hw/boards: Convert current_machine to MachineState
[qemu.git] / target-alpha / helper.c
blob025fdaf4d17885402c0c5e040afa3ff6baa60bff
1 /*
2 * Alpha emulation cpu helpers for qemu.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include <stdint.h>
21 #include <stdlib.h>
22 #include <stdio.h>
24 #include "cpu.h"
25 #include "fpu/softfloat.h"
26 #include "helper.h"
28 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env)
30 uint64_t r = 0;
31 uint8_t t;
33 t = env->fpcr_exc_status;
34 if (t) {
35 r = FPCR_SUM;
36 if (t & float_flag_invalid) {
37 r |= FPCR_INV;
39 if (t & float_flag_divbyzero) {
40 r |= FPCR_DZE;
42 if (t & float_flag_overflow) {
43 r |= FPCR_OVF;
45 if (t & float_flag_underflow) {
46 r |= FPCR_UNF;
48 if (t & float_flag_inexact) {
49 r |= FPCR_INE;
53 t = env->fpcr_exc_mask;
54 if (t & float_flag_invalid) {
55 r |= FPCR_INVD;
57 if (t & float_flag_divbyzero) {
58 r |= FPCR_DZED;
60 if (t & float_flag_overflow) {
61 r |= FPCR_OVFD;
63 if (t & float_flag_underflow) {
64 r |= FPCR_UNFD;
66 if (t & float_flag_inexact) {
67 r |= FPCR_INED;
70 switch (env->fpcr_dyn_round) {
71 case float_round_nearest_even:
72 r |= FPCR_DYN_NORMAL;
73 break;
74 case float_round_down:
75 r |= FPCR_DYN_MINUS;
76 break;
77 case float_round_up:
78 r |= FPCR_DYN_PLUS;
79 break;
80 case float_round_to_zero:
81 r |= FPCR_DYN_CHOPPED;
82 break;
85 if (env->fp_status.flush_inputs_to_zero) {
86 r |= FPCR_DNZ;
88 if (env->fpcr_dnod) {
89 r |= FPCR_DNOD;
91 if (env->fpcr_undz) {
92 r |= FPCR_UNDZ;
95 return r;
98 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val)
100 uint8_t t;
102 t = 0;
103 if (val & FPCR_INV) {
104 t |= float_flag_invalid;
106 if (val & FPCR_DZE) {
107 t |= float_flag_divbyzero;
109 if (val & FPCR_OVF) {
110 t |= float_flag_overflow;
112 if (val & FPCR_UNF) {
113 t |= float_flag_underflow;
115 if (val & FPCR_INE) {
116 t |= float_flag_inexact;
118 env->fpcr_exc_status = t;
120 t = 0;
121 if (val & FPCR_INVD) {
122 t |= float_flag_invalid;
124 if (val & FPCR_DZED) {
125 t |= float_flag_divbyzero;
127 if (val & FPCR_OVFD) {
128 t |= float_flag_overflow;
130 if (val & FPCR_UNFD) {
131 t |= float_flag_underflow;
133 if (val & FPCR_INED) {
134 t |= float_flag_inexact;
136 env->fpcr_exc_mask = t;
138 switch (val & FPCR_DYN_MASK) {
139 case FPCR_DYN_CHOPPED:
140 t = float_round_to_zero;
141 break;
142 case FPCR_DYN_MINUS:
143 t = float_round_down;
144 break;
145 case FPCR_DYN_NORMAL:
146 t = float_round_nearest_even;
147 break;
148 case FPCR_DYN_PLUS:
149 t = float_round_up;
150 break;
152 env->fpcr_dyn_round = t;
154 env->fpcr_dnod = (val & FPCR_DNOD) != 0;
155 env->fpcr_undz = (val & FPCR_UNDZ) != 0;
156 env->fpcr_flush_to_zero = env->fpcr_dnod & env->fpcr_undz;
157 env->fp_status.flush_inputs_to_zero = (val & FPCR_DNZ) != 0;
160 uint64_t helper_load_fpcr(CPUAlphaState *env)
162 return cpu_alpha_load_fpcr(env);
165 void helper_store_fpcr(CPUAlphaState *env, uint64_t val)
167 cpu_alpha_store_fpcr(env, val);
170 #if defined(CONFIG_USER_ONLY)
171 int cpu_alpha_handle_mmu_fault(CPUAlphaState *env, target_ulong address,
172 int rw, int mmu_idx)
174 env->exception_index = EXCP_MMFAULT;
175 env->trap_arg0 = address;
176 return 1;
178 #else
179 void swap_shadow_regs(CPUAlphaState *env)
181 uint64_t i0, i1, i2, i3, i4, i5, i6, i7;
183 i0 = env->ir[8];
184 i1 = env->ir[9];
185 i2 = env->ir[10];
186 i3 = env->ir[11];
187 i4 = env->ir[12];
188 i5 = env->ir[13];
189 i6 = env->ir[14];
190 i7 = env->ir[25];
192 env->ir[8] = env->shadow[0];
193 env->ir[9] = env->shadow[1];
194 env->ir[10] = env->shadow[2];
195 env->ir[11] = env->shadow[3];
196 env->ir[12] = env->shadow[4];
197 env->ir[13] = env->shadow[5];
198 env->ir[14] = env->shadow[6];
199 env->ir[25] = env->shadow[7];
201 env->shadow[0] = i0;
202 env->shadow[1] = i1;
203 env->shadow[2] = i2;
204 env->shadow[3] = i3;
205 env->shadow[4] = i4;
206 env->shadow[5] = i5;
207 env->shadow[6] = i6;
208 env->shadow[7] = i7;
211 /* Returns the OSF/1 entMM failure indication, or -1 on success. */
212 static int get_physical_address(CPUAlphaState *env, target_ulong addr,
213 int prot_need, int mmu_idx,
214 target_ulong *pphys, int *pprot)
216 CPUState *cs = ENV_GET_CPU(env);
217 target_long saddr = addr;
218 target_ulong phys = 0;
219 target_ulong L1pte, L2pte, L3pte;
220 target_ulong pt, index;
221 int prot = 0;
222 int ret = MM_K_ACV;
224 /* Ensure that the virtual address is properly sign-extended from
225 the last implemented virtual address bit. */
226 if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) {
227 goto exit;
230 /* Translate the superpage. */
231 /* ??? When we do more than emulate Unix PALcode, we'll need to
232 determine which KSEG is actually active. */
233 if (saddr < 0 && ((saddr >> 41) & 3) == 2) {
234 /* User-space cannot access KSEG addresses. */
235 if (mmu_idx != MMU_KERNEL_IDX) {
236 goto exit;
239 /* For the benefit of the Typhoon chipset, move bit 40 to bit 43.
240 We would not do this if the 48-bit KSEG is enabled. */
241 phys = saddr & ((1ull << 40) - 1);
242 phys |= (saddr & (1ull << 40)) << 3;
244 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
245 ret = -1;
246 goto exit;
249 /* Interpret the page table exactly like PALcode does. */
251 pt = env->ptbr;
253 /* L1 page table read. */
254 index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff;
255 L1pte = ldq_phys(cs->as, pt + index*8);
257 if (unlikely((L1pte & PTE_VALID) == 0)) {
258 ret = MM_K_TNV;
259 goto exit;
261 if (unlikely((L1pte & PTE_KRE) == 0)) {
262 goto exit;
264 pt = L1pte >> 32 << TARGET_PAGE_BITS;
266 /* L2 page table read. */
267 index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff;
268 L2pte = ldq_phys(cs->as, pt + index*8);
270 if (unlikely((L2pte & PTE_VALID) == 0)) {
271 ret = MM_K_TNV;
272 goto exit;
274 if (unlikely((L2pte & PTE_KRE) == 0)) {
275 goto exit;
277 pt = L2pte >> 32 << TARGET_PAGE_BITS;
279 /* L3 page table read. */
280 index = (addr >> TARGET_PAGE_BITS) & 0x3ff;
281 L3pte = ldq_phys(cs->as, pt + index*8);
283 phys = L3pte >> 32 << TARGET_PAGE_BITS;
284 if (unlikely((L3pte & PTE_VALID) == 0)) {
285 ret = MM_K_TNV;
286 goto exit;
289 #if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4
290 # error page bits out of date
291 #endif
293 /* Check access violations. */
294 if (L3pte & (PTE_KRE << mmu_idx)) {
295 prot |= PAGE_READ | PAGE_EXEC;
297 if (L3pte & (PTE_KWE << mmu_idx)) {
298 prot |= PAGE_WRITE;
300 if (unlikely((prot & prot_need) == 0 && prot_need)) {
301 goto exit;
304 /* Check fault-on-operation violations. */
305 prot &= ~(L3pte >> 1);
306 ret = -1;
307 if (unlikely((prot & prot_need) == 0)) {
308 ret = (prot_need & PAGE_EXEC ? MM_K_FOE :
309 prot_need & PAGE_WRITE ? MM_K_FOW :
310 prot_need & PAGE_READ ? MM_K_FOR : -1);
313 exit:
314 *pphys = phys;
315 *pprot = prot;
316 return ret;
319 hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
321 AlphaCPU *cpu = ALPHA_CPU(cs);
322 target_ulong phys;
323 int prot, fail;
325 fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot);
326 return (fail >= 0 ? -1 : phys);
329 int cpu_alpha_handle_mmu_fault(CPUAlphaState *env, target_ulong addr, int rw,
330 int mmu_idx)
332 target_ulong phys;
333 int prot, fail;
335 fail = get_physical_address(env, addr, 1 << rw, mmu_idx, &phys, &prot);
336 if (unlikely(fail >= 0)) {
337 env->exception_index = EXCP_MMFAULT;
338 env->trap_arg0 = addr;
339 env->trap_arg1 = fail;
340 env->trap_arg2 = (rw == 2 ? -1 : rw);
341 return 1;
344 tlb_set_page(env, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
345 prot, mmu_idx, TARGET_PAGE_SIZE);
346 return 0;
348 #endif /* USER_ONLY */
350 void alpha_cpu_do_interrupt(CPUState *cs)
352 AlphaCPU *cpu = ALPHA_CPU(cs);
353 CPUAlphaState *env = &cpu->env;
354 int i = env->exception_index;
356 if (qemu_loglevel_mask(CPU_LOG_INT)) {
357 static int count;
358 const char *name = "<unknown>";
360 switch (i) {
361 case EXCP_RESET:
362 name = "reset";
363 break;
364 case EXCP_MCHK:
365 name = "mchk";
366 break;
367 case EXCP_SMP_INTERRUPT:
368 name = "smp_interrupt";
369 break;
370 case EXCP_CLK_INTERRUPT:
371 name = "clk_interrupt";
372 break;
373 case EXCP_DEV_INTERRUPT:
374 name = "dev_interrupt";
375 break;
376 case EXCP_MMFAULT:
377 name = "mmfault";
378 break;
379 case EXCP_UNALIGN:
380 name = "unalign";
381 break;
382 case EXCP_OPCDEC:
383 name = "opcdec";
384 break;
385 case EXCP_ARITH:
386 name = "arith";
387 break;
388 case EXCP_FEN:
389 name = "fen";
390 break;
391 case EXCP_CALL_PAL:
392 name = "call_pal";
393 break;
394 case EXCP_STL_C:
395 name = "stl_c";
396 break;
397 case EXCP_STQ_C:
398 name = "stq_c";
399 break;
401 qemu_log("INT %6d: %s(%#x) pc=%016" PRIx64 " sp=%016" PRIx64 "\n",
402 ++count, name, env->error_code, env->pc, env->ir[IR_SP]);
405 env->exception_index = -1;
407 #if !defined(CONFIG_USER_ONLY)
408 switch (i) {
409 case EXCP_RESET:
410 i = 0x0000;
411 break;
412 case EXCP_MCHK:
413 i = 0x0080;
414 break;
415 case EXCP_SMP_INTERRUPT:
416 i = 0x0100;
417 break;
418 case EXCP_CLK_INTERRUPT:
419 i = 0x0180;
420 break;
421 case EXCP_DEV_INTERRUPT:
422 i = 0x0200;
423 break;
424 case EXCP_MMFAULT:
425 i = 0x0280;
426 break;
427 case EXCP_UNALIGN:
428 i = 0x0300;
429 break;
430 case EXCP_OPCDEC:
431 i = 0x0380;
432 break;
433 case EXCP_ARITH:
434 i = 0x0400;
435 break;
436 case EXCP_FEN:
437 i = 0x0480;
438 break;
439 case EXCP_CALL_PAL:
440 i = env->error_code;
441 /* There are 64 entry points for both privileged and unprivileged,
442 with bit 0x80 indicating unprivileged. Each entry point gets
443 64 bytes to do its job. */
444 if (i & 0x80) {
445 i = 0x2000 + (i - 0x80) * 64;
446 } else {
447 i = 0x1000 + i * 64;
449 break;
450 default:
451 cpu_abort(env, "Unhandled CPU exception");
454 /* Remember where the exception happened. Emulate real hardware in
455 that the low bit of the PC indicates PALmode. */
456 env->exc_addr = env->pc | env->pal_mode;
458 /* Continue execution at the PALcode entry point. */
459 env->pc = env->palbr + i;
461 /* Switch to PALmode. */
462 if (!env->pal_mode) {
463 env->pal_mode = 1;
464 swap_shadow_regs(env);
466 #endif /* !USER_ONLY */
469 void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
470 int flags)
472 static const char *linux_reg_names[] = {
473 "v0 ", "t0 ", "t1 ", "t2 ", "t3 ", "t4 ", "t5 ", "t6 ",
474 "t7 ", "s0 ", "s1 ", "s2 ", "s3 ", "s4 ", "s5 ", "fp ",
475 "a0 ", "a1 ", "a2 ", "a3 ", "a4 ", "a5 ", "t8 ", "t9 ",
476 "t10", "t11", "ra ", "t12", "at ", "gp ", "sp ", "zero",
478 AlphaCPU *cpu = ALPHA_CPU(cs);
479 CPUAlphaState *env = &cpu->env;
480 int i;
482 cpu_fprintf(f, " PC " TARGET_FMT_lx " PS %02x\n",
483 env->pc, env->ps);
484 for (i = 0; i < 31; i++) {
485 cpu_fprintf(f, "IR%02d %s " TARGET_FMT_lx " ", i,
486 linux_reg_names[i], env->ir[i]);
487 if ((i % 3) == 2)
488 cpu_fprintf(f, "\n");
491 cpu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n",
492 env->lock_addr, env->lock_value);
494 for (i = 0; i < 31; i++) {
495 cpu_fprintf(f, "FIR%02d " TARGET_FMT_lx " ", i,
496 *((uint64_t *)(&env->fir[i])));
497 if ((i % 3) == 2)
498 cpu_fprintf(f, "\n");
500 cpu_fprintf(f, "\n");
503 /* This should only be called from translate, via gen_excp.
504 We expect that ENV->PC has already been updated. */
505 void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error)
507 env->exception_index = excp;
508 env->error_code = error;
509 cpu_loop_exit(env);
512 /* This may be called from any of the helpers to set up EXCEPTION_INDEX. */
513 void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr,
514 int excp, int error)
516 env->exception_index = excp;
517 env->error_code = error;
518 if (retaddr) {
519 cpu_restore_state(env, retaddr);
521 cpu_loop_exit(env);
524 void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr,
525 int exc, uint64_t mask)
527 env->trap_arg0 = exc;
528 env->trap_arg1 = mask;
529 dynamic_excp(env, retaddr, EXCP_ARITH, 0);