4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* This check must be after config-host.h is included */
33 #include <sys/eventfd.h>
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #define DPRINTF(fmt, ...) \
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr
;
52 ram_addr_t memory_size
;
53 ram_addr_t phys_offset
;
58 typedef struct kvm_dirty_log KVMDirtyLog
;
66 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
67 int broken_set_mem_region
;
70 int robust_singlestep
;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
75 int irqchip_in_kernel
;
83 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
84 KVM_CAP_INFO(USER_MEMORY
),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
89 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
93 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
94 if (s
->slots
[i
].memory_size
== 0) {
99 fprintf(stderr
, "%s: no free slot available\n", __func__
);
103 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
104 target_phys_addr_t start_addr
,
105 target_phys_addr_t end_addr
)
109 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
110 KVMSlot
*mem
= &s
->slots
[i
];
112 if (start_addr
== mem
->start_addr
&&
113 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
122 * Find overlapping slot with lowest start address
124 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
125 target_phys_addr_t start_addr
,
126 target_phys_addr_t end_addr
)
128 KVMSlot
*found
= NULL
;
131 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
132 KVMSlot
*mem
= &s
->slots
[i
];
134 if (mem
->memory_size
== 0 ||
135 (found
&& found
->start_addr
< mem
->start_addr
)) {
139 if (end_addr
> mem
->start_addr
&&
140 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
148 int kvm_physical_memory_addr_from_ram(KVMState
*s
, ram_addr_t ram_addr
,
149 target_phys_addr_t
*phys_addr
)
153 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
154 KVMSlot
*mem
= &s
->slots
[i
];
156 if (ram_addr
>= mem
->phys_offset
&&
157 ram_addr
< mem
->phys_offset
+ mem
->memory_size
) {
158 *phys_addr
= mem
->start_addr
+ (ram_addr
- mem
->phys_offset
);
166 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
168 struct kvm_userspace_memory_region mem
;
170 mem
.slot
= slot
->slot
;
171 mem
.guest_phys_addr
= slot
->start_addr
;
172 mem
.memory_size
= slot
->memory_size
;
173 mem
.userspace_addr
= (unsigned long)qemu_safe_ram_ptr(slot
->phys_offset
);
174 mem
.flags
= slot
->flags
;
175 if (s
->migration_log
) {
176 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
178 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
181 static void kvm_reset_vcpu(void *opaque
)
183 CPUState
*env
= opaque
;
185 kvm_arch_reset_vcpu(env
);
188 int kvm_irqchip_in_kernel(void)
190 return kvm_state
->irqchip_in_kernel
;
193 int kvm_pit_in_kernel(void)
195 return kvm_state
->pit_in_kernel
;
198 int kvm_init_vcpu(CPUState
*env
)
200 KVMState
*s
= kvm_state
;
204 DPRINTF("kvm_init_vcpu\n");
206 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
208 DPRINTF("kvm_create_vcpu failed\n");
214 env
->kvm_vcpu_dirty
= 1;
216 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
219 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
223 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
225 if (env
->kvm_run
== MAP_FAILED
) {
227 DPRINTF("mmap'ing vcpu state failed\n");
231 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
232 s
->coalesced_mmio_ring
=
233 (void *)env
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
236 ret
= kvm_arch_init_vcpu(env
);
238 qemu_register_reset(kvm_reset_vcpu
, env
);
239 kvm_arch_reset_vcpu(env
);
246 * dirty pages logging control
249 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
)
251 return log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
254 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
256 KVMState
*s
= kvm_state
;
257 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
260 old_flags
= mem
->flags
;
262 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
);
265 /* If nothing changed effectively, no need to issue ioctl */
266 if (s
->migration_log
) {
267 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
270 if (flags
== old_flags
) {
274 return kvm_set_user_memory_region(s
, mem
);
277 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
278 ram_addr_t size
, bool log_dirty
)
280 KVMState
*s
= kvm_state
;
281 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
284 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
285 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
286 (target_phys_addr_t
)(phys_addr
+ size
- 1));
289 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
292 static int kvm_log_start(CPUPhysMemoryClient
*client
,
293 target_phys_addr_t phys_addr
, ram_addr_t size
)
295 return kvm_dirty_pages_log_change(phys_addr
, size
, true);
298 static int kvm_log_stop(CPUPhysMemoryClient
*client
,
299 target_phys_addr_t phys_addr
, ram_addr_t size
)
301 return kvm_dirty_pages_log_change(phys_addr
, size
, false);
304 static int kvm_set_migration_log(int enable
)
306 KVMState
*s
= kvm_state
;
310 s
->migration_log
= enable
;
312 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
315 if (!mem
->memory_size
) {
318 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
321 err
= kvm_set_user_memory_region(s
, mem
);
329 /* get kvm's dirty pages bitmap and update qemu's */
330 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
331 unsigned long *bitmap
,
332 unsigned long offset
,
333 unsigned long mem_size
)
336 unsigned long page_number
, addr
, addr1
, c
;
338 unsigned int len
= ((mem_size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) /
342 * bitmap-traveling is faster than memory-traveling (for addr...)
343 * especially when most of the memory is not dirty.
345 for (i
= 0; i
< len
; i
++) {
346 if (bitmap
[i
] != 0) {
347 c
= leul_to_cpu(bitmap
[i
]);
351 page_number
= i
* HOST_LONG_BITS
+ j
;
352 addr1
= page_number
* TARGET_PAGE_SIZE
;
353 addr
= offset
+ addr1
;
354 ram_addr
= cpu_get_physical_page_desc(addr
);
355 cpu_physical_memory_set_dirty(ram_addr
);
362 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
365 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
366 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
367 * This means all bits are set to dirty.
369 * @start_add: start of logged region.
370 * @end_addr: end of logged region.
372 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
373 target_phys_addr_t end_addr
)
375 KVMState
*s
= kvm_state
;
376 unsigned long size
, allocated_size
= 0;
381 d
.dirty_bitmap
= NULL
;
382 while (start_addr
< end_addr
) {
383 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
388 /* XXX bad kernel interface alert
389 * For dirty bitmap, kernel allocates array of size aligned to
390 * bits-per-long. But for case when the kernel is 64bits and
391 * the userspace is 32bits, userspace can't align to the same
392 * bits-per-long, since sizeof(long) is different between kernel
393 * and user space. This way, userspace will provide buffer which
394 * may be 4 bytes less than the kernel will use, resulting in
395 * userspace memory corruption (which is not detectable by valgrind
396 * too, in most cases).
397 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
398 * a hope that sizeof(long) wont become >8 any time soon.
400 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
401 /*HOST_LONG_BITS*/ 64) / 8;
402 if (!d
.dirty_bitmap
) {
403 d
.dirty_bitmap
= qemu_malloc(size
);
404 } else if (size
> allocated_size
) {
405 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
407 allocated_size
= size
;
408 memset(d
.dirty_bitmap
, 0, allocated_size
);
412 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
413 DPRINTF("ioctl failed %d\n", errno
);
418 kvm_get_dirty_pages_log_range(mem
->start_addr
, d
.dirty_bitmap
,
419 mem
->start_addr
, mem
->memory_size
);
420 start_addr
= mem
->start_addr
+ mem
->memory_size
;
422 qemu_free(d
.dirty_bitmap
);
427 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
430 KVMState
*s
= kvm_state
;
432 if (s
->coalesced_mmio
) {
433 struct kvm_coalesced_mmio_zone zone
;
438 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
444 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
447 KVMState
*s
= kvm_state
;
449 if (s
->coalesced_mmio
) {
450 struct kvm_coalesced_mmio_zone zone
;
455 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
461 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
465 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
473 static int kvm_check_many_ioeventfds(void)
475 /* Userspace can use ioeventfd for io notification. This requires a host
476 * that supports eventfd(2) and an I/O thread; since eventfd does not
477 * support SIGIO it cannot interrupt the vcpu.
479 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
480 * can avoid creating too many ioeventfds.
482 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
485 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
486 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
487 if (ioeventfds
[i
] < 0) {
490 ret
= kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, true);
492 close(ioeventfds
[i
]);
497 /* Decide whether many devices are supported or not */
498 ret
= i
== ARRAY_SIZE(ioeventfds
);
501 kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, false);
502 close(ioeventfds
[i
]);
510 static const KVMCapabilityInfo
*
511 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
514 if (!kvm_check_extension(s
, list
->value
)) {
522 static void kvm_set_phys_mem(target_phys_addr_t start_addr
, ram_addr_t size
,
523 ram_addr_t phys_offset
, bool log_dirty
)
525 KVMState
*s
= kvm_state
;
526 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
530 /* kvm works in page size chunks, but the function may be called
531 with sub-page size and unaligned start address. */
532 size
= TARGET_PAGE_ALIGN(size
);
533 start_addr
= TARGET_PAGE_ALIGN(start_addr
);
535 /* KVM does not support read-only slots */
536 phys_offset
&= ~IO_MEM_ROM
;
539 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
544 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
545 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
546 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
547 /* The new slot fits into the existing one and comes with
548 * identical parameters - update flags and done. */
549 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
555 /* unregister the overlapping slot */
556 mem
->memory_size
= 0;
557 err
= kvm_set_user_memory_region(s
, mem
);
559 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
560 __func__
, strerror(-err
));
564 /* Workaround for older KVM versions: we can't join slots, even not by
565 * unregistering the previous ones and then registering the larger
566 * slot. We have to maintain the existing fragmentation. Sigh.
568 * This workaround assumes that the new slot starts at the same
569 * address as the first existing one. If not or if some overlapping
570 * slot comes around later, we will fail (not seen in practice so far)
571 * - and actually require a recent KVM version. */
572 if (s
->broken_set_mem_region
&&
573 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
574 flags
< IO_MEM_UNASSIGNED
) {
575 mem
= kvm_alloc_slot(s
);
576 mem
->memory_size
= old
.memory_size
;
577 mem
->start_addr
= old
.start_addr
;
578 mem
->phys_offset
= old
.phys_offset
;
579 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
581 err
= kvm_set_user_memory_region(s
, mem
);
583 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
588 start_addr
+= old
.memory_size
;
589 phys_offset
+= old
.memory_size
;
590 size
-= old
.memory_size
;
594 /* register prefix slot */
595 if (old
.start_addr
< start_addr
) {
596 mem
= kvm_alloc_slot(s
);
597 mem
->memory_size
= start_addr
- old
.start_addr
;
598 mem
->start_addr
= old
.start_addr
;
599 mem
->phys_offset
= old
.phys_offset
;
600 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
602 err
= kvm_set_user_memory_region(s
, mem
);
604 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
605 __func__
, strerror(-err
));
610 /* register suffix slot */
611 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
612 ram_addr_t size_delta
;
614 mem
= kvm_alloc_slot(s
);
615 mem
->start_addr
= start_addr
+ size
;
616 size_delta
= mem
->start_addr
- old
.start_addr
;
617 mem
->memory_size
= old
.memory_size
- size_delta
;
618 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
619 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
621 err
= kvm_set_user_memory_region(s
, mem
);
623 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
624 __func__
, strerror(-err
));
630 /* in case the KVM bug workaround already "consumed" the new slot */
634 /* KVM does not need to know about this memory */
635 if (flags
>= IO_MEM_UNASSIGNED
) {
638 mem
= kvm_alloc_slot(s
);
639 mem
->memory_size
= size
;
640 mem
->start_addr
= start_addr
;
641 mem
->phys_offset
= phys_offset
;
642 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
644 err
= kvm_set_user_memory_region(s
, mem
);
646 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
652 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
653 target_phys_addr_t start_addr
,
654 ram_addr_t size
, ram_addr_t phys_offset
,
657 kvm_set_phys_mem(start_addr
, size
, phys_offset
, log_dirty
);
660 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
661 target_phys_addr_t start_addr
,
662 target_phys_addr_t end_addr
)
664 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
667 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
670 return kvm_set_migration_log(enable
);
673 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
674 .set_memory
= kvm_client_set_memory
,
675 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
676 .migration_log
= kvm_client_migration_log
,
677 .log_start
= kvm_log_start
,
678 .log_stop
= kvm_log_stop
,
681 static void kvm_handle_interrupt(CPUState
*env
, int mask
)
683 env
->interrupt_request
|= mask
;
685 if (!qemu_cpu_is_self(env
)) {
692 static const char upgrade_note
[] =
693 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
694 "(see http://sourceforge.net/projects/kvm).\n";
696 const KVMCapabilityInfo
*missing_cap
;
700 s
= qemu_mallocz(sizeof(KVMState
));
702 #ifdef KVM_CAP_SET_GUEST_DEBUG
703 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
705 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
706 s
->slots
[i
].slot
= i
;
709 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
711 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
716 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
717 if (ret
< KVM_API_VERSION
) {
721 fprintf(stderr
, "kvm version too old\n");
725 if (ret
> KVM_API_VERSION
) {
727 fprintf(stderr
, "kvm version not supported\n");
731 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
734 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
735 "your host kernel command line\n");
740 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
743 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
747 fprintf(stderr
, "kvm does not support %s\n%s",
748 missing_cap
->name
, upgrade_note
);
752 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
754 s
->broken_set_mem_region
= 1;
755 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
756 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
758 s
->broken_set_mem_region
= 0;
763 #ifdef KVM_CAP_VCPU_EVENTS
764 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
767 s
->robust_singlestep
= 0;
768 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
769 s
->robust_singlestep
=
770 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
774 #ifdef KVM_CAP_DEBUGREGS
775 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
780 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
785 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
788 ret
= kvm_arch_init(s
);
794 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
796 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
798 cpu_interrupt_handler
= kvm_handle_interrupt
;
816 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
822 for (i
= 0; i
< count
; i
++) {
823 if (direction
== KVM_EXIT_IO_IN
) {
826 stb_p(ptr
, cpu_inb(port
));
829 stw_p(ptr
, cpu_inw(port
));
832 stl_p(ptr
, cpu_inl(port
));
838 cpu_outb(port
, ldub_p(ptr
));
841 cpu_outw(port
, lduw_p(ptr
));
844 cpu_outl(port
, ldl_p(ptr
));
853 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
854 static int kvm_handle_internal_error(CPUState
*env
, struct kvm_run
*run
)
856 fprintf(stderr
, "KVM internal error.");
857 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
860 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
861 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
862 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
863 i
, (uint64_t)run
->internal
.data
[i
]);
866 fprintf(stderr
, "\n");
868 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
869 fprintf(stderr
, "emulation failure\n");
870 if (!kvm_arch_stop_on_emulation_error(env
)) {
871 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
872 return EXCP_INTERRUPT
;
875 /* FIXME: Should trigger a qmp message to let management know
876 * something went wrong.
882 void kvm_flush_coalesced_mmio_buffer(void)
884 KVMState
*s
= kvm_state
;
885 if (s
->coalesced_mmio_ring
) {
886 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
887 while (ring
->first
!= ring
->last
) {
888 struct kvm_coalesced_mmio
*ent
;
890 ent
= &ring
->coalesced_mmio
[ring
->first
];
892 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
894 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
899 static void do_kvm_cpu_synchronize_state(void *_env
)
901 CPUState
*env
= _env
;
903 if (!env
->kvm_vcpu_dirty
) {
904 kvm_arch_get_registers(env
);
905 env
->kvm_vcpu_dirty
= 1;
909 void kvm_cpu_synchronize_state(CPUState
*env
)
911 if (!env
->kvm_vcpu_dirty
) {
912 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
916 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
918 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
919 env
->kvm_vcpu_dirty
= 0;
922 void kvm_cpu_synchronize_post_init(CPUState
*env
)
924 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
925 env
->kvm_vcpu_dirty
= 0;
928 int kvm_cpu_exec(CPUState
*env
)
930 struct kvm_run
*run
= env
->kvm_run
;
933 DPRINTF("kvm_cpu_exec()\n");
935 if (kvm_arch_process_async_events(env
)) {
936 env
->exit_request
= 0;
940 cpu_single_env
= env
;
943 if (env
->kvm_vcpu_dirty
) {
944 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
945 env
->kvm_vcpu_dirty
= 0;
948 kvm_arch_pre_run(env
, run
);
949 if (env
->exit_request
) {
950 DPRINTF("interrupt exit requested\n");
952 * KVM requires us to reenter the kernel after IO exits to complete
953 * instruction emulation. This self-signal will ensure that we
956 qemu_cpu_kick_self();
958 cpu_single_env
= NULL
;
959 qemu_mutex_unlock_iothread();
961 run_ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
963 qemu_mutex_lock_iothread();
964 cpu_single_env
= env
;
965 kvm_arch_post_run(env
, run
);
967 kvm_flush_coalesced_mmio_buffer();
970 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
971 DPRINTF("io window exit\n");
972 ret
= EXCP_INTERRUPT
;
975 DPRINTF("kvm run failed %s\n", strerror(-run_ret
));
979 switch (run
->exit_reason
) {
981 DPRINTF("handle_io\n");
982 kvm_handle_io(run
->io
.port
,
983 (uint8_t *)run
+ run
->io
.data_offset
,
990 DPRINTF("handle_mmio\n");
991 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
997 case KVM_EXIT_IRQ_WINDOW_OPEN
:
998 DPRINTF("irq_window_open\n");
999 ret
= EXCP_INTERRUPT
;
1001 case KVM_EXIT_SHUTDOWN
:
1002 DPRINTF("shutdown\n");
1003 qemu_system_reset_request();
1004 ret
= EXCP_INTERRUPT
;
1006 case KVM_EXIT_UNKNOWN
:
1007 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1008 (uint64_t)run
->hw
.hardware_exit_reason
);
1011 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
1012 case KVM_EXIT_INTERNAL_ERROR
:
1013 ret
= kvm_handle_internal_error(env
, run
);
1017 DPRINTF("kvm_arch_handle_exit\n");
1018 ret
= kvm_arch_handle_exit(env
, run
);
1024 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1025 vm_stop(VMSTOP_PANIC
);
1028 env
->exit_request
= 0;
1029 cpu_single_env
= NULL
;
1033 int kvm_ioctl(KVMState
*s
, int type
, ...)
1040 arg
= va_arg(ap
, void *);
1043 ret
= ioctl(s
->fd
, type
, arg
);
1050 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1057 arg
= va_arg(ap
, void *);
1060 ret
= ioctl(s
->vmfd
, type
, arg
);
1067 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
1074 arg
= va_arg(ap
, void *);
1077 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1084 int kvm_has_sync_mmu(void)
1086 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1089 int kvm_has_vcpu_events(void)
1091 return kvm_state
->vcpu_events
;
1094 int kvm_has_robust_singlestep(void)
1096 return kvm_state
->robust_singlestep
;
1099 int kvm_has_debugregs(void)
1101 return kvm_state
->debugregs
;
1104 int kvm_has_xsave(void)
1106 return kvm_state
->xsave
;
1109 int kvm_has_xcrs(void)
1111 return kvm_state
->xcrs
;
1114 int kvm_has_many_ioeventfds(void)
1116 if (!kvm_enabled()) {
1119 return kvm_state
->many_ioeventfds
;
1122 void kvm_setup_guest_memory(void *start
, size_t size
)
1124 if (!kvm_has_sync_mmu()) {
1125 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1128 perror("qemu_madvise");
1130 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1136 #ifdef KVM_CAP_SET_GUEST_DEBUG
1137 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
1140 struct kvm_sw_breakpoint
*bp
;
1142 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1150 int kvm_sw_breakpoints_active(CPUState
*env
)
1152 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1155 struct kvm_set_guest_debug_data
{
1156 struct kvm_guest_debug dbg
;
1161 static void kvm_invoke_set_guest_debug(void *data
)
1163 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1164 CPUState
*env
= dbg_data
->env
;
1166 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1169 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1171 struct kvm_set_guest_debug_data data
;
1173 data
.dbg
.control
= reinject_trap
;
1175 if (env
->singlestep_enabled
) {
1176 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1178 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1181 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1185 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1186 target_ulong len
, int type
)
1188 struct kvm_sw_breakpoint
*bp
;
1192 if (type
== GDB_BREAKPOINT_SW
) {
1193 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1199 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1206 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1212 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1215 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1221 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1222 err
= kvm_update_guest_debug(env
, 0);
1230 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1231 target_ulong len
, int type
)
1233 struct kvm_sw_breakpoint
*bp
;
1237 if (type
== GDB_BREAKPOINT_SW
) {
1238 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1243 if (bp
->use_count
> 1) {
1248 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1253 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1256 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1262 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1263 err
= kvm_update_guest_debug(env
, 0);
1271 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1273 struct kvm_sw_breakpoint
*bp
, *next
;
1274 KVMState
*s
= current_env
->kvm_state
;
1277 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1278 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1279 /* Try harder to find a CPU that currently sees the breakpoint. */
1280 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1281 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0) {
1287 kvm_arch_remove_all_hw_breakpoints();
1289 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1290 kvm_update_guest_debug(env
, 0);
1294 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1296 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1301 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1302 target_ulong len
, int type
)
1307 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1308 target_ulong len
, int type
)
1313 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1316 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1318 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1320 struct kvm_signal_mask
*sigmask
;
1324 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1327 sigmask
= qemu_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1330 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1331 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1337 int kvm_set_ioeventfd_mmio_long(int fd
, uint32_t addr
, uint32_t val
, bool assign
)
1339 #ifdef KVM_IOEVENTFD
1341 struct kvm_ioeventfd iofd
;
1343 iofd
.datamatch
= val
;
1346 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1349 if (!kvm_enabled()) {
1354 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1357 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1369 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1371 #ifdef KVM_IOEVENTFD
1372 struct kvm_ioeventfd kick
= {
1376 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1380 if (!kvm_enabled()) {
1384 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1386 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1396 int kvm_on_sigbus_vcpu(CPUState
*env
, int code
, void *addr
)
1398 return kvm_arch_on_sigbus_vcpu(env
, code
, addr
);
1401 int kvm_on_sigbus(int code
, void *addr
)
1403 return kvm_arch_on_sigbus(code
, addr
);