meson.build: move TCG plugin summary output
[qemu.git] / tcg / region.c
blobe64c3ea2308bc9e56e4c2f67ded9cc83705d430b
1 /*
2 * Memory region management for Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #include "tcg-internal.h"
33 struct tcg_region_tree {
34 QemuMutex lock;
35 GTree *tree;
36 /* padding to avoid false sharing is computed at run-time */
40 * We divide code_gen_buffer into equally-sized "regions" that TCG threads
41 * dynamically allocate from as demand dictates. Given appropriate region
42 * sizing, this minimizes flushes even when some TCG threads generate a lot
43 * more code than others.
45 struct tcg_region_state {
46 QemuMutex lock;
48 /* fields set at init time */
49 void *start_aligned;
50 void *after_prologue;
51 size_t n;
52 size_t size; /* size of one region */
53 size_t stride; /* .size + guard size */
54 size_t total_size; /* size of entire buffer, >= n * stride */
56 /* fields protected by the lock */
57 size_t current; /* current region index */
58 size_t agg_size_full; /* aggregate size of full regions */
61 static struct tcg_region_state region;
64 * This is an array of struct tcg_region_tree's, with padding.
65 * We use void * to simplify the computation of region_trees[i]; each
66 * struct is found every tree_size bytes.
68 static void *region_trees;
69 static size_t tree_size;
71 bool in_code_gen_buffer(const void *p)
74 * Much like it is valid to have a pointer to the byte past the
75 * end of an array (so long as you don't dereference it), allow
76 * a pointer to the byte past the end of the code gen buffer.
78 return (size_t)(p - region.start_aligned) <= region.total_size;
81 #ifdef CONFIG_DEBUG_TCG
82 const void *tcg_splitwx_to_rx(void *rw)
84 /* Pass NULL pointers unchanged. */
85 if (rw) {
86 g_assert(in_code_gen_buffer(rw));
87 rw += tcg_splitwx_diff;
89 return rw;
92 void *tcg_splitwx_to_rw(const void *rx)
94 /* Pass NULL pointers unchanged. */
95 if (rx) {
96 rx -= tcg_splitwx_diff;
97 /* Assert that we end with a pointer in the rw region. */
98 g_assert(in_code_gen_buffer(rx));
100 return (void *)rx;
102 #endif /* CONFIG_DEBUG_TCG */
104 /* compare a pointer @ptr and a tb_tc @s */
105 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
107 if (ptr >= s->ptr + s->size) {
108 return 1;
109 } else if (ptr < s->ptr) {
110 return -1;
112 return 0;
115 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp, gpointer userdata)
117 const struct tb_tc *a = ap;
118 const struct tb_tc *b = bp;
121 * When both sizes are set, we know this isn't a lookup.
122 * This is the most likely case: every TB must be inserted; lookups
123 * are a lot less frequent.
125 if (likely(a->size && b->size)) {
126 if (a->ptr > b->ptr) {
127 return 1;
128 } else if (a->ptr < b->ptr) {
129 return -1;
131 /* a->ptr == b->ptr should happen only on deletions */
132 g_assert(a->size == b->size);
133 return 0;
136 * All lookups have either .size field set to 0.
137 * From the glib sources we see that @ap is always the lookup key. However
138 * the docs provide no guarantee, so we just mark this case as likely.
140 if (likely(a->size == 0)) {
141 return ptr_cmp_tb_tc(a->ptr, b);
143 return ptr_cmp_tb_tc(b->ptr, a);
146 static void tb_destroy(gpointer value)
148 TranslationBlock *tb = value;
149 qemu_spin_destroy(&tb->jmp_lock);
152 static void tcg_region_trees_init(void)
154 size_t i;
156 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
157 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
158 for (i = 0; i < region.n; i++) {
159 struct tcg_region_tree *rt = region_trees + i * tree_size;
161 qemu_mutex_init(&rt->lock);
162 rt->tree = g_tree_new_full(tb_tc_cmp, NULL, NULL, tb_destroy);
166 static struct tcg_region_tree *tc_ptr_to_region_tree(const void *p)
168 size_t region_idx;
171 * Like tcg_splitwx_to_rw, with no assert. The pc may come from
172 * a signal handler over which the caller has no control.
174 if (!in_code_gen_buffer(p)) {
175 p -= tcg_splitwx_diff;
176 if (!in_code_gen_buffer(p)) {
177 return NULL;
181 if (p < region.start_aligned) {
182 region_idx = 0;
183 } else {
184 ptrdiff_t offset = p - region.start_aligned;
186 if (offset > region.stride * (region.n - 1)) {
187 region_idx = region.n - 1;
188 } else {
189 region_idx = offset / region.stride;
192 return region_trees + region_idx * tree_size;
195 void tcg_tb_insert(TranslationBlock *tb)
197 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
199 g_assert(rt != NULL);
200 qemu_mutex_lock(&rt->lock);
201 g_tree_insert(rt->tree, &tb->tc, tb);
202 qemu_mutex_unlock(&rt->lock);
205 void tcg_tb_remove(TranslationBlock *tb)
207 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
209 g_assert(rt != NULL);
210 qemu_mutex_lock(&rt->lock);
211 g_tree_remove(rt->tree, &tb->tc);
212 qemu_mutex_unlock(&rt->lock);
216 * Find the TB 'tb' such that
217 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
218 * Return NULL if not found.
220 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
222 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
223 TranslationBlock *tb;
224 struct tb_tc s = { .ptr = (void *)tc_ptr };
226 if (rt == NULL) {
227 return NULL;
230 qemu_mutex_lock(&rt->lock);
231 tb = g_tree_lookup(rt->tree, &s);
232 qemu_mutex_unlock(&rt->lock);
233 return tb;
236 static void tcg_region_tree_lock_all(void)
238 size_t i;
240 for (i = 0; i < region.n; i++) {
241 struct tcg_region_tree *rt = region_trees + i * tree_size;
243 qemu_mutex_lock(&rt->lock);
247 static void tcg_region_tree_unlock_all(void)
249 size_t i;
251 for (i = 0; i < region.n; i++) {
252 struct tcg_region_tree *rt = region_trees + i * tree_size;
254 qemu_mutex_unlock(&rt->lock);
258 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
260 size_t i;
262 tcg_region_tree_lock_all();
263 for (i = 0; i < region.n; i++) {
264 struct tcg_region_tree *rt = region_trees + i * tree_size;
266 g_tree_foreach(rt->tree, func, user_data);
268 tcg_region_tree_unlock_all();
271 size_t tcg_nb_tbs(void)
273 size_t nb_tbs = 0;
274 size_t i;
276 tcg_region_tree_lock_all();
277 for (i = 0; i < region.n; i++) {
278 struct tcg_region_tree *rt = region_trees + i * tree_size;
280 nb_tbs += g_tree_nnodes(rt->tree);
282 tcg_region_tree_unlock_all();
283 return nb_tbs;
286 static void tcg_region_tree_reset_all(void)
288 size_t i;
290 tcg_region_tree_lock_all();
291 for (i = 0; i < region.n; i++) {
292 struct tcg_region_tree *rt = region_trees + i * tree_size;
294 /* Increment the refcount first so that destroy acts as a reset */
295 g_tree_ref(rt->tree);
296 g_tree_destroy(rt->tree);
298 tcg_region_tree_unlock_all();
301 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
303 void *start, *end;
305 start = region.start_aligned + curr_region * region.stride;
306 end = start + region.size;
308 if (curr_region == 0) {
309 start = region.after_prologue;
311 /* The final region may have a few extra pages due to earlier rounding. */
312 if (curr_region == region.n - 1) {
313 end = region.start_aligned + region.total_size;
316 *pstart = start;
317 *pend = end;
320 static void tcg_region_assign(TCGContext *s, size_t curr_region)
322 void *start, *end;
324 tcg_region_bounds(curr_region, &start, &end);
326 s->code_gen_buffer = start;
327 s->code_gen_ptr = start;
328 s->code_gen_buffer_size = end - start;
329 s->code_gen_highwater = end - TCG_HIGHWATER;
332 static bool tcg_region_alloc__locked(TCGContext *s)
334 if (region.current == region.n) {
335 return true;
337 tcg_region_assign(s, region.current);
338 region.current++;
339 return false;
343 * Request a new region once the one in use has filled up.
344 * Returns true on error.
346 bool tcg_region_alloc(TCGContext *s)
348 bool err;
349 /* read the region size now; alloc__locked will overwrite it on success */
350 size_t size_full = s->code_gen_buffer_size;
352 qemu_mutex_lock(&region.lock);
353 err = tcg_region_alloc__locked(s);
354 if (!err) {
355 region.agg_size_full += size_full - TCG_HIGHWATER;
357 qemu_mutex_unlock(&region.lock);
358 return err;
362 * Perform a context's first region allocation.
363 * This function does _not_ increment region.agg_size_full.
365 static void tcg_region_initial_alloc__locked(TCGContext *s)
367 bool err = tcg_region_alloc__locked(s);
368 g_assert(!err);
371 void tcg_region_initial_alloc(TCGContext *s)
373 qemu_mutex_lock(&region.lock);
374 tcg_region_initial_alloc__locked(s);
375 qemu_mutex_unlock(&region.lock);
378 /* Call from a safe-work context */
379 void tcg_region_reset_all(void)
381 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
382 unsigned int i;
384 qemu_mutex_lock(&region.lock);
385 region.current = 0;
386 region.agg_size_full = 0;
388 for (i = 0; i < n_ctxs; i++) {
389 TCGContext *s = qatomic_read(&tcg_ctxs[i]);
390 tcg_region_initial_alloc__locked(s);
392 qemu_mutex_unlock(&region.lock);
394 tcg_region_tree_reset_all();
397 static size_t tcg_n_regions(size_t tb_size, unsigned max_cpus)
399 #ifdef CONFIG_USER_ONLY
400 return 1;
401 #else
402 size_t n_regions;
405 * It is likely that some vCPUs will translate more code than others,
406 * so we first try to set more regions than max_cpus, with those regions
407 * being of reasonable size. If that's not possible we make do by evenly
408 * dividing the code_gen_buffer among the vCPUs.
410 /* Use a single region if all we have is one vCPU thread */
411 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
412 return 1;
416 * Try to have more regions than max_cpus, with each region being >= 2 MB.
417 * If we can't, then just allocate one region per vCPU thread.
419 n_regions = tb_size / (2 * MiB);
420 if (n_regions <= max_cpus) {
421 return max_cpus;
423 return MIN(n_regions, max_cpus * 8);
424 #endif
428 * Minimum size of the code gen buffer. This number is randomly chosen,
429 * but not so small that we can't have a fair number of TB's live.
431 * Maximum size, MAX_CODE_GEN_BUFFER_SIZE, is defined in tcg-target.h.
432 * Unless otherwise indicated, this is constrained by the range of
433 * direct branches on the host cpu, as used by the TCG implementation
434 * of goto_tb.
436 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB)
438 #if TCG_TARGET_REG_BITS == 32
439 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
440 #ifdef CONFIG_USER_ONLY
442 * For user mode on smaller 32 bit systems we may run into trouble
443 * allocating big chunks of data in the right place. On these systems
444 * we utilise a static code generation buffer directly in the binary.
446 #define USE_STATIC_CODE_GEN_BUFFER
447 #endif
448 #else /* TCG_TARGET_REG_BITS == 64 */
449 #ifdef CONFIG_USER_ONLY
451 * As user-mode emulation typically means running multiple instances
452 * of the translator don't go too nuts with our default code gen
453 * buffer lest we make things too hard for the OS.
455 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
456 #else
458 * We expect most system emulation to run one or two guests per host.
459 * Users running large scale system emulation may want to tweak their
460 * runtime setup via the tb-size control on the command line.
462 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
463 #endif
464 #endif
466 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
467 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
468 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
470 #ifdef __mips__
472 * In order to use J and JAL within the code_gen_buffer, we require
473 * that the buffer not cross a 256MB boundary.
475 static inline bool cross_256mb(void *addr, size_t size)
477 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
481 * We weren't able to allocate a buffer without crossing that boundary,
482 * so make do with the larger portion of the buffer that doesn't cross.
483 * Returns the new base and size of the buffer in *obuf and *osize.
485 static inline void split_cross_256mb(void **obuf, size_t *osize,
486 void *buf1, size_t size1)
488 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
489 size_t size2 = buf1 + size1 - buf2;
491 size1 = buf2 - buf1;
492 if (size1 < size2) {
493 size1 = size2;
494 buf1 = buf2;
497 *obuf = buf1;
498 *osize = size1;
500 #endif
502 #ifdef USE_STATIC_CODE_GEN_BUFFER
503 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
504 __attribute__((aligned(CODE_GEN_ALIGN)));
506 static int alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
508 void *buf, *end;
509 size_t size;
511 if (splitwx > 0) {
512 error_setg(errp, "jit split-wx not supported");
513 return -1;
516 /* page-align the beginning and end of the buffer */
517 buf = static_code_gen_buffer;
518 end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
519 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
520 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
522 size = end - buf;
524 /* Honor a command-line option limiting the size of the buffer. */
525 if (size > tb_size) {
526 size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
529 #ifdef __mips__
530 if (cross_256mb(buf, size)) {
531 split_cross_256mb(&buf, &size, buf, size);
533 #endif
535 region.start_aligned = buf;
536 region.total_size = size;
538 return PROT_READ | PROT_WRITE;
540 #elif defined(_WIN32)
541 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
543 void *buf;
545 if (splitwx > 0) {
546 error_setg(errp, "jit split-wx not supported");
547 return -1;
550 buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
551 PAGE_EXECUTE_READWRITE);
552 if (buf == NULL) {
553 error_setg_win32(errp, GetLastError(),
554 "allocate %zu bytes for jit buffer", size);
555 return false;
558 region.start_aligned = buf;
559 region.total_size = size;
561 return PAGE_READ | PAGE_WRITE | PAGE_EXEC;
563 #else
564 static int alloc_code_gen_buffer_anon(size_t size, int prot,
565 int flags, Error **errp)
567 void *buf;
569 buf = mmap(NULL, size, prot, flags, -1, 0);
570 if (buf == MAP_FAILED) {
571 error_setg_errno(errp, errno,
572 "allocate %zu bytes for jit buffer", size);
573 return -1;
576 #ifdef __mips__
577 if (cross_256mb(buf, size)) {
579 * Try again, with the original still mapped, to avoid re-acquiring
580 * the same 256mb crossing.
582 size_t size2;
583 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
584 switch ((int)(buf2 != MAP_FAILED)) {
585 case 1:
586 if (!cross_256mb(buf2, size)) {
587 /* Success! Use the new buffer. */
588 munmap(buf, size);
589 break;
591 /* Failure. Work with what we had. */
592 munmap(buf2, size);
593 /* fallthru */
594 default:
595 /* Split the original buffer. Free the smaller half. */
596 split_cross_256mb(&buf2, &size2, buf, size);
597 if (buf == buf2) {
598 munmap(buf + size2, size - size2);
599 } else {
600 munmap(buf, size - size2);
602 size = size2;
603 break;
605 buf = buf2;
607 #endif
609 region.start_aligned = buf;
610 region.total_size = size;
611 return prot;
614 #ifndef CONFIG_TCG_INTERPRETER
615 #ifdef CONFIG_POSIX
616 #include "qemu/memfd.h"
618 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
620 void *buf_rw = NULL, *buf_rx = MAP_FAILED;
621 int fd = -1;
623 #ifdef __mips__
624 /* Find space for the RX mapping, vs the 256MiB regions. */
625 if (alloc_code_gen_buffer_anon(size, PROT_NONE,
626 MAP_PRIVATE | MAP_ANONYMOUS |
627 MAP_NORESERVE, errp) < 0) {
628 return false;
630 /* The size of the mapping may have been adjusted. */
631 buf_rx = region.start_aligned;
632 size = region.total_size;
633 #endif
635 buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
636 if (buf_rw == NULL) {
637 goto fail;
640 #ifdef __mips__
641 void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC,
642 MAP_SHARED | MAP_FIXED, fd, 0);
643 if (tmp != buf_rx) {
644 goto fail_rx;
646 #else
647 buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
648 if (buf_rx == MAP_FAILED) {
649 goto fail_rx;
651 #endif
653 close(fd);
654 region.start_aligned = buf_rw;
655 region.total_size = size;
656 tcg_splitwx_diff = buf_rx - buf_rw;
658 return PROT_READ | PROT_WRITE;
660 fail_rx:
661 error_setg_errno(errp, errno, "failed to map shared memory for execute");
662 fail:
663 if (buf_rx != MAP_FAILED) {
664 munmap(buf_rx, size);
666 if (buf_rw) {
667 munmap(buf_rw, size);
669 if (fd >= 0) {
670 close(fd);
672 return -1;
674 #endif /* CONFIG_POSIX */
676 #ifdef CONFIG_DARWIN
677 #include <mach/mach.h>
679 extern kern_return_t mach_vm_remap(vm_map_t target_task,
680 mach_vm_address_t *target_address,
681 mach_vm_size_t size,
682 mach_vm_offset_t mask,
683 int flags,
684 vm_map_t src_task,
685 mach_vm_address_t src_address,
686 boolean_t copy,
687 vm_prot_t *cur_protection,
688 vm_prot_t *max_protection,
689 vm_inherit_t inheritance);
691 static int alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
693 kern_return_t ret;
694 mach_vm_address_t buf_rw, buf_rx;
695 vm_prot_t cur_prot, max_prot;
697 /* Map the read-write portion via normal anon memory. */
698 if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
699 MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
700 return -1;
703 buf_rw = (mach_vm_address_t)region.start_aligned;
704 buf_rx = 0;
705 ret = mach_vm_remap(mach_task_self(),
706 &buf_rx,
707 size,
709 VM_FLAGS_ANYWHERE,
710 mach_task_self(),
711 buf_rw,
712 false,
713 &cur_prot,
714 &max_prot,
715 VM_INHERIT_NONE);
716 if (ret != KERN_SUCCESS) {
717 /* TODO: Convert "ret" to a human readable error message. */
718 error_setg(errp, "vm_remap for jit splitwx failed");
719 munmap((void *)buf_rw, size);
720 return -1;
723 if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
724 error_setg_errno(errp, errno, "mprotect for jit splitwx");
725 munmap((void *)buf_rx, size);
726 munmap((void *)buf_rw, size);
727 return -1;
730 tcg_splitwx_diff = buf_rx - buf_rw;
731 return PROT_READ | PROT_WRITE;
733 #endif /* CONFIG_DARWIN */
734 #endif /* CONFIG_TCG_INTERPRETER */
736 static int alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
738 #ifndef CONFIG_TCG_INTERPRETER
739 # ifdef CONFIG_DARWIN
740 return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
741 # endif
742 # ifdef CONFIG_POSIX
743 return alloc_code_gen_buffer_splitwx_memfd(size, errp);
744 # endif
745 #endif
746 error_setg(errp, "jit split-wx not supported");
747 return -1;
750 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
752 ERRP_GUARD();
753 int prot, flags;
755 if (splitwx) {
756 prot = alloc_code_gen_buffer_splitwx(size, errp);
757 if (prot >= 0) {
758 return prot;
761 * If splitwx force-on (1), fail;
762 * if splitwx default-on (-1), fall through to splitwx off.
764 if (splitwx > 0) {
765 return -1;
767 error_free_or_abort(errp);
771 * macOS 11.2 has a bug (Apple Feedback FB8994773) in which mprotect
772 * rejects a permission change from RWX -> NONE when reserving the
773 * guard pages later. We can go the other way with the same number
774 * of syscalls, so always begin with PROT_NONE.
776 prot = PROT_NONE;
777 flags = MAP_PRIVATE | MAP_ANONYMOUS;
778 #ifdef CONFIG_DARWIN
779 /* Applicable to both iOS and macOS (Apple Silicon). */
780 if (!splitwx) {
781 flags |= MAP_JIT;
783 #endif
785 return alloc_code_gen_buffer_anon(size, prot, flags, errp);
787 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
790 * Initializes region partitioning.
792 * Called at init time from the parent thread (i.e. the one calling
793 * tcg_context_init), after the target's TCG globals have been set.
795 * Region partitioning works by splitting code_gen_buffer into separate regions,
796 * and then assigning regions to TCG threads so that the threads can translate
797 * code in parallel without synchronization.
799 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
800 * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
801 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
802 * must have been parsed before calling this function, since it calls
803 * qemu_tcg_mttcg_enabled().
805 * In user-mode we use a single region. Having multiple regions in user-mode
806 * is not supported, because the number of vCPU threads (recall that each thread
807 * spawned by the guest corresponds to a vCPU thread) is only bounded by the
808 * OS, and usually this number is huge (tens of thousands is not uncommon).
809 * Thus, given this large bound on the number of vCPU threads and the fact
810 * that code_gen_buffer is allocated at compile-time, we cannot guarantee
811 * that the availability of at least one region per vCPU thread.
813 * However, this user-mode limitation is unlikely to be a significant problem
814 * in practice. Multi-threaded guests share most if not all of their translated
815 * code, which makes parallel code generation less appealing than in softmmu.
817 void tcg_region_init(size_t tb_size, int splitwx, unsigned max_cpus)
819 const size_t page_size = qemu_real_host_page_size;
820 size_t region_size;
821 int have_prot, need_prot;
823 /* Size the buffer. */
824 if (tb_size == 0) {
825 size_t phys_mem = qemu_get_host_physmem();
826 if (phys_mem == 0) {
827 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
828 } else {
829 tb_size = QEMU_ALIGN_DOWN(phys_mem / 8, page_size);
830 tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, tb_size);
833 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
834 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
836 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
837 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
840 have_prot = alloc_code_gen_buffer(tb_size, splitwx, &error_fatal);
841 assert(have_prot >= 0);
843 /* Request large pages for the buffer and the splitwx. */
844 qemu_madvise(region.start_aligned, region.total_size, QEMU_MADV_HUGEPAGE);
845 if (tcg_splitwx_diff) {
846 qemu_madvise(region.start_aligned + tcg_splitwx_diff,
847 region.total_size, QEMU_MADV_HUGEPAGE);
851 * Make region_size a multiple of page_size, using aligned as the start.
852 * As a result of this we might end up with a few extra pages at the end of
853 * the buffer; we will assign those to the last region.
855 region.n = tcg_n_regions(tb_size, max_cpus);
856 region_size = tb_size / region.n;
857 region_size = QEMU_ALIGN_DOWN(region_size, page_size);
859 /* A region must have at least 2 pages; one code, one guard */
860 g_assert(region_size >= 2 * page_size);
861 region.stride = region_size;
863 /* Reserve space for guard pages. */
864 region.size = region_size - page_size;
865 region.total_size -= page_size;
868 * The first region will be smaller than the others, via the prologue,
869 * which has yet to be allocated. For now, the first region begins at
870 * the page boundary.
872 region.after_prologue = region.start_aligned;
874 /* init the region struct */
875 qemu_mutex_init(&region.lock);
878 * Set guard pages in the rw buffer, as that's the one into which
879 * buffer overruns could occur. Do not set guard pages in the rx
880 * buffer -- let that one use hugepages throughout.
881 * Work with the page protections set up with the initial mapping.
883 need_prot = PAGE_READ | PAGE_WRITE;
884 #ifndef CONFIG_TCG_INTERPRETER
885 if (tcg_splitwx_diff == 0) {
886 need_prot |= PAGE_EXEC;
888 #endif
889 for (size_t i = 0, n = region.n; i < n; i++) {
890 void *start, *end;
892 tcg_region_bounds(i, &start, &end);
893 if (have_prot != need_prot) {
894 int rc;
896 if (need_prot == (PAGE_READ | PAGE_WRITE | PAGE_EXEC)) {
897 rc = qemu_mprotect_rwx(start, end - start);
898 } else if (need_prot == (PAGE_READ | PAGE_WRITE)) {
899 rc = qemu_mprotect_rw(start, end - start);
900 } else {
901 g_assert_not_reached();
903 if (rc) {
904 error_setg_errno(&error_fatal, errno,
905 "mprotect of jit buffer");
908 if (have_prot != 0) {
909 /* Guard pages are nice for bug detection but are not essential. */
910 (void)qemu_mprotect_none(end, page_size);
914 tcg_region_trees_init();
917 * Leave the initial context initialized to the first region.
918 * This will be the context into which we generate the prologue.
919 * It is also the only context for CONFIG_USER_ONLY.
921 tcg_region_initial_alloc__locked(&tcg_init_ctx);
924 void tcg_region_prologue_set(TCGContext *s)
926 /* Deduct the prologue from the first region. */
927 g_assert(region.start_aligned == s->code_gen_buffer);
928 region.after_prologue = s->code_ptr;
930 /* Recompute boundaries of the first region. */
931 tcg_region_assign(s, 0);
933 /* Register the balance of the buffer with gdb. */
934 tcg_register_jit(tcg_splitwx_to_rx(region.after_prologue),
935 region.start_aligned + region.total_size -
936 region.after_prologue);
940 * Returns the size (in bytes) of all translated code (i.e. from all regions)
941 * currently in the cache.
942 * See also: tcg_code_capacity()
943 * Do not confuse with tcg_current_code_size(); that one applies to a single
944 * TCG context.
946 size_t tcg_code_size(void)
948 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
949 unsigned int i;
950 size_t total;
952 qemu_mutex_lock(&region.lock);
953 total = region.agg_size_full;
954 for (i = 0; i < n_ctxs; i++) {
955 const TCGContext *s = qatomic_read(&tcg_ctxs[i]);
956 size_t size;
958 size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
959 g_assert(size <= s->code_gen_buffer_size);
960 total += size;
962 qemu_mutex_unlock(&region.lock);
963 return total;
967 * Returns the code capacity (in bytes) of the entire cache, i.e. including all
968 * regions.
969 * See also: tcg_code_size()
971 size_t tcg_code_capacity(void)
973 size_t guard_size, capacity;
975 /* no need for synchronization; these variables are set at init time */
976 guard_size = region.stride - region.size;
977 capacity = region.total_size;
978 capacity -= (region.n - 1) * guard_size;
979 capacity -= region.n * TCG_HIGHWATER;
981 return capacity;