_env
));
7512 #ifdef CONFIG_SENDFILE
7513 case TARGET_NR_sendfile
:
7518 ret
= get_user_sal(off
, arg3
);
7519 if (is_error(ret
)) {
7524 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
7525 if (!is_error(ret
) && arg3
) {
7526 abi_long ret2
= put_user_sal(off
, arg3
);
7527 if (is_error(ret2
)) {
7533 #ifdef TARGET_NR_sendfile64
7534 case TARGET_NR_sendfile64
:
7539 ret
= get_user_s64(off
, arg3
);
7540 if (is_error(ret
)) {
7545 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
7546 if (!is_error(ret
) && arg3
) {
7547 abi_long ret2
= put_user_s64(off
, arg3
);
7548 if (is_error(ret2
)) {
7556 case TARGET_NR_sendfile
:
7557 #ifdef TARGET_NR_sendfile64
7558 case TARGET_NR_sendfile64
:
7563 #ifdef TARGET_NR_getpmsg
7564 case TARGET_NR_getpmsg
:
7567 #ifdef TARGET_NR_putpmsg
7568 case TARGET_NR_putpmsg
:
7571 #ifdef TARGET_NR_vfork
7572 case TARGET_NR_vfork
:
7573 ret
= get_errno(do_fork(cpu_env
, CLONE_VFORK
| CLONE_VM
| SIGCHLD
,
7577 #ifdef TARGET_NR_ugetrlimit
7578 case TARGET_NR_ugetrlimit
:
7581 int resource
= target_to_host_resource(arg1
);
7582 ret
= get_errno(getrlimit(resource
, &rlim
));
7583 if (!is_error(ret
)) {
7584 struct target_rlimit
*target_rlim
;
7585 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
7587 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
7588 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
7589 unlock_user_struct(target_rlim
, arg2
, 1);
7594 #ifdef TARGET_NR_truncate64
7595 case TARGET_NR_truncate64
:
7596 if (!(p
= lock_user_string(arg1
)))
7598 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
7599 unlock_user(p
, arg1
, 0);
7602 #ifdef TARGET_NR_ftruncate64
7603 case TARGET_NR_ftruncate64
:
7604 ret
= target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
7607 #ifdef TARGET_NR_stat64
7608 case TARGET_NR_stat64
:
7609 if (!(p
= lock_user_string(arg1
)))
7611 ret
= get_errno(stat(path(p
), &st
));
7612 unlock_user(p
, arg1
, 0);
7614 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
7617 #ifdef TARGET_NR_lstat64
7618 case TARGET_NR_lstat64
:
7619 if (!(p
= lock_user_string(arg1
)))
7621 ret
= get_errno(lstat(path(p
), &st
));
7622 unlock_user(p
, arg1
, 0);
7624 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
7627 #ifdef TARGET_NR_fstat64
7628 case TARGET_NR_fstat64
:
7629 ret
= get_errno(fstat(arg1
, &st
));
7631 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
7634 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
7635 #ifdef TARGET_NR_fstatat64
7636 case TARGET_NR_fstatat64
:
7638 #ifdef TARGET_NR_newfstatat
7639 case TARGET_NR_newfstatat
:
7641 if (!(p
= lock_user_string(arg2
)))
7643 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
7645 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
7648 case TARGET_NR_lchown
:
7649 if (!(p
= lock_user_string(arg1
)))
7651 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
7652 unlock_user(p
, arg1
, 0);
7654 #ifdef TARGET_NR_getuid
7655 case TARGET_NR_getuid
:
7656 ret
= get_errno(high2lowuid(getuid()));
7659 #ifdef TARGET_NR_getgid
7660 case TARGET_NR_getgid
:
7661 ret
= get_errno(high2lowgid(getgid()));
7664 #ifdef TARGET_NR_geteuid
7665 case TARGET_NR_geteuid
:
7666 ret
= get_errno(high2lowuid(geteuid()));
7669 #ifdef TARGET_NR_getegid
7670 case TARGET_NR_getegid
:
7671 ret
= get_errno(high2lowgid(getegid()));
7674 case TARGET_NR_setreuid
:
7675 ret
= get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
7677 case TARGET_NR_setregid
:
7678 ret
= get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
7680 case TARGET_NR_getgroups
:
7682 int gidsetsize
= arg1
;
7683 target_id
*target_grouplist
;
7687 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
7688 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
7689 if (gidsetsize
== 0)
7691 if (!is_error(ret
)) {
7692 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* sizeof(target_id
), 0);
7693 if (!target_grouplist
)
7695 for(i
= 0;i
< ret
; i
++)
7696 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
7697 unlock_user(target_grouplist
, arg2
, gidsetsize
* sizeof(target_id
));
7701 case TARGET_NR_setgroups
:
7703 int gidsetsize
= arg1
;
7704 target_id
*target_grouplist
;
7705 gid_t
*grouplist
= NULL
;
7708 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
7709 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* sizeof(target_id
), 1);
7710 if (!target_grouplist
) {
7711 ret
= -TARGET_EFAULT
;
7714 for (i
= 0; i
< gidsetsize
; i
++) {
7715 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
7717 unlock_user(target_grouplist
, arg2
, 0);
7719 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
7722 case TARGET_NR_fchown
:
7723 ret
= get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
7725 #if defined(TARGET_NR_fchownat)
7726 case TARGET_NR_fchownat
:
7727 if (!(p
= lock_user_string(arg2
)))
7729 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
7730 low2highgid(arg4
), arg5
));
7731 unlock_user(p
, arg2
, 0);
7734 #ifdef TARGET_NR_setresuid
7735 case TARGET_NR_setresuid
:
7736 ret
= get_errno(setresuid(low2highuid(arg1
),
7738 low2highuid(arg3
)));
7741 #ifdef TARGET_NR_getresuid
7742 case TARGET_NR_getresuid
:
7744 uid_t ruid
, euid
, suid
;
7745 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
7746 if (!is_error(ret
)) {
7747 if (put_user_u16(high2lowuid(ruid
), arg1
)
7748 || put_user_u16(high2lowuid(euid
), arg2
)
7749 || put_user_u16(high2lowuid(suid
), arg3
))
7755 #ifdef TARGET_NR_getresgid
7756 case TARGET_NR_setresgid
:
7757 ret
= get_errno(setresgid(low2highgid(arg1
),
7759 low2highgid(arg3
)));
7762 #ifdef TARGET_NR_getresgid
7763 case TARGET_NR_getresgid
:
7765 gid_t rgid
, egid
, sgid
;
7766 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
7767 if (!is_error(ret
)) {
7768 if (put_user_u16(high2lowgid(rgid
), arg1
)
7769 || put_user_u16(high2lowgid(egid
), arg2
)
7770 || put_user_u16(high2lowgid(sgid
), arg3
))
7776 case TARGET_NR_chown
:
7777 if (!(p
= lock_user_string(arg1
)))
7779 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
7780 unlock_user(p
, arg1
, 0);
7782 case TARGET_NR_setuid
:
7783 ret
= get_errno(setuid(low2highuid(arg1
)));
7785 case TARGET_NR_setgid
:
7786 ret
= get_errno(setgid(low2highgid(arg1
)));
7788 case TARGET_NR_setfsuid
:
7789 ret
= get_errno(setfsuid(arg1
));
7791 case TARGET_NR_setfsgid
:
7792 ret
= get_errno(setfsgid(arg1
));
7795 #ifdef TARGET_NR_lchown32
7796 case TARGET_NR_lchown32
:
7797 if (!(p
= lock_user_string(arg1
)))
7799 ret
= get_errno(lchown(p
, arg2
, arg3
));
7800 unlock_user(p
, arg1
, 0);
7803 #ifdef TARGET_NR_getuid32
7804 case TARGET_NR_getuid32
:
7805 ret
= get_errno(getuid());
7809 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
7810 /* Alpha specific */
7811 case TARGET_NR_getxuid
:
7815 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=euid
;
7817 ret
= get_errno(getuid());
7820 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
7821 /* Alpha specific */
7822 case TARGET_NR_getxgid
:
7826 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=egid
;
7828 ret
= get_errno(getgid());
7831 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
7832 /* Alpha specific */
7833 case TARGET_NR_osf_getsysinfo
:
7834 ret
= -TARGET_EOPNOTSUPP
;
7836 case TARGET_GSI_IEEE_FP_CONTROL
:
7838 uint64_t swcr
, fpcr
= cpu_alpha_load_fpcr (cpu_env
);
7840 /* Copied from linux ieee_fpcr_to_swcr. */
7841 swcr
= (fpcr
>> 35) & SWCR_STATUS_MASK
;
7842 swcr
|= (fpcr
>> 36) & SWCR_MAP_DMZ
;
7843 swcr
|= (~fpcr
>> 48) & (SWCR_TRAP_ENABLE_INV
7844 | SWCR_TRAP_ENABLE_DZE
7845 | SWCR_TRAP_ENABLE_OVF
);
7846 swcr
|= (~fpcr
>> 57) & (SWCR_TRAP_ENABLE_UNF
7847 | SWCR_TRAP_ENABLE_INE
);
7848 swcr
|= (fpcr
>> 47) & SWCR_MAP_UMZ
;
7849 swcr
|= (~fpcr
>> 41) & SWCR_TRAP_ENABLE_DNO
;
7851 if (put_user_u64 (swcr
, arg2
))
7857 /* case GSI_IEEE_STATE_AT_SIGNAL:
7858 -- Not implemented in linux kernel.
7860 -- Retrieves current unaligned access state; not much used.
7862 -- Retrieves implver information; surely not used.
7864 -- Grabs a copy of the HWRPB; surely not used.
7869 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
7870 /* Alpha specific */
7871 case TARGET_NR_osf_setsysinfo
:
7872 ret
= -TARGET_EOPNOTSUPP
;
7874 case TARGET_SSI_IEEE_FP_CONTROL
:
7876 uint64_t swcr
, fpcr
, orig_fpcr
;
7878 if (get_user_u64 (swcr
, arg2
)) {
7881 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
7882 fpcr
= orig_fpcr
& FPCR_DYN_MASK
;
7884 /* Copied from linux ieee_swcr_to_fpcr. */
7885 fpcr
|= (swcr
& SWCR_STATUS_MASK
) << 35;
7886 fpcr
|= (swcr
& SWCR_MAP_DMZ
) << 36;
7887 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_INV
7888 | SWCR_TRAP_ENABLE_DZE
7889 | SWCR_TRAP_ENABLE_OVF
)) << 48;
7890 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_UNF
7891 | SWCR_TRAP_ENABLE_INE
)) << 57;
7892 fpcr
|= (swcr
& SWCR_MAP_UMZ
? FPCR_UNDZ
| FPCR_UNFD
: 0);
7893 fpcr
|= (~swcr
& SWCR_TRAP_ENABLE_DNO
) << 41;
7895 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
7900 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
7902 uint64_t exc
, fpcr
, orig_fpcr
;
7905 if (get_user_u64(exc
, arg2
)) {
7909 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
7911 /* We only add to the exception status here. */
7912 fpcr
= orig_fpcr
| ((exc
& SWCR_STATUS_MASK
) << 35);
7914 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
7917 /* Old exceptions are not signaled. */
7918 fpcr
&= ~(orig_fpcr
& FPCR_STATUS_MASK
);
7920 /* If any exceptions set by this call,
7921 and are unmasked, send a signal. */
7923 if ((fpcr
& (FPCR_INE
| FPCR_INED
)) == FPCR_INE
) {
7924 si_code
= TARGET_FPE_FLTRES
;
7926 if ((fpcr
& (FPCR_UNF
| FPCR_UNFD
)) == FPCR_UNF
) {
7927 si_code
= TARGET_FPE_FLTUND
;
7929 if ((fpcr
& (FPCR_OVF
| FPCR_OVFD
)) == FPCR_OVF
) {
7930 si_code
= TARGET_FPE_FLTOVF
;
7932 if ((fpcr
& (FPCR_DZE
| FPCR_DZED
)) == FPCR_DZE
) {
7933 si_code
= TARGET_FPE_FLTDIV
;
7935 if ((fpcr
& (FPCR_INV
| FPCR_INVD
)) == FPCR_INV
) {
7936 si_code
= TARGET_FPE_FLTINV
;
7939 target_siginfo_t info
;
7940 info
.si_signo
= SIGFPE
;
7942 info
.si_code
= si_code
;
7943 info
._sifields
._sigfault
._addr
7944 = ((CPUArchState
*)cpu_env
)->pc
;
7945 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
, &info
);
7950 /* case SSI_NVPAIRS:
7951 -- Used with SSIN_UACPROC to enable unaligned accesses.
7952 case SSI_IEEE_STATE_AT_SIGNAL:
7953 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
7954 -- Not implemented in linux kernel
7959 #ifdef TARGET_NR_osf_sigprocmask
7960 /* Alpha specific. */
7961 case TARGET_NR_osf_sigprocmask
:
7965 sigset_t set
, oldset
;
7968 case TARGET_SIG_BLOCK
:
7971 case TARGET_SIG_UNBLOCK
:
7974 case TARGET_SIG_SETMASK
:
7978 ret
= -TARGET_EINVAL
;
7982 target_to_host_old_sigset(&set
, &mask
);
7983 sigprocmask(how
, &set
, &oldset
);
7984 host_to_target_old_sigset(&mask
, &oldset
);
7990 #ifdef TARGET_NR_getgid32
7991 case TARGET_NR_getgid32
:
7992 ret
= get_errno(getgid());
7995 #ifdef TARGET_NR_geteuid32
7996 case TARGET_NR_geteuid32
:
7997 ret
= get_errno(geteuid());
8000 #ifdef TARGET_NR_getegid32
8001 case TARGET_NR_getegid32
:
8002 ret
= get_errno(getegid());
8005 #ifdef TARGET_NR_setreuid32
8006 case TARGET_NR_setreuid32
:
8007 ret
= get_errno(setreuid(arg1
, arg2
));
8010 #ifdef TARGET_NR_setregid32
8011 case TARGET_NR_setregid32
:
8012 ret
= get_errno(setregid(arg1
, arg2
));
8015 #ifdef TARGET_NR_getgroups32
8016 case TARGET_NR_getgroups32
:
8018 int gidsetsize
= arg1
;
8019 uint32_t *target_grouplist
;
8023 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8024 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
8025 if (gidsetsize
== 0)
8027 if (!is_error(ret
)) {
8028 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* 4, 0);
8029 if (!target_grouplist
) {
8030 ret
= -TARGET_EFAULT
;
8033 for(i
= 0;i
< ret
; i
++)
8034 target_grouplist
[i
] = tswap32(grouplist
[i
]);
8035 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
8040 #ifdef TARGET_NR_setgroups32
8041 case TARGET_NR_setgroups32
:
8043 int gidsetsize
= arg1
;
8044 uint32_t *target_grouplist
;
8048 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8049 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* 4, 1);
8050 if (!target_grouplist
) {
8051 ret
= -TARGET_EFAULT
;
8054 for(i
= 0;i
< gidsetsize
; i
++)
8055 grouplist
[i
] = tswap32(target_grouplist
[i
]);
8056 unlock_user(target_grouplist
, arg2
, 0);
8057 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
8061 #ifdef TARGET_NR_fchown32
8062 case TARGET_NR_fchown32
:
8063 ret
= get_errno(fchown(arg1
, arg2
, arg3
));
8066 #ifdef TARGET_NR_setresuid32
8067 case TARGET_NR_setresuid32
:
8068 ret
= get_errno(setresuid(arg1
, arg2
, arg3
));
8071 #ifdef TARGET_NR_getresuid32
8072 case TARGET_NR_getresuid32
:
8074 uid_t ruid
, euid
, suid
;
8075 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
8076 if (!is_error(ret
)) {
8077 if (put_user_u32(ruid
, arg1
)
8078 || put_user_u32(euid
, arg2
)
8079 || put_user_u32(suid
, arg3
))
8085 #ifdef TARGET_NR_setresgid32
8086 case TARGET_NR_setresgid32
:
8087 ret
= get_errno(setresgid(arg1
, arg2
, arg3
));
8090 #ifdef TARGET_NR_getresgid32
8091 case TARGET_NR_getresgid32
:
8093 gid_t rgid
, egid
, sgid
;
8094 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
8095 if (!is_error(ret
)) {
8096 if (put_user_u32(rgid
, arg1
)
8097 || put_user_u32(egid
, arg2
)
8098 || put_user_u32(sgid
, arg3
))
8104 #ifdef TARGET_NR_chown32
8105 case TARGET_NR_chown32
:
8106 if (!(p
= lock_user_string(arg1
)))
8108 ret
= get_errno(chown(p
, arg2
, arg3
));
8109 unlock_user(p
, arg1
, 0);
8112 #ifdef TARGET_NR_setuid32
8113 case TARGET_NR_setuid32
:
8114 ret
= get_errno(setuid(arg1
));
8117 #ifdef TARGET_NR_setgid32
8118 case TARGET_NR_setgid32
:
8119 ret
= get_errno(setgid(arg1
));
8122 #ifdef TARGET_NR_setfsuid32
8123 case TARGET_NR_setfsuid32
:
8124 ret
= get_errno(setfsuid(arg1
));
8127 #ifdef TARGET_NR_setfsgid32
8128 case TARGET_NR_setfsgid32
:
8129 ret
= get_errno(setfsgid(arg1
));
8133 case TARGET_NR_pivot_root
:
8135 #ifdef TARGET_NR_mincore
8136 case TARGET_NR_mincore
:
8139 ret
= -TARGET_EFAULT
;
8140 if (!(a
= lock_user(VERIFY_READ
, arg1
,arg2
, 0)))
8142 if (!(p
= lock_user_string(arg3
)))
8144 ret
= get_errno(mincore(a
, arg2
, p
));
8145 unlock_user(p
, arg3
, ret
);
8147 unlock_user(a
, arg1
, 0);
8151 #ifdef TARGET_NR_arm_fadvise64_64
8152 case TARGET_NR_arm_fadvise64_64
:
8155 * arm_fadvise64_64 looks like fadvise64_64 but
8156 * with different argument order
8164 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64)
8165 #ifdef TARGET_NR_fadvise64_64
8166 case TARGET_NR_fadvise64_64
:
8168 #ifdef TARGET_NR_fadvise64
8169 case TARGET_NR_fadvise64
:
8173 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
8174 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
8175 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
8176 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
8180 ret
= -posix_fadvise(arg1
, arg2
, arg3
, arg4
);
8183 #ifdef TARGET_NR_madvise
8184 case TARGET_NR_madvise
:
8185 /* A straight passthrough may not be safe because qemu sometimes
8186 turns private file-backed mappings into anonymous mappings.
8187 This will break MADV_DONTNEED.
8188 This is a hint, so ignoring and returning success is ok. */
8192 #if TARGET_ABI_BITS == 32
8193 case TARGET_NR_fcntl64
:
8197 struct target_flock64
*target_fl
;
8199 struct target_eabi_flock64
*target_efl
;
8202 cmd
= target_to_host_fcntl_cmd(arg2
);
8203 if (cmd
== -TARGET_EINVAL
) {
8209 case TARGET_F_GETLK64
:
8211 if (((CPUARMState
*)cpu_env
)->eabi
) {
8212 if (!lock_user_struct(VERIFY_READ
, target_efl
, arg3
, 1))
8214 fl
.l_type
= tswap16(target_efl
->l_type
);
8215 fl
.l_whence
= tswap16(target_efl
->l_whence
);
8216 fl
.l_start
= tswap64(target_efl
->l_start
);
8217 fl
.l_len
= tswap64(target_efl
->l_len
);
8218 fl
.l_pid
= tswap32(target_efl
->l_pid
);
8219 unlock_user_struct(target_efl
, arg3
, 0);
8223 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg3
, 1))
8225 fl
.l_type
= tswap16(target_fl
->l_type
);
8226 fl
.l_whence
= tswap16(target_fl
->l_whence
);
8227 fl
.l_start
= tswap64(target_fl
->l_start
);
8228 fl
.l_len
= tswap64(target_fl
->l_len
);
8229 fl
.l_pid
= tswap32(target_fl
->l_pid
);
8230 unlock_user_struct(target_fl
, arg3
, 0);
8232 ret
= get_errno(fcntl(arg1
, cmd
, &fl
));
8235 if (((CPUARMState
*)cpu_env
)->eabi
) {
8236 if (!lock_user_struct(VERIFY_WRITE
, target_efl
, arg3
, 0))
8238 target_efl
->l_type
= tswap16(fl
.l_type
);
8239 target_efl
->l_whence
= tswap16(fl
.l_whence
);
8240 target_efl
->l_start
= tswap64(fl
.l_start
);
8241 target_efl
->l_len
= tswap64(fl
.l_len
);
8242 target_efl
->l_pid
= tswap32(fl
.l_pid
);
8243 unlock_user_struct(target_efl
, arg3
, 1);
8247 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, arg3
, 0))
8249 target_fl
->l_type
= tswap16(fl
.l_type
);
8250 target_fl
->l_whence
= tswap16(fl
.l_whence
);
8251 target_fl
->l_start
= tswap64(fl
.l_start
);
8252 target_fl
->l_len
= tswap64(fl
.l_len
);
8253 target_fl
->l_pid
= tswap32(fl
.l_pid
);
8254 unlock_user_struct(target_fl
, arg3
, 1);
8259 case TARGET_F_SETLK64
:
8260 case TARGET_F_SETLKW64
:
8262 if (((CPUARMState
*)cpu_env
)->eabi
) {
8263 if (!lock_user_struct(VERIFY_READ
, target_efl
, arg3
, 1))
8265 fl
.l_type
= tswap16(target_efl
->l_type
);
8266 fl
.l_whence
= tswap16(target_efl
->l_whence
);
8267 fl
.l_start
= tswap64(target_efl
->l_start
);
8268 fl
.l_len
= tswap64(target_efl
->l_len
);
8269 fl
.l_pid
= tswap32(target_efl
->l_pid
);
8270 unlock_user_struct(target_efl
, arg3
, 0);
8274 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg3
, 1))
8276 fl
.l_type
= tswap16(target_fl
->l_type
);
8277 fl
.l_whence
= tswap16(target_fl
->l_whence
);
8278 fl
.l_start
= tswap64(target_fl
->l_start
);
8279 fl
.l_len
= tswap64(target_fl
->l_len
);
8280 fl
.l_pid
= tswap32(target_fl
->l_pid
);
8281 unlock_user_struct(target_fl
, arg3
, 0);
8283 ret
= get_errno(fcntl(arg1
, cmd
, &fl
));
8286 ret
= do_fcntl(arg1
, arg2
, arg3
);
8292 #ifdef TARGET_NR_cacheflush
8293 case TARGET_NR_cacheflush
:
8294 /* self-modifying code is handled automatically, so nothing needed */
8298 #ifdef TARGET_NR_security
8299 case TARGET_NR_security
:
8302 #ifdef TARGET_NR_getpagesize
8303 case TARGET_NR_getpagesize
:
8304 ret
= TARGET_PAGE_SIZE
;
8307 case TARGET_NR_gettid
:
8308 ret
= get_errno(gettid());
8310 #ifdef TARGET_NR_readahead
8311 case TARGET_NR_readahead
:
8312 #if TARGET_ABI_BITS == 32
8313 if (regpairs_aligned(cpu_env
)) {
8318 ret
= get_errno(readahead(arg1
, ((off64_t
)arg3
<< 32) | arg2
, arg4
));
8320 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
8325 #ifdef TARGET_NR_setxattr
8326 case TARGET_NR_listxattr
:
8327 case TARGET_NR_llistxattr
:
8331 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
8333 ret
= -TARGET_EFAULT
;
8337 p
= lock_user_string(arg1
);
8339 if (num
== TARGET_NR_listxattr
) {
8340 ret
= get_errno(listxattr(p
, b
, arg3
));
8342 ret
= get_errno(llistxattr(p
, b
, arg3
));
8345 ret
= -TARGET_EFAULT
;
8347 unlock_user(p
, arg1
, 0);
8348 unlock_user(b
, arg2
, arg3
);
8351 case TARGET_NR_flistxattr
:
8355 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
8357 ret
= -TARGET_EFAULT
;
8361 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
8362 unlock_user(b
, arg2
, arg3
);
8365 case TARGET_NR_setxattr
:
8366 case TARGET_NR_lsetxattr
:
8368 void *p
, *n
, *v
= 0;
8370 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
8372 ret
= -TARGET_EFAULT
;
8376 p
= lock_user_string(arg1
);
8377 n
= lock_user_string(arg2
);
8379 if (num
== TARGET_NR_setxattr
) {
8380 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
8382 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
8385 ret
= -TARGET_EFAULT
;
8387 unlock_user(p
, arg1
, 0);
8388 unlock_user(n
, arg2
, 0);
8389 unlock_user(v
, arg3
, 0);
8392 case TARGET_NR_fsetxattr
:
8396 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
8398 ret
= -TARGET_EFAULT
;
8402 n
= lock_user_string(arg2
);
8404 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
8406 ret
= -TARGET_EFAULT
;
8408 unlock_user(n
, arg2
, 0);
8409 unlock_user(v
, arg3
, 0);
8412 case TARGET_NR_getxattr
:
8413 case TARGET_NR_lgetxattr
:
8415 void *p
, *n
, *v
= 0;
8417 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
8419 ret
= -TARGET_EFAULT
;
8423 p
= lock_user_string(arg1
);
8424 n
= lock_user_string(arg2
);
8426 if (num
== TARGET_NR_getxattr
) {
8427 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
8429 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
8432 ret
= -TARGET_EFAULT
;
8434 unlock_user(p
, arg1
, 0);
8435 unlock_user(n
, arg2
, 0);
8436 unlock_user(v
, arg3
, arg4
);
8439 case TARGET_NR_fgetxattr
:
8443 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
8445 ret
= -TARGET_EFAULT
;
8449 n
= lock_user_string(arg2
);
8451 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
8453 ret
= -TARGET_EFAULT
;
8455 unlock_user(n
, arg2
, 0);
8456 unlock_user(v
, arg3
, arg4
);
8459 case TARGET_NR_removexattr
:
8460 case TARGET_NR_lremovexattr
:
8463 p
= lock_user_string(arg1
);
8464 n
= lock_user_string(arg2
);
8466 if (num
== TARGET_NR_removexattr
) {
8467 ret
= get_errno(removexattr(p
, n
));
8469 ret
= get_errno(lremovexattr(p
, n
));
8472 ret
= -TARGET_EFAULT
;
8474 unlock_user(p
, arg1
, 0);
8475 unlock_user(n
, arg2
, 0);
8478 case TARGET_NR_fremovexattr
:
8481 n
= lock_user_string(arg2
);
8483 ret
= get_errno(fremovexattr(arg1
, n
));
8485 ret
= -TARGET_EFAULT
;
8487 unlock_user(n
, arg2
, 0);
8491 #endif /* CONFIG_ATTR */
8492 #ifdef TARGET_NR_set_thread_area
8493 case TARGET_NR_set_thread_area
:
8494 #if defined(TARGET_MIPS)
8495 ((CPUMIPSState
*) cpu_env
)->tls_value
= arg1
;
8498 #elif defined(TARGET_CRIS)
8500 ret
= -TARGET_EINVAL
;
8502 ((CPUCRISState
*) cpu_env
)->pregs
[PR_PID
] = arg1
;
8506 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
8507 ret
= do_set_thread_area(cpu_env
, arg1
);
8509 #elif defined(TARGET_M68K)
8511 TaskState
*ts
= ((CPUArchState
*)cpu_env
)->opaque
;
8512 ts
->tp_value
= arg1
;
8517 goto unimplemented_nowarn
;
8520 #ifdef TARGET_NR_get_thread_area
8521 case TARGET_NR_get_thread_area
:
8522 #if defined(TARGET_I386) && defined(TARGET_ABI32)
8523 ret
= do_get_thread_area(cpu_env
, arg1
);
8525 #elif defined(TARGET_M68K)
8527 TaskState
*ts
= ((CPUArchState
*)cpu_env
)->opaque
;
8532 goto unimplemented_nowarn
;
8535 #ifdef TARGET_NR_getdomainname
8536 case TARGET_NR_getdomainname
:
8537 goto unimplemented_nowarn
;
8540 #ifdef TARGET_NR_clock_gettime
8541 case TARGET_NR_clock_gettime
:
8544 ret
= get_errno(clock_gettime(arg1
, &ts
));
8545 if (!is_error(ret
)) {
8546 host_to_target_timespec(arg2
, &ts
);
8551 #ifdef TARGET_NR_clock_getres
8552 case TARGET_NR_clock_getres
:
8555 ret
= get_errno(clock_getres(arg1
, &ts
));
8556 if (!is_error(ret
)) {
8557 host_to_target_timespec(arg2
, &ts
);
8562 #ifdef TARGET_NR_clock_nanosleep
8563 case TARGET_NR_clock_nanosleep
:
8566 target_to_host_timespec(&ts
, arg3
);
8567 ret
= get_errno(clock_nanosleep(arg1
, arg2
, &ts
, arg4
? &ts
: NULL
));
8569 host_to_target_timespec(arg4
, &ts
);
8574 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
8575 case TARGET_NR_set_tid_address
:
8576 ret
= get_errno(set_tid_address((int *)g2h(arg1
)));
8580 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
8581 case TARGET_NR_tkill
:
8582 ret
= get_errno(sys_tkill((int)arg1
, target_to_host_signal(arg2
)));
8586 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
8587 case TARGET_NR_tgkill
:
8588 ret
= get_errno(sys_tgkill((int)arg1
, (int)arg2
,
8589 target_to_host_signal(arg3
)));
8593 #ifdef TARGET_NR_set_robust_list
8594 case TARGET_NR_set_robust_list
:
8595 case TARGET_NR_get_robust_list
:
8596 /* The ABI for supporting robust futexes has userspace pass
8597 * the kernel a pointer to a linked list which is updated by
8598 * userspace after the syscall; the list is walked by the kernel
8599 * when the thread exits. Since the linked list in QEMU guest
8600 * memory isn't a valid linked list for the host and we have
8601 * no way to reliably intercept the thread-death event, we can't
8602 * support these. Silently return ENOSYS so that guest userspace
8603 * falls back to a non-robust futex implementation (which should
8604 * be OK except in the corner case of the guest crashing while
8605 * holding a mutex that is shared with another process via
8608 goto unimplemented_nowarn
;
8611 #if defined(TARGET_NR_utimensat)
8612 case TARGET_NR_utimensat
:
8614 struct timespec
*tsp
, ts
[2];
8618 target_to_host_timespec(ts
, arg3
);
8619 target_to_host_timespec(ts
+1, arg3
+sizeof(struct target_timespec
));
8623 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
8625 if (!(p
= lock_user_string(arg2
))) {
8626 ret
= -TARGET_EFAULT
;
8629 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
8630 unlock_user(p
, arg2
, 0);
8635 case TARGET_NR_futex
:
8636 ret
= do_futex(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
8638 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
8639 case TARGET_NR_inotify_init
:
8640 ret
= get_errno(sys_inotify_init());
8643 #ifdef CONFIG_INOTIFY1
8644 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
8645 case TARGET_NR_inotify_init1
:
8646 ret
= get_errno(sys_inotify_init1(arg1
));
8650 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
8651 case TARGET_NR_inotify_add_watch
:
8652 p
= lock_user_string(arg2
);
8653 ret
= get_errno(sys_inotify_add_watch(arg1
, path(p
), arg3
));
8654 unlock_user(p
, arg2
, 0);
8657 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
8658 case TARGET_NR_inotify_rm_watch
:
8659 ret
= get_errno(sys_inotify_rm_watch(arg1
, arg2
));
8663 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
8664 case TARGET_NR_mq_open
:
8666 struct mq_attr posix_mq_attr
;
8668 p
= lock_user_string(arg1
- 1);
8670 copy_from_user_mq_attr (&posix_mq_attr
, arg4
);
8671 ret
= get_errno(mq_open(p
, arg2
, arg3
, &posix_mq_attr
));
8672 unlock_user (p
, arg1
, 0);
8676 case TARGET_NR_mq_unlink
:
8677 p
= lock_user_string(arg1
- 1);
8678 ret
= get_errno(mq_unlink(p
));
8679 unlock_user (p
, arg1
, 0);
8682 case TARGET_NR_mq_timedsend
:
8686 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
8688 target_to_host_timespec(&ts
, arg5
);
8689 ret
= get_errno(mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
8690 host_to_target_timespec(arg5
, &ts
);
8693 ret
= get_errno(mq_send(arg1
, p
, arg3
, arg4
));
8694 unlock_user (p
, arg2
, arg3
);
8698 case TARGET_NR_mq_timedreceive
:
8703 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
8705 target_to_host_timespec(&ts
, arg5
);
8706 ret
= get_errno(mq_timedreceive(arg1
, p
, arg3
, &prio
, &ts
));
8707 host_to_target_timespec(arg5
, &ts
);
8710 ret
= get_errno(mq_receive(arg1
, p
, arg3
, &prio
));
8711 unlock_user (p
, arg2
, arg3
);
8713 put_user_u32(prio
, arg4
);
8717 /* Not implemented for now... */
8718 /* case TARGET_NR_mq_notify: */
8721 case TARGET_NR_mq_getsetattr
:
8723 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
8726 ret
= mq_getattr(arg1
, &posix_mq_attr_out
);
8727 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
8730 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
8731 ret
|= mq_setattr(arg1
, &posix_mq_attr_in
, &posix_mq_attr_out
);
8738 #ifdef CONFIG_SPLICE
8739 #ifdef TARGET_NR_tee
8742 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
8746 #ifdef TARGET_NR_splice
8747 case TARGET_NR_splice
:
8749 loff_t loff_in
, loff_out
;
8750 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
8752 get_user_u64(loff_in
, arg2
);
8753 ploff_in
= &loff_in
;
8756 get_user_u64(loff_out
, arg2
);
8757 ploff_out
= &loff_out
;
8759 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
8763 #ifdef TARGET_NR_vmsplice
8764 case TARGET_NR_vmsplice
:
8766 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
8768 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
8769 unlock_iovec(vec
, arg2
, arg3
, 0);
8771 ret
= -host_to_target_errno(errno
);
8776 #endif /* CONFIG_SPLICE */
8777 #ifdef CONFIG_EVENTFD
8778 #if defined(TARGET_NR_eventfd)
8779 case TARGET_NR_eventfd
:
8780 ret
= get_errno(eventfd(arg1
, 0));
8783 #if defined(TARGET_NR_eventfd2)
8784 case TARGET_NR_eventfd2
:
8786 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK
| TARGET_O_CLOEXEC
));
8787 if (arg2
& TARGET_O_NONBLOCK
) {
8788 host_flags
|= O_NONBLOCK
;
8790 if (arg2
& TARGET_O_CLOEXEC
) {
8791 host_flags
|= O_CLOEXEC
;
8793 ret
= get_errno(eventfd(arg1
, host_flags
));
8797 #endif /* CONFIG_EVENTFD */
8798 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
8799 case TARGET_NR_fallocate
:
8800 #if TARGET_ABI_BITS == 32
8801 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
8802 target_offset64(arg5
, arg6
)));
8804 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
8808 #if defined(CONFIG_SYNC_FILE_RANGE)
8809 #if defined(TARGET_NR_sync_file_range)
8810 case TARGET_NR_sync_file_range
:
8811 #if TARGET_ABI_BITS == 32
8812 #if defined(TARGET_MIPS)
8813 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
8814 target_offset64(arg5
, arg6
), arg7
));
8816 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
8817 target_offset64(arg4
, arg5
), arg6
));
8818 #endif /* !TARGET_MIPS */
8820 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
8824 #if defined(TARGET_NR_sync_file_range2)
8825 case TARGET_NR_sync_file_range2
:
8826 /* This is like sync_file_range but the arguments are reordered */
8827 #if TARGET_ABI_BITS == 32
8828 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
8829 target_offset64(arg5
, arg6
), arg2
));
8831 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
8836 #if defined(CONFIG_EPOLL)
8837 #if defined(TARGET_NR_epoll_create)
8838 case TARGET_NR_epoll_create
:
8839 ret
= get_errno(epoll_create(arg1
));
8842 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
8843 case TARGET_NR_epoll_create1
:
8844 ret
= get_errno(epoll_create1(arg1
));
8847 #if defined(TARGET_NR_epoll_ctl)
8848 case TARGET_NR_epoll_ctl
:
8850 struct epoll_event ep
;
8851 struct epoll_event
*epp
= 0;
8853 struct target_epoll_event
*target_ep
;
8854 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
8857 ep
.events
= tswap32(target_ep
->events
);
8858 /* The epoll_data_t union is just opaque data to the kernel,
8859 * so we transfer all 64 bits across and need not worry what
8860 * actual data type it is.
8862 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
8863 unlock_user_struct(target_ep
, arg4
, 0);
8866 ret
= get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
8871 #if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT)
8872 #define IMPLEMENT_EPOLL_PWAIT
8874 #if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT)
8875 #if defined(TARGET_NR_epoll_wait)
8876 case TARGET_NR_epoll_wait
:
8878 #if defined(IMPLEMENT_EPOLL_PWAIT)
8879 case TARGET_NR_epoll_pwait
:
8882 struct target_epoll_event
*target_ep
;
8883 struct epoll_event
*ep
;
8885 int maxevents
= arg3
;
8888 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
8889 maxevents
* sizeof(struct target_epoll_event
), 1);
8894 ep
= alloca(maxevents
* sizeof(struct epoll_event
));
8897 #if defined(IMPLEMENT_EPOLL_PWAIT)
8898 case TARGET_NR_epoll_pwait
:
8900 target_sigset_t
*target_set
;
8901 sigset_t _set
, *set
= &_set
;
8904 target_set
= lock_user(VERIFY_READ
, arg5
,
8905 sizeof(target_sigset_t
), 1);
8907 unlock_user(target_ep
, arg2
, 0);
8910 target_to_host_sigset(set
, target_set
);
8911 unlock_user(target_set
, arg5
, 0);
8916 ret
= get_errno(epoll_pwait(epfd
, ep
, maxevents
, timeout
, set
));
8920 #if defined(TARGET_NR_epoll_wait)
8921 case TARGET_NR_epoll_wait
:
8922 ret
= get_errno(epoll_wait(epfd
, ep
, maxevents
, timeout
));
8926 ret
= -TARGET_ENOSYS
;
8928 if (!is_error(ret
)) {
8930 for (i
= 0; i
< ret
; i
++) {
8931 target_ep
[i
].events
= tswap32(ep
[i
].events
);
8932 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
8935 unlock_user(target_ep
, arg2
, ret
* sizeof(struct target_epoll_event
));
8940 #ifdef TARGET_NR_prlimit64
8941 case TARGET_NR_prlimit64
:
8943 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
8944 struct target_rlimit64
*target_rnew
, *target_rold
;
8945 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
8947 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
8950 rnew
.rlim_cur
= tswap64(target_rnew
->rlim_cur
);
8951 rnew
.rlim_max
= tswap64(target_rnew
->rlim_max
);
8952 unlock_user_struct(target_rnew
, arg3
, 0);
8956 ret
= get_errno(sys_prlimit64(arg1
, arg2
, rnewp
, arg4
? &rold
: 0));
8957 if (!is_error(ret
) && arg4
) {
8958 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
8961 target_rold
->rlim_cur
= tswap64(rold
.rlim_cur
);
8962 target_rold
->rlim_max
= tswap64(rold
.rlim_max
);
8963 unlock_user_struct(target_rold
, arg4
, 1);
8968 #ifdef TARGET_NR_gethostname
8969 case TARGET_NR_gethostname
:
8971 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
8973 ret
= get_errno(gethostname(name
, arg2
));
8974 unlock_user(name
, arg1
, arg2
);
8976 ret
= -TARGET_EFAULT
;
8983 gemu_log("qemu: Unsupported syscall: %d\n", num
);
8984 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
8985 unimplemented_nowarn
:
8987 ret
= -TARGET_ENOSYS
;
8992 gemu_log(" = " TARGET_ABI_FMT_ld
"\n", ret
);
8995 print_syscall_ret(num
, ret
);
8998 ret
= -TARGET_EFAULT
;