target-arm: Update interrupt handling to use target EL
[qemu.git] / target-arm / cpu.h
blob9119a9466f336e7258a3bcf039e7f6b887020031
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #include "config.h"
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
35 #define TARGET_IS_BIENDIAN 1
37 #define CPUArchState struct CPUARMState
39 #include "qemu-common.h"
40 #include "exec/cpu-defs.h"
42 #include "fpu/softfloat.h"
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
54 #define EXCP_HVC 11 /* HyperVisor Call */
55 #define EXCP_HYP_TRAP 12
56 #define EXCP_SMC 13 /* Secure Monitor Call */
57 #define EXCP_VIRQ 14
58 #define EXCP_VFIQ 15
60 #define ARMV7M_EXCP_RESET 1
61 #define ARMV7M_EXCP_NMI 2
62 #define ARMV7M_EXCP_HARD 3
63 #define ARMV7M_EXCP_MEM 4
64 #define ARMV7M_EXCP_BUS 5
65 #define ARMV7M_EXCP_USAGE 6
66 #define ARMV7M_EXCP_SVC 11
67 #define ARMV7M_EXCP_DEBUG 12
68 #define ARMV7M_EXCP_PENDSV 14
69 #define ARMV7M_EXCP_SYSTICK 15
71 /* ARM-specific interrupt pending bits. */
72 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
73 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
74 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
76 /* The usual mapping for an AArch64 system register to its AArch32
77 * counterpart is for the 32 bit world to have access to the lower
78 * half only (with writes leaving the upper half untouched). It's
79 * therefore useful to be able to pass TCG the offset of the least
80 * significant half of a uint64_t struct member.
82 #ifdef HOST_WORDS_BIGENDIAN
83 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #define offsetofhigh32(S, M) offsetof(S, M)
85 #else
86 #define offsetoflow32(S, M) offsetof(S, M)
87 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
88 #endif
90 /* Meanings of the ARMCPU object's four inbound GPIO lines */
91 #define ARM_CPU_IRQ 0
92 #define ARM_CPU_FIQ 1
93 #define ARM_CPU_VIRQ 2
94 #define ARM_CPU_VFIQ 3
96 struct arm_boot_info;
98 #define NB_MMU_MODES 7
100 /* We currently assume float and double are IEEE single and double
101 precision respectively.
102 Doing runtime conversions is tricky because VFP registers may contain
103 integer values (eg. as the result of a FTOSI instruction).
104 s<2n> maps to the least significant half of d<n>
105 s<2n+1> maps to the most significant half of d<n>
108 /* CPU state for each instance of a generic timer (in cp15 c14) */
109 typedef struct ARMGenericTimer {
110 uint64_t cval; /* Timer CompareValue register */
111 uint64_t ctl; /* Timer Control register */
112 } ARMGenericTimer;
114 #define GTIMER_PHYS 0
115 #define GTIMER_VIRT 1
116 #define NUM_GTIMERS 2
118 typedef struct {
119 uint64_t raw_tcr;
120 uint32_t mask;
121 uint32_t base_mask;
122 } TCR;
124 typedef struct CPUARMState {
125 /* Regs for current mode. */
126 uint32_t regs[16];
128 /* 32/64 switch only happens when taking and returning from
129 * exceptions so the overlap semantics are taken care of then
130 * instead of having a complicated union.
132 /* Regs for A64 mode. */
133 uint64_t xregs[32];
134 uint64_t pc;
135 /* PSTATE isn't an architectural register for ARMv8. However, it is
136 * convenient for us to assemble the underlying state into a 32 bit format
137 * identical to the architectural format used for the SPSR. (This is also
138 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
139 * 'pstate' register are.) Of the PSTATE bits:
140 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
141 * semantics as for AArch32, as described in the comments on each field)
142 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
143 * DAIF (exception masks) are kept in env->daif
144 * all other bits are stored in their correct places in env->pstate
146 uint32_t pstate;
147 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
149 /* Frequently accessed CPSR bits are stored separately for efficiency.
150 This contains all the other bits. Use cpsr_{read,write} to access
151 the whole CPSR. */
152 uint32_t uncached_cpsr;
153 uint32_t spsr;
155 /* Banked registers. */
156 uint64_t banked_spsr[8];
157 uint32_t banked_r13[8];
158 uint32_t banked_r14[8];
160 /* These hold r8-r12. */
161 uint32_t usr_regs[5];
162 uint32_t fiq_regs[5];
164 /* cpsr flag cache for faster execution */
165 uint32_t CF; /* 0 or 1 */
166 uint32_t VF; /* V is the bit 31. All other bits are undefined */
167 uint32_t NF; /* N is bit 31. All other bits are undefined. */
168 uint32_t ZF; /* Z set if zero. */
169 uint32_t QF; /* 0 or 1 */
170 uint32_t GE; /* cpsr[19:16] */
171 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
172 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
173 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
175 uint64_t elr_el[4]; /* AArch64 exception link regs */
176 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
178 /* System control coprocessor (cp15) */
179 struct {
180 uint32_t c0_cpuid;
181 union { /* Cache size selection */
182 struct {
183 uint64_t _unused_csselr0;
184 uint64_t csselr_ns;
185 uint64_t _unused_csselr1;
186 uint64_t csselr_s;
188 uint64_t csselr_el[4];
190 union { /* System control register. */
191 struct {
192 uint64_t _unused_sctlr;
193 uint64_t sctlr_ns;
194 uint64_t hsctlr;
195 uint64_t sctlr_s;
197 uint64_t sctlr_el[4];
199 uint64_t cpacr_el1; /* Architectural feature access control register */
200 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
201 uint64_t sder; /* Secure debug enable register. */
202 uint32_t nsacr; /* Non-secure access control register. */
203 union { /* MMU translation table base 0. */
204 struct {
205 uint64_t _unused_ttbr0_0;
206 uint64_t ttbr0_ns;
207 uint64_t _unused_ttbr0_1;
208 uint64_t ttbr0_s;
210 uint64_t ttbr0_el[4];
212 union { /* MMU translation table base 1. */
213 struct {
214 uint64_t _unused_ttbr1_0;
215 uint64_t ttbr1_ns;
216 uint64_t _unused_ttbr1_1;
217 uint64_t ttbr1_s;
219 uint64_t ttbr1_el[4];
221 /* MMU translation table base control. */
222 TCR tcr_el[4];
223 uint32_t c2_data; /* MPU data cachable bits. */
224 uint32_t c2_insn; /* MPU instruction cachable bits. */
225 union { /* MMU domain access control register
226 * MPU write buffer control.
228 struct {
229 uint64_t dacr_ns;
230 uint64_t dacr_s;
232 struct {
233 uint64_t dacr32_el2;
236 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
237 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
238 uint64_t hcr_el2; /* Hypervisor configuration register */
239 uint64_t scr_el3; /* Secure configuration register. */
240 union { /* Fault status registers. */
241 struct {
242 uint64_t ifsr_ns;
243 uint64_t ifsr_s;
245 struct {
246 uint64_t ifsr32_el2;
249 union {
250 struct {
251 uint64_t _unused_dfsr;
252 uint64_t dfsr_ns;
253 uint64_t hsr;
254 uint64_t dfsr_s;
256 uint64_t esr_el[4];
258 uint32_t c6_region[8]; /* MPU base/size registers. */
259 union { /* Fault address registers. */
260 struct {
261 uint64_t _unused_far0;
262 #ifdef HOST_WORDS_BIGENDIAN
263 uint32_t ifar_ns;
264 uint32_t dfar_ns;
265 uint32_t ifar_s;
266 uint32_t dfar_s;
267 #else
268 uint32_t dfar_ns;
269 uint32_t ifar_ns;
270 uint32_t dfar_s;
271 uint32_t ifar_s;
272 #endif
273 uint64_t _unused_far3;
275 uint64_t far_el[4];
277 union { /* Translation result. */
278 struct {
279 uint64_t _unused_par_0;
280 uint64_t par_ns;
281 uint64_t _unused_par_1;
282 uint64_t par_s;
284 uint64_t par_el[4];
286 uint32_t c9_insn; /* Cache lockdown registers. */
287 uint32_t c9_data;
288 uint64_t c9_pmcr; /* performance monitor control register */
289 uint64_t c9_pmcnten; /* perf monitor counter enables */
290 uint32_t c9_pmovsr; /* perf monitor overflow status */
291 uint32_t c9_pmxevtyper; /* perf monitor event type */
292 uint32_t c9_pmuserenr; /* perf monitor user enable */
293 uint32_t c9_pminten; /* perf monitor interrupt enables */
294 union { /* Memory attribute redirection */
295 struct {
296 #ifdef HOST_WORDS_BIGENDIAN
297 uint64_t _unused_mair_0;
298 uint32_t mair1_ns;
299 uint32_t mair0_ns;
300 uint64_t _unused_mair_1;
301 uint32_t mair1_s;
302 uint32_t mair0_s;
303 #else
304 uint64_t _unused_mair_0;
305 uint32_t mair0_ns;
306 uint32_t mair1_ns;
307 uint64_t _unused_mair_1;
308 uint32_t mair0_s;
309 uint32_t mair1_s;
310 #endif
312 uint64_t mair_el[4];
314 union { /* vector base address register */
315 struct {
316 uint64_t _unused_vbar;
317 uint64_t vbar_ns;
318 uint64_t hvbar;
319 uint64_t vbar_s;
321 uint64_t vbar_el[4];
323 uint32_t mvbar; /* (monitor) vector base address register */
324 struct { /* FCSE PID. */
325 uint32_t fcseidr_ns;
326 uint32_t fcseidr_s;
328 union { /* Context ID. */
329 struct {
330 uint64_t _unused_contextidr_0;
331 uint64_t contextidr_ns;
332 uint64_t _unused_contextidr_1;
333 uint64_t contextidr_s;
335 uint64_t contextidr_el[4];
337 union { /* User RW Thread register. */
338 struct {
339 uint64_t tpidrurw_ns;
340 uint64_t tpidrprw_ns;
341 uint64_t htpidr;
342 uint64_t _tpidr_el3;
344 uint64_t tpidr_el[4];
346 /* The secure banks of these registers don't map anywhere */
347 uint64_t tpidrurw_s;
348 uint64_t tpidrprw_s;
349 uint64_t tpidruro_s;
351 union { /* User RO Thread register. */
352 uint64_t tpidruro_ns;
353 uint64_t tpidrro_el[1];
355 uint64_t c14_cntfrq; /* Counter Frequency register */
356 uint64_t c14_cntkctl; /* Timer Control register */
357 ARMGenericTimer c14_timer[NUM_GTIMERS];
358 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
359 uint32_t c15_ticonfig; /* TI925T configuration byte. */
360 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
361 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
362 uint32_t c15_threadid; /* TI debugger thread-ID. */
363 uint32_t c15_config_base_address; /* SCU base address. */
364 uint32_t c15_diagnostic; /* diagnostic register */
365 uint32_t c15_power_diagnostic;
366 uint32_t c15_power_control; /* power control */
367 uint64_t dbgbvr[16]; /* breakpoint value registers */
368 uint64_t dbgbcr[16]; /* breakpoint control registers */
369 uint64_t dbgwvr[16]; /* watchpoint value registers */
370 uint64_t dbgwcr[16]; /* watchpoint control registers */
371 uint64_t mdscr_el1;
372 /* If the counter is enabled, this stores the last time the counter
373 * was reset. Otherwise it stores the counter value
375 uint64_t c15_ccnt;
376 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
377 } cp15;
379 struct {
380 uint32_t other_sp;
381 uint32_t vecbase;
382 uint32_t basepri;
383 uint32_t control;
384 int current_sp;
385 int exception;
386 int pending_exception;
387 } v7m;
389 /* Information associated with an exception about to be taken:
390 * code which raises an exception must set cs->exception_index and
391 * the relevant parts of this structure; the cpu_do_interrupt function
392 * will then set the guest-visible registers as part of the exception
393 * entry process.
395 struct {
396 uint32_t syndrome; /* AArch64 format syndrome register */
397 uint32_t fsr; /* AArch32 format fault status register info */
398 uint64_t vaddress; /* virtual addr associated with exception, if any */
399 uint32_t target_el; /* EL the exception should be targeted for */
400 /* If we implement EL2 we will also need to store information
401 * about the intermediate physical address for stage 2 faults.
403 } exception;
405 /* Thumb-2 EE state. */
406 uint32_t teecr;
407 uint32_t teehbr;
409 /* VFP coprocessor state. */
410 struct {
411 /* VFP/Neon register state. Note that the mapping between S, D and Q
412 * views of the register bank differs between AArch64 and AArch32:
413 * In AArch32:
414 * Qn = regs[2n+1]:regs[2n]
415 * Dn = regs[n]
416 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
417 * (and regs[32] to regs[63] are inaccessible)
418 * In AArch64:
419 * Qn = regs[2n+1]:regs[2n]
420 * Dn = regs[2n]
421 * Sn = regs[2n] bits 31..0
422 * This corresponds to the architecturally defined mapping between
423 * the two execution states, and means we do not need to explicitly
424 * map these registers when changing states.
426 float64 regs[64];
428 uint32_t xregs[16];
429 /* We store these fpcsr fields separately for convenience. */
430 int vec_len;
431 int vec_stride;
433 /* scratch space when Tn are not sufficient. */
434 uint32_t scratch[8];
436 /* fp_status is the "normal" fp status. standard_fp_status retains
437 * values corresponding to the ARM "Standard FPSCR Value", ie
438 * default-NaN, flush-to-zero, round-to-nearest and is used by
439 * any operations (generally Neon) which the architecture defines
440 * as controlled by the standard FPSCR value rather than the FPSCR.
442 * To avoid having to transfer exception bits around, we simply
443 * say that the FPSCR cumulative exception flags are the logical
444 * OR of the flags in the two fp statuses. This relies on the
445 * only thing which needs to read the exception flags being
446 * an explicit FPSCR read.
448 float_status fp_status;
449 float_status standard_fp_status;
450 } vfp;
451 uint64_t exclusive_addr;
452 uint64_t exclusive_val;
453 uint64_t exclusive_high;
454 #if defined(CONFIG_USER_ONLY)
455 uint64_t exclusive_test;
456 uint32_t exclusive_info;
457 #endif
459 /* iwMMXt coprocessor state. */
460 struct {
461 uint64_t regs[16];
462 uint64_t val;
464 uint32_t cregs[16];
465 } iwmmxt;
467 /* For mixed endian mode. */
468 bool bswap_code;
470 #if defined(CONFIG_USER_ONLY)
471 /* For usermode syscall translation. */
472 int eabi;
473 #endif
475 struct CPUBreakpoint *cpu_breakpoint[16];
476 struct CPUWatchpoint *cpu_watchpoint[16];
478 CPU_COMMON
480 /* These fields after the common ones so they are preserved on reset. */
482 /* Internal CPU feature flags. */
483 uint64_t features;
485 void *nvic;
486 const struct arm_boot_info *boot_info;
487 } CPUARMState;
489 #include "cpu-qom.h"
491 ARMCPU *cpu_arm_init(const char *cpu_model);
492 int cpu_arm_exec(CPUARMState *s);
493 uint32_t do_arm_semihosting(CPUARMState *env);
494 void aarch64_sync_32_to_64(CPUARMState *env);
495 void aarch64_sync_64_to_32(CPUARMState *env);
497 static inline bool is_a64(CPUARMState *env)
499 return env->aarch64;
502 /* you can call this signal handler from your SIGBUS and SIGSEGV
503 signal handlers to inform the virtual CPU of exceptions. non zero
504 is returned if the signal was handled by the virtual CPU. */
505 int cpu_arm_signal_handler(int host_signum, void *pinfo,
506 void *puc);
509 * pmccntr_sync
510 * @env: CPUARMState
512 * Synchronises the counter in the PMCCNTR. This must always be called twice,
513 * once before any action that might affect the timer and again afterwards.
514 * The function is used to swap the state of the register if required.
515 * This only happens when not in user mode (!CONFIG_USER_ONLY)
517 void pmccntr_sync(CPUARMState *env);
519 /* SCTLR bit meanings. Several bits have been reused in newer
520 * versions of the architecture; in that case we define constants
521 * for both old and new bit meanings. Code which tests against those
522 * bits should probably check or otherwise arrange that the CPU
523 * is the architectural version it expects.
525 #define SCTLR_M (1U << 0)
526 #define SCTLR_A (1U << 1)
527 #define SCTLR_C (1U << 2)
528 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
529 #define SCTLR_SA (1U << 3)
530 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
531 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
532 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
533 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
534 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
535 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
536 #define SCTLR_ITD (1U << 7) /* v8 onward */
537 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
538 #define SCTLR_SED (1U << 8) /* v8 onward */
539 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
540 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
541 #define SCTLR_F (1U << 10) /* up to v6 */
542 #define SCTLR_SW (1U << 10) /* v7 onward */
543 #define SCTLR_Z (1U << 11)
544 #define SCTLR_I (1U << 12)
545 #define SCTLR_V (1U << 13)
546 #define SCTLR_RR (1U << 14) /* up to v7 */
547 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
548 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
549 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
550 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
551 #define SCTLR_nTWI (1U << 16) /* v8 onward */
552 #define SCTLR_HA (1U << 17)
553 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
554 #define SCTLR_nTWE (1U << 18) /* v8 onward */
555 #define SCTLR_WXN (1U << 19)
556 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
557 #define SCTLR_UWXN (1U << 20) /* v7 onward */
558 #define SCTLR_FI (1U << 21)
559 #define SCTLR_U (1U << 22)
560 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
561 #define SCTLR_VE (1U << 24) /* up to v7 */
562 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
563 #define SCTLR_EE (1U << 25)
564 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
565 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
566 #define SCTLR_NMFI (1U << 27)
567 #define SCTLR_TRE (1U << 28)
568 #define SCTLR_AFE (1U << 29)
569 #define SCTLR_TE (1U << 30)
571 #define CPSR_M (0x1fU)
572 #define CPSR_T (1U << 5)
573 #define CPSR_F (1U << 6)
574 #define CPSR_I (1U << 7)
575 #define CPSR_A (1U << 8)
576 #define CPSR_E (1U << 9)
577 #define CPSR_IT_2_7 (0xfc00U)
578 #define CPSR_GE (0xfU << 16)
579 #define CPSR_IL (1U << 20)
580 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
581 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
582 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
583 * where it is live state but not accessible to the AArch32 code.
585 #define CPSR_RESERVED (0x7U << 21)
586 #define CPSR_J (1U << 24)
587 #define CPSR_IT_0_1 (3U << 25)
588 #define CPSR_Q (1U << 27)
589 #define CPSR_V (1U << 28)
590 #define CPSR_C (1U << 29)
591 #define CPSR_Z (1U << 30)
592 #define CPSR_N (1U << 31)
593 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
594 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
596 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
597 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
598 | CPSR_NZCV)
599 /* Bits writable in user mode. */
600 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
601 /* Execution state bits. MRS read as zero, MSR writes ignored. */
602 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
603 /* Mask of bits which may be set by exception return copying them from SPSR */
604 #define CPSR_ERET_MASK (~CPSR_RESERVED)
606 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
607 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
608 #define TTBCR_PD0 (1U << 4)
609 #define TTBCR_PD1 (1U << 5)
610 #define TTBCR_EPD0 (1U << 7)
611 #define TTBCR_IRGN0 (3U << 8)
612 #define TTBCR_ORGN0 (3U << 10)
613 #define TTBCR_SH0 (3U << 12)
614 #define TTBCR_T1SZ (3U << 16)
615 #define TTBCR_A1 (1U << 22)
616 #define TTBCR_EPD1 (1U << 23)
617 #define TTBCR_IRGN1 (3U << 24)
618 #define TTBCR_ORGN1 (3U << 26)
619 #define TTBCR_SH1 (1U << 28)
620 #define TTBCR_EAE (1U << 31)
622 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
623 * Only these are valid when in AArch64 mode; in
624 * AArch32 mode SPSRs are basically CPSR-format.
626 #define PSTATE_SP (1U)
627 #define PSTATE_M (0xFU)
628 #define PSTATE_nRW (1U << 4)
629 #define PSTATE_F (1U << 6)
630 #define PSTATE_I (1U << 7)
631 #define PSTATE_A (1U << 8)
632 #define PSTATE_D (1U << 9)
633 #define PSTATE_IL (1U << 20)
634 #define PSTATE_SS (1U << 21)
635 #define PSTATE_V (1U << 28)
636 #define PSTATE_C (1U << 29)
637 #define PSTATE_Z (1U << 30)
638 #define PSTATE_N (1U << 31)
639 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
640 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
641 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
642 /* Mode values for AArch64 */
643 #define PSTATE_MODE_EL3h 13
644 #define PSTATE_MODE_EL3t 12
645 #define PSTATE_MODE_EL2h 9
646 #define PSTATE_MODE_EL2t 8
647 #define PSTATE_MODE_EL1h 5
648 #define PSTATE_MODE_EL1t 4
649 #define PSTATE_MODE_EL0t 0
651 /* Map EL and handler into a PSTATE_MODE. */
652 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
654 return (el << 2) | handler;
657 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
658 * interprocessing, so we don't attempt to sync with the cpsr state used by
659 * the 32 bit decoder.
661 static inline uint32_t pstate_read(CPUARMState *env)
663 int ZF;
665 ZF = (env->ZF == 0);
666 return (env->NF & 0x80000000) | (ZF << 30)
667 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
668 | env->pstate | env->daif;
671 static inline void pstate_write(CPUARMState *env, uint32_t val)
673 env->ZF = (~val) & PSTATE_Z;
674 env->NF = val;
675 env->CF = (val >> 29) & 1;
676 env->VF = (val << 3) & 0x80000000;
677 env->daif = val & PSTATE_DAIF;
678 env->pstate = val & ~CACHED_PSTATE_BITS;
681 /* Return the current CPSR value. */
682 uint32_t cpsr_read(CPUARMState *env);
683 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
684 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
686 /* Return the current xPSR value. */
687 static inline uint32_t xpsr_read(CPUARMState *env)
689 int ZF;
690 ZF = (env->ZF == 0);
691 return (env->NF & 0x80000000) | (ZF << 30)
692 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
693 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
694 | ((env->condexec_bits & 0xfc) << 8)
695 | env->v7m.exception;
698 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
699 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
701 if (mask & CPSR_NZCV) {
702 env->ZF = (~val) & CPSR_Z;
703 env->NF = val;
704 env->CF = (val >> 29) & 1;
705 env->VF = (val << 3) & 0x80000000;
707 if (mask & CPSR_Q)
708 env->QF = ((val & CPSR_Q) != 0);
709 if (mask & (1 << 24))
710 env->thumb = ((val & (1 << 24)) != 0);
711 if (mask & CPSR_IT_0_1) {
712 env->condexec_bits &= ~3;
713 env->condexec_bits |= (val >> 25) & 3;
715 if (mask & CPSR_IT_2_7) {
716 env->condexec_bits &= 3;
717 env->condexec_bits |= (val >> 8) & 0xfc;
719 if (mask & 0x1ff) {
720 env->v7m.exception = val & 0x1ff;
724 #define HCR_VM (1ULL << 0)
725 #define HCR_SWIO (1ULL << 1)
726 #define HCR_PTW (1ULL << 2)
727 #define HCR_FMO (1ULL << 3)
728 #define HCR_IMO (1ULL << 4)
729 #define HCR_AMO (1ULL << 5)
730 #define HCR_VF (1ULL << 6)
731 #define HCR_VI (1ULL << 7)
732 #define HCR_VSE (1ULL << 8)
733 #define HCR_FB (1ULL << 9)
734 #define HCR_BSU_MASK (3ULL << 10)
735 #define HCR_DC (1ULL << 12)
736 #define HCR_TWI (1ULL << 13)
737 #define HCR_TWE (1ULL << 14)
738 #define HCR_TID0 (1ULL << 15)
739 #define HCR_TID1 (1ULL << 16)
740 #define HCR_TID2 (1ULL << 17)
741 #define HCR_TID3 (1ULL << 18)
742 #define HCR_TSC (1ULL << 19)
743 #define HCR_TIDCP (1ULL << 20)
744 #define HCR_TACR (1ULL << 21)
745 #define HCR_TSW (1ULL << 22)
746 #define HCR_TPC (1ULL << 23)
747 #define HCR_TPU (1ULL << 24)
748 #define HCR_TTLB (1ULL << 25)
749 #define HCR_TVM (1ULL << 26)
750 #define HCR_TGE (1ULL << 27)
751 #define HCR_TDZ (1ULL << 28)
752 #define HCR_HCD (1ULL << 29)
753 #define HCR_TRVM (1ULL << 30)
754 #define HCR_RW (1ULL << 31)
755 #define HCR_CD (1ULL << 32)
756 #define HCR_ID (1ULL << 33)
757 #define HCR_MASK ((1ULL << 34) - 1)
759 #define SCR_NS (1U << 0)
760 #define SCR_IRQ (1U << 1)
761 #define SCR_FIQ (1U << 2)
762 #define SCR_EA (1U << 3)
763 #define SCR_FW (1U << 4)
764 #define SCR_AW (1U << 5)
765 #define SCR_NET (1U << 6)
766 #define SCR_SMD (1U << 7)
767 #define SCR_HCE (1U << 8)
768 #define SCR_SIF (1U << 9)
769 #define SCR_RW (1U << 10)
770 #define SCR_ST (1U << 11)
771 #define SCR_TWI (1U << 12)
772 #define SCR_TWE (1U << 13)
773 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
774 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
776 /* Return the current FPSCR value. */
777 uint32_t vfp_get_fpscr(CPUARMState *env);
778 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
780 /* For A64 the FPSCR is split into two logically distinct registers,
781 * FPCR and FPSR. However since they still use non-overlapping bits
782 * we store the underlying state in fpscr and just mask on read/write.
784 #define FPSR_MASK 0xf800009f
785 #define FPCR_MASK 0x07f79f00
786 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
788 return vfp_get_fpscr(env) & FPSR_MASK;
791 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
793 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
794 vfp_set_fpscr(env, new_fpscr);
797 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
799 return vfp_get_fpscr(env) & FPCR_MASK;
802 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
804 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
805 vfp_set_fpscr(env, new_fpscr);
808 enum arm_cpu_mode {
809 ARM_CPU_MODE_USR = 0x10,
810 ARM_CPU_MODE_FIQ = 0x11,
811 ARM_CPU_MODE_IRQ = 0x12,
812 ARM_CPU_MODE_SVC = 0x13,
813 ARM_CPU_MODE_MON = 0x16,
814 ARM_CPU_MODE_ABT = 0x17,
815 ARM_CPU_MODE_HYP = 0x1a,
816 ARM_CPU_MODE_UND = 0x1b,
817 ARM_CPU_MODE_SYS = 0x1f
820 /* VFP system registers. */
821 #define ARM_VFP_FPSID 0
822 #define ARM_VFP_FPSCR 1
823 #define ARM_VFP_MVFR2 5
824 #define ARM_VFP_MVFR1 6
825 #define ARM_VFP_MVFR0 7
826 #define ARM_VFP_FPEXC 8
827 #define ARM_VFP_FPINST 9
828 #define ARM_VFP_FPINST2 10
830 /* iwMMXt coprocessor control registers. */
831 #define ARM_IWMMXT_wCID 0
832 #define ARM_IWMMXT_wCon 1
833 #define ARM_IWMMXT_wCSSF 2
834 #define ARM_IWMMXT_wCASF 3
835 #define ARM_IWMMXT_wCGR0 8
836 #define ARM_IWMMXT_wCGR1 9
837 #define ARM_IWMMXT_wCGR2 10
838 #define ARM_IWMMXT_wCGR3 11
840 /* If adding a feature bit which corresponds to a Linux ELF
841 * HWCAP bit, remember to update the feature-bit-to-hwcap
842 * mapping in linux-user/elfload.c:get_elf_hwcap().
844 enum arm_features {
845 ARM_FEATURE_VFP,
846 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
847 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
848 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
849 ARM_FEATURE_V6,
850 ARM_FEATURE_V6K,
851 ARM_FEATURE_V7,
852 ARM_FEATURE_THUMB2,
853 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
854 ARM_FEATURE_VFP3,
855 ARM_FEATURE_VFP_FP16,
856 ARM_FEATURE_NEON,
857 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
858 ARM_FEATURE_M, /* Microcontroller profile. */
859 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
860 ARM_FEATURE_THUMB2EE,
861 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
862 ARM_FEATURE_V4T,
863 ARM_FEATURE_V5,
864 ARM_FEATURE_STRONGARM,
865 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
866 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
867 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
868 ARM_FEATURE_GENERIC_TIMER,
869 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
870 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
871 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
872 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
873 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
874 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
875 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
876 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
877 ARM_FEATURE_V8,
878 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
879 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
880 ARM_FEATURE_CBAR, /* has cp15 CBAR */
881 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
882 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
883 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
884 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
885 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
886 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
887 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
890 static inline int arm_feature(CPUARMState *env, int feature)
892 return (env->features & (1ULL << feature)) != 0;
895 #if !defined(CONFIG_USER_ONLY)
896 /* Return true if exception levels below EL3 are in secure state,
897 * or would be following an exception return to that level.
898 * Unlike arm_is_secure() (which is always a question about the
899 * _current_ state of the CPU) this doesn't care about the current
900 * EL or mode.
902 static inline bool arm_is_secure_below_el3(CPUARMState *env)
904 if (arm_feature(env, ARM_FEATURE_EL3)) {
905 return !(env->cp15.scr_el3 & SCR_NS);
906 } else {
907 /* If EL2 is not supported then the secure state is implementation
908 * defined, in which case QEMU defaults to non-secure.
910 return false;
914 /* Return true if the processor is in secure state */
915 static inline bool arm_is_secure(CPUARMState *env)
917 if (arm_feature(env, ARM_FEATURE_EL3)) {
918 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
919 /* CPU currently in AArch64 state and EL3 */
920 return true;
921 } else if (!is_a64(env) &&
922 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
923 /* CPU currently in AArch32 state and monitor mode */
924 return true;
927 return arm_is_secure_below_el3(env);
930 #else
931 static inline bool arm_is_secure_below_el3(CPUARMState *env)
933 return false;
936 static inline bool arm_is_secure(CPUARMState *env)
938 return false;
940 #endif
942 /* Return true if the specified exception level is running in AArch64 state. */
943 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
945 /* We don't currently support EL2, and this isn't valid for EL0
946 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
947 * then the state of EL0 isn't well defined.)
949 assert(el == 1 || el == 3);
951 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
952 * is a QEMU-imposed simplification which we may wish to change later.
953 * If we in future support EL2 and/or EL3, then the state of lower
954 * exception levels is controlled by the HCR.RW and SCR.RW bits.
956 return arm_feature(env, ARM_FEATURE_AARCH64);
959 /* Function for determing whether guest cp register reads and writes should
960 * access the secure or non-secure bank of a cp register. When EL3 is
961 * operating in AArch32 state, the NS-bit determines whether the secure
962 * instance of a cp register should be used. When EL3 is AArch64 (or if
963 * it doesn't exist at all) then there is no register banking, and all
964 * accesses are to the non-secure version.
966 static inline bool access_secure_reg(CPUARMState *env)
968 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
969 !arm_el_is_aa64(env, 3) &&
970 !(env->cp15.scr_el3 & SCR_NS));
972 return ret;
975 /* Macros for accessing a specified CP register bank */
976 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
977 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
979 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
980 do { \
981 if (_secure) { \
982 (_env)->cp15._regname##_s = (_val); \
983 } else { \
984 (_env)->cp15._regname##_ns = (_val); \
986 } while (0)
988 /* Macros for automatically accessing a specific CP register bank depending on
989 * the current secure state of the system. These macros are not intended for
990 * supporting instruction translation reads/writes as these are dependent
991 * solely on the SCR.NS bit and not the mode.
993 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
994 A32_BANKED_REG_GET((_env), _regname, \
995 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
997 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
998 A32_BANKED_REG_SET((_env), _regname, \
999 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
1000 (_val))
1002 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1003 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1004 uint32_t cur_el, bool secure);
1006 /* Interface between CPU and Interrupt controller. */
1007 void armv7m_nvic_set_pending(void *opaque, int irq);
1008 int armv7m_nvic_acknowledge_irq(void *opaque);
1009 void armv7m_nvic_complete_irq(void *opaque, int irq);
1011 /* Interface for defining coprocessor registers.
1012 * Registers are defined in tables of arm_cp_reginfo structs
1013 * which are passed to define_arm_cp_regs().
1016 /* When looking up a coprocessor register we look for it
1017 * via an integer which encodes all of:
1018 * coprocessor number
1019 * Crn, Crm, opc1, opc2 fields
1020 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1021 * or via MRRC/MCRR?)
1022 * non-secure/secure bank (AArch32 only)
1023 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1024 * (In this case crn and opc2 should be zero.)
1025 * For AArch64, there is no 32/64 bit size distinction;
1026 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1027 * and 4 bit CRn and CRm. The encoding patterns are chosen
1028 * to be easy to convert to and from the KVM encodings, and also
1029 * so that the hashtable can contain both AArch32 and AArch64
1030 * registers (to allow for interprocessing where we might run
1031 * 32 bit code on a 64 bit core).
1033 /* This bit is private to our hashtable cpreg; in KVM register
1034 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1035 * in the upper bits of the 64 bit ID.
1037 #define CP_REG_AA64_SHIFT 28
1038 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1040 /* To enable banking of coprocessor registers depending on ns-bit we
1041 * add a bit to distinguish between secure and non-secure cpregs in the
1042 * hashtable.
1044 #define CP_REG_NS_SHIFT 29
1045 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1047 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1048 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1049 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1051 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1052 (CP_REG_AA64_MASK | \
1053 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1054 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1055 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1056 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1057 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1058 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1060 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1061 * version used as a key for the coprocessor register hashtable
1063 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1065 uint32_t cpregid = kvmid;
1066 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1067 cpregid |= CP_REG_AA64_MASK;
1068 } else {
1069 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1070 cpregid |= (1 << 15);
1073 /* KVM is always non-secure so add the NS flag on AArch32 register
1074 * entries.
1076 cpregid |= 1 << CP_REG_NS_SHIFT;
1078 return cpregid;
1081 /* Convert a truncated 32 bit hashtable key into the full
1082 * 64 bit KVM register ID.
1084 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1086 uint64_t kvmid;
1088 if (cpregid & CP_REG_AA64_MASK) {
1089 kvmid = cpregid & ~CP_REG_AA64_MASK;
1090 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1091 } else {
1092 kvmid = cpregid & ~(1 << 15);
1093 if (cpregid & (1 << 15)) {
1094 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1095 } else {
1096 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1099 return kvmid;
1102 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1103 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1104 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1105 * TCG can assume the value to be constant (ie load at translate time)
1106 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1107 * indicates that the TB should not be ended after a write to this register
1108 * (the default is that the TB ends after cp writes). OVERRIDE permits
1109 * a register definition to override a previous definition for the
1110 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1111 * old must have the OVERRIDE bit set.
1112 * ALIAS indicates that this register is an alias view of some underlying
1113 * state which is also visible via another register, and that the other
1114 * register is handling migration; registers marked ALIAS will not be migrated
1115 * but may have their state set by syncing of register state from KVM.
1116 * NO_RAW indicates that this register has no underlying state and does not
1117 * support raw access for state saving/loading; it will not be used for either
1118 * migration or KVM state synchronization. (Typically this is for "registers"
1119 * which are actually used as instructions for cache maintenance and so on.)
1120 * IO indicates that this register does I/O and therefore its accesses
1121 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1122 * registers which implement clocks or timers require this.
1124 #define ARM_CP_SPECIAL 1
1125 #define ARM_CP_CONST 2
1126 #define ARM_CP_64BIT 4
1127 #define ARM_CP_SUPPRESS_TB_END 8
1128 #define ARM_CP_OVERRIDE 16
1129 #define ARM_CP_ALIAS 32
1130 #define ARM_CP_IO 64
1131 #define ARM_CP_NO_RAW 128
1132 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1133 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1134 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1135 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1136 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1137 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1138 /* Used only as a terminator for ARMCPRegInfo lists */
1139 #define ARM_CP_SENTINEL 0xffff
1140 /* Mask of only the flag bits in a type field */
1141 #define ARM_CP_FLAG_MASK 0xff
1143 /* Valid values for ARMCPRegInfo state field, indicating which of
1144 * the AArch32 and AArch64 execution states this register is visible in.
1145 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1146 * If the reginfo is declared to be visible in both states then a second
1147 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1148 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1149 * Note that we rely on the values of these enums as we iterate through
1150 * the various states in some places.
1152 enum {
1153 ARM_CP_STATE_AA32 = 0,
1154 ARM_CP_STATE_AA64 = 1,
1155 ARM_CP_STATE_BOTH = 2,
1158 /* ARM CP register secure state flags. These flags identify security state
1159 * attributes for a given CP register entry.
1160 * The existence of both or neither secure and non-secure flags indicates that
1161 * the register has both a secure and non-secure hash entry. A single one of
1162 * these flags causes the register to only be hashed for the specified
1163 * security state.
1164 * Although definitions may have any combination of the S/NS bits, each
1165 * registered entry will only have one to identify whether the entry is secure
1166 * or non-secure.
1168 enum {
1169 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1170 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1173 /* Return true if cptype is a valid type field. This is used to try to
1174 * catch errors where the sentinel has been accidentally left off the end
1175 * of a list of registers.
1177 static inline bool cptype_valid(int cptype)
1179 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1180 || ((cptype & ARM_CP_SPECIAL) &&
1181 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1184 /* Access rights:
1185 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1186 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1187 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1188 * (ie any of the privileged modes in Secure state, or Monitor mode).
1189 * If a register is accessible in one privilege level it's always accessible
1190 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1191 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1192 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1193 * terminology a little and call this PL3.
1194 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1195 * with the ELx exception levels.
1197 * If access permissions for a register are more complex than can be
1198 * described with these bits, then use a laxer set of restrictions, and
1199 * do the more restrictive/complex check inside a helper function.
1201 #define PL3_R 0x80
1202 #define PL3_W 0x40
1203 #define PL2_R (0x20 | PL3_R)
1204 #define PL2_W (0x10 | PL3_W)
1205 #define PL1_R (0x08 | PL2_R)
1206 #define PL1_W (0x04 | PL2_W)
1207 #define PL0_R (0x02 | PL1_R)
1208 #define PL0_W (0x01 | PL1_W)
1210 #define PL3_RW (PL3_R | PL3_W)
1211 #define PL2_RW (PL2_R | PL2_W)
1212 #define PL1_RW (PL1_R | PL1_W)
1213 #define PL0_RW (PL0_R | PL0_W)
1215 /* Return the current Exception Level (as per ARMv8; note that this differs
1216 * from the ARMv7 Privilege Level).
1218 static inline int arm_current_el(CPUARMState *env)
1220 if (arm_feature(env, ARM_FEATURE_M)) {
1221 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1224 if (is_a64(env)) {
1225 return extract32(env->pstate, 2, 2);
1228 switch (env->uncached_cpsr & 0x1f) {
1229 case ARM_CPU_MODE_USR:
1230 return 0;
1231 case ARM_CPU_MODE_HYP:
1232 return 2;
1233 case ARM_CPU_MODE_MON:
1234 return 3;
1235 default:
1236 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1237 /* If EL3 is 32-bit then all secure privileged modes run in
1238 * EL3
1240 return 3;
1243 return 1;
1247 typedef struct ARMCPRegInfo ARMCPRegInfo;
1249 typedef enum CPAccessResult {
1250 /* Access is permitted */
1251 CP_ACCESS_OK = 0,
1252 /* Access fails due to a configurable trap or enable which would
1253 * result in a categorized exception syndrome giving information about
1254 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1255 * 0xc or 0x18).
1257 CP_ACCESS_TRAP = 1,
1258 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1259 * Note that this is not a catch-all case -- the set of cases which may
1260 * result in this failure is specifically defined by the architecture.
1262 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1263 } CPAccessResult;
1265 /* Access functions for coprocessor registers. These cannot fail and
1266 * may not raise exceptions.
1268 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1269 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1270 uint64_t value);
1271 /* Access permission check functions for coprocessor registers. */
1272 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1273 /* Hook function for register reset */
1274 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1276 #define CP_ANY 0xff
1278 /* Definition of an ARM coprocessor register */
1279 struct ARMCPRegInfo {
1280 /* Name of register (useful mainly for debugging, need not be unique) */
1281 const char *name;
1282 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1283 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1284 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1285 * will be decoded to this register. The register read and write
1286 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1287 * used by the program, so it is possible to register a wildcard and
1288 * then behave differently on read/write if necessary.
1289 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1290 * must both be zero.
1291 * For AArch64-visible registers, opc0 is also used.
1292 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1293 * way to distinguish (for KVM's benefit) guest-visible system registers
1294 * from demuxed ones provided to preserve the "no side effects on
1295 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1296 * visible (to match KVM's encoding); cp==0 will be converted to
1297 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1299 uint8_t cp;
1300 uint8_t crn;
1301 uint8_t crm;
1302 uint8_t opc0;
1303 uint8_t opc1;
1304 uint8_t opc2;
1305 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1306 int state;
1307 /* Register type: ARM_CP_* bits/values */
1308 int type;
1309 /* Access rights: PL*_[RW] */
1310 int access;
1311 /* Security state: ARM_CP_SECSTATE_* bits/values */
1312 int secure;
1313 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1314 * this register was defined: can be used to hand data through to the
1315 * register read/write functions, since they are passed the ARMCPRegInfo*.
1317 void *opaque;
1318 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1319 * fieldoffset is non-zero, the reset value of the register.
1321 uint64_t resetvalue;
1322 /* Offset of the field in CPUARMState for this register.
1324 * This is not needed if either:
1325 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1326 * 2. both readfn and writefn are specified
1328 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1330 /* Offsets of the secure and non-secure fields in CPUARMState for the
1331 * register if it is banked. These fields are only used during the static
1332 * registration of a register. During hashing the bank associated
1333 * with a given security state is copied to fieldoffset which is used from
1334 * there on out.
1336 * It is expected that register definitions use either fieldoffset or
1337 * bank_fieldoffsets in the definition but not both. It is also expected
1338 * that both bank offsets are set when defining a banked register. This
1339 * use indicates that a register is banked.
1341 ptrdiff_t bank_fieldoffsets[2];
1343 /* Function for making any access checks for this register in addition to
1344 * those specified by the 'access' permissions bits. If NULL, no extra
1345 * checks required. The access check is performed at runtime, not at
1346 * translate time.
1348 CPAccessFn *accessfn;
1349 /* Function for handling reads of this register. If NULL, then reads
1350 * will be done by loading from the offset into CPUARMState specified
1351 * by fieldoffset.
1353 CPReadFn *readfn;
1354 /* Function for handling writes of this register. If NULL, then writes
1355 * will be done by writing to the offset into CPUARMState specified
1356 * by fieldoffset.
1358 CPWriteFn *writefn;
1359 /* Function for doing a "raw" read; used when we need to copy
1360 * coprocessor state to the kernel for KVM or out for
1361 * migration. This only needs to be provided if there is also a
1362 * readfn and it has side effects (for instance clear-on-read bits).
1364 CPReadFn *raw_readfn;
1365 /* Function for doing a "raw" write; used when we need to copy KVM
1366 * kernel coprocessor state into userspace, or for inbound
1367 * migration. This only needs to be provided if there is also a
1368 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1369 * or similar behaviour.
1371 CPWriteFn *raw_writefn;
1372 /* Function for resetting the register. If NULL, then reset will be done
1373 * by writing resetvalue to the field specified in fieldoffset. If
1374 * fieldoffset is 0 then no reset will be done.
1376 CPResetFn *resetfn;
1379 /* Macros which are lvalues for the field in CPUARMState for the
1380 * ARMCPRegInfo *ri.
1382 #define CPREG_FIELD32(env, ri) \
1383 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1384 #define CPREG_FIELD64(env, ri) \
1385 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1387 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1389 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1390 const ARMCPRegInfo *regs, void *opaque);
1391 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1392 const ARMCPRegInfo *regs, void *opaque);
1393 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1395 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1397 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1399 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1401 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1403 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1404 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1405 uint64_t value);
1406 /* CPReadFn that can be used for read-as-zero behaviour */
1407 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1409 /* CPResetFn that does nothing, for use if no reset is required even
1410 * if fieldoffset is non zero.
1412 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1414 /* Return true if this reginfo struct's field in the cpu state struct
1415 * is 64 bits wide.
1417 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1419 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1422 static inline bool cp_access_ok(int current_el,
1423 const ARMCPRegInfo *ri, int isread)
1425 return (ri->access >> ((current_el * 2) + isread)) & 1;
1429 * write_list_to_cpustate
1430 * @cpu: ARMCPU
1432 * For each register listed in the ARMCPU cpreg_indexes list, write
1433 * its value from the cpreg_values list into the ARMCPUState structure.
1434 * This updates TCG's working data structures from KVM data or
1435 * from incoming migration state.
1437 * Returns: true if all register values were updated correctly,
1438 * false if some register was unknown or could not be written.
1439 * Note that we do not stop early on failure -- we will attempt
1440 * writing all registers in the list.
1442 bool write_list_to_cpustate(ARMCPU *cpu);
1445 * write_cpustate_to_list:
1446 * @cpu: ARMCPU
1448 * For each register listed in the ARMCPU cpreg_indexes list, write
1449 * its value from the ARMCPUState structure into the cpreg_values list.
1450 * This is used to copy info from TCG's working data structures into
1451 * KVM or for outbound migration.
1453 * Returns: true if all register values were read correctly,
1454 * false if some register was unknown or could not be read.
1455 * Note that we do not stop early on failure -- we will attempt
1456 * reading all registers in the list.
1458 bool write_cpustate_to_list(ARMCPU *cpu);
1460 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1461 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1462 conventional cores (ie. Application or Realtime profile). */
1464 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1466 #define ARM_CPUID_TI915T 0x54029152
1467 #define ARM_CPUID_TI925T 0x54029252
1469 #if defined(CONFIG_USER_ONLY)
1470 #define TARGET_PAGE_BITS 12
1471 #else
1472 /* The ARM MMU allows 1k pages. */
1473 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1474 architecture revisions. Maybe a configure option to disable them. */
1475 #define TARGET_PAGE_BITS 10
1476 #endif
1478 #if defined(TARGET_AARCH64)
1479 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1480 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1481 #else
1482 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1483 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1484 #endif
1486 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1487 unsigned int target_el)
1489 CPUARMState *env = cs->env_ptr;
1490 unsigned int cur_el = arm_current_el(env);
1491 bool secure = arm_is_secure(env);
1492 uint32_t scr;
1493 uint32_t hcr;
1494 bool pstate_unmasked;
1495 int8_t unmasked = 0;
1497 /* Don't take exceptions if they target a lower EL.
1498 * This check should catch any exceptions that would not be taken but left
1499 * pending.
1501 if (cur_el > target_el) {
1502 return false;
1505 switch (excp_idx) {
1506 case EXCP_FIQ:
1507 /* If FIQs are routed to EL3 or EL2 then there are cases where we
1508 * override the CPSR.F in determining if the exception is masked or
1509 * not. If neither of these are set then we fall back to the CPSR.F
1510 * setting otherwise we further assess the state below.
1512 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1513 scr = (env->cp15.scr_el3 & SCR_FIQ);
1515 /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
1516 * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
1517 * set then FIQs can be masked by CPSR.F when non-secure but only
1518 * when FIQs are only routed to EL3.
1520 scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1521 pstate_unmasked = !(env->daif & PSTATE_F);
1522 break;
1524 case EXCP_IRQ:
1525 /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
1526 * override the CPSR.I masking when in non-secure state. The SCR.IRQ
1527 * setting has already been taken into consideration when setting the
1528 * target EL, so it does not have a further affect here.
1530 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1531 scr = false;
1532 pstate_unmasked = !(env->daif & PSTATE_I);
1533 break;
1535 case EXCP_VFIQ:
1536 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1537 /* VFIQs are only taken when hypervized and non-secure. */
1538 return false;
1540 return !(env->daif & PSTATE_F);
1541 case EXCP_VIRQ:
1542 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1543 /* VIRQs are only taken when hypervized and non-secure. */
1544 return false;
1546 return !(env->daif & PSTATE_I);
1547 default:
1548 g_assert_not_reached();
1551 /* Use the target EL, current execution state and SCR/HCR settings to
1552 * determine whether the corresponding CPSR bit is used to mask the
1553 * interrupt.
1555 if ((target_el > cur_el) && (target_el != 1)) {
1556 if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
1557 unmasked = 1;
1561 /* The PSTATE bits only mask the interrupt if we have not overriden the
1562 * ability above.
1564 return unmasked || pstate_unmasked;
1567 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1569 #define cpu_exec cpu_arm_exec
1570 #define cpu_gen_code cpu_arm_gen_code
1571 #define cpu_signal_handler cpu_arm_signal_handler
1572 #define cpu_list arm_cpu_list
1574 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1576 * If EL3 is 64-bit:
1577 * + NonSecure EL1 & 0 stage 1
1578 * + NonSecure EL1 & 0 stage 2
1579 * + NonSecure EL2
1580 * + Secure EL1 & EL0
1581 * + Secure EL3
1582 * If EL3 is 32-bit:
1583 * + NonSecure PL1 & 0 stage 1
1584 * + NonSecure PL1 & 0 stage 2
1585 * + NonSecure PL2
1586 * + Secure PL0 & PL1
1587 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1589 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1590 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1591 * may differ in access permissions even if the VA->PA map is the same
1592 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1593 * translation, which means that we have one mmu_idx that deals with two
1594 * concatenated translation regimes [this sort of combined s1+2 TLB is
1595 * architecturally permitted]
1596 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1597 * handling via the TLB. The only way to do a stage 1 translation without
1598 * the immediate stage 2 translation is via the ATS or AT system insns,
1599 * which can be slow-pathed and always do a page table walk.
1600 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1601 * translation regimes, because they map reasonably well to each other
1602 * and they can't both be active at the same time.
1603 * This gives us the following list of mmu_idx values:
1605 * NS EL0 (aka NS PL0) stage 1+2
1606 * NS EL1 (aka NS PL1) stage 1+2
1607 * NS EL2 (aka NS PL2)
1608 * S EL3 (aka S PL1)
1609 * S EL0 (aka S PL0)
1610 * S EL1 (not used if EL3 is 32 bit)
1611 * NS EL0+1 stage 2
1613 * (The last of these is an mmu_idx because we want to be able to use the TLB
1614 * for the accesses done as part of a stage 1 page table walk, rather than
1615 * having to walk the stage 2 page table over and over.)
1617 * Our enumeration includes at the end some entries which are not "true"
1618 * mmu_idx values in that they don't have corresponding TLBs and are only
1619 * valid for doing slow path page table walks.
1621 * The constant names here are patterned after the general style of the names
1622 * of the AT/ATS operations.
1623 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1625 typedef enum ARMMMUIdx {
1626 ARMMMUIdx_S12NSE0 = 0,
1627 ARMMMUIdx_S12NSE1 = 1,
1628 ARMMMUIdx_S1E2 = 2,
1629 ARMMMUIdx_S1E3 = 3,
1630 ARMMMUIdx_S1SE0 = 4,
1631 ARMMMUIdx_S1SE1 = 5,
1632 ARMMMUIdx_S2NS = 6,
1633 /* Indexes below here don't have TLBs and are used only for AT system
1634 * instructions or for the first stage of an S12 page table walk.
1636 ARMMMUIdx_S1NSE0 = 7,
1637 ARMMMUIdx_S1NSE1 = 8,
1638 } ARMMMUIdx;
1640 #define MMU_USER_IDX 0
1642 /* Return the exception level we're running at if this is our mmu_idx */
1643 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1645 assert(mmu_idx < ARMMMUIdx_S2NS);
1646 return mmu_idx & 3;
1649 /* Determine the current mmu_idx to use for normal loads/stores */
1650 static inline int cpu_mmu_index(CPUARMState *env)
1652 int el = arm_current_el(env);
1654 if (el < 2 && arm_is_secure_below_el3(env)) {
1655 return ARMMMUIdx_S1SE0 + el;
1657 return el;
1660 /* Return the Exception Level targeted by debug exceptions;
1661 * currently always EL1 since we don't implement EL2 or EL3.
1663 static inline int arm_debug_target_el(CPUARMState *env)
1665 return 1;
1668 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1670 if (arm_current_el(env) == arm_debug_target_el(env)) {
1671 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1672 || (env->daif & PSTATE_D)) {
1673 return false;
1676 return true;
1679 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1681 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1682 return aa64_generate_debug_exceptions(env);
1684 return arm_current_el(env) != 2;
1687 /* Return true if debugging exceptions are currently enabled.
1688 * This corresponds to what in ARM ARM pseudocode would be
1689 * if UsingAArch32() then
1690 * return AArch32.GenerateDebugExceptions()
1691 * else
1692 * return AArch64.GenerateDebugExceptions()
1693 * We choose to push the if() down into this function for clarity,
1694 * since the pseudocode has it at all callsites except for the one in
1695 * CheckSoftwareStep(), where it is elided because both branches would
1696 * always return the same value.
1698 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1699 * don't yet implement those exception levels or their associated trap bits.
1701 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1703 if (env->aarch64) {
1704 return aa64_generate_debug_exceptions(env);
1705 } else {
1706 return aa32_generate_debug_exceptions(env);
1710 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1711 * implicitly means this always returns false in pre-v8 CPUs.)
1713 static inline bool arm_singlestep_active(CPUARMState *env)
1715 return extract32(env->cp15.mdscr_el1, 0, 1)
1716 && arm_el_is_aa64(env, arm_debug_target_el(env))
1717 && arm_generate_debug_exceptions(env);
1720 #include "exec/cpu-all.h"
1722 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1723 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1724 * We put flags which are shared between 32 and 64 bit mode at the top
1725 * of the word, and flags which apply to only one mode at the bottom.
1727 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1728 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1729 #define ARM_TBFLAG_MMUIDX_SHIFT 28
1730 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
1732 /* Bit usage when in AArch32 state: */
1733 #define ARM_TBFLAG_THUMB_SHIFT 0
1734 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1735 #define ARM_TBFLAG_VECLEN_SHIFT 1
1736 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1737 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1738 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1739 #define ARM_TBFLAG_VFPEN_SHIFT 7
1740 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1741 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1742 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1743 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1744 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1745 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1746 #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1747 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
1748 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1749 #define ARM_TBFLAG_PSTATE_SS_SHIFT 19
1750 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1751 /* We store the bottom two bits of the CPAR as TB flags and handle
1752 * checks on the other bits at runtime
1754 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
1755 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1756 /* Indicates whether cp register reads and writes by guest code should access
1757 * the secure or nonsecure bank of banked registers; note that this is not
1758 * the same thing as the current security state of the processor!
1760 #define ARM_TBFLAG_NS_SHIFT 22
1761 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
1763 /* Bit usage when in AArch64 state */
1764 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1765 #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1766 #define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
1767 #define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1768 #define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
1769 #define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1771 /* some convenience accessor macros */
1772 #define ARM_TBFLAG_AARCH64_STATE(F) \
1773 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1774 #define ARM_TBFLAG_MMUIDX(F) \
1775 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
1776 #define ARM_TBFLAG_THUMB(F) \
1777 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1778 #define ARM_TBFLAG_VECLEN(F) \
1779 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1780 #define ARM_TBFLAG_VECSTRIDE(F) \
1781 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1782 #define ARM_TBFLAG_VFPEN(F) \
1783 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1784 #define ARM_TBFLAG_CONDEXEC(F) \
1785 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1786 #define ARM_TBFLAG_BSWAP_CODE(F) \
1787 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1788 #define ARM_TBFLAG_CPACR_FPEN(F) \
1789 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1790 #define ARM_TBFLAG_SS_ACTIVE(F) \
1791 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1792 #define ARM_TBFLAG_PSTATE_SS(F) \
1793 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1794 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1795 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1796 #define ARM_TBFLAG_AA64_FPEN(F) \
1797 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1798 #define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
1799 (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1800 #define ARM_TBFLAG_AA64_PSTATE_SS(F) \
1801 (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1802 #define ARM_TBFLAG_NS(F) \
1803 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1805 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1806 target_ulong *cs_base, int *flags)
1808 int fpen;
1810 if (arm_feature(env, ARM_FEATURE_V6)) {
1811 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
1812 } else {
1813 /* CPACR doesn't exist before v6, so VFP is always accessible */
1814 fpen = 3;
1817 if (is_a64(env)) {
1818 *pc = env->pc;
1819 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1820 if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1821 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1823 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1824 * states defined in the ARM ARM for software singlestep:
1825 * SS_ACTIVE PSTATE.SS State
1826 * 0 x Inactive (the TB flag for SS is always 0)
1827 * 1 0 Active-pending
1828 * 1 1 Active-not-pending
1830 if (arm_singlestep_active(env)) {
1831 *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
1832 if (env->pstate & PSTATE_SS) {
1833 *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
1836 } else {
1837 *pc = env->regs[15];
1838 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1839 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1840 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1841 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1842 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1843 if (!(access_secure_reg(env))) {
1844 *flags |= ARM_TBFLAG_NS_MASK;
1846 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1847 || arm_el_is_aa64(env, 1)) {
1848 *flags |= ARM_TBFLAG_VFPEN_MASK;
1850 if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1851 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1853 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1854 * states defined in the ARM ARM for software singlestep:
1855 * SS_ACTIVE PSTATE.SS State
1856 * 0 x Inactive (the TB flag for SS is always 0)
1857 * 1 0 Active-pending
1858 * 1 1 Active-not-pending
1860 if (arm_singlestep_active(env)) {
1861 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1862 if (env->uncached_cpsr & PSTATE_SS) {
1863 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1866 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1867 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1870 *flags |= (cpu_mmu_index(env) << ARM_TBFLAG_MMUIDX_SHIFT);
1872 *cs_base = 0;
1875 #include "exec/exec-all.h"
1877 enum {
1878 QEMU_PSCI_CONDUIT_DISABLED = 0,
1879 QEMU_PSCI_CONDUIT_SMC = 1,
1880 QEMU_PSCI_CONDUIT_HVC = 2,
1883 #endif