vfio/pci: Pass an error object to vfio_msix_early_setup
[qemu.git] / target-ppc / int_helper.c
blob5aee0a81c7086ffed3455411cbf498f3d5611890
1 /*
2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "crypto/aes.h"
26 #include "helper_regs.h"
27 /*****************************************************************************/
28 /* Fixed point operations helpers */
30 target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
31 uint32_t oe)
33 uint64_t rt = 0;
34 int overflow = 0;
36 uint64_t dividend = (uint64_t)ra << 32;
37 uint64_t divisor = (uint32_t)rb;
39 if (unlikely(divisor == 0)) {
40 overflow = 1;
41 } else {
42 rt = dividend / divisor;
43 overflow = rt > UINT32_MAX;
46 if (unlikely(overflow)) {
47 rt = 0; /* Undefined */
50 if (oe) {
51 if (unlikely(overflow)) {
52 env->so = env->ov = 1;
53 } else {
54 env->ov = 0;
58 return (target_ulong)rt;
61 target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
62 uint32_t oe)
64 int64_t rt = 0;
65 int overflow = 0;
67 int64_t dividend = (int64_t)ra << 32;
68 int64_t divisor = (int64_t)((int32_t)rb);
70 if (unlikely((divisor == 0) ||
71 ((divisor == -1ull) && (dividend == INT64_MIN)))) {
72 overflow = 1;
73 } else {
74 rt = dividend / divisor;
75 overflow = rt != (int32_t)rt;
78 if (unlikely(overflow)) {
79 rt = 0; /* Undefined */
82 if (oe) {
83 if (unlikely(overflow)) {
84 env->so = env->ov = 1;
85 } else {
86 env->ov = 0;
90 return (target_ulong)rt;
93 #if defined(TARGET_PPC64)
95 uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
97 uint64_t rt = 0;
98 int overflow = 0;
100 overflow = divu128(&rt, &ra, rb);
102 if (unlikely(overflow)) {
103 rt = 0; /* Undefined */
106 if (oe) {
107 if (unlikely(overflow)) {
108 env->so = env->ov = 1;
109 } else {
110 env->ov = 0;
114 return rt;
117 uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
119 int64_t rt = 0;
120 int64_t ra = (int64_t)rau;
121 int64_t rb = (int64_t)rbu;
122 int overflow = divs128(&rt, &ra, rb);
124 if (unlikely(overflow)) {
125 rt = 0; /* Undefined */
128 if (oe) {
130 if (unlikely(overflow)) {
131 env->so = env->ov = 1;
132 } else {
133 env->ov = 0;
137 return rt;
140 #endif
143 target_ulong helper_cntlzw(target_ulong t)
145 return clz32(t);
148 target_ulong helper_cnttzw(target_ulong t)
150 return ctz32(t);
153 #if defined(TARGET_PPC64)
154 /* if x = 0xab, returns 0xababababababababa */
155 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
157 /* substract 1 from each byte, and with inverse, check if MSB is set at each
158 * byte.
159 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
160 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
162 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
164 /* When you XOR the pattern and there is a match, that byte will be zero */
165 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
167 uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb)
169 return hasvalue(rb, ra) ? 1 << CRF_GT : 0;
172 #undef pattern
173 #undef haszero
174 #undef hasvalue
176 target_ulong helper_cntlzd(target_ulong t)
178 return clz64(t);
181 target_ulong helper_cnttzd(target_ulong t)
183 return ctz64(t);
186 /* Return invalid random number.
188 * FIXME: Add rng backend or other mechanism to get cryptographically suitable
189 * random number
191 target_ulong helper_darn32(void)
193 return -1;
196 target_ulong helper_darn64(void)
198 return -1;
201 #endif
203 #if defined(TARGET_PPC64)
205 uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
207 int i;
208 uint64_t ra = 0;
210 for (i = 0; i < 8; i++) {
211 int index = (rs >> (i*8)) & 0xFF;
212 if (index < 64) {
213 if (rb & (1ull << (63-index))) {
214 ra |= 1 << i;
218 return ra;
221 #endif
223 target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
225 target_ulong mask = 0xff;
226 target_ulong ra = 0;
227 int i;
229 for (i = 0; i < sizeof(target_ulong); i++) {
230 if ((rs & mask) == (rb & mask)) {
231 ra |= mask;
233 mask <<= 8;
235 return ra;
238 /* shift right arithmetic helper */
239 target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
240 target_ulong shift)
242 int32_t ret;
244 if (likely(!(shift & 0x20))) {
245 if (likely((uint32_t)shift != 0)) {
246 shift &= 0x1f;
247 ret = (int32_t)value >> shift;
248 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
249 env->ca = 0;
250 } else {
251 env->ca = 1;
253 } else {
254 ret = (int32_t)value;
255 env->ca = 0;
257 } else {
258 ret = (int32_t)value >> 31;
259 env->ca = (ret != 0);
261 return (target_long)ret;
264 #if defined(TARGET_PPC64)
265 target_ulong helper_srad(CPUPPCState *env, target_ulong value,
266 target_ulong shift)
268 int64_t ret;
270 if (likely(!(shift & 0x40))) {
271 if (likely((uint64_t)shift != 0)) {
272 shift &= 0x3f;
273 ret = (int64_t)value >> shift;
274 if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
275 env->ca = 0;
276 } else {
277 env->ca = 1;
279 } else {
280 ret = (int64_t)value;
281 env->ca = 0;
283 } else {
284 ret = (int64_t)value >> 63;
285 env->ca = (ret != 0);
287 return ret;
289 #endif
291 #if defined(TARGET_PPC64)
292 target_ulong helper_popcntb(target_ulong val)
294 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
295 0x5555555555555555ULL);
296 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
297 0x3333333333333333ULL);
298 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
299 0x0f0f0f0f0f0f0f0fULL);
300 return val;
303 target_ulong helper_popcntw(target_ulong val)
305 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
306 0x5555555555555555ULL);
307 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
308 0x3333333333333333ULL);
309 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
310 0x0f0f0f0f0f0f0f0fULL);
311 val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
312 0x00ff00ff00ff00ffULL);
313 val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
314 0x0000ffff0000ffffULL);
315 return val;
318 target_ulong helper_popcntd(target_ulong val)
320 return ctpop64(val);
322 #else
323 target_ulong helper_popcntb(target_ulong val)
325 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
326 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
327 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
328 return val;
331 target_ulong helper_popcntw(target_ulong val)
333 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
334 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
335 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
336 val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff);
337 val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff);
338 return val;
340 #endif
342 /*****************************************************************************/
343 /* PowerPC 601 specific instructions (POWER bridge) */
344 target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2)
346 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
348 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
349 (int32_t)arg2 == 0) {
350 env->spr[SPR_MQ] = 0;
351 return INT32_MIN;
352 } else {
353 env->spr[SPR_MQ] = tmp % arg2;
354 return tmp / (int32_t)arg2;
358 target_ulong helper_divo(CPUPPCState *env, target_ulong arg1,
359 target_ulong arg2)
361 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
363 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
364 (int32_t)arg2 == 0) {
365 env->so = env->ov = 1;
366 env->spr[SPR_MQ] = 0;
367 return INT32_MIN;
368 } else {
369 env->spr[SPR_MQ] = tmp % arg2;
370 tmp /= (int32_t)arg2;
371 if ((int32_t)tmp != tmp) {
372 env->so = env->ov = 1;
373 } else {
374 env->ov = 0;
376 return tmp;
380 target_ulong helper_divs(CPUPPCState *env, target_ulong arg1,
381 target_ulong arg2)
383 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
384 (int32_t)arg2 == 0) {
385 env->spr[SPR_MQ] = 0;
386 return INT32_MIN;
387 } else {
388 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
389 return (int32_t)arg1 / (int32_t)arg2;
393 target_ulong helper_divso(CPUPPCState *env, target_ulong arg1,
394 target_ulong arg2)
396 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
397 (int32_t)arg2 == 0) {
398 env->so = env->ov = 1;
399 env->spr[SPR_MQ] = 0;
400 return INT32_MIN;
401 } else {
402 env->ov = 0;
403 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
404 return (int32_t)arg1 / (int32_t)arg2;
408 /*****************************************************************************/
409 /* 602 specific instructions */
410 /* mfrom is the most crazy instruction ever seen, imho ! */
411 /* Real implementation uses a ROM table. Do the same */
412 /* Extremely decomposed:
413 * -arg / 256
414 * return 256 * log10(10 + 1.0) + 0.5
416 #if !defined(CONFIG_USER_ONLY)
417 target_ulong helper_602_mfrom(target_ulong arg)
419 if (likely(arg < 602)) {
420 #include "mfrom_table.c"
421 return mfrom_ROM_table[arg];
422 } else {
423 return 0;
426 #endif
428 /*****************************************************************************/
429 /* Altivec extension helpers */
430 #if defined(HOST_WORDS_BIGENDIAN)
431 #define HI_IDX 0
432 #define LO_IDX 1
433 #define AVRB(i) u8[i]
434 #define AVRW(i) u32[i]
435 #else
436 #define HI_IDX 1
437 #define LO_IDX 0
438 #define AVRB(i) u8[15-(i)]
439 #define AVRW(i) u32[3-(i)]
440 #endif
442 #if defined(HOST_WORDS_BIGENDIAN)
443 #define VECTOR_FOR_INORDER_I(index, element) \
444 for (index = 0; index < ARRAY_SIZE(r->element); index++)
445 #else
446 #define VECTOR_FOR_INORDER_I(index, element) \
447 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
448 #endif
450 /* Saturating arithmetic helpers. */
451 #define SATCVT(from, to, from_type, to_type, min, max) \
452 static inline to_type cvt##from##to(from_type x, int *sat) \
454 to_type r; \
456 if (x < (from_type)min) { \
457 r = min; \
458 *sat = 1; \
459 } else if (x > (from_type)max) { \
460 r = max; \
461 *sat = 1; \
462 } else { \
463 r = x; \
465 return r; \
467 #define SATCVTU(from, to, from_type, to_type, min, max) \
468 static inline to_type cvt##from##to(from_type x, int *sat) \
470 to_type r; \
472 if (x > (from_type)max) { \
473 r = max; \
474 *sat = 1; \
475 } else { \
476 r = x; \
478 return r; \
480 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
481 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
482 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
484 SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
485 SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
486 SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
487 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
488 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
489 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
490 #undef SATCVT
491 #undef SATCVTU
493 void helper_lvsl(ppc_avr_t *r, target_ulong sh)
495 int i, j = (sh & 0xf);
497 VECTOR_FOR_INORDER_I(i, u8) {
498 r->u8[i] = j++;
502 void helper_lvsr(ppc_avr_t *r, target_ulong sh)
504 int i, j = 0x10 - (sh & 0xf);
506 VECTOR_FOR_INORDER_I(i, u8) {
507 r->u8[i] = j++;
511 void helper_mtvscr(CPUPPCState *env, ppc_avr_t *r)
513 #if defined(HOST_WORDS_BIGENDIAN)
514 env->vscr = r->u32[3];
515 #else
516 env->vscr = r->u32[0];
517 #endif
518 set_flush_to_zero(vscr_nj, &env->vec_status);
521 void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
523 int i;
525 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
526 r->u32[i] = ~a->u32[i] < b->u32[i];
530 #define VARITH_DO(name, op, element) \
531 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
533 int i; \
535 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
536 r->element[i] = a->element[i] op b->element[i]; \
539 #define VARITH(suffix, element) \
540 VARITH_DO(add##suffix, +, element) \
541 VARITH_DO(sub##suffix, -, element)
542 VARITH(ubm, u8)
543 VARITH(uhm, u16)
544 VARITH(uwm, u32)
545 VARITH(udm, u64)
546 VARITH_DO(muluwm, *, u32)
547 #undef VARITH_DO
548 #undef VARITH
550 #define VARITHFP(suffix, func) \
551 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
552 ppc_avr_t *b) \
554 int i; \
556 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
557 r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
560 VARITHFP(addfp, float32_add)
561 VARITHFP(subfp, float32_sub)
562 VARITHFP(minfp, float32_min)
563 VARITHFP(maxfp, float32_max)
564 #undef VARITHFP
566 #define VARITHFPFMA(suffix, type) \
567 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
568 ppc_avr_t *b, ppc_avr_t *c) \
570 int i; \
571 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
572 r->f[i] = float32_muladd(a->f[i], c->f[i], b->f[i], \
573 type, &env->vec_status); \
576 VARITHFPFMA(maddfp, 0);
577 VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
578 #undef VARITHFPFMA
580 #define VARITHSAT_CASE(type, op, cvt, element) \
582 type result = (type)a->element[i] op (type)b->element[i]; \
583 r->element[i] = cvt(result, &sat); \
586 #define VARITHSAT_DO(name, op, optype, cvt, element) \
587 void helper_v##name(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
588 ppc_avr_t *b) \
590 int sat = 0; \
591 int i; \
593 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
594 switch (sizeof(r->element[0])) { \
595 case 1: \
596 VARITHSAT_CASE(optype, op, cvt, element); \
597 break; \
598 case 2: \
599 VARITHSAT_CASE(optype, op, cvt, element); \
600 break; \
601 case 4: \
602 VARITHSAT_CASE(optype, op, cvt, element); \
603 break; \
606 if (sat) { \
607 env->vscr |= (1 << VSCR_SAT); \
610 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
611 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
612 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
613 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
614 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
615 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
616 VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
617 VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
618 VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
619 VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
620 VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
621 VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
622 #undef VARITHSAT_CASE
623 #undef VARITHSAT_DO
624 #undef VARITHSAT_SIGNED
625 #undef VARITHSAT_UNSIGNED
627 #define VAVG_DO(name, element, etype) \
628 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
630 int i; \
632 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
633 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
634 r->element[i] = x >> 1; \
638 #define VAVG(type, signed_element, signed_type, unsigned_element, \
639 unsigned_type) \
640 VAVG_DO(avgs##type, signed_element, signed_type) \
641 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
642 VAVG(b, s8, int16_t, u8, uint16_t)
643 VAVG(h, s16, int32_t, u16, uint32_t)
644 VAVG(w, s32, int64_t, u32, uint64_t)
645 #undef VAVG_DO
646 #undef VAVG
648 #define VABSDU_DO(name, element) \
649 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
651 int i; \
653 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
654 r->element[i] = (a->element[i] > b->element[i]) ? \
655 (a->element[i] - b->element[i]) : \
656 (b->element[i] - a->element[i]); \
660 /* VABSDU - Vector absolute difference unsigned
661 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
662 * element - element type to access from vector
664 #define VABSDU(type, element) \
665 VABSDU_DO(absdu##type, element)
666 VABSDU(b, u8)
667 VABSDU(h, u16)
668 VABSDU(w, u32)
669 #undef VABSDU_DO
670 #undef VABSDU
672 #define VCF(suffix, cvt, element) \
673 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
674 ppc_avr_t *b, uint32_t uim) \
676 int i; \
678 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
679 float32 t = cvt(b->element[i], &env->vec_status); \
680 r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
683 VCF(ux, uint32_to_float32, u32)
684 VCF(sx, int32_to_float32, s32)
685 #undef VCF
687 #define VCMP_DO(suffix, compare, element, record) \
688 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
689 ppc_avr_t *a, ppc_avr_t *b) \
691 uint64_t ones = (uint64_t)-1; \
692 uint64_t all = ones; \
693 uint64_t none = 0; \
694 int i; \
696 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
697 uint64_t result = (a->element[i] compare b->element[i] ? \
698 ones : 0x0); \
699 switch (sizeof(a->element[0])) { \
700 case 8: \
701 r->u64[i] = result; \
702 break; \
703 case 4: \
704 r->u32[i] = result; \
705 break; \
706 case 2: \
707 r->u16[i] = result; \
708 break; \
709 case 1: \
710 r->u8[i] = result; \
711 break; \
713 all &= result; \
714 none |= result; \
716 if (record) { \
717 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
720 #define VCMP(suffix, compare, element) \
721 VCMP_DO(suffix, compare, element, 0) \
722 VCMP_DO(suffix##_dot, compare, element, 1)
723 VCMP(equb, ==, u8)
724 VCMP(equh, ==, u16)
725 VCMP(equw, ==, u32)
726 VCMP(equd, ==, u64)
727 VCMP(gtub, >, u8)
728 VCMP(gtuh, >, u16)
729 VCMP(gtuw, >, u32)
730 VCMP(gtud, >, u64)
731 VCMP(gtsb, >, s8)
732 VCMP(gtsh, >, s16)
733 VCMP(gtsw, >, s32)
734 VCMP(gtsd, >, s64)
735 #undef VCMP_DO
736 #undef VCMP
738 #define VCMPNE_DO(suffix, element, etype, cmpzero, record) \
739 void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \
740 ppc_avr_t *a, ppc_avr_t *b) \
742 etype ones = (etype)-1; \
743 etype all = ones; \
744 etype result, none = 0; \
745 int i; \
747 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
748 if (cmpzero) { \
749 result = ((a->element[i] == 0) \
750 || (b->element[i] == 0) \
751 || (a->element[i] != b->element[i]) ? \
752 ones : 0x0); \
753 } else { \
754 result = (a->element[i] != b->element[i]) ? ones : 0x0; \
756 r->element[i] = result; \
757 all &= result; \
758 none |= result; \
760 if (record) { \
761 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
765 /* VCMPNEZ - Vector compare not equal to zero
766 * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
767 * element - element type to access from vector
769 #define VCMPNE(suffix, element, etype, cmpzero) \
770 VCMPNE_DO(suffix, element, etype, cmpzero, 0) \
771 VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
772 VCMPNE(zb, u8, uint8_t, 1)
773 VCMPNE(zh, u16, uint16_t, 1)
774 VCMPNE(zw, u32, uint32_t, 1)
775 VCMPNE(b, u8, uint8_t, 0)
776 VCMPNE(h, u16, uint16_t, 0)
777 VCMPNE(w, u32, uint32_t, 0)
778 #undef VCMPNE_DO
779 #undef VCMPNE
781 #define VCMPFP_DO(suffix, compare, order, record) \
782 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
783 ppc_avr_t *a, ppc_avr_t *b) \
785 uint32_t ones = (uint32_t)-1; \
786 uint32_t all = ones; \
787 uint32_t none = 0; \
788 int i; \
790 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
791 uint32_t result; \
792 int rel = float32_compare_quiet(a->f[i], b->f[i], \
793 &env->vec_status); \
794 if (rel == float_relation_unordered) { \
795 result = 0; \
796 } else if (rel compare order) { \
797 result = ones; \
798 } else { \
799 result = 0; \
801 r->u32[i] = result; \
802 all &= result; \
803 none |= result; \
805 if (record) { \
806 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
809 #define VCMPFP(suffix, compare, order) \
810 VCMPFP_DO(suffix, compare, order, 0) \
811 VCMPFP_DO(suffix##_dot, compare, order, 1)
812 VCMPFP(eqfp, ==, float_relation_equal)
813 VCMPFP(gefp, !=, float_relation_less)
814 VCMPFP(gtfp, ==, float_relation_greater)
815 #undef VCMPFP_DO
816 #undef VCMPFP
818 static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
819 ppc_avr_t *a, ppc_avr_t *b, int record)
821 int i;
822 int all_in = 0;
824 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
825 int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
826 if (le_rel == float_relation_unordered) {
827 r->u32[i] = 0xc0000000;
828 all_in = 1;
829 } else {
830 float32 bneg = float32_chs(b->f[i]);
831 int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
832 int le = le_rel != float_relation_greater;
833 int ge = ge_rel != float_relation_less;
835 r->u32[i] = ((!le) << 31) | ((!ge) << 30);
836 all_in |= (!le | !ge);
839 if (record) {
840 env->crf[6] = (all_in == 0) << 1;
844 void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
846 vcmpbfp_internal(env, r, a, b, 0);
849 void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
850 ppc_avr_t *b)
852 vcmpbfp_internal(env, r, a, b, 1);
855 #define VCT(suffix, satcvt, element) \
856 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
857 ppc_avr_t *b, uint32_t uim) \
859 int i; \
860 int sat = 0; \
861 float_status s = env->vec_status; \
863 set_float_rounding_mode(float_round_to_zero, &s); \
864 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
865 if (float32_is_any_nan(b->f[i])) { \
866 r->element[i] = 0; \
867 } else { \
868 float64 t = float32_to_float64(b->f[i], &s); \
869 int64_t j; \
871 t = float64_scalbn(t, uim, &s); \
872 j = float64_to_int64(t, &s); \
873 r->element[i] = satcvt(j, &sat); \
876 if (sat) { \
877 env->vscr |= (1 << VSCR_SAT); \
880 VCT(uxs, cvtsduw, u32)
881 VCT(sxs, cvtsdsw, s32)
882 #undef VCT
884 target_ulong helper_vclzlsbb(ppc_avr_t *r)
886 target_ulong count = 0;
887 int i;
888 VECTOR_FOR_INORDER_I(i, u8) {
889 if (r->u8[i] & 0x01) {
890 break;
892 count++;
894 return count;
897 target_ulong helper_vctzlsbb(ppc_avr_t *r)
899 target_ulong count = 0;
900 int i;
901 #if defined(HOST_WORDS_BIGENDIAN)
902 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
903 #else
904 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
905 #endif
906 if (r->u8[i] & 0x01) {
907 break;
909 count++;
911 return count;
914 void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
915 ppc_avr_t *b, ppc_avr_t *c)
917 int sat = 0;
918 int i;
920 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
921 int32_t prod = a->s16[i] * b->s16[i];
922 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
924 r->s16[i] = cvtswsh(t, &sat);
927 if (sat) {
928 env->vscr |= (1 << VSCR_SAT);
932 void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
933 ppc_avr_t *b, ppc_avr_t *c)
935 int sat = 0;
936 int i;
938 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
939 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
940 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
941 r->s16[i] = cvtswsh(t, &sat);
944 if (sat) {
945 env->vscr |= (1 << VSCR_SAT);
949 #define VMINMAX_DO(name, compare, element) \
950 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
952 int i; \
954 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
955 if (a->element[i] compare b->element[i]) { \
956 r->element[i] = b->element[i]; \
957 } else { \
958 r->element[i] = a->element[i]; \
962 #define VMINMAX(suffix, element) \
963 VMINMAX_DO(min##suffix, >, element) \
964 VMINMAX_DO(max##suffix, <, element)
965 VMINMAX(sb, s8)
966 VMINMAX(sh, s16)
967 VMINMAX(sw, s32)
968 VMINMAX(sd, s64)
969 VMINMAX(ub, u8)
970 VMINMAX(uh, u16)
971 VMINMAX(uw, u32)
972 VMINMAX(ud, u64)
973 #undef VMINMAX_DO
974 #undef VMINMAX
976 void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
978 int i;
980 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
981 int32_t prod = a->s16[i] * b->s16[i];
982 r->s16[i] = (int16_t) (prod + c->s16[i]);
986 #define VMRG_DO(name, element, highp) \
987 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
989 ppc_avr_t result; \
990 int i; \
991 size_t n_elems = ARRAY_SIZE(r->element); \
993 for (i = 0; i < n_elems / 2; i++) { \
994 if (highp) { \
995 result.element[i*2+HI_IDX] = a->element[i]; \
996 result.element[i*2+LO_IDX] = b->element[i]; \
997 } else { \
998 result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
999 b->element[n_elems - i - 1]; \
1000 result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
1001 a->element[n_elems - i - 1]; \
1004 *r = result; \
1006 #if defined(HOST_WORDS_BIGENDIAN)
1007 #define MRGHI 0
1008 #define MRGLO 1
1009 #else
1010 #define MRGHI 1
1011 #define MRGLO 0
1012 #endif
1013 #define VMRG(suffix, element) \
1014 VMRG_DO(mrgl##suffix, element, MRGHI) \
1015 VMRG_DO(mrgh##suffix, element, MRGLO)
1016 VMRG(b, u8)
1017 VMRG(h, u16)
1018 VMRG(w, u32)
1019 #undef VMRG_DO
1020 #undef VMRG
1021 #undef MRGHI
1022 #undef MRGLO
1024 void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1025 ppc_avr_t *b, ppc_avr_t *c)
1027 int32_t prod[16];
1028 int i;
1030 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
1031 prod[i] = (int32_t)a->s8[i] * b->u8[i];
1034 VECTOR_FOR_INORDER_I(i, s32) {
1035 r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
1036 prod[4 * i + 2] + prod[4 * i + 3];
1040 void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1041 ppc_avr_t *b, ppc_avr_t *c)
1043 int32_t prod[8];
1044 int i;
1046 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
1047 prod[i] = a->s16[i] * b->s16[i];
1050 VECTOR_FOR_INORDER_I(i, s32) {
1051 r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1055 void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1056 ppc_avr_t *b, ppc_avr_t *c)
1058 int32_t prod[8];
1059 int i;
1060 int sat = 0;
1062 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
1063 prod[i] = (int32_t)a->s16[i] * b->s16[i];
1066 VECTOR_FOR_INORDER_I(i, s32) {
1067 int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1069 r->u32[i] = cvtsdsw(t, &sat);
1072 if (sat) {
1073 env->vscr |= (1 << VSCR_SAT);
1077 void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1078 ppc_avr_t *b, ppc_avr_t *c)
1080 uint16_t prod[16];
1081 int i;
1083 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1084 prod[i] = a->u8[i] * b->u8[i];
1087 VECTOR_FOR_INORDER_I(i, u32) {
1088 r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
1089 prod[4 * i + 2] + prod[4 * i + 3];
1093 void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1094 ppc_avr_t *b, ppc_avr_t *c)
1096 uint32_t prod[8];
1097 int i;
1099 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1100 prod[i] = a->u16[i] * b->u16[i];
1103 VECTOR_FOR_INORDER_I(i, u32) {
1104 r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1108 void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1109 ppc_avr_t *b, ppc_avr_t *c)
1111 uint32_t prod[8];
1112 int i;
1113 int sat = 0;
1115 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1116 prod[i] = a->u16[i] * b->u16[i];
1119 VECTOR_FOR_INORDER_I(i, s32) {
1120 uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1122 r->u32[i] = cvtuduw(t, &sat);
1125 if (sat) {
1126 env->vscr |= (1 << VSCR_SAT);
1130 #define VMUL_DO(name, mul_element, prod_element, cast, evenp) \
1131 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1133 int i; \
1135 VECTOR_FOR_INORDER_I(i, prod_element) { \
1136 if (evenp) { \
1137 r->prod_element[i] = \
1138 (cast)a->mul_element[i * 2 + HI_IDX] * \
1139 (cast)b->mul_element[i * 2 + HI_IDX]; \
1140 } else { \
1141 r->prod_element[i] = \
1142 (cast)a->mul_element[i * 2 + LO_IDX] * \
1143 (cast)b->mul_element[i * 2 + LO_IDX]; \
1147 #define VMUL(suffix, mul_element, prod_element, cast) \
1148 VMUL_DO(mule##suffix, mul_element, prod_element, cast, 1) \
1149 VMUL_DO(mulo##suffix, mul_element, prod_element, cast, 0)
1150 VMUL(sb, s8, s16, int16_t)
1151 VMUL(sh, s16, s32, int32_t)
1152 VMUL(sw, s32, s64, int64_t)
1153 VMUL(ub, u8, u16, uint16_t)
1154 VMUL(uh, u16, u32, uint32_t)
1155 VMUL(uw, u32, u64, uint64_t)
1156 #undef VMUL_DO
1157 #undef VMUL
1159 void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1160 ppc_avr_t *c)
1162 ppc_avr_t result;
1163 int i;
1165 VECTOR_FOR_INORDER_I(i, u8) {
1166 int s = c->u8[i] & 0x1f;
1167 #if defined(HOST_WORDS_BIGENDIAN)
1168 int index = s & 0xf;
1169 #else
1170 int index = 15 - (s & 0xf);
1171 #endif
1173 if (s & 0x10) {
1174 result.u8[i] = b->u8[index];
1175 } else {
1176 result.u8[i] = a->u8[index];
1179 *r = result;
1182 void helper_vpermr(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1183 ppc_avr_t *c)
1185 ppc_avr_t result;
1186 int i;
1188 VECTOR_FOR_INORDER_I(i, u8) {
1189 int s = c->u8[i] & 0x1f;
1190 #if defined(HOST_WORDS_BIGENDIAN)
1191 int index = 15 - (s & 0xf);
1192 #else
1193 int index = s & 0xf;
1194 #endif
1196 if (s & 0x10) {
1197 result.u8[i] = a->u8[index];
1198 } else {
1199 result.u8[i] = b->u8[index];
1202 *r = result;
1205 #if defined(HOST_WORDS_BIGENDIAN)
1206 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1207 #define VBPERMD_INDEX(i) (i)
1208 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1209 #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1210 #else
1211 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15-(i)])
1212 #define VBPERMD_INDEX(i) (1 - i)
1213 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1214 #define EXTRACT_BIT(avr, i, index) \
1215 (extract64((avr)->u64[1 - i], 63 - index, 1))
1216 #endif
1218 void helper_vbpermd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1220 int i, j;
1221 ppc_avr_t result = { .u64 = { 0, 0 } };
1222 VECTOR_FOR_INORDER_I(i, u64) {
1223 for (j = 0; j < 8; j++) {
1224 int index = VBPERMQ_INDEX(b, (i * 8) + j);
1225 if (index < 64 && EXTRACT_BIT(a, i, index)) {
1226 result.u64[VBPERMD_INDEX(i)] |= (0x80 >> j);
1230 *r = result;
1233 void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1235 int i;
1236 uint64_t perm = 0;
1238 VECTOR_FOR_INORDER_I(i, u8) {
1239 int index = VBPERMQ_INDEX(b, i);
1241 if (index < 128) {
1242 uint64_t mask = (1ull << (63-(index & 0x3F)));
1243 if (a->u64[VBPERMQ_DW(index)] & mask) {
1244 perm |= (0x8000 >> i);
1249 r->u64[HI_IDX] = perm;
1250 r->u64[LO_IDX] = 0;
1253 #undef VBPERMQ_INDEX
1254 #undef VBPERMQ_DW
1256 static const uint64_t VGBBD_MASKS[256] = {
1257 0x0000000000000000ull, /* 00 */
1258 0x0000000000000080ull, /* 01 */
1259 0x0000000000008000ull, /* 02 */
1260 0x0000000000008080ull, /* 03 */
1261 0x0000000000800000ull, /* 04 */
1262 0x0000000000800080ull, /* 05 */
1263 0x0000000000808000ull, /* 06 */
1264 0x0000000000808080ull, /* 07 */
1265 0x0000000080000000ull, /* 08 */
1266 0x0000000080000080ull, /* 09 */
1267 0x0000000080008000ull, /* 0A */
1268 0x0000000080008080ull, /* 0B */
1269 0x0000000080800000ull, /* 0C */
1270 0x0000000080800080ull, /* 0D */
1271 0x0000000080808000ull, /* 0E */
1272 0x0000000080808080ull, /* 0F */
1273 0x0000008000000000ull, /* 10 */
1274 0x0000008000000080ull, /* 11 */
1275 0x0000008000008000ull, /* 12 */
1276 0x0000008000008080ull, /* 13 */
1277 0x0000008000800000ull, /* 14 */
1278 0x0000008000800080ull, /* 15 */
1279 0x0000008000808000ull, /* 16 */
1280 0x0000008000808080ull, /* 17 */
1281 0x0000008080000000ull, /* 18 */
1282 0x0000008080000080ull, /* 19 */
1283 0x0000008080008000ull, /* 1A */
1284 0x0000008080008080ull, /* 1B */
1285 0x0000008080800000ull, /* 1C */
1286 0x0000008080800080ull, /* 1D */
1287 0x0000008080808000ull, /* 1E */
1288 0x0000008080808080ull, /* 1F */
1289 0x0000800000000000ull, /* 20 */
1290 0x0000800000000080ull, /* 21 */
1291 0x0000800000008000ull, /* 22 */
1292 0x0000800000008080ull, /* 23 */
1293 0x0000800000800000ull, /* 24 */
1294 0x0000800000800080ull, /* 25 */
1295 0x0000800000808000ull, /* 26 */
1296 0x0000800000808080ull, /* 27 */
1297 0x0000800080000000ull, /* 28 */
1298 0x0000800080000080ull, /* 29 */
1299 0x0000800080008000ull, /* 2A */
1300 0x0000800080008080ull, /* 2B */
1301 0x0000800080800000ull, /* 2C */
1302 0x0000800080800080ull, /* 2D */
1303 0x0000800080808000ull, /* 2E */
1304 0x0000800080808080ull, /* 2F */
1305 0x0000808000000000ull, /* 30 */
1306 0x0000808000000080ull, /* 31 */
1307 0x0000808000008000ull, /* 32 */
1308 0x0000808000008080ull, /* 33 */
1309 0x0000808000800000ull, /* 34 */
1310 0x0000808000800080ull, /* 35 */
1311 0x0000808000808000ull, /* 36 */
1312 0x0000808000808080ull, /* 37 */
1313 0x0000808080000000ull, /* 38 */
1314 0x0000808080000080ull, /* 39 */
1315 0x0000808080008000ull, /* 3A */
1316 0x0000808080008080ull, /* 3B */
1317 0x0000808080800000ull, /* 3C */
1318 0x0000808080800080ull, /* 3D */
1319 0x0000808080808000ull, /* 3E */
1320 0x0000808080808080ull, /* 3F */
1321 0x0080000000000000ull, /* 40 */
1322 0x0080000000000080ull, /* 41 */
1323 0x0080000000008000ull, /* 42 */
1324 0x0080000000008080ull, /* 43 */
1325 0x0080000000800000ull, /* 44 */
1326 0x0080000000800080ull, /* 45 */
1327 0x0080000000808000ull, /* 46 */
1328 0x0080000000808080ull, /* 47 */
1329 0x0080000080000000ull, /* 48 */
1330 0x0080000080000080ull, /* 49 */
1331 0x0080000080008000ull, /* 4A */
1332 0x0080000080008080ull, /* 4B */
1333 0x0080000080800000ull, /* 4C */
1334 0x0080000080800080ull, /* 4D */
1335 0x0080000080808000ull, /* 4E */
1336 0x0080000080808080ull, /* 4F */
1337 0x0080008000000000ull, /* 50 */
1338 0x0080008000000080ull, /* 51 */
1339 0x0080008000008000ull, /* 52 */
1340 0x0080008000008080ull, /* 53 */
1341 0x0080008000800000ull, /* 54 */
1342 0x0080008000800080ull, /* 55 */
1343 0x0080008000808000ull, /* 56 */
1344 0x0080008000808080ull, /* 57 */
1345 0x0080008080000000ull, /* 58 */
1346 0x0080008080000080ull, /* 59 */
1347 0x0080008080008000ull, /* 5A */
1348 0x0080008080008080ull, /* 5B */
1349 0x0080008080800000ull, /* 5C */
1350 0x0080008080800080ull, /* 5D */
1351 0x0080008080808000ull, /* 5E */
1352 0x0080008080808080ull, /* 5F */
1353 0x0080800000000000ull, /* 60 */
1354 0x0080800000000080ull, /* 61 */
1355 0x0080800000008000ull, /* 62 */
1356 0x0080800000008080ull, /* 63 */
1357 0x0080800000800000ull, /* 64 */
1358 0x0080800000800080ull, /* 65 */
1359 0x0080800000808000ull, /* 66 */
1360 0x0080800000808080ull, /* 67 */
1361 0x0080800080000000ull, /* 68 */
1362 0x0080800080000080ull, /* 69 */
1363 0x0080800080008000ull, /* 6A */
1364 0x0080800080008080ull, /* 6B */
1365 0x0080800080800000ull, /* 6C */
1366 0x0080800080800080ull, /* 6D */
1367 0x0080800080808000ull, /* 6E */
1368 0x0080800080808080ull, /* 6F */
1369 0x0080808000000000ull, /* 70 */
1370 0x0080808000000080ull, /* 71 */
1371 0x0080808000008000ull, /* 72 */
1372 0x0080808000008080ull, /* 73 */
1373 0x0080808000800000ull, /* 74 */
1374 0x0080808000800080ull, /* 75 */
1375 0x0080808000808000ull, /* 76 */
1376 0x0080808000808080ull, /* 77 */
1377 0x0080808080000000ull, /* 78 */
1378 0x0080808080000080ull, /* 79 */
1379 0x0080808080008000ull, /* 7A */
1380 0x0080808080008080ull, /* 7B */
1381 0x0080808080800000ull, /* 7C */
1382 0x0080808080800080ull, /* 7D */
1383 0x0080808080808000ull, /* 7E */
1384 0x0080808080808080ull, /* 7F */
1385 0x8000000000000000ull, /* 80 */
1386 0x8000000000000080ull, /* 81 */
1387 0x8000000000008000ull, /* 82 */
1388 0x8000000000008080ull, /* 83 */
1389 0x8000000000800000ull, /* 84 */
1390 0x8000000000800080ull, /* 85 */
1391 0x8000000000808000ull, /* 86 */
1392 0x8000000000808080ull, /* 87 */
1393 0x8000000080000000ull, /* 88 */
1394 0x8000000080000080ull, /* 89 */
1395 0x8000000080008000ull, /* 8A */
1396 0x8000000080008080ull, /* 8B */
1397 0x8000000080800000ull, /* 8C */
1398 0x8000000080800080ull, /* 8D */
1399 0x8000000080808000ull, /* 8E */
1400 0x8000000080808080ull, /* 8F */
1401 0x8000008000000000ull, /* 90 */
1402 0x8000008000000080ull, /* 91 */
1403 0x8000008000008000ull, /* 92 */
1404 0x8000008000008080ull, /* 93 */
1405 0x8000008000800000ull, /* 94 */
1406 0x8000008000800080ull, /* 95 */
1407 0x8000008000808000ull, /* 96 */
1408 0x8000008000808080ull, /* 97 */
1409 0x8000008080000000ull, /* 98 */
1410 0x8000008080000080ull, /* 99 */
1411 0x8000008080008000ull, /* 9A */
1412 0x8000008080008080ull, /* 9B */
1413 0x8000008080800000ull, /* 9C */
1414 0x8000008080800080ull, /* 9D */
1415 0x8000008080808000ull, /* 9E */
1416 0x8000008080808080ull, /* 9F */
1417 0x8000800000000000ull, /* A0 */
1418 0x8000800000000080ull, /* A1 */
1419 0x8000800000008000ull, /* A2 */
1420 0x8000800000008080ull, /* A3 */
1421 0x8000800000800000ull, /* A4 */
1422 0x8000800000800080ull, /* A5 */
1423 0x8000800000808000ull, /* A6 */
1424 0x8000800000808080ull, /* A7 */
1425 0x8000800080000000ull, /* A8 */
1426 0x8000800080000080ull, /* A9 */
1427 0x8000800080008000ull, /* AA */
1428 0x8000800080008080ull, /* AB */
1429 0x8000800080800000ull, /* AC */
1430 0x8000800080800080ull, /* AD */
1431 0x8000800080808000ull, /* AE */
1432 0x8000800080808080ull, /* AF */
1433 0x8000808000000000ull, /* B0 */
1434 0x8000808000000080ull, /* B1 */
1435 0x8000808000008000ull, /* B2 */
1436 0x8000808000008080ull, /* B3 */
1437 0x8000808000800000ull, /* B4 */
1438 0x8000808000800080ull, /* B5 */
1439 0x8000808000808000ull, /* B6 */
1440 0x8000808000808080ull, /* B7 */
1441 0x8000808080000000ull, /* B8 */
1442 0x8000808080000080ull, /* B9 */
1443 0x8000808080008000ull, /* BA */
1444 0x8000808080008080ull, /* BB */
1445 0x8000808080800000ull, /* BC */
1446 0x8000808080800080ull, /* BD */
1447 0x8000808080808000ull, /* BE */
1448 0x8000808080808080ull, /* BF */
1449 0x8080000000000000ull, /* C0 */
1450 0x8080000000000080ull, /* C1 */
1451 0x8080000000008000ull, /* C2 */
1452 0x8080000000008080ull, /* C3 */
1453 0x8080000000800000ull, /* C4 */
1454 0x8080000000800080ull, /* C5 */
1455 0x8080000000808000ull, /* C6 */
1456 0x8080000000808080ull, /* C7 */
1457 0x8080000080000000ull, /* C8 */
1458 0x8080000080000080ull, /* C9 */
1459 0x8080000080008000ull, /* CA */
1460 0x8080000080008080ull, /* CB */
1461 0x8080000080800000ull, /* CC */
1462 0x8080000080800080ull, /* CD */
1463 0x8080000080808000ull, /* CE */
1464 0x8080000080808080ull, /* CF */
1465 0x8080008000000000ull, /* D0 */
1466 0x8080008000000080ull, /* D1 */
1467 0x8080008000008000ull, /* D2 */
1468 0x8080008000008080ull, /* D3 */
1469 0x8080008000800000ull, /* D4 */
1470 0x8080008000800080ull, /* D5 */
1471 0x8080008000808000ull, /* D6 */
1472 0x8080008000808080ull, /* D7 */
1473 0x8080008080000000ull, /* D8 */
1474 0x8080008080000080ull, /* D9 */
1475 0x8080008080008000ull, /* DA */
1476 0x8080008080008080ull, /* DB */
1477 0x8080008080800000ull, /* DC */
1478 0x8080008080800080ull, /* DD */
1479 0x8080008080808000ull, /* DE */
1480 0x8080008080808080ull, /* DF */
1481 0x8080800000000000ull, /* E0 */
1482 0x8080800000000080ull, /* E1 */
1483 0x8080800000008000ull, /* E2 */
1484 0x8080800000008080ull, /* E3 */
1485 0x8080800000800000ull, /* E4 */
1486 0x8080800000800080ull, /* E5 */
1487 0x8080800000808000ull, /* E6 */
1488 0x8080800000808080ull, /* E7 */
1489 0x8080800080000000ull, /* E8 */
1490 0x8080800080000080ull, /* E9 */
1491 0x8080800080008000ull, /* EA */
1492 0x8080800080008080ull, /* EB */
1493 0x8080800080800000ull, /* EC */
1494 0x8080800080800080ull, /* ED */
1495 0x8080800080808000ull, /* EE */
1496 0x8080800080808080ull, /* EF */
1497 0x8080808000000000ull, /* F0 */
1498 0x8080808000000080ull, /* F1 */
1499 0x8080808000008000ull, /* F2 */
1500 0x8080808000008080ull, /* F3 */
1501 0x8080808000800000ull, /* F4 */
1502 0x8080808000800080ull, /* F5 */
1503 0x8080808000808000ull, /* F6 */
1504 0x8080808000808080ull, /* F7 */
1505 0x8080808080000000ull, /* F8 */
1506 0x8080808080000080ull, /* F9 */
1507 0x8080808080008000ull, /* FA */
1508 0x8080808080008080ull, /* FB */
1509 0x8080808080800000ull, /* FC */
1510 0x8080808080800080ull, /* FD */
1511 0x8080808080808000ull, /* FE */
1512 0x8080808080808080ull, /* FF */
1515 void helper_vgbbd(ppc_avr_t *r, ppc_avr_t *b)
1517 int i;
1518 uint64_t t[2] = { 0, 0 };
1520 VECTOR_FOR_INORDER_I(i, u8) {
1521 #if defined(HOST_WORDS_BIGENDIAN)
1522 t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (i & 7);
1523 #else
1524 t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (7-(i & 7));
1525 #endif
1528 r->u64[0] = t[0];
1529 r->u64[1] = t[1];
1532 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1533 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1535 int i, j; \
1536 trgtyp prod[sizeof(ppc_avr_t)/sizeof(a->srcfld[0])]; \
1538 VECTOR_FOR_INORDER_I(i, srcfld) { \
1539 prod[i] = 0; \
1540 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1541 if (a->srcfld[i] & (1ull<<j)) { \
1542 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1547 VECTOR_FOR_INORDER_I(i, trgfld) { \
1548 r->trgfld[i] = prod[2*i] ^ prod[2*i+1]; \
1552 PMSUM(vpmsumb, u8, u16, uint16_t)
1553 PMSUM(vpmsumh, u16, u32, uint32_t)
1554 PMSUM(vpmsumw, u32, u64, uint64_t)
1556 void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1559 #ifdef CONFIG_INT128
1560 int i, j;
1561 __uint128_t prod[2];
1563 VECTOR_FOR_INORDER_I(i, u64) {
1564 prod[i] = 0;
1565 for (j = 0; j < 64; j++) {
1566 if (a->u64[i] & (1ull<<j)) {
1567 prod[i] ^= (((__uint128_t)b->u64[i]) << j);
1572 r->u128 = prod[0] ^ prod[1];
1574 #else
1575 int i, j;
1576 ppc_avr_t prod[2];
1578 VECTOR_FOR_INORDER_I(i, u64) {
1579 prod[i].u64[LO_IDX] = prod[i].u64[HI_IDX] = 0;
1580 for (j = 0; j < 64; j++) {
1581 if (a->u64[i] & (1ull<<j)) {
1582 ppc_avr_t bshift;
1583 if (j == 0) {
1584 bshift.u64[HI_IDX] = 0;
1585 bshift.u64[LO_IDX] = b->u64[i];
1586 } else {
1587 bshift.u64[HI_IDX] = b->u64[i] >> (64-j);
1588 bshift.u64[LO_IDX] = b->u64[i] << j;
1590 prod[i].u64[LO_IDX] ^= bshift.u64[LO_IDX];
1591 prod[i].u64[HI_IDX] ^= bshift.u64[HI_IDX];
1596 r->u64[LO_IDX] = prod[0].u64[LO_IDX] ^ prod[1].u64[LO_IDX];
1597 r->u64[HI_IDX] = prod[0].u64[HI_IDX] ^ prod[1].u64[HI_IDX];
1598 #endif
1602 #if defined(HOST_WORDS_BIGENDIAN)
1603 #define PKBIG 1
1604 #else
1605 #define PKBIG 0
1606 #endif
1607 void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1609 int i, j;
1610 ppc_avr_t result;
1611 #if defined(HOST_WORDS_BIGENDIAN)
1612 const ppc_avr_t *x[2] = { a, b };
1613 #else
1614 const ppc_avr_t *x[2] = { b, a };
1615 #endif
1617 VECTOR_FOR_INORDER_I(i, u64) {
1618 VECTOR_FOR_INORDER_I(j, u32) {
1619 uint32_t e = x[i]->u32[j];
1621 result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
1622 ((e >> 6) & 0x3e0) |
1623 ((e >> 3) & 0x1f));
1626 *r = result;
1629 #define VPK(suffix, from, to, cvt, dosat) \
1630 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1631 ppc_avr_t *a, ppc_avr_t *b) \
1633 int i; \
1634 int sat = 0; \
1635 ppc_avr_t result; \
1636 ppc_avr_t *a0 = PKBIG ? a : b; \
1637 ppc_avr_t *a1 = PKBIG ? b : a; \
1639 VECTOR_FOR_INORDER_I(i, from) { \
1640 result.to[i] = cvt(a0->from[i], &sat); \
1641 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
1643 *r = result; \
1644 if (dosat && sat) { \
1645 env->vscr |= (1 << VSCR_SAT); \
1648 #define I(x, y) (x)
1649 VPK(shss, s16, s8, cvtshsb, 1)
1650 VPK(shus, s16, u8, cvtshub, 1)
1651 VPK(swss, s32, s16, cvtswsh, 1)
1652 VPK(swus, s32, u16, cvtswuh, 1)
1653 VPK(sdss, s64, s32, cvtsdsw, 1)
1654 VPK(sdus, s64, u32, cvtsduw, 1)
1655 VPK(uhus, u16, u8, cvtuhub, 1)
1656 VPK(uwus, u32, u16, cvtuwuh, 1)
1657 VPK(udus, u64, u32, cvtuduw, 1)
1658 VPK(uhum, u16, u8, I, 0)
1659 VPK(uwum, u32, u16, I, 0)
1660 VPK(udum, u64, u32, I, 0)
1661 #undef I
1662 #undef VPK
1663 #undef PKBIG
1665 void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1667 int i;
1669 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
1670 r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
1674 #define VRFI(suffix, rounding) \
1675 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1676 ppc_avr_t *b) \
1678 int i; \
1679 float_status s = env->vec_status; \
1681 set_float_rounding_mode(rounding, &s); \
1682 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
1683 r->f[i] = float32_round_to_int (b->f[i], &s); \
1686 VRFI(n, float_round_nearest_even)
1687 VRFI(m, float_round_down)
1688 VRFI(p, float_round_up)
1689 VRFI(z, float_round_to_zero)
1690 #undef VRFI
1692 #define VROTATE(suffix, element, mask) \
1693 void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1695 int i; \
1697 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1698 unsigned int shift = b->element[i] & mask; \
1699 r->element[i] = (a->element[i] << shift) | \
1700 (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
1703 VROTATE(b, u8, 0x7)
1704 VROTATE(h, u16, 0xF)
1705 VROTATE(w, u32, 0x1F)
1706 VROTATE(d, u64, 0x3F)
1707 #undef VROTATE
1709 void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1711 int i;
1713 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
1714 float32 t = float32_sqrt(b->f[i], &env->vec_status);
1716 r->f[i] = float32_div(float32_one, t, &env->vec_status);
1720 void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1721 ppc_avr_t *c)
1723 r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
1724 r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
1727 void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1729 int i;
1731 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
1732 r->f[i] = float32_exp2(b->f[i], &env->vec_status);
1736 void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1738 int i;
1740 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
1741 r->f[i] = float32_log2(b->f[i], &env->vec_status);
1745 /* The specification says that the results are undefined if all of the
1746 * shift counts are not identical. We check to make sure that they are
1747 * to conform to what real hardware appears to do. */
1748 #define VSHIFT(suffix, leftp) \
1749 void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1751 int shift = b->u8[LO_IDX*15] & 0x7; \
1752 int doit = 1; \
1753 int i; \
1755 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
1756 doit = doit && ((b->u8[i] & 0x7) == shift); \
1758 if (doit) { \
1759 if (shift == 0) { \
1760 *r = *a; \
1761 } else if (leftp) { \
1762 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
1764 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
1765 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
1766 } else { \
1767 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
1769 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
1770 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
1774 VSHIFT(l, 1)
1775 VSHIFT(r, 0)
1776 #undef VSHIFT
1778 #define VSL(suffix, element, mask) \
1779 void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1781 int i; \
1783 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1784 unsigned int shift = b->element[i] & mask; \
1786 r->element[i] = a->element[i] << shift; \
1789 VSL(b, u8, 0x7)
1790 VSL(h, u16, 0x0F)
1791 VSL(w, u32, 0x1F)
1792 VSL(d, u64, 0x3F)
1793 #undef VSL
1795 void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1797 int i;
1798 unsigned int shift, bytes, size;
1800 size = ARRAY_SIZE(r->u8);
1801 for (i = 0; i < size; i++) {
1802 shift = b->u8[i] & 0x7; /* extract shift value */
1803 bytes = (a->u8[i] << 8) + /* extract adjacent bytes */
1804 (((i + 1) < size) ? a->u8[i + 1] : 0);
1805 r->u8[i] = (bytes << shift) >> 8; /* shift and store result */
1809 void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1811 int i;
1812 unsigned int shift, bytes;
1814 /* Use reverse order, as destination and source register can be same. Its
1815 * being modified in place saving temporary, reverse order will guarantee
1816 * that computed result is not fed back.
1818 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
1819 shift = b->u8[i] & 0x7; /* extract shift value */
1820 bytes = ((i ? a->u8[i - 1] : 0) << 8) + a->u8[i];
1821 /* extract adjacent bytes */
1822 r->u8[i] = (bytes >> shift) & 0xFF; /* shift and store result */
1826 void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
1828 int sh = shift & 0xf;
1829 int i;
1830 ppc_avr_t result;
1832 #if defined(HOST_WORDS_BIGENDIAN)
1833 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1834 int index = sh + i;
1835 if (index > 0xf) {
1836 result.u8[i] = b->u8[index - 0x10];
1837 } else {
1838 result.u8[i] = a->u8[index];
1841 #else
1842 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1843 int index = (16 - sh) + i;
1844 if (index > 0xf) {
1845 result.u8[i] = a->u8[index - 0x10];
1846 } else {
1847 result.u8[i] = b->u8[index];
1850 #endif
1851 *r = result;
1854 void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1856 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
1858 #if defined(HOST_WORDS_BIGENDIAN)
1859 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1860 memset(&r->u8[16-sh], 0, sh);
1861 #else
1862 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1863 memset(&r->u8[0], 0, sh);
1864 #endif
1867 /* Experimental testing shows that hardware masks the immediate. */
1868 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
1869 #if defined(HOST_WORDS_BIGENDIAN)
1870 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
1871 #else
1872 #define SPLAT_ELEMENT(element) \
1873 (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
1874 #endif
1875 #define VSPLT(suffix, element) \
1876 void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
1878 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
1879 int i; \
1881 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1882 r->element[i] = s; \
1885 VSPLT(b, u8)
1886 VSPLT(h, u16)
1887 VSPLT(w, u32)
1888 #undef VSPLT
1889 #undef SPLAT_ELEMENT
1890 #undef _SPLAT_MASKED
1891 #if defined(HOST_WORDS_BIGENDIAN)
1892 #define VINSERT(suffix, element) \
1893 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1895 memmove(&r->u8[index], &b->u8[8 - sizeof(r->element)], \
1896 sizeof(r->element[0])); \
1898 #else
1899 #define VINSERT(suffix, element) \
1900 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1902 uint32_t d = (16 - index) - sizeof(r->element[0]); \
1903 memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0])); \
1905 #endif
1906 VINSERT(b, u8)
1907 VINSERT(h, u16)
1908 VINSERT(w, u32)
1909 VINSERT(d, u64)
1910 #undef VINSERT
1911 #if defined(HOST_WORDS_BIGENDIAN)
1912 #define VEXTRACT(suffix, element) \
1913 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1915 uint32_t es = sizeof(r->element[0]); \
1916 memmove(&r->u8[8 - es], &b->u8[index], es); \
1917 memset(&r->u8[8], 0, 8); \
1918 memset(&r->u8[0], 0, 8 - es); \
1920 #else
1921 #define VEXTRACT(suffix, element) \
1922 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1924 uint32_t es = sizeof(r->element[0]); \
1925 uint32_t s = (16 - index) - es; \
1926 memmove(&r->u8[8], &b->u8[s], es); \
1927 memset(&r->u8[0], 0, 8); \
1928 memset(&r->u8[8 + es], 0, 8 - es); \
1930 #endif
1931 VEXTRACT(ub, u8)
1932 VEXTRACT(uh, u16)
1933 VEXTRACT(uw, u32)
1934 VEXTRACT(d, u64)
1935 #undef VEXTRACT
1937 #define VEXT_SIGNED(name, element, mask, cast, recast) \
1938 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1940 int i; \
1941 VECTOR_FOR_INORDER_I(i, element) { \
1942 r->element[i] = (recast)((cast)(b->element[i] & mask)); \
1945 VEXT_SIGNED(vextsb2w, s32, UINT8_MAX, int8_t, int32_t)
1946 VEXT_SIGNED(vextsb2d, s64, UINT8_MAX, int8_t, int64_t)
1947 VEXT_SIGNED(vextsh2w, s32, UINT16_MAX, int16_t, int32_t)
1948 VEXT_SIGNED(vextsh2d, s64, UINT16_MAX, int16_t, int64_t)
1949 VEXT_SIGNED(vextsw2d, s64, UINT32_MAX, int32_t, int64_t)
1950 #undef VEXT_SIGNED
1952 #define VSPLTI(suffix, element, splat_type) \
1953 void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
1955 splat_type x = (int8_t)(splat << 3) >> 3; \
1956 int i; \
1958 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1959 r->element[i] = x; \
1962 VSPLTI(b, s8, int8_t)
1963 VSPLTI(h, s16, int16_t)
1964 VSPLTI(w, s32, int32_t)
1965 #undef VSPLTI
1967 #define VSR(suffix, element, mask) \
1968 void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1970 int i; \
1972 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1973 unsigned int shift = b->element[i] & mask; \
1974 r->element[i] = a->element[i] >> shift; \
1977 VSR(ab, s8, 0x7)
1978 VSR(ah, s16, 0xF)
1979 VSR(aw, s32, 0x1F)
1980 VSR(ad, s64, 0x3F)
1981 VSR(b, u8, 0x7)
1982 VSR(h, u16, 0xF)
1983 VSR(w, u32, 0x1F)
1984 VSR(d, u64, 0x3F)
1985 #undef VSR
1987 void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1989 int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf;
1991 #if defined(HOST_WORDS_BIGENDIAN)
1992 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1993 memset(&r->u8[0], 0, sh);
1994 #else
1995 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1996 memset(&r->u8[16 - sh], 0, sh);
1997 #endif
2000 void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2002 int i;
2004 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2005 r->u32[i] = a->u32[i] >= b->u32[i];
2009 void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2011 int64_t t;
2012 int i, upper;
2013 ppc_avr_t result;
2014 int sat = 0;
2016 #if defined(HOST_WORDS_BIGENDIAN)
2017 upper = ARRAY_SIZE(r->s32)-1;
2018 #else
2019 upper = 0;
2020 #endif
2021 t = (int64_t)b->s32[upper];
2022 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2023 t += a->s32[i];
2024 result.s32[i] = 0;
2026 result.s32[upper] = cvtsdsw(t, &sat);
2027 *r = result;
2029 if (sat) {
2030 env->vscr |= (1 << VSCR_SAT);
2034 void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2036 int i, j, upper;
2037 ppc_avr_t result;
2038 int sat = 0;
2040 #if defined(HOST_WORDS_BIGENDIAN)
2041 upper = 1;
2042 #else
2043 upper = 0;
2044 #endif
2045 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
2046 int64_t t = (int64_t)b->s32[upper + i * 2];
2048 result.u64[i] = 0;
2049 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
2050 t += a->s32[2 * i + j];
2052 result.s32[upper + i * 2] = cvtsdsw(t, &sat);
2055 *r = result;
2056 if (sat) {
2057 env->vscr |= (1 << VSCR_SAT);
2061 void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2063 int i, j;
2064 int sat = 0;
2066 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2067 int64_t t = (int64_t)b->s32[i];
2069 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
2070 t += a->s8[4 * i + j];
2072 r->s32[i] = cvtsdsw(t, &sat);
2075 if (sat) {
2076 env->vscr |= (1 << VSCR_SAT);
2080 void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2082 int sat = 0;
2083 int i;
2085 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2086 int64_t t = (int64_t)b->s32[i];
2088 t += a->s16[2 * i] + a->s16[2 * i + 1];
2089 r->s32[i] = cvtsdsw(t, &sat);
2092 if (sat) {
2093 env->vscr |= (1 << VSCR_SAT);
2097 void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2099 int i, j;
2100 int sat = 0;
2102 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2103 uint64_t t = (uint64_t)b->u32[i];
2105 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
2106 t += a->u8[4 * i + j];
2108 r->u32[i] = cvtuduw(t, &sat);
2111 if (sat) {
2112 env->vscr |= (1 << VSCR_SAT);
2116 #if defined(HOST_WORDS_BIGENDIAN)
2117 #define UPKHI 1
2118 #define UPKLO 0
2119 #else
2120 #define UPKHI 0
2121 #define UPKLO 1
2122 #endif
2123 #define VUPKPX(suffix, hi) \
2124 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2126 int i; \
2127 ppc_avr_t result; \
2129 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
2130 uint16_t e = b->u16[hi ? i : i+4]; \
2131 uint8_t a = (e >> 15) ? 0xff : 0; \
2132 uint8_t r = (e >> 10) & 0x1f; \
2133 uint8_t g = (e >> 5) & 0x1f; \
2134 uint8_t b = e & 0x1f; \
2136 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
2138 *r = result; \
2140 VUPKPX(lpx, UPKLO)
2141 VUPKPX(hpx, UPKHI)
2142 #undef VUPKPX
2144 #define VUPK(suffix, unpacked, packee, hi) \
2145 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2147 int i; \
2148 ppc_avr_t result; \
2150 if (hi) { \
2151 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
2152 result.unpacked[i] = b->packee[i]; \
2154 } else { \
2155 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
2156 i++) { \
2157 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2160 *r = result; \
2162 VUPK(hsb, s16, s8, UPKHI)
2163 VUPK(hsh, s32, s16, UPKHI)
2164 VUPK(hsw, s64, s32, UPKHI)
2165 VUPK(lsb, s16, s8, UPKLO)
2166 VUPK(lsh, s32, s16, UPKLO)
2167 VUPK(lsw, s64, s32, UPKLO)
2168 #undef VUPK
2169 #undef UPKHI
2170 #undef UPKLO
2172 #define VGENERIC_DO(name, element) \
2173 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
2175 int i; \
2177 VECTOR_FOR_INORDER_I(i, element) { \
2178 r->element[i] = name(b->element[i]); \
2182 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
2183 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
2184 #define clzw(v) clz32((v))
2185 #define clzd(v) clz64((v))
2187 VGENERIC_DO(clzb, u8)
2188 VGENERIC_DO(clzh, u16)
2189 VGENERIC_DO(clzw, u32)
2190 VGENERIC_DO(clzd, u64)
2192 #undef clzb
2193 #undef clzh
2194 #undef clzw
2195 #undef clzd
2197 #define ctzb(v) ((v) ? ctz32(v) : 8)
2198 #define ctzh(v) ((v) ? ctz32(v) : 16)
2199 #define ctzw(v) ctz32((v))
2200 #define ctzd(v) ctz64((v))
2202 VGENERIC_DO(ctzb, u8)
2203 VGENERIC_DO(ctzh, u16)
2204 VGENERIC_DO(ctzw, u32)
2205 VGENERIC_DO(ctzd, u64)
2207 #undef ctzb
2208 #undef ctzh
2209 #undef ctzw
2210 #undef ctzd
2212 #define popcntb(v) ctpop8(v)
2213 #define popcnth(v) ctpop16(v)
2214 #define popcntw(v) ctpop32(v)
2215 #define popcntd(v) ctpop64(v)
2217 VGENERIC_DO(popcntb, u8)
2218 VGENERIC_DO(popcnth, u16)
2219 VGENERIC_DO(popcntw, u32)
2220 VGENERIC_DO(popcntd, u64)
2222 #undef popcntb
2223 #undef popcnth
2224 #undef popcntw
2225 #undef popcntd
2227 #undef VGENERIC_DO
2229 #if defined(HOST_WORDS_BIGENDIAN)
2230 #define QW_ONE { .u64 = { 0, 1 } }
2231 #else
2232 #define QW_ONE { .u64 = { 1, 0 } }
2233 #endif
2235 #ifndef CONFIG_INT128
2237 static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a)
2239 t->u64[0] = ~a.u64[0];
2240 t->u64[1] = ~a.u64[1];
2243 static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b)
2245 if (a.u64[HI_IDX] < b.u64[HI_IDX]) {
2246 return -1;
2247 } else if (a.u64[HI_IDX] > b.u64[HI_IDX]) {
2248 return 1;
2249 } else if (a.u64[LO_IDX] < b.u64[LO_IDX]) {
2250 return -1;
2251 } else if (a.u64[LO_IDX] > b.u64[LO_IDX]) {
2252 return 1;
2253 } else {
2254 return 0;
2258 static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
2260 t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX];
2261 t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] +
2262 (~a.u64[LO_IDX] < b.u64[LO_IDX]);
2265 static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
2267 ppc_avr_t not_a;
2268 t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX];
2269 t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] +
2270 (~a.u64[LO_IDX] < b.u64[LO_IDX]);
2271 avr_qw_not(&not_a, a);
2272 return avr_qw_cmpu(not_a, b) < 0;
2275 #endif
2277 void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2279 #ifdef CONFIG_INT128
2280 r->u128 = a->u128 + b->u128;
2281 #else
2282 avr_qw_add(r, *a, *b);
2283 #endif
2286 void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2288 #ifdef CONFIG_INT128
2289 r->u128 = a->u128 + b->u128 + (c->u128 & 1);
2290 #else
2292 if (c->u64[LO_IDX] & 1) {
2293 ppc_avr_t tmp;
2295 tmp.u64[HI_IDX] = 0;
2296 tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1;
2297 avr_qw_add(&tmp, *a, tmp);
2298 avr_qw_add(r, tmp, *b);
2299 } else {
2300 avr_qw_add(r, *a, *b);
2302 #endif
2305 void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2307 #ifdef CONFIG_INT128
2308 r->u128 = (~a->u128 < b->u128);
2309 #else
2310 ppc_avr_t not_a;
2312 avr_qw_not(&not_a, *a);
2314 r->u64[HI_IDX] = 0;
2315 r->u64[LO_IDX] = (avr_qw_cmpu(not_a, *b) < 0);
2316 #endif
2319 void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2321 #ifdef CONFIG_INT128
2322 int carry_out = (~a->u128 < b->u128);
2323 if (!carry_out && (c->u128 & 1)) {
2324 carry_out = ((a->u128 + b->u128 + 1) == 0) &&
2325 ((a->u128 != 0) || (b->u128 != 0));
2327 r->u128 = carry_out;
2328 #else
2330 int carry_in = c->u64[LO_IDX] & 1;
2331 int carry_out = 0;
2332 ppc_avr_t tmp;
2334 carry_out = avr_qw_addc(&tmp, *a, *b);
2336 if (!carry_out && carry_in) {
2337 ppc_avr_t one = QW_ONE;
2338 carry_out = avr_qw_addc(&tmp, tmp, one);
2340 r->u64[HI_IDX] = 0;
2341 r->u64[LO_IDX] = carry_out;
2342 #endif
2345 void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2347 #ifdef CONFIG_INT128
2348 r->u128 = a->u128 - b->u128;
2349 #else
2350 ppc_avr_t tmp;
2351 ppc_avr_t one = QW_ONE;
2353 avr_qw_not(&tmp, *b);
2354 avr_qw_add(&tmp, *a, tmp);
2355 avr_qw_add(r, tmp, one);
2356 #endif
2359 void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2361 #ifdef CONFIG_INT128
2362 r->u128 = a->u128 + ~b->u128 + (c->u128 & 1);
2363 #else
2364 ppc_avr_t tmp, sum;
2366 avr_qw_not(&tmp, *b);
2367 avr_qw_add(&sum, *a, tmp);
2369 tmp.u64[HI_IDX] = 0;
2370 tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1;
2371 avr_qw_add(r, sum, tmp);
2372 #endif
2375 void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2377 #ifdef CONFIG_INT128
2378 r->u128 = (~a->u128 < ~b->u128) ||
2379 (a->u128 + ~b->u128 == (__uint128_t)-1);
2380 #else
2381 int carry = (avr_qw_cmpu(*a, *b) > 0);
2382 if (!carry) {
2383 ppc_avr_t tmp;
2384 avr_qw_not(&tmp, *b);
2385 avr_qw_add(&tmp, *a, tmp);
2386 carry = ((tmp.s64[HI_IDX] == -1ull) && (tmp.s64[LO_IDX] == -1ull));
2388 r->u64[HI_IDX] = 0;
2389 r->u64[LO_IDX] = carry;
2390 #endif
2393 void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2395 #ifdef CONFIG_INT128
2396 r->u128 =
2397 (~a->u128 < ~b->u128) ||
2398 ((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1));
2399 #else
2400 int carry_in = c->u64[LO_IDX] & 1;
2401 int carry_out = (avr_qw_cmpu(*a, *b) > 0);
2402 if (!carry_out && carry_in) {
2403 ppc_avr_t tmp;
2404 avr_qw_not(&tmp, *b);
2405 avr_qw_add(&tmp, *a, tmp);
2406 carry_out = ((tmp.u64[HI_IDX] == -1ull) && (tmp.u64[LO_IDX] == -1ull));
2409 r->u64[HI_IDX] = 0;
2410 r->u64[LO_IDX] = carry_out;
2411 #endif
2414 #define BCD_PLUS_PREF_1 0xC
2415 #define BCD_PLUS_PREF_2 0xF
2416 #define BCD_PLUS_ALT_1 0xA
2417 #define BCD_NEG_PREF 0xD
2418 #define BCD_NEG_ALT 0xB
2419 #define BCD_PLUS_ALT_2 0xE
2421 #if defined(HOST_WORDS_BIGENDIAN)
2422 #define BCD_DIG_BYTE(n) (15 - (n/2))
2423 #else
2424 #define BCD_DIG_BYTE(n) (n/2)
2425 #endif
2427 static int bcd_get_sgn(ppc_avr_t *bcd)
2429 switch (bcd->u8[BCD_DIG_BYTE(0)] & 0xF) {
2430 case BCD_PLUS_PREF_1:
2431 case BCD_PLUS_PREF_2:
2432 case BCD_PLUS_ALT_1:
2433 case BCD_PLUS_ALT_2:
2435 return 1;
2438 case BCD_NEG_PREF:
2439 case BCD_NEG_ALT:
2441 return -1;
2444 default:
2446 return 0;
2451 static int bcd_preferred_sgn(int sgn, int ps)
2453 if (sgn >= 0) {
2454 return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
2455 } else {
2456 return BCD_NEG_PREF;
2460 static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
2462 uint8_t result;
2463 if (n & 1) {
2464 result = bcd->u8[BCD_DIG_BYTE(n)] >> 4;
2465 } else {
2466 result = bcd->u8[BCD_DIG_BYTE(n)] & 0xF;
2469 if (unlikely(result > 9)) {
2470 *invalid = true;
2472 return result;
2475 static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
2477 if (n & 1) {
2478 bcd->u8[BCD_DIG_BYTE(n)] &= 0x0F;
2479 bcd->u8[BCD_DIG_BYTE(n)] |= (digit<<4);
2480 } else {
2481 bcd->u8[BCD_DIG_BYTE(n)] &= 0xF0;
2482 bcd->u8[BCD_DIG_BYTE(n)] |= digit;
2486 static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
2488 int i;
2489 int invalid = 0;
2490 for (i = 31; i > 0; i--) {
2491 uint8_t dig_a = bcd_get_digit(a, i, &invalid);
2492 uint8_t dig_b = bcd_get_digit(b, i, &invalid);
2493 if (unlikely(invalid)) {
2494 return 0; /* doesn't matter */
2495 } else if (dig_a > dig_b) {
2496 return 1;
2497 } else if (dig_a < dig_b) {
2498 return -1;
2502 return 0;
2505 static int bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2506 int *overflow)
2508 int carry = 0;
2509 int i;
2510 int is_zero = 1;
2511 for (i = 1; i <= 31; i++) {
2512 uint8_t digit = bcd_get_digit(a, i, invalid) +
2513 bcd_get_digit(b, i, invalid) + carry;
2514 is_zero &= (digit == 0);
2515 if (digit > 9) {
2516 carry = 1;
2517 digit -= 10;
2518 } else {
2519 carry = 0;
2522 bcd_put_digit(t, digit, i);
2524 if (unlikely(*invalid)) {
2525 return -1;
2529 *overflow = carry;
2530 return is_zero;
2533 static int bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2534 int *overflow)
2536 int carry = 0;
2537 int i;
2538 int is_zero = 1;
2539 for (i = 1; i <= 31; i++) {
2540 uint8_t digit = bcd_get_digit(a, i, invalid) -
2541 bcd_get_digit(b, i, invalid) + carry;
2542 is_zero &= (digit == 0);
2543 if (digit & 0x80) {
2544 carry = -1;
2545 digit += 10;
2546 } else {
2547 carry = 0;
2550 bcd_put_digit(t, digit, i);
2552 if (unlikely(*invalid)) {
2553 return -1;
2557 *overflow = carry;
2558 return is_zero;
2561 uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2564 int sgna = bcd_get_sgn(a);
2565 int sgnb = bcd_get_sgn(b);
2566 int invalid = (sgna == 0) || (sgnb == 0);
2567 int overflow = 0;
2568 int zero = 0;
2569 uint32_t cr = 0;
2570 ppc_avr_t result = { .u64 = { 0, 0 } };
2572 if (!invalid) {
2573 if (sgna == sgnb) {
2574 result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps);
2575 zero = bcd_add_mag(&result, a, b, &invalid, &overflow);
2576 cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT;
2577 } else if (bcd_cmp_mag(a, b) > 0) {
2578 result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps);
2579 zero = bcd_sub_mag(&result, a, b, &invalid, &overflow);
2580 cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT;
2581 } else {
2582 result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgnb, ps);
2583 zero = bcd_sub_mag(&result, b, a, &invalid, &overflow);
2584 cr = (sgnb > 0) ? 1 << CRF_GT : 1 << CRF_LT;
2588 if (unlikely(invalid)) {
2589 result.u64[HI_IDX] = result.u64[LO_IDX] = -1;
2590 cr = 1 << CRF_SO;
2591 } else if (overflow) {
2592 cr |= 1 << CRF_SO;
2593 } else if (zero) {
2594 cr = 1 << CRF_EQ;
2597 *r = result;
2599 return cr;
2602 uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2604 ppc_avr_t bcopy = *b;
2605 int sgnb = bcd_get_sgn(b);
2606 if (sgnb < 0) {
2607 bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
2608 } else if (sgnb > 0) {
2609 bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
2611 /* else invalid ... defer to bcdadd code for proper handling */
2613 return helper_bcdadd(r, a, &bcopy, ps);
2616 void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
2618 int i;
2619 VECTOR_FOR_INORDER_I(i, u8) {
2620 r->u8[i] = AES_sbox[a->u8[i]];
2624 void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2626 ppc_avr_t result;
2627 int i;
2629 VECTOR_FOR_INORDER_I(i, u32) {
2630 result.AVRW(i) = b->AVRW(i) ^
2631 (AES_Te0[a->AVRB(AES_shifts[4*i + 0])] ^
2632 AES_Te1[a->AVRB(AES_shifts[4*i + 1])] ^
2633 AES_Te2[a->AVRB(AES_shifts[4*i + 2])] ^
2634 AES_Te3[a->AVRB(AES_shifts[4*i + 3])]);
2636 *r = result;
2639 void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2641 ppc_avr_t result;
2642 int i;
2644 VECTOR_FOR_INORDER_I(i, u8) {
2645 result.AVRB(i) = b->AVRB(i) ^ (AES_sbox[a->AVRB(AES_shifts[i])]);
2647 *r = result;
2650 void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2652 /* This differs from what is written in ISA V2.07. The RTL is */
2653 /* incorrect and will be fixed in V2.07B. */
2654 int i;
2655 ppc_avr_t tmp;
2657 VECTOR_FOR_INORDER_I(i, u8) {
2658 tmp.AVRB(i) = b->AVRB(i) ^ AES_isbox[a->AVRB(AES_ishifts[i])];
2661 VECTOR_FOR_INORDER_I(i, u32) {
2662 r->AVRW(i) =
2663 AES_imc[tmp.AVRB(4*i + 0)][0] ^
2664 AES_imc[tmp.AVRB(4*i + 1)][1] ^
2665 AES_imc[tmp.AVRB(4*i + 2)][2] ^
2666 AES_imc[tmp.AVRB(4*i + 3)][3];
2670 void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2672 ppc_avr_t result;
2673 int i;
2675 VECTOR_FOR_INORDER_I(i, u8) {
2676 result.AVRB(i) = b->AVRB(i) ^ (AES_isbox[a->AVRB(AES_ishifts[i])]);
2678 *r = result;
2681 #define ROTRu32(v, n) (((v) >> (n)) | ((v) << (32-n)))
2682 #if defined(HOST_WORDS_BIGENDIAN)
2683 #define EL_IDX(i) (i)
2684 #else
2685 #define EL_IDX(i) (3 - (i))
2686 #endif
2688 void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2690 int st = (st_six & 0x10) != 0;
2691 int six = st_six & 0xF;
2692 int i;
2694 VECTOR_FOR_INORDER_I(i, u32) {
2695 if (st == 0) {
2696 if ((six & (0x8 >> i)) == 0) {
2697 r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 7) ^
2698 ROTRu32(a->u32[EL_IDX(i)], 18) ^
2699 (a->u32[EL_IDX(i)] >> 3);
2700 } else { /* six.bit[i] == 1 */
2701 r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 17) ^
2702 ROTRu32(a->u32[EL_IDX(i)], 19) ^
2703 (a->u32[EL_IDX(i)] >> 10);
2705 } else { /* st == 1 */
2706 if ((six & (0x8 >> i)) == 0) {
2707 r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 2) ^
2708 ROTRu32(a->u32[EL_IDX(i)], 13) ^
2709 ROTRu32(a->u32[EL_IDX(i)], 22);
2710 } else { /* six.bit[i] == 1 */
2711 r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 6) ^
2712 ROTRu32(a->u32[EL_IDX(i)], 11) ^
2713 ROTRu32(a->u32[EL_IDX(i)], 25);
2719 #undef ROTRu32
2720 #undef EL_IDX
2722 #define ROTRu64(v, n) (((v) >> (n)) | ((v) << (64-n)))
2723 #if defined(HOST_WORDS_BIGENDIAN)
2724 #define EL_IDX(i) (i)
2725 #else
2726 #define EL_IDX(i) (1 - (i))
2727 #endif
2729 void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2731 int st = (st_six & 0x10) != 0;
2732 int six = st_six & 0xF;
2733 int i;
2735 VECTOR_FOR_INORDER_I(i, u64) {
2736 if (st == 0) {
2737 if ((six & (0x8 >> (2*i))) == 0) {
2738 r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 1) ^
2739 ROTRu64(a->u64[EL_IDX(i)], 8) ^
2740 (a->u64[EL_IDX(i)] >> 7);
2741 } else { /* six.bit[2*i] == 1 */
2742 r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 19) ^
2743 ROTRu64(a->u64[EL_IDX(i)], 61) ^
2744 (a->u64[EL_IDX(i)] >> 6);
2746 } else { /* st == 1 */
2747 if ((six & (0x8 >> (2*i))) == 0) {
2748 r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 28) ^
2749 ROTRu64(a->u64[EL_IDX(i)], 34) ^
2750 ROTRu64(a->u64[EL_IDX(i)], 39);
2751 } else { /* six.bit[2*i] == 1 */
2752 r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 14) ^
2753 ROTRu64(a->u64[EL_IDX(i)], 18) ^
2754 ROTRu64(a->u64[EL_IDX(i)], 41);
2760 #undef ROTRu64
2761 #undef EL_IDX
2763 void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2765 ppc_avr_t result;
2766 int i;
2768 VECTOR_FOR_INORDER_I(i, u8) {
2769 int indexA = c->u8[i] >> 4;
2770 int indexB = c->u8[i] & 0xF;
2771 #if defined(HOST_WORDS_BIGENDIAN)
2772 result.u8[i] = a->u8[indexA] ^ b->u8[indexB];
2773 #else
2774 result.u8[i] = a->u8[15-indexA] ^ b->u8[15-indexB];
2775 #endif
2777 *r = result;
2780 #undef VECTOR_FOR_INORDER_I
2781 #undef HI_IDX
2782 #undef LO_IDX
2784 /*****************************************************************************/
2785 /* SPE extension helpers */
2786 /* Use a table to make this quicker */
2787 static const uint8_t hbrev[16] = {
2788 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2789 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2792 static inline uint8_t byte_reverse(uint8_t val)
2794 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2797 static inline uint32_t word_reverse(uint32_t val)
2799 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2800 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2803 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
2804 target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
2806 uint32_t a, b, d, mask;
2808 mask = UINT32_MAX >> (32 - MASKBITS);
2809 a = arg1 & mask;
2810 b = arg2 & mask;
2811 d = word_reverse(1 + word_reverse(a | ~b));
2812 return (arg1 & ~mask) | (d & b);
2815 uint32_t helper_cntlsw32(uint32_t val)
2817 if (val & 0x80000000) {
2818 return clz32(~val);
2819 } else {
2820 return clz32(val);
2824 uint32_t helper_cntlzw32(uint32_t val)
2826 return clz32(val);
2829 /* 440 specific */
2830 target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
2831 target_ulong low, uint32_t update_Rc)
2833 target_ulong mask;
2834 int i;
2836 i = 1;
2837 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
2838 if ((high & mask) == 0) {
2839 if (update_Rc) {
2840 env->crf[0] = 0x4;
2842 goto done;
2844 i++;
2846 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
2847 if ((low & mask) == 0) {
2848 if (update_Rc) {
2849 env->crf[0] = 0x8;
2851 goto done;
2853 i++;
2855 i = 8;
2856 if (update_Rc) {
2857 env->crf[0] = 0x2;
2859 done:
2860 env->xer = (env->xer & ~0x7F) | i;
2861 if (update_Rc) {
2862 env->crf[0] |= xer_so;
2864 return i;