Implement scsi device destruction
[qemu.git] / qemu-options.hx
blobf21e9f9da22060b5ae917d639e05dc6d41e2a53d
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help) is used to construct
5 HXCOMM option structures, enums and help message.
6 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8 DEFHEADING(Standard options:)
9 STEXI
10 @table @option
11 ETEXI
13 DEF("help", 0, QEMU_OPTION_h,
14 "-h or -help display this help and exit\n")
15 STEXI
16 @item -h
17 Display help and exit
18 ETEXI
20 DEF("version", 0, QEMU_OPTION_version,
21 "-version display version information and exit\n")
22 STEXI
23 @item -version
24 Display version information and exit
25 ETEXI
27 DEF("M", HAS_ARG, QEMU_OPTION_M,
28 "-M machine select emulated machine (-M ? for list)\n")
29 STEXI
30 @item -M @var{machine}
31 Select the emulated @var{machine} (@code{-M ?} for list)
32 ETEXI
34 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
35 "-cpu cpu select CPU (-cpu ? for list)\n")
36 STEXI
37 @item -cpu @var{model}
38 Select CPU model (-cpu ? for list and additional feature selection)
39 ETEXI
41 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
42 "-smp n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
43 " set the number of CPUs to 'n' [default=1]\n"
44 " maxcpus= maximum number of total cpus, including\n"
45 " offline CPUs for hotplug etc.\n"
46 " cores= number of CPU cores on one socket\n"
47 " threads= number of threads on one CPU core\n"
48 " sockets= number of discrete sockets in the system\n")
49 STEXI
50 @item -smp @var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
51 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
52 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
53 to 4.
54 For the PC target, the number of @var{cores} per socket, the number
55 of @var{threads} per cores and the total number of @var{sockets} can be
56 specified. Missing values will be computed. If any on the three values is
57 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
58 specifies the maximum number of hotpluggable CPUs.
59 ETEXI
61 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
62 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n")
63 STEXI
64 @item -numa @var{opts}
65 Simulate a multi node NUMA system. If mem and cpus are omitted, resources
66 are split equally.
67 ETEXI
69 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
70 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n")
71 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "")
72 STEXI
73 @item -fda @var{file}
74 @item -fdb @var{file}
75 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
76 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
77 ETEXI
79 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
80 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n")
81 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "")
82 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
83 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n")
84 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "")
85 STEXI
86 @item -hda @var{file}
87 @item -hdb @var{file}
88 @item -hdc @var{file}
89 @item -hdd @var{file}
90 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
91 ETEXI
93 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
94 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n")
95 STEXI
96 @item -cdrom @var{file}
97 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
98 @option{-cdrom} at the same time). You can use the host CD-ROM by
99 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
100 ETEXI
102 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
103 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
104 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
105 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
106 " [,addr=A][,id=name][,aio=threads|native]\n"
107 " use 'file' as a drive image\n")
108 DEF("set", HAS_ARG, QEMU_OPTION_set,
109 "-set group.id.arg=value\n"
110 " set <arg> parameter for item <id> of type <group>\n"
111 " i.e. -set drive.$id.file=/path/to/image\n")
112 STEXI
113 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
115 Define a new drive. Valid options are:
117 @table @code
118 @item file=@var{file}
119 This option defines which disk image (@pxref{disk_images}) to use with
120 this drive. If the filename contains comma, you must double it
121 (for instance, "file=my,,file" to use file "my,file").
122 @item if=@var{interface}
123 This option defines on which type on interface the drive is connected.
124 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
125 @item bus=@var{bus},unit=@var{unit}
126 These options define where is connected the drive by defining the bus number and
127 the unit id.
128 @item index=@var{index}
129 This option defines where is connected the drive by using an index in the list
130 of available connectors of a given interface type.
131 @item media=@var{media}
132 This option defines the type of the media: disk or cdrom.
133 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
134 These options have the same definition as they have in @option{-hdachs}.
135 @item snapshot=@var{snapshot}
136 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
137 @item cache=@var{cache}
138 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
139 @item aio=@var{aio}
140 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
141 @item format=@var{format}
142 Specify which disk @var{format} will be used rather than detecting
143 the format. Can be used to specifiy format=raw to avoid interpreting
144 an untrusted format header.
145 @item serial=@var{serial}
146 This option specifies the serial number to assign to the device.
147 @item addr=@var{addr}
148 Specify the controller's PCI address (if=virtio only).
149 @end table
151 By default, writethrough caching is used for all block device. This means that
152 the host page cache will be used to read and write data but write notification
153 will be sent to the guest only when the data has been reported as written by
154 the storage subsystem.
156 Writeback caching will report data writes as completed as soon as the data is
157 present in the host page cache. This is safe as long as you trust your host.
158 If your host crashes or loses power, then the guest may experience data
159 corruption. When using the @option{-snapshot} option, writeback caching is
160 used by default.
162 The host page cache can be avoided entirely with @option{cache=none}. This will
163 attempt to do disk IO directly to the guests memory. QEMU may still perform
164 an internal copy of the data.
166 Some block drivers perform badly with @option{cache=writethrough}, most notably,
167 qcow2. If performance is more important than correctness,
168 @option{cache=writeback} should be used with qcow2.
170 Instead of @option{-cdrom} you can use:
171 @example
172 qemu -drive file=file,index=2,media=cdrom
173 @end example
175 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
176 use:
177 @example
178 qemu -drive file=file,index=0,media=disk
179 qemu -drive file=file,index=1,media=disk
180 qemu -drive file=file,index=2,media=disk
181 qemu -drive file=file,index=3,media=disk
182 @end example
184 You can connect a CDROM to the slave of ide0:
185 @example
186 qemu -drive file=file,if=ide,index=1,media=cdrom
187 @end example
189 If you don't specify the "file=" argument, you define an empty drive:
190 @example
191 qemu -drive if=ide,index=1,media=cdrom
192 @end example
194 You can connect a SCSI disk with unit ID 6 on the bus #0:
195 @example
196 qemu -drive file=file,if=scsi,bus=0,unit=6
197 @end example
199 Instead of @option{-fda}, @option{-fdb}, you can use:
200 @example
201 qemu -drive file=file,index=0,if=floppy
202 qemu -drive file=file,index=1,if=floppy
203 @end example
205 By default, @var{interface} is "ide" and @var{index} is automatically
206 incremented:
207 @example
208 qemu -drive file=a -drive file=b"
209 @end example
210 is interpreted like:
211 @example
212 qemu -hda a -hdb b
213 @end example
214 ETEXI
216 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
217 "-mtdblock file use 'file' as on-board Flash memory image\n")
218 STEXI
220 @item -mtdblock file
221 Use 'file' as on-board Flash memory image.
222 ETEXI
224 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
225 "-sd file use 'file' as SecureDigital card image\n")
226 STEXI
227 @item -sd file
228 Use 'file' as SecureDigital card image.
229 ETEXI
231 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
232 "-pflash file use 'file' as a parallel flash image\n")
233 STEXI
234 @item -pflash file
235 Use 'file' as a parallel flash image.
236 ETEXI
238 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
239 "-boot [order=drives][,once=drives][,menu=on|off]\n"
240 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n")
241 STEXI
242 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off]
244 Specify boot order @var{drives} as a string of drive letters. Valid
245 drive letters depend on the target achitecture. The x86 PC uses: a, b
246 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
247 from network adapter 1-4), hard disk boot is the default. To apply a
248 particular boot order only on the first startup, specify it via
249 @option{once}.
251 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
252 as firmware/BIOS supports them. The default is non-interactive boot.
254 @example
255 # try to boot from network first, then from hard disk
256 qemu -boot order=nc
257 # boot from CD-ROM first, switch back to default order after reboot
258 qemu -boot once=d
259 @end example
261 Note: The legacy format '-boot @var{drives}' is still supported but its
262 use is discouraged as it may be removed from future versions.
263 ETEXI
265 DEF("snapshot", 0, QEMU_OPTION_snapshot,
266 "-snapshot write to temporary files instead of disk image files\n")
267 STEXI
268 @item -snapshot
269 Write to temporary files instead of disk image files. In this case,
270 the raw disk image you use is not written back. You can however force
271 the write back by pressing @key{C-a s} (@pxref{disk_images}).
272 ETEXI
274 DEF("m", HAS_ARG, QEMU_OPTION_m,
275 "-m megs set virtual RAM size to megs MB [default=%d]\n")
276 STEXI
277 @item -m @var{megs}
278 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
279 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
280 gigabytes respectively.
281 ETEXI
283 DEF("k", HAS_ARG, QEMU_OPTION_k,
284 "-k language use keyboard layout (for example 'fr' for French)\n")
285 STEXI
286 @item -k @var{language}
288 Use keyboard layout @var{language} (for example @code{fr} for
289 French). This option is only needed where it is not easy to get raw PC
290 keycodes (e.g. on Macs, with some X11 servers or with a VNC
291 display). You don't normally need to use it on PC/Linux or PC/Windows
292 hosts.
294 The available layouts are:
295 @example
296 ar de-ch es fo fr-ca hu ja mk no pt-br sv
297 da en-gb et fr fr-ch is lt nl pl ru th
298 de en-us fi fr-be hr it lv nl-be pt sl tr
299 @end example
301 The default is @code{en-us}.
302 ETEXI
305 #ifdef HAS_AUDIO
306 DEF("audio-help", 0, QEMU_OPTION_audio_help,
307 "-audio-help print list of audio drivers and their options\n")
308 #endif
309 STEXI
310 @item -audio-help
312 Will show the audio subsystem help: list of drivers, tunable
313 parameters.
314 ETEXI
316 #ifdef HAS_AUDIO
317 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
318 "-soundhw c1,... enable audio support\n"
319 " and only specified sound cards (comma separated list)\n"
320 " use -soundhw ? to get the list of supported cards\n"
321 " use -soundhw all to enable all of them\n")
322 #endif
323 STEXI
324 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
326 Enable audio and selected sound hardware. Use ? to print all
327 available sound hardware.
329 @example
330 qemu -soundhw sb16,adlib disk.img
331 qemu -soundhw es1370 disk.img
332 qemu -soundhw ac97 disk.img
333 qemu -soundhw all disk.img
334 qemu -soundhw ?
335 @end example
337 Note that Linux's i810_audio OSS kernel (for AC97) module might
338 require manually specifying clocking.
340 @example
341 modprobe i810_audio clocking=48000
342 @end example
343 ETEXI
345 STEXI
346 @end table
347 ETEXI
349 DEF("usb", 0, QEMU_OPTION_usb,
350 "-usb enable the USB driver (will be the default soon)\n")
351 STEXI
352 USB options:
353 @table @option
355 @item -usb
356 Enable the USB driver (will be the default soon)
357 ETEXI
359 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
360 "-usbdevice name add the host or guest USB device 'name'\n")
361 STEXI
363 @item -usbdevice @var{devname}
364 Add the USB device @var{devname}. @xref{usb_devices}.
366 @table @code
368 @item mouse
369 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
371 @item tablet
372 Pointer device that uses absolute coordinates (like a touchscreen). This
373 means qemu is able to report the mouse position without having to grab the
374 mouse. Also overrides the PS/2 mouse emulation when activated.
376 @item disk:[format=@var{format}]:file
377 Mass storage device based on file. The optional @var{format} argument
378 will be used rather than detecting the format. Can be used to specifiy
379 format=raw to avoid interpreting an untrusted format header.
381 @item host:bus.addr
382 Pass through the host device identified by bus.addr (Linux only).
384 @item host:vendor_id:product_id
385 Pass through the host device identified by vendor_id:product_id (Linux only).
387 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
388 Serial converter to host character device @var{dev}, see @code{-serial} for the
389 available devices.
391 @item braille
392 Braille device. This will use BrlAPI to display the braille output on a real
393 or fake device.
395 @item net:options
396 Network adapter that supports CDC ethernet and RNDIS protocols.
398 @end table
399 ETEXI
401 DEF("device", HAS_ARG, QEMU_OPTION_device,
402 "-device driver[,options] add device\n")
403 DEF("name", HAS_ARG, QEMU_OPTION_name,
404 "-name string1[,process=string2] set the name of the guest\n"
405 " string1 sets the window title and string2 the process name (on Linux)\n")
406 STEXI
407 @item -name @var{name}
408 Sets the @var{name} of the guest.
409 This name will be displayed in the SDL window caption.
410 The @var{name} will also be used for the VNC server.
411 Also optionally set the top visible process name in Linux.
412 ETEXI
414 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
415 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
416 " specify machine UUID\n")
417 STEXI
418 @item -uuid @var{uuid}
419 Set system UUID.
420 ETEXI
422 STEXI
423 @end table
424 ETEXI
426 DEFHEADING()
428 DEFHEADING(Display options:)
430 STEXI
431 @table @option
432 ETEXI
434 DEF("nographic", 0, QEMU_OPTION_nographic,
435 "-nographic disable graphical output and redirect serial I/Os to console\n")
436 STEXI
437 @item -nographic
439 Normally, QEMU uses SDL to display the VGA output. With this option,
440 you can totally disable graphical output so that QEMU is a simple
441 command line application. The emulated serial port is redirected on
442 the console. Therefore, you can still use QEMU to debug a Linux kernel
443 with a serial console.
444 ETEXI
446 #ifdef CONFIG_CURSES
447 DEF("curses", 0, QEMU_OPTION_curses,
448 "-curses use a curses/ncurses interface instead of SDL\n")
449 #endif
450 STEXI
451 @item -curses
453 Normally, QEMU uses SDL to display the VGA output. With this option,
454 QEMU can display the VGA output when in text mode using a
455 curses/ncurses interface. Nothing is displayed in graphical mode.
456 ETEXI
458 #ifdef CONFIG_SDL
459 DEF("no-frame", 0, QEMU_OPTION_no_frame,
460 "-no-frame open SDL window without a frame and window decorations\n")
461 #endif
462 STEXI
463 @item -no-frame
465 Do not use decorations for SDL windows and start them using the whole
466 available screen space. This makes the using QEMU in a dedicated desktop
467 workspace more convenient.
468 ETEXI
470 #ifdef CONFIG_SDL
471 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
472 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n")
473 #endif
474 STEXI
475 @item -alt-grab
477 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
478 ETEXI
480 #ifdef CONFIG_SDL
481 DEF("no-quit", 0, QEMU_OPTION_no_quit,
482 "-no-quit disable SDL window close capability\n")
483 #endif
484 STEXI
485 @item -no-quit
487 Disable SDL window close capability.
488 ETEXI
490 #ifdef CONFIG_SDL
491 DEF("sdl", 0, QEMU_OPTION_sdl,
492 "-sdl enable SDL\n")
493 #endif
494 STEXI
495 @item -sdl
497 Enable SDL.
498 ETEXI
500 DEF("portrait", 0, QEMU_OPTION_portrait,
501 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n")
502 STEXI
503 @item -portrait
505 Rotate graphical output 90 deg left (only PXA LCD).
506 ETEXI
508 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
509 "-vga [std|cirrus|vmware|xenfb|none]\n"
510 " select video card type\n")
511 STEXI
512 @item -vga @var{type}
513 Select type of VGA card to emulate. Valid values for @var{type} are
514 @table @code
515 @item cirrus
516 Cirrus Logic GD5446 Video card. All Windows versions starting from
517 Windows 95 should recognize and use this graphic card. For optimal
518 performances, use 16 bit color depth in the guest and the host OS.
519 (This one is the default)
520 @item std
521 Standard VGA card with Bochs VBE extensions. If your guest OS
522 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
523 to use high resolution modes (>= 1280x1024x16) then you should use
524 this option.
525 @item vmware
526 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
527 recent XFree86/XOrg server or Windows guest with a driver for this
528 card.
529 @item none
530 Disable VGA card.
531 @end table
532 ETEXI
534 DEF("full-screen", 0, QEMU_OPTION_full_screen,
535 "-full-screen start in full screen\n")
536 STEXI
537 @item -full-screen
538 Start in full screen.
539 ETEXI
541 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
542 DEF("g", 1, QEMU_OPTION_g ,
543 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n")
544 #endif
545 STEXI
546 ETEXI
548 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
549 "-vnc display start a VNC server on display\n")
550 STEXI
551 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
553 Normally, QEMU uses SDL to display the VGA output. With this option,
554 you can have QEMU listen on VNC display @var{display} and redirect the VGA
555 display over the VNC session. It is very useful to enable the usb
556 tablet device when using this option (option @option{-usbdevice
557 tablet}). When using the VNC display, you must use the @option{-k}
558 parameter to set the keyboard layout if you are not using en-us. Valid
559 syntax for the @var{display} is
561 @table @code
563 @item @var{host}:@var{d}
565 TCP connections will only be allowed from @var{host} on display @var{d}.
566 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
567 be omitted in which case the server will accept connections from any host.
569 @item @code{unix}:@var{path}
571 Connections will be allowed over UNIX domain sockets where @var{path} is the
572 location of a unix socket to listen for connections on.
574 @item none
576 VNC is initialized but not started. The monitor @code{change} command
577 can be used to later start the VNC server.
579 @end table
581 Following the @var{display} value there may be one or more @var{option} flags
582 separated by commas. Valid options are
584 @table @code
586 @item reverse
588 Connect to a listening VNC client via a ``reverse'' connection. The
589 client is specified by the @var{display}. For reverse network
590 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
591 is a TCP port number, not a display number.
593 @item password
595 Require that password based authentication is used for client connections.
596 The password must be set separately using the @code{change} command in the
597 @ref{pcsys_monitor}
599 @item tls
601 Require that client use TLS when communicating with the VNC server. This
602 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
603 attack. It is recommended that this option be combined with either the
604 @var{x509} or @var{x509verify} options.
606 @item x509=@var{/path/to/certificate/dir}
608 Valid if @option{tls} is specified. Require that x509 credentials are used
609 for negotiating the TLS session. The server will send its x509 certificate
610 to the client. It is recommended that a password be set on the VNC server
611 to provide authentication of the client when this is used. The path following
612 this option specifies where the x509 certificates are to be loaded from.
613 See the @ref{vnc_security} section for details on generating certificates.
615 @item x509verify=@var{/path/to/certificate/dir}
617 Valid if @option{tls} is specified. Require that x509 credentials are used
618 for negotiating the TLS session. The server will send its x509 certificate
619 to the client, and request that the client send its own x509 certificate.
620 The server will validate the client's certificate against the CA certificate,
621 and reject clients when validation fails. If the certificate authority is
622 trusted, this is a sufficient authentication mechanism. You may still wish
623 to set a password on the VNC server as a second authentication layer. The
624 path following this option specifies where the x509 certificates are to
625 be loaded from. See the @ref{vnc_security} section for details on generating
626 certificates.
628 @item sasl
630 Require that the client use SASL to authenticate with the VNC server.
631 The exact choice of authentication method used is controlled from the
632 system / user's SASL configuration file for the 'qemu' service. This
633 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
634 unprivileged user, an environment variable SASL_CONF_PATH can be used
635 to make it search alternate locations for the service config.
636 While some SASL auth methods can also provide data encryption (eg GSSAPI),
637 it is recommended that SASL always be combined with the 'tls' and
638 'x509' settings to enable use of SSL and server certificates. This
639 ensures a data encryption preventing compromise of authentication
640 credentials. See the @ref{vnc_security} section for details on using
641 SASL authentication.
643 @item acl
645 Turn on access control lists for checking of the x509 client certificate
646 and SASL party. For x509 certs, the ACL check is made against the
647 certificate's distinguished name. This is something that looks like
648 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
649 made against the username, which depending on the SASL plugin, may
650 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
651 When the @option{acl} flag is set, the initial access list will be
652 empty, with a @code{deny} policy. Thus no one will be allowed to
653 use the VNC server until the ACLs have been loaded. This can be
654 achieved using the @code{acl} monitor command.
656 @end table
657 ETEXI
659 STEXI
660 @end table
661 ETEXI
663 DEFHEADING()
665 #ifdef TARGET_I386
666 DEFHEADING(i386 target only:)
667 #endif
668 STEXI
669 @table @option
670 ETEXI
672 #ifdef TARGET_I386
673 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
674 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n")
675 #endif
676 STEXI
677 @item -win2k-hack
678 Use it when installing Windows 2000 to avoid a disk full bug. After
679 Windows 2000 is installed, you no longer need this option (this option
680 slows down the IDE transfers).
681 ETEXI
683 #ifdef TARGET_I386
684 HXCOMM Deprecated by -rtc
685 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "")
686 #endif
688 #ifdef TARGET_I386
689 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
690 "-no-fd-bootchk disable boot signature checking for floppy disks\n")
691 #endif
692 STEXI
693 @item -no-fd-bootchk
694 Disable boot signature checking for floppy disks in Bochs BIOS. It may
695 be needed to boot from old floppy disks.
696 ETEXI
698 #ifdef TARGET_I386
699 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
700 "-no-acpi disable ACPI\n")
701 #endif
702 STEXI
703 @item -no-acpi
704 Disable ACPI (Advanced Configuration and Power Interface) support. Use
705 it if your guest OS complains about ACPI problems (PC target machine
706 only).
707 ETEXI
709 #ifdef TARGET_I386
710 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
711 "-no-hpet disable HPET\n")
712 #endif
713 STEXI
714 @item -no-hpet
715 Disable HPET support.
716 ETEXI
718 #ifdef TARGET_I386
719 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
720 "-balloon none disable balloon device\n"
721 "-balloon virtio[,addr=str]\n"
722 " enable virtio balloon device (default)\n")
723 #endif
724 STEXI
725 @item -balloon none
726 Disable balloon device.
727 @item -balloon virtio[,addr=@var{addr}]
728 Enable virtio balloon device (default), optionally with PCI address
729 @var{addr}.
730 ETEXI
732 #ifdef TARGET_I386
733 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
734 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
735 " ACPI table description\n")
736 #endif
737 STEXI
738 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
739 Add ACPI table with specified header fields and context from specified files.
740 ETEXI
742 #ifdef TARGET_I386
743 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
744 "-smbios file=binary\n"
745 " Load SMBIOS entry from binary file\n"
746 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%%d.%%d]\n"
747 " Specify SMBIOS type 0 fields\n"
748 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
749 " [,uuid=uuid][,sku=str][,family=str]\n"
750 " Specify SMBIOS type 1 fields\n")
751 #endif
752 STEXI
753 @item -smbios file=@var{binary}
754 Load SMBIOS entry from binary file.
756 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}]
757 Specify SMBIOS type 0 fields
759 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
760 Specify SMBIOS type 1 fields
761 ETEXI
763 #ifdef TARGET_I386
764 DEFHEADING()
765 #endif
766 STEXI
767 @end table
768 ETEXI
770 DEFHEADING(Network options:)
771 STEXI
772 @table @option
773 ETEXI
775 HXCOMM Legacy slirp options (now moved to -net user):
776 #ifdef CONFIG_SLIRP
777 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "")
778 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "")
779 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "")
780 #ifndef _WIN32
781 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "")
782 #endif
783 #endif
785 DEF("net", HAS_ARG, QEMU_OPTION_net,
786 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
787 " create a new Network Interface Card and connect it to VLAN 'n'\n"
788 #ifdef CONFIG_SLIRP
789 "-net user[,vlan=n][,name=str][,net=addr[/mask]][,host=addr][,restrict=y|n]\n"
790 " [,hostname=host][,dhcpstart=addr][,dns=addr][,tftp=dir][,bootfile=f]\n"
791 " [,hostfwd=rule][,guestfwd=rule]"
792 #ifndef _WIN32
793 "[,smb=dir[,smbserver=addr]]\n"
794 #endif
795 " connect the user mode network stack to VLAN 'n', configure its\n"
796 " DHCP server and enabled optional services\n"
797 #endif
798 #ifdef _WIN32
799 "-net tap[,vlan=n][,name=str],ifname=name\n"
800 " connect the host TAP network interface to VLAN 'n'\n"
801 #else
802 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]"
803 #ifdef TUNSETSNDBUF
804 "[,sndbuf=nbytes]"
805 #endif
806 "\n"
807 " connect the host TAP network interface to VLAN 'n' and use the\n"
808 " network scripts 'file' (default=%s)\n"
809 " and 'dfile' (default=%s);\n"
810 " use '[down]script=no' to disable script execution;\n"
811 " use 'fd=h' to connect to an already opened TAP interface\n"
812 #ifdef TUNSETSNDBUF
813 " use 'sndbuf=nbytes' to limit the size of the send buffer; the\n"
814 " default of 'sndbuf=1048576' can be disabled using 'sndbuf=0'\n"
815 #endif
816 #endif
817 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
818 " connect the vlan 'n' to another VLAN using a socket connection\n"
819 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
820 " connect the vlan 'n' to multicast maddr and port\n"
821 #ifdef CONFIG_VDE
822 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
823 " connect the vlan 'n' to port 'n' of a vde switch running\n"
824 " on host and listening for incoming connections on 'socketpath'.\n"
825 " Use group 'groupname' and mode 'octalmode' to change default\n"
826 " ownership and permissions for communication port.\n"
827 #endif
828 "-net dump[,vlan=n][,file=f][,len=n]\n"
829 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
830 "-net none use it alone to have zero network devices; if no -net option\n"
831 " is provided, the default is '-net nic -net user'\n")
832 STEXI
833 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}][,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
834 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
835 = 0 is the default). The NIC is an e1000 by default on the PC
836 target. Optionally, the MAC address can be changed to @var{mac}, the
837 device address set to @var{addr} (PCI cards only),
838 and a @var{name} can be assigned for use in monitor commands.
839 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
840 that the card should have; this option currently only affects virtio cards; set
841 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
842 NIC is created. Qemu can emulate several different models of network card.
843 Valid values for @var{type} are
844 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
845 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
846 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
847 Not all devices are supported on all targets. Use -net nic,model=?
848 for a list of available devices for your target.
850 @item -net user[,@var{option}][,@var{option}][,...]
851 Use the user mode network stack which requires no administrator
852 privilege to run. Valid options are:
854 @table @code
855 @item vlan=@var{n}
856 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
858 @item name=@var{name}
859 Assign symbolic name for use in monitor commands.
861 @item net=@var{addr}[/@var{mask}]
862 Set IP network address the guest will see. Optionally specify the netmask,
863 either in the form a.b.c.d or as number of valid top-most bits. Default is
864 10.0.2.0/8.
866 @item host=@var{addr}
867 Specify the guest-visible address of the host. Default is the 2nd IP in the
868 guest network, i.e. x.x.x.2.
870 @item restrict=y|yes|n|no
871 If this options is enabled, the guest will be isolated, i.e. it will not be
872 able to contact the host and no guest IP packets will be routed over the host
873 to the outside. This option does not affect explicitly set forwarding rule.
875 @item hostname=@var{name}
876 Specifies the client hostname reported by the builtin DHCP server.
878 @item dhcpstart=@var{addr}
879 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
880 is the 16th to 31st IP in the guest network, i.e. x.x.x.16 to x.x.x.31.
882 @item dns=@var{addr}
883 Specify the guest-visible address of the virtual nameserver. The address must
884 be different from the host address. Default is the 3rd IP in the guest network,
885 i.e. x.x.x.3.
887 @item tftp=@var{dir}
888 When using the user mode network stack, activate a built-in TFTP
889 server. The files in @var{dir} will be exposed as the root of a TFTP server.
890 The TFTP client on the guest must be configured in binary mode (use the command
891 @code{bin} of the Unix TFTP client).
893 @item bootfile=@var{file}
894 When using the user mode network stack, broadcast @var{file} as the BOOTP
895 filename. In conjunction with @option{tftp}, this can be used to network boot
896 a guest from a local directory.
898 Example (using pxelinux):
899 @example
900 qemu -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
901 @end example
903 @item smb=@var{dir}[,smbserver=@var{addr}]
904 When using the user mode network stack, activate a built-in SMB
905 server so that Windows OSes can access to the host files in @file{@var{dir}}
906 transparently. The IP address of the SMB server can be set to @var{addr}. By
907 default the 4th IP in the guest network is used, i.e. x.x.x.4.
909 In the guest Windows OS, the line:
910 @example
911 10.0.2.4 smbserver
912 @end example
913 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
914 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
916 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
918 Note that a SAMBA server must be installed on the host OS in
919 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd versions from
920 Red Hat 9, Fedora Core 3 and OpenSUSE 11.x.
922 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
923 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
924 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
925 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
926 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
927 be bound to a specific host interface. If no connection type is set, TCP is
928 used. This option can be given multiple times.
930 For example, to redirect host X11 connection from screen 1 to guest
931 screen 0, use the following:
933 @example
934 # on the host
935 qemu -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
936 # this host xterm should open in the guest X11 server
937 xterm -display :1
938 @end example
940 To redirect telnet connections from host port 5555 to telnet port on
941 the guest, use the following:
943 @example
944 # on the host
945 qemu -net user,hostfwd=tcp:5555::23 [...]
946 telnet localhost 5555
947 @end example
949 Then when you use on the host @code{telnet localhost 5555}, you
950 connect to the guest telnet server.
952 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
953 Forward guest TCP connections to the IP address @var{server} on port @var{port}
954 to the character device @var{dev}. This option can be given multiple times.
956 @end table
958 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
959 processed and applied to -net user. Mixing them with the new configuration
960 syntax gives undefined results. Their use for new applications is discouraged
961 as they will be removed from future versions.
963 @item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
964 Connect the host TAP network interface @var{name} to VLAN @var{n}, use
965 the network script @var{file} to configure it and the network script
966 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
967 automatically provides one. @option{fd}=@var{h} can be used to specify
968 the handle of an already opened host TAP interface. The default network
969 configure script is @file{/etc/qemu-ifup} and the default network
970 deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
971 or @option{downscript=no} to disable script execution. Example:
973 @example
974 qemu linux.img -net nic -net tap
975 @end example
977 More complicated example (two NICs, each one connected to a TAP device)
978 @example
979 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
980 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
981 @end example
983 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
985 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
986 machine using a TCP socket connection. If @option{listen} is
987 specified, QEMU waits for incoming connections on @var{port}
988 (@var{host} is optional). @option{connect} is used to connect to
989 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
990 specifies an already opened TCP socket.
992 Example:
993 @example
994 # launch a first QEMU instance
995 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
996 -net socket,listen=:1234
997 # connect the VLAN 0 of this instance to the VLAN 0
998 # of the first instance
999 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1000 -net socket,connect=127.0.0.1:1234
1001 @end example
1003 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
1005 Create a VLAN @var{n} shared with another QEMU virtual
1006 machines using a UDP multicast socket, effectively making a bus for
1007 every QEMU with same multicast address @var{maddr} and @var{port}.
1008 NOTES:
1009 @enumerate
1010 @item
1011 Several QEMU can be running on different hosts and share same bus (assuming
1012 correct multicast setup for these hosts).
1013 @item
1014 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1015 @url{http://user-mode-linux.sf.net}.
1016 @item
1017 Use @option{fd=h} to specify an already opened UDP multicast socket.
1018 @end enumerate
1020 Example:
1021 @example
1022 # launch one QEMU instance
1023 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1024 -net socket,mcast=230.0.0.1:1234
1025 # launch another QEMU instance on same "bus"
1026 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1027 -net socket,mcast=230.0.0.1:1234
1028 # launch yet another QEMU instance on same "bus"
1029 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
1030 -net socket,mcast=230.0.0.1:1234
1031 @end example
1033 Example (User Mode Linux compat.):
1034 @example
1035 # launch QEMU instance (note mcast address selected
1036 # is UML's default)
1037 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1038 -net socket,mcast=239.192.168.1:1102
1039 # launch UML
1040 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
1041 @end example
1043 @item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
1044 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
1045 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
1046 and MODE @var{octalmode} to change default ownership and permissions for
1047 communication port. This option is available only if QEMU has been compiled
1048 with vde support enabled.
1050 Example:
1051 @example
1052 # launch vde switch
1053 vde_switch -F -sock /tmp/myswitch
1054 # launch QEMU instance
1055 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
1056 @end example
1058 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
1059 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
1060 At most @var{len} bytes (64k by default) per packet are stored. The file format is
1061 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
1063 @item -net none
1064 Indicate that no network devices should be configured. It is used to
1065 override the default configuration (@option{-net nic -net user}) which
1066 is activated if no @option{-net} options are provided.
1068 @end table
1069 ETEXI
1071 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
1072 "\n" \
1073 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
1074 "-bt hci,host[:id]\n" \
1075 " use host's HCI with the given name\n" \
1076 "-bt hci[,vlan=n]\n" \
1077 " emulate a standard HCI in virtual scatternet 'n'\n" \
1078 "-bt vhci[,vlan=n]\n" \
1079 " add host computer to virtual scatternet 'n' using VHCI\n" \
1080 "-bt device:dev[,vlan=n]\n" \
1081 " emulate a bluetooth device 'dev' in scatternet 'n'\n")
1082 STEXI
1083 Bluetooth(R) options:
1084 @table @option
1086 @item -bt hci[...]
1087 Defines the function of the corresponding Bluetooth HCI. -bt options
1088 are matched with the HCIs present in the chosen machine type. For
1089 example when emulating a machine with only one HCI built into it, only
1090 the first @code{-bt hci[...]} option is valid and defines the HCI's
1091 logic. The Transport Layer is decided by the machine type. Currently
1092 the machines @code{n800} and @code{n810} have one HCI and all other
1093 machines have none.
1095 @anchor{bt-hcis}
1096 The following three types are recognized:
1098 @table @code
1099 @item -bt hci,null
1100 (default) The corresponding Bluetooth HCI assumes no internal logic
1101 and will not respond to any HCI commands or emit events.
1103 @item -bt hci,host[:@var{id}]
1104 (@code{bluez} only) The corresponding HCI passes commands / events
1105 to / from the physical HCI identified by the name @var{id} (default:
1106 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
1107 capable systems like Linux.
1109 @item -bt hci[,vlan=@var{n}]
1110 Add a virtual, standard HCI that will participate in the Bluetooth
1111 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
1112 VLANs, devices inside a bluetooth network @var{n} can only communicate
1113 with other devices in the same network (scatternet).
1114 @end table
1116 @item -bt vhci[,vlan=@var{n}]
1117 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
1118 to the host bluetooth stack instead of to the emulated target. This
1119 allows the host and target machines to participate in a common scatternet
1120 and communicate. Requires the Linux @code{vhci} driver installed. Can
1121 be used as following:
1123 @example
1124 qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
1125 @end example
1127 @item -bt device:@var{dev}[,vlan=@var{n}]
1128 Emulate a bluetooth device @var{dev} and place it in network @var{n}
1129 (default @code{0}). QEMU can only emulate one type of bluetooth devices
1130 currently:
1132 @table @code
1133 @item keyboard
1134 Virtual wireless keyboard implementing the HIDP bluetooth profile.
1135 @end table
1136 @end table
1137 ETEXI
1139 DEFHEADING()
1141 DEFHEADING(Linux/Multiboot boot specific:)
1142 STEXI
1144 When using these options, you can use a given Linux or Multiboot
1145 kernel without installing it in the disk image. It can be useful
1146 for easier testing of various kernels.
1148 @table @option
1149 ETEXI
1151 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
1152 "-kernel bzImage use 'bzImage' as kernel image\n")
1153 STEXI
1154 @item -kernel @var{bzImage}
1155 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
1156 or in multiboot format.
1157 ETEXI
1159 DEF("append", HAS_ARG, QEMU_OPTION_append, \
1160 "-append cmdline use 'cmdline' as kernel command line\n")
1161 STEXI
1162 @item -append @var{cmdline}
1163 Use @var{cmdline} as kernel command line
1164 ETEXI
1166 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
1167 "-initrd file use 'file' as initial ram disk\n")
1168 STEXI
1169 @item -initrd @var{file}
1170 Use @var{file} as initial ram disk.
1172 @item -initrd "@var{file1} arg=foo,@var{file2}"
1174 This syntax is only available with multiboot.
1176 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
1177 first module.
1178 ETEXI
1180 STEXI
1181 @end table
1182 ETEXI
1184 DEFHEADING()
1186 DEFHEADING(Debug/Expert options:)
1188 STEXI
1189 @table @option
1190 ETEXI
1192 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev, \
1193 "-chardev spec create unconnected chardev\n")
1194 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
1195 "-serial dev redirect the serial port to char device 'dev'\n")
1196 STEXI
1197 @item -serial @var{dev}
1198 Redirect the virtual serial port to host character device
1199 @var{dev}. The default device is @code{vc} in graphical mode and
1200 @code{stdio} in non graphical mode.
1202 This option can be used several times to simulate up to 4 serial
1203 ports.
1205 Use @code{-serial none} to disable all serial ports.
1207 Available character devices are:
1208 @table @code
1209 @item vc[:WxH]
1210 Virtual console. Optionally, a width and height can be given in pixel with
1211 @example
1212 vc:800x600
1213 @end example
1214 It is also possible to specify width or height in characters:
1215 @example
1216 vc:80Cx24C
1217 @end example
1218 @item pty
1219 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
1220 @item none
1221 No device is allocated.
1222 @item null
1223 void device
1224 @item /dev/XXX
1225 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
1226 parameters are set according to the emulated ones.
1227 @item /dev/parport@var{N}
1228 [Linux only, parallel port only] Use host parallel port
1229 @var{N}. Currently SPP and EPP parallel port features can be used.
1230 @item file:@var{filename}
1231 Write output to @var{filename}. No character can be read.
1232 @item stdio
1233 [Unix only] standard input/output
1234 @item pipe:@var{filename}
1235 name pipe @var{filename}
1236 @item COM@var{n}
1237 [Windows only] Use host serial port @var{n}
1238 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
1239 This implements UDP Net Console.
1240 When @var{remote_host} or @var{src_ip} are not specified
1241 they default to @code{0.0.0.0}.
1242 When not using a specified @var{src_port} a random port is automatically chosen.
1243 @item msmouse
1244 Three button serial mouse. Configure the guest to use Microsoft protocol.
1246 If you just want a simple readonly console you can use @code{netcat} or
1247 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
1248 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
1249 will appear in the netconsole session.
1251 If you plan to send characters back via netconsole or you want to stop
1252 and start qemu a lot of times, you should have qemu use the same
1253 source port each time by using something like @code{-serial
1254 udp::4555@@:4556} to qemu. Another approach is to use a patched
1255 version of netcat which can listen to a TCP port and send and receive
1256 characters via udp. If you have a patched version of netcat which
1257 activates telnet remote echo and single char transfer, then you can
1258 use the following options to step up a netcat redirector to allow
1259 telnet on port 5555 to access the qemu port.
1260 @table @code
1261 @item Qemu Options:
1262 -serial udp::4555@@:4556
1263 @item netcat options:
1264 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1265 @item telnet options:
1266 localhost 5555
1267 @end table
1269 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
1270 The TCP Net Console has two modes of operation. It can send the serial
1271 I/O to a location or wait for a connection from a location. By default
1272 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
1273 the @var{server} option QEMU will wait for a client socket application
1274 to connect to the port before continuing, unless the @code{nowait}
1275 option was specified. The @code{nodelay} option disables the Nagle buffering
1276 algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
1277 one TCP connection at a time is accepted. You can use @code{telnet} to
1278 connect to the corresponding character device.
1279 @table @code
1280 @item Example to send tcp console to 192.168.0.2 port 4444
1281 -serial tcp:192.168.0.2:4444
1282 @item Example to listen and wait on port 4444 for connection
1283 -serial tcp::4444,server
1284 @item Example to not wait and listen on ip 192.168.0.100 port 4444
1285 -serial tcp:192.168.0.100:4444,server,nowait
1286 @end table
1288 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1289 The telnet protocol is used instead of raw tcp sockets. The options
1290 work the same as if you had specified @code{-serial tcp}. The
1291 difference is that the port acts like a telnet server or client using
1292 telnet option negotiation. This will also allow you to send the
1293 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1294 sequence. Typically in unix telnet you do it with Control-] and then
1295 type "send break" followed by pressing the enter key.
1297 @item unix:@var{path}[,server][,nowait]
1298 A unix domain socket is used instead of a tcp socket. The option works the
1299 same as if you had specified @code{-serial tcp} except the unix domain socket
1300 @var{path} is used for connections.
1302 @item mon:@var{dev_string}
1303 This is a special option to allow the monitor to be multiplexed onto
1304 another serial port. The monitor is accessed with key sequence of
1305 @key{Control-a} and then pressing @key{c}. See monitor access
1306 @ref{pcsys_keys} in the -nographic section for more keys.
1307 @var{dev_string} should be any one of the serial devices specified
1308 above. An example to multiplex the monitor onto a telnet server
1309 listening on port 4444 would be:
1310 @table @code
1311 @item -serial mon:telnet::4444,server,nowait
1312 @end table
1314 @item braille
1315 Braille device. This will use BrlAPI to display the braille output on a real
1316 or fake device.
1318 @end table
1319 ETEXI
1321 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
1322 "-parallel dev redirect the parallel port to char device 'dev'\n")
1323 STEXI
1324 @item -parallel @var{dev}
1325 Redirect the virtual parallel port to host device @var{dev} (same
1326 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1327 be used to use hardware devices connected on the corresponding host
1328 parallel port.
1330 This option can be used several times to simulate up to 3 parallel
1331 ports.
1333 Use @code{-parallel none} to disable all parallel ports.
1334 ETEXI
1336 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
1337 "-monitor dev redirect the monitor to char device 'dev'\n")
1338 STEXI
1339 @item -monitor @var{dev}
1340 Redirect the monitor to host device @var{dev} (same devices as the
1341 serial port).
1342 The default device is @code{vc} in graphical mode and @code{stdio} in
1343 non graphical mode.
1344 ETEXI
1346 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
1347 "-pidfile file write PID to 'file'\n")
1348 STEXI
1349 @item -pidfile @var{file}
1350 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1351 from a script.
1352 ETEXI
1354 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
1355 "-singlestep always run in singlestep mode\n")
1356 STEXI
1357 @item -singlestep
1358 Run the emulation in single step mode.
1359 ETEXI
1361 DEF("S", 0, QEMU_OPTION_S, \
1362 "-S freeze CPU at startup (use 'c' to start execution)\n")
1363 STEXI
1364 @item -S
1365 Do not start CPU at startup (you must type 'c' in the monitor).
1366 ETEXI
1368 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
1369 "-gdb dev wait for gdb connection on 'dev'\n")
1370 STEXI
1371 @item -gdb @var{dev}
1372 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
1373 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
1374 stdio are reasonable use case. The latter is allowing to start qemu from
1375 within gdb and establish the connection via a pipe:
1376 @example
1377 (gdb) target remote | exec qemu -gdb stdio ...
1378 @end example
1379 ETEXI
1381 DEF("s", 0, QEMU_OPTION_s, \
1382 "-s shorthand for -gdb tcp::%s\n")
1383 STEXI
1384 @item -s
1385 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
1386 (@pxref{gdb_usage}).
1387 ETEXI
1389 DEF("d", HAS_ARG, QEMU_OPTION_d, \
1390 "-d item1,... output log to %s (use -d ? for a list of log items)\n")
1391 STEXI
1392 @item -d
1393 Output log in /tmp/qemu.log
1394 ETEXI
1396 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
1397 "-hdachs c,h,s[,t]\n" \
1398 " force hard disk 0 physical geometry and the optional BIOS\n" \
1399 " translation (t=none or lba) (usually qemu can guess them)\n")
1400 STEXI
1401 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1402 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1403 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1404 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1405 all those parameters. This option is useful for old MS-DOS disk
1406 images.
1407 ETEXI
1409 DEF("L", HAS_ARG, QEMU_OPTION_L, \
1410 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n")
1411 STEXI
1412 @item -L @var{path}
1413 Set the directory for the BIOS, VGA BIOS and keymaps.
1414 ETEXI
1416 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
1417 "-bios file set the filename for the BIOS\n")
1418 STEXI
1419 @item -bios @var{file}
1420 Set the filename for the BIOS.
1421 ETEXI
1423 #ifdef CONFIG_KVM
1424 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
1425 "-enable-kvm enable KVM full virtualization support\n")
1426 #endif
1427 STEXI
1428 @item -enable-kvm
1429 Enable KVM full virtualization support. This option is only available
1430 if KVM support is enabled when compiling.
1431 ETEXI
1433 #ifdef CONFIG_XEN
1434 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
1435 "-xen-domid id specify xen guest domain id\n")
1436 DEF("xen-create", 0, QEMU_OPTION_xen_create,
1437 "-xen-create create domain using xen hypercalls, bypassing xend\n"
1438 " warning: should not be used when xend is in use\n")
1439 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
1440 "-xen-attach attach to existing xen domain\n"
1441 " xend will use this when starting qemu\n")
1442 #endif
1444 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
1445 "-no-reboot exit instead of rebooting\n")
1446 STEXI
1447 @item -no-reboot
1448 Exit instead of rebooting.
1449 ETEXI
1451 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
1452 "-no-shutdown stop before shutdown\n")
1453 STEXI
1454 @item -no-shutdown
1455 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1456 This allows for instance switching to monitor to commit changes to the
1457 disk image.
1458 ETEXI
1460 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
1461 "-loadvm [tag|id]\n" \
1462 " start right away with a saved state (loadvm in monitor)\n")
1463 STEXI
1464 @item -loadvm @var{file}
1465 Start right away with a saved state (@code{loadvm} in monitor)
1466 ETEXI
1468 #ifndef _WIN32
1469 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
1470 "-daemonize daemonize QEMU after initializing\n")
1471 #endif
1472 STEXI
1473 @item -daemonize
1474 Daemonize the QEMU process after initialization. QEMU will not detach from
1475 standard IO until it is ready to receive connections on any of its devices.
1476 This option is a useful way for external programs to launch QEMU without having
1477 to cope with initialization race conditions.
1478 ETEXI
1480 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
1481 "-option-rom rom load a file, rom, into the option ROM space\n")
1482 STEXI
1483 @item -option-rom @var{file}
1484 Load the contents of @var{file} as an option ROM.
1485 This option is useful to load things like EtherBoot.
1486 ETEXI
1488 DEF("clock", HAS_ARG, QEMU_OPTION_clock, \
1489 "-clock force the use of the given methods for timer alarm.\n" \
1490 " To see what timers are available use -clock ?\n")
1491 STEXI
1492 @item -clock @var{method}
1493 Force the use of the given methods for timer alarm. To see what timers
1494 are available use -clock ?.
1495 ETEXI
1497 HXCOMM Options deprecated by -rtc
1498 DEF("localtime", 0, QEMU_OPTION_localtime, "")
1499 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "")
1501 #ifdef TARGET_I386
1502 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
1503 "-rtc [base=utc|localtime|date][,clock=host|vm][,driftfix=none|slew]\n" \
1504 " set the RTC base and clock, enable drift fix for clock ticks\n")
1505 #else
1506 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
1507 "-rtc [base=utc|localtime|date][,clock=host|vm]\n" \
1508 " set the RTC base and clock\n")
1509 #endif
1511 STEXI
1513 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
1514 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
1515 UTC or local time, respectively. @code{localtime} is required for correct date in
1516 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
1517 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
1519 By default the RTC is driven by the host system time. This allows to use the
1520 RTC as accurate reference clock inside the guest, specifically if the host
1521 time is smoothly following an accurate external reference clock, e.g. via NTP.
1522 If you want to isolate the guest time from the host, even prevent it from
1523 progressing during suspension, you can set @option{clock} to @code{vm} instead.
1525 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
1526 specifically with Windows' ACPI HAL. This option will try to figure out how
1527 many timer interrupts were not processed by the Windows guest and will
1528 re-inject them.
1529 ETEXI
1531 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
1532 "-icount [N|auto]\n" \
1533 " enable virtual instruction counter with 2^N clock ticks per\n" \
1534 " instruction\n")
1535 STEXI
1536 @item -icount [N|auto]
1537 Enable virtual instruction counter. The virtual cpu will execute one
1538 instruction every 2^N ns of virtual time. If @code{auto} is specified
1539 then the virtual cpu speed will be automatically adjusted to keep virtual
1540 time within a few seconds of real time.
1542 Note that while this option can give deterministic behavior, it does not
1543 provide cycle accurate emulation. Modern CPUs contain superscalar out of
1544 order cores with complex cache hierarchies. The number of instructions
1545 executed often has little or no correlation with actual performance.
1546 ETEXI
1548 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
1549 "-watchdog i6300esb|ib700\n" \
1550 " enable virtual hardware watchdog [default=none]\n")
1551 STEXI
1552 @item -watchdog @var{model}
1553 Create a virtual hardware watchdog device. Once enabled (by a guest
1554 action), the watchdog must be periodically polled by an agent inside
1555 the guest or else the guest will be restarted.
1557 The @var{model} is the model of hardware watchdog to emulate. Choices
1558 for model are: @code{ib700} (iBASE 700) which is a very simple ISA
1559 watchdog with a single timer, or @code{i6300esb} (Intel 6300ESB I/O
1560 controller hub) which is a much more featureful PCI-based dual-timer
1561 watchdog. Choose a model for which your guest has drivers.
1563 Use @code{-watchdog ?} to list available hardware models. Only one
1564 watchdog can be enabled for a guest.
1565 ETEXI
1567 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
1568 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
1569 " action when watchdog fires [default=reset]\n")
1570 STEXI
1571 @item -watchdog-action @var{action}
1573 The @var{action} controls what QEMU will do when the watchdog timer
1574 expires.
1575 The default is
1576 @code{reset} (forcefully reset the guest).
1577 Other possible actions are:
1578 @code{shutdown} (attempt to gracefully shutdown the guest),
1579 @code{poweroff} (forcefully poweroff the guest),
1580 @code{pause} (pause the guest),
1581 @code{debug} (print a debug message and continue), or
1582 @code{none} (do nothing).
1584 Note that the @code{shutdown} action requires that the guest responds
1585 to ACPI signals, which it may not be able to do in the sort of
1586 situations where the watchdog would have expired, and thus
1587 @code{-watchdog-action shutdown} is not recommended for production use.
1589 Examples:
1591 @table @code
1592 @item -watchdog i6300esb -watchdog-action pause
1593 @item -watchdog ib700
1594 @end table
1595 ETEXI
1597 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
1598 "-echr chr set terminal escape character instead of ctrl-a\n")
1599 STEXI
1601 @item -echr numeric_ascii_value
1602 Change the escape character used for switching to the monitor when using
1603 monitor and serial sharing. The default is @code{0x01} when using the
1604 @code{-nographic} option. @code{0x01} is equal to pressing
1605 @code{Control-a}. You can select a different character from the ascii
1606 control keys where 1 through 26 map to Control-a through Control-z. For
1607 instance you could use the either of the following to change the escape
1608 character to Control-t.
1609 @table @code
1610 @item -echr 0x14
1611 @item -echr 20
1612 @end table
1613 ETEXI
1615 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
1616 "-virtioconsole c\n" \
1617 " set virtio console\n")
1618 STEXI
1619 @item -virtioconsole @var{c}
1620 Set virtio console.
1621 ETEXI
1623 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
1624 "-show-cursor show cursor\n")
1625 STEXI
1626 ETEXI
1628 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
1629 "-tb-size n set TB size\n")
1630 STEXI
1631 ETEXI
1633 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
1634 "-incoming p prepare for incoming migration, listen on port p\n")
1635 STEXI
1636 ETEXI
1638 #ifndef _WIN32
1639 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
1640 "-chroot dir Chroot to dir just before starting the VM.\n")
1641 #endif
1642 STEXI
1643 @item -chroot dir
1644 Immediately before starting guest execution, chroot to the specified
1645 directory. Especially useful in combination with -runas.
1646 ETEXI
1648 #ifndef _WIN32
1649 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
1650 "-runas user Change to user id user just before starting the VM.\n")
1651 #endif
1652 STEXI
1653 @item -runas user
1654 Immediately before starting guest execution, drop root privileges, switching
1655 to the specified user.
1656 ETEXI
1658 STEXI
1659 @end table
1660 ETEXI
1662 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
1663 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
1664 "-prom-env variable=value\n"
1665 " set OpenBIOS nvram variables\n")
1666 #endif
1667 #if defined(TARGET_ARM) || defined(TARGET_M68K)
1668 DEF("semihosting", 0, QEMU_OPTION_semihosting,
1669 "-semihosting semihosting mode\n")
1670 #endif
1671 #if defined(TARGET_ARM)
1672 DEF("old-param", 0, QEMU_OPTION_old_param,
1673 "-old-param old param mode\n")
1674 #endif