docs: Add QED image format specification
[qemu-kvm/stefanha.git] / target-i386 / kvm.c
blob940600cff8037c0d852fdb7aafb29dca6a787074
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 static int lm_capable_kernel;
59 #ifdef KVM_CAP_EXT_CPUID
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
83 return cpuid;
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
129 break;
131 break;
136 qemu_free(cpuid);
138 return ret;
141 #else
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
146 return -1U;
149 #endif
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
153 int cap;
154 int feature;
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158 #endif
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161 #endif
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164 #endif
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167 #endif
168 { -1, -1 }
171 static int get_para_features(CPUState *env)
173 int i, features = 0;
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
177 features |= (1 << para_features[i].feature);
180 return features;
182 #endif
184 #ifdef KVM_CAP_MCE
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186 int *max_banks)
188 int r;
190 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
191 if (r > 0) {
192 *max_banks = r;
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
195 return -ENOSYS;
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211 int r;
213 kmsrs->nmsrs = n;
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217 free(kmsrs);
218 return r;
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_exception(CPUState *env)
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
227 int r;
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
231 return -1;
233 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
236 struct kvm_x86_mce_data
238 CPUState *env;
239 struct kvm_x86_mce *mce;
240 int abort_on_error;
243 static void kvm_do_inject_x86_mce(void *_data)
245 struct kvm_x86_mce_data *data = _data;
246 int r;
248 /* If there is an MCE exception being processed, ignore this SRAO MCE */
249 if ((data->env->mcg_cap & MCG_SER_P) &&
250 !(data->mce->status & MCI_STATUS_AR)) {
251 r = kvm_mce_in_exception(data->env);
252 if (r == -1) {
253 fprintf(stderr, "Failed to get MCE status\n");
254 } else if (r) {
255 return;
259 r = kvm_set_mce(data->env, data->mce);
260 if (r < 0) {
261 perror("kvm_set_mce FAILED");
262 if (data->abort_on_error) {
263 abort();
267 #endif
269 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
270 uint64_t mcg_status, uint64_t addr, uint64_t misc,
271 int abort_on_error)
273 #ifdef KVM_CAP_MCE
274 struct kvm_x86_mce mce = {
275 .bank = bank,
276 .status = status,
277 .mcg_status = mcg_status,
278 .addr = addr,
279 .misc = misc,
281 struct kvm_x86_mce_data data = {
282 .env = cenv,
283 .mce = &mce,
286 if (!cenv->mcg_cap) {
287 fprintf(stderr, "MCE support is not enabled!\n");
288 return;
291 on_vcpu(cenv, kvm_do_inject_x86_mce, &data);
292 #else
293 if (abort_on_error)
294 abort();
295 #endif
298 static int _kvm_arch_init_vcpu(CPUState *env);
300 int kvm_arch_init_vcpu(CPUState *env)
302 int r;
303 struct {
304 struct kvm_cpuid2 cpuid;
305 struct kvm_cpuid_entry2 entries[100];
306 } __attribute__((packed)) cpuid_data;
307 uint32_t limit, i, j, cpuid_i;
308 uint32_t unused;
309 struct kvm_cpuid_entry2 *c;
310 #ifdef KVM_CPUID_SIGNATURE
311 uint32_t signature[3];
312 #endif
314 r = _kvm_arch_init_vcpu(env);
315 if (r < 0) {
316 return r;
319 #ifdef OBSOLETE_KVM_IMPL
321 env->mp_state = KVM_MP_STATE_RUNNABLE;
323 #endif
325 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
327 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
328 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
329 env->cpuid_ext_features |= i;
331 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
332 0, R_EDX);
333 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
334 0, R_ECX);
335 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
336 0, R_EDX);
339 cpuid_i = 0;
341 #ifdef CONFIG_KVM_PARA
342 /* Paravirtualization CPUIDs */
343 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
344 c = &cpuid_data.entries[cpuid_i++];
345 memset(c, 0, sizeof(*c));
346 c->function = KVM_CPUID_SIGNATURE;
347 c->eax = 0;
348 c->ebx = signature[0];
349 c->ecx = signature[1];
350 c->edx = signature[2];
352 c = &cpuid_data.entries[cpuid_i++];
353 memset(c, 0, sizeof(*c));
354 c->function = KVM_CPUID_FEATURES;
355 c->eax = env->cpuid_kvm_features & get_para_features(env);
356 #endif
358 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
360 for (i = 0; i <= limit; i++) {
361 c = &cpuid_data.entries[cpuid_i++];
363 switch (i) {
364 case 2: {
365 /* Keep reading function 2 till all the input is received */
366 int times;
368 c->function = i;
369 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
370 KVM_CPUID_FLAG_STATE_READ_NEXT;
371 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
372 times = c->eax & 0xff;
374 for (j = 1; j < times; ++j) {
375 c = &cpuid_data.entries[cpuid_i++];
376 c->function = i;
377 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
378 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
380 break;
382 case 4:
383 case 0xb:
384 case 0xd:
385 for (j = 0; ; j++) {
386 c->function = i;
387 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
388 c->index = j;
389 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
391 if (i == 4 && c->eax == 0)
392 break;
393 if (i == 0xb && !(c->ecx & 0xff00))
394 break;
395 if (i == 0xd && c->eax == 0)
396 break;
398 c = &cpuid_data.entries[cpuid_i++];
400 break;
401 default:
402 c->function = i;
403 c->flags = 0;
404 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
405 break;
408 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
410 for (i = 0x80000000; i <= limit; i++) {
411 c = &cpuid_data.entries[cpuid_i++];
413 c->function = i;
414 c->flags = 0;
415 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
418 cpuid_data.cpuid.nent = cpuid_i;
420 #ifdef KVM_CAP_MCE
421 if (((env->cpuid_version >> 8)&0xF) >= 6
422 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
423 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
424 uint64_t mcg_cap;
425 int banks;
427 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
428 perror("kvm_get_mce_cap_supported FAILED");
429 else {
430 if (banks > MCE_BANKS_DEF)
431 banks = MCE_BANKS_DEF;
432 mcg_cap &= MCE_CAP_DEF;
433 mcg_cap |= banks;
434 if (kvm_setup_mce(env, &mcg_cap))
435 perror("kvm_setup_mce FAILED");
436 else
437 env->mcg_cap = mcg_cap;
440 #endif
442 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
445 static void kvm_clear_vapic(CPUState *env)
447 #ifdef KVM_SET_VAPIC_ADDR
448 struct kvm_vapic_addr va = {
449 .vapic_addr = 0,
452 kvm_vcpu_ioctl(env, KVM_SET_VAPIC_ADDR, &va);
453 #endif
456 void kvm_arch_reset_vcpu(CPUState *env)
458 kvm_clear_vapic(env);
459 env->exception_injected = -1;
460 env->interrupt_injected = -1;
461 env->nmi_injected = 0;
462 env->nmi_pending = 0;
463 /* Legal xcr0 for loading */
464 env->xcr0 = 1;
465 if (kvm_irqchip_in_kernel()) {
466 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
467 KVM_MP_STATE_UNINITIALIZED;
468 } else {
469 env->mp_state = KVM_MP_STATE_RUNNABLE;
473 int has_msr_star;
474 int has_msr_hsave_pa;
476 static void kvm_supported_msrs(CPUState *env)
478 static int kvm_supported_msrs;
479 int ret;
481 /* first time */
482 if (kvm_supported_msrs == 0) {
483 struct kvm_msr_list msr_list, *kvm_msr_list;
485 kvm_supported_msrs = -1;
487 /* Obtain MSR list from KVM. These are the MSRs that we must
488 * save/restore */
489 msr_list.nmsrs = 0;
490 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
491 if (ret < 0 && ret != -E2BIG) {
492 return;
494 /* Old kernel modules had a bug and could write beyond the provided
495 memory. Allocate at least a safe amount of 1K. */
496 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
497 msr_list.nmsrs *
498 sizeof(msr_list.indices[0])));
500 kvm_msr_list->nmsrs = msr_list.nmsrs;
501 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
502 if (ret >= 0) {
503 int i;
505 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
506 if (kvm_msr_list->indices[i] == MSR_STAR) {
507 has_msr_star = 1;
508 continue;
510 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
511 has_msr_hsave_pa = 1;
512 continue;
517 free(kvm_msr_list);
520 return;
523 static int kvm_has_msr_hsave_pa(CPUState *env)
525 kvm_supported_msrs(env);
526 return has_msr_hsave_pa;
529 static int kvm_has_msr_star(CPUState *env)
531 kvm_supported_msrs(env);
532 return has_msr_star;
535 #ifdef OBSOLETE_KVM_IMPL
536 static int kvm_init_identity_map_page(KVMState *s)
538 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
539 int ret;
540 uint64_t addr = 0xfffbc000;
542 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
543 return 0;
546 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
547 if (ret < 0) {
548 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
549 return ret;
551 #endif
552 return 0;
555 int kvm_arch_init(KVMState *s, int smp_cpus)
557 int ret;
559 struct utsname utsname;
561 uname(&utsname);
562 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
564 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
565 * directly. In order to use vm86 mode, a TSS is needed. Since this
566 * must be part of guest physical memory, we need to allocate it. Older
567 * versions of KVM just assumed that it would be at the end of physical
568 * memory but that doesn't work with more than 4GB of memory. We simply
569 * refuse to work with those older versions of KVM. */
570 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
571 if (ret <= 0) {
572 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
573 return ret;
576 /* this address is 3 pages before the bios, and the bios should present
577 * as unavaible memory. FIXME, need to ensure the e820 map deals with
578 * this?
581 * Tell fw_cfg to notify the BIOS to reserve the range.
583 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
584 perror("e820_add_entry() table is full");
585 exit(1);
587 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
588 if (ret < 0) {
589 return ret;
592 return kvm_init_identity_map_page(s);
595 #endif
597 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
599 lhs->selector = rhs->selector;
600 lhs->base = rhs->base;
601 lhs->limit = rhs->limit;
602 lhs->type = 3;
603 lhs->present = 1;
604 lhs->dpl = 3;
605 lhs->db = 0;
606 lhs->s = 1;
607 lhs->l = 0;
608 lhs->g = 0;
609 lhs->avl = 0;
610 lhs->unusable = 0;
613 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
615 unsigned flags = rhs->flags;
616 lhs->selector = rhs->selector;
617 lhs->base = rhs->base;
618 lhs->limit = rhs->limit;
619 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
620 lhs->present = (flags & DESC_P_MASK) != 0;
621 lhs->dpl = rhs->selector & 3;
622 lhs->db = (flags >> DESC_B_SHIFT) & 1;
623 lhs->s = (flags & DESC_S_MASK) != 0;
624 lhs->l = (flags >> DESC_L_SHIFT) & 1;
625 lhs->g = (flags & DESC_G_MASK) != 0;
626 lhs->avl = (flags & DESC_AVL_MASK) != 0;
627 lhs->unusable = 0;
630 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
632 lhs->selector = rhs->selector;
633 lhs->base = rhs->base;
634 lhs->limit = rhs->limit;
635 lhs->flags =
636 (rhs->type << DESC_TYPE_SHIFT)
637 | (rhs->present * DESC_P_MASK)
638 | (rhs->dpl << DESC_DPL_SHIFT)
639 | (rhs->db << DESC_B_SHIFT)
640 | (rhs->s * DESC_S_MASK)
641 | (rhs->l << DESC_L_SHIFT)
642 | (rhs->g * DESC_G_MASK)
643 | (rhs->avl * DESC_AVL_MASK);
647 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
649 if (set)
650 *kvm_reg = *qemu_reg;
651 else
652 *qemu_reg = *kvm_reg;
655 static int kvm_getput_regs(CPUState *env, int set)
657 struct kvm_regs regs;
658 int ret = 0;
660 if (!set) {
661 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
662 if (ret < 0)
663 return ret;
666 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
667 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
668 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
669 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
670 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
671 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
672 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
673 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
674 #ifdef TARGET_X86_64
675 kvm_getput_reg(&regs.r8, &env->regs[8], set);
676 kvm_getput_reg(&regs.r9, &env->regs[9], set);
677 kvm_getput_reg(&regs.r10, &env->regs[10], set);
678 kvm_getput_reg(&regs.r11, &env->regs[11], set);
679 kvm_getput_reg(&regs.r12, &env->regs[12], set);
680 kvm_getput_reg(&regs.r13, &env->regs[13], set);
681 kvm_getput_reg(&regs.r14, &env->regs[14], set);
682 kvm_getput_reg(&regs.r15, &env->regs[15], set);
683 #endif
685 kvm_getput_reg(&regs.rflags, &env->eflags, set);
686 kvm_getput_reg(&regs.rip, &env->eip, set);
688 if (set)
689 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
691 return ret;
694 static int kvm_put_fpu(CPUState *env)
696 struct kvm_fpu fpu;
697 int i;
699 memset(&fpu, 0, sizeof fpu);
700 fpu.fsw = env->fpus & ~(7 << 11);
701 fpu.fsw |= (env->fpstt & 7) << 11;
702 fpu.fcw = env->fpuc;
703 for (i = 0; i < 8; ++i)
704 fpu.ftwx |= (!env->fptags[i]) << i;
705 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
706 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
707 fpu.mxcsr = env->mxcsr;
709 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
712 #ifdef KVM_CAP_XSAVE
713 #define XSAVE_CWD_RIP 2
714 #define XSAVE_CWD_RDP 4
715 #define XSAVE_MXCSR 6
716 #define XSAVE_ST_SPACE 8
717 #define XSAVE_XMM_SPACE 40
718 #define XSAVE_XSTATE_BV 128
719 #define XSAVE_YMMH_SPACE 144
720 #endif
722 static int kvm_put_xsave(CPUState *env)
724 #ifdef KVM_CAP_XSAVE
725 int i, r;
726 struct kvm_xsave* xsave;
727 uint16_t cwd, swd, twd, fop;
729 if (!kvm_has_xsave())
730 return kvm_put_fpu(env);
732 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
733 memset(xsave, 0, sizeof(struct kvm_xsave));
734 cwd = swd = twd = fop = 0;
735 swd = env->fpus & ~(7 << 11);
736 swd |= (env->fpstt & 7) << 11;
737 cwd = env->fpuc;
738 for (i = 0; i < 8; ++i)
739 twd |= (!env->fptags[i]) << i;
740 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
741 xsave->region[1] = (uint32_t)(fop << 16) + twd;
742 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
743 sizeof env->fpregs);
744 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
745 sizeof env->xmm_regs);
746 xsave->region[XSAVE_MXCSR] = env->mxcsr;
747 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
748 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
749 sizeof env->ymmh_regs);
750 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
751 qemu_free(xsave);
752 return r;
753 #else
754 return kvm_put_fpu(env);
755 #endif
758 static int kvm_put_xcrs(CPUState *env)
760 #ifdef KVM_CAP_XCRS
761 struct kvm_xcrs xcrs;
763 if (!kvm_has_xcrs())
764 return 0;
766 xcrs.nr_xcrs = 1;
767 xcrs.flags = 0;
768 xcrs.xcrs[0].xcr = 0;
769 xcrs.xcrs[0].value = env->xcr0;
770 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
771 #else
772 return 0;
773 #endif
776 static int kvm_put_sregs(CPUState *env)
778 struct kvm_sregs sregs;
780 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
781 if (env->interrupt_injected >= 0) {
782 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
783 (uint64_t)1 << (env->interrupt_injected % 64);
786 if ((env->eflags & VM_MASK)) {
787 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
788 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
789 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
790 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
791 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
792 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
793 } else {
794 set_seg(&sregs.cs, &env->segs[R_CS]);
795 set_seg(&sregs.ds, &env->segs[R_DS]);
796 set_seg(&sregs.es, &env->segs[R_ES]);
797 set_seg(&sregs.fs, &env->segs[R_FS]);
798 set_seg(&sregs.gs, &env->segs[R_GS]);
799 set_seg(&sregs.ss, &env->segs[R_SS]);
801 if (env->cr[0] & CR0_PE_MASK) {
802 /* force ss cpl to cs cpl */
803 sregs.ss.selector = (sregs.ss.selector & ~3) |
804 (sregs.cs.selector & 3);
805 sregs.ss.dpl = sregs.ss.selector & 3;
809 set_seg(&sregs.tr, &env->tr);
810 set_seg(&sregs.ldt, &env->ldt);
812 sregs.idt.limit = env->idt.limit;
813 sregs.idt.base = env->idt.base;
814 sregs.gdt.limit = env->gdt.limit;
815 sregs.gdt.base = env->gdt.base;
817 sregs.cr0 = env->cr[0];
818 sregs.cr2 = env->cr[2];
819 sregs.cr3 = env->cr[3];
820 sregs.cr4 = env->cr[4];
822 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
823 sregs.apic_base = cpu_get_apic_base(env->apic_state);
825 sregs.efer = env->efer;
827 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
830 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
831 uint32_t index, uint64_t value)
833 entry->index = index;
834 entry->data = value;
837 static int kvm_put_msrs(CPUState *env, int level)
839 struct {
840 struct kvm_msrs info;
841 struct kvm_msr_entry entries[100];
842 } msr_data;
843 struct kvm_msr_entry *msrs = msr_data.entries;
844 int n = 0;
846 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
847 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
848 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
849 if (kvm_has_msr_star(env))
850 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
851 if (kvm_has_msr_hsave_pa(env))
852 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
853 #ifdef TARGET_X86_64
854 if (lm_capable_kernel) {
855 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
856 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
857 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
858 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
860 #endif
861 if (level == KVM_PUT_FULL_STATE) {
863 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
864 * writeback. Until this is fixed, we only write the offset to SMP
865 * guests after migration, desynchronizing the VCPUs, but avoiding
866 * huge jump-backs that would occur without any writeback at all.
868 if (smp_cpus == 1 || env->tsc != 0) {
869 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
871 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
872 env->system_time_msr);
873 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
874 #ifdef KVM_CAP_ASYNC_PF
875 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
876 #endif
878 #ifdef KVM_CAP_MCE
879 if (env->mcg_cap) {
880 int i;
881 if (level == KVM_PUT_RESET_STATE)
882 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
883 else if (level == KVM_PUT_FULL_STATE) {
884 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
885 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
886 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
887 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
890 #endif
892 msr_data.info.nmsrs = n;
894 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
898 static int kvm_get_fpu(CPUState *env)
900 struct kvm_fpu fpu;
901 int i, ret;
903 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
904 if (ret < 0)
905 return ret;
907 env->fpstt = (fpu.fsw >> 11) & 7;
908 env->fpus = fpu.fsw;
909 env->fpuc = fpu.fcw;
910 for (i = 0; i < 8; ++i)
911 env->fptags[i] = !((fpu.ftwx >> i) & 1);
912 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
913 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
914 env->mxcsr = fpu.mxcsr;
916 return 0;
919 static int kvm_get_xsave(CPUState *env)
921 #ifdef KVM_CAP_XSAVE
922 struct kvm_xsave* xsave;
923 int ret, i;
924 uint16_t cwd, swd, twd, fop;
926 if (!kvm_has_xsave())
927 return kvm_get_fpu(env);
929 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
930 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
931 if (ret < 0) {
932 qemu_free(xsave);
933 return ret;
936 cwd = (uint16_t)xsave->region[0];
937 swd = (uint16_t)(xsave->region[0] >> 16);
938 twd = (uint16_t)xsave->region[1];
939 fop = (uint16_t)(xsave->region[1] >> 16);
940 env->fpstt = (swd >> 11) & 7;
941 env->fpus = swd;
942 env->fpuc = cwd;
943 for (i = 0; i < 8; ++i)
944 env->fptags[i] = !((twd >> i) & 1);
945 env->mxcsr = xsave->region[XSAVE_MXCSR];
946 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
947 sizeof env->fpregs);
948 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
949 sizeof env->xmm_regs);
950 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
951 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
952 sizeof env->ymmh_regs);
953 qemu_free(xsave);
954 return 0;
955 #else
956 return kvm_get_fpu(env);
957 #endif
960 static int kvm_get_xcrs(CPUState *env)
962 #ifdef KVM_CAP_XCRS
963 int i, ret;
964 struct kvm_xcrs xcrs;
966 if (!kvm_has_xcrs())
967 return 0;
969 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
970 if (ret < 0)
971 return ret;
973 for (i = 0; i < xcrs.nr_xcrs; i++)
974 /* Only support xcr0 now */
975 if (xcrs.xcrs[0].xcr == 0) {
976 env->xcr0 = xcrs.xcrs[0].value;
977 break;
979 return 0;
980 #else
981 return 0;
982 #endif
985 static int kvm_get_sregs(CPUState *env)
987 struct kvm_sregs sregs;
988 uint32_t hflags;
989 int bit, i, ret;
991 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
992 if (ret < 0)
993 return ret;
995 /* There can only be one pending IRQ set in the bitmap at a time, so try
996 to find it and save its number instead (-1 for none). */
997 env->interrupt_injected = -1;
998 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
999 if (sregs.interrupt_bitmap[i]) {
1000 bit = ctz64(sregs.interrupt_bitmap[i]);
1001 env->interrupt_injected = i * 64 + bit;
1002 break;
1006 get_seg(&env->segs[R_CS], &sregs.cs);
1007 get_seg(&env->segs[R_DS], &sregs.ds);
1008 get_seg(&env->segs[R_ES], &sregs.es);
1009 get_seg(&env->segs[R_FS], &sregs.fs);
1010 get_seg(&env->segs[R_GS], &sregs.gs);
1011 get_seg(&env->segs[R_SS], &sregs.ss);
1013 get_seg(&env->tr, &sregs.tr);
1014 get_seg(&env->ldt, &sregs.ldt);
1016 env->idt.limit = sregs.idt.limit;
1017 env->idt.base = sregs.idt.base;
1018 env->gdt.limit = sregs.gdt.limit;
1019 env->gdt.base = sregs.gdt.base;
1021 env->cr[0] = sregs.cr0;
1022 env->cr[2] = sregs.cr2;
1023 env->cr[3] = sregs.cr3;
1024 env->cr[4] = sregs.cr4;
1026 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1028 env->efer = sregs.efer;
1029 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1031 #define HFLAG_COPY_MASK ~( \
1032 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1033 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1034 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1035 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1039 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1040 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1041 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1042 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1043 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1044 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1045 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1047 if (env->efer & MSR_EFER_LMA) {
1048 hflags |= HF_LMA_MASK;
1051 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1052 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1053 } else {
1054 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1055 (DESC_B_SHIFT - HF_CS32_SHIFT);
1056 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1057 (DESC_B_SHIFT - HF_SS32_SHIFT);
1058 if (!(env->cr[0] & CR0_PE_MASK) ||
1059 (env->eflags & VM_MASK) ||
1060 !(hflags & HF_CS32_MASK)) {
1061 hflags |= HF_ADDSEG_MASK;
1062 } else {
1063 hflags |= ((env->segs[R_DS].base |
1064 env->segs[R_ES].base |
1065 env->segs[R_SS].base) != 0) <<
1066 HF_ADDSEG_SHIFT;
1069 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1071 return 0;
1074 static int kvm_get_msrs(CPUState *env)
1076 struct {
1077 struct kvm_msrs info;
1078 struct kvm_msr_entry entries[100];
1079 } msr_data;
1080 struct kvm_msr_entry *msrs = msr_data.entries;
1081 int ret, i, n;
1083 n = 0;
1084 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1085 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1086 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1087 if (kvm_has_msr_star(env))
1088 msrs[n++].index = MSR_STAR;
1089 if (kvm_has_msr_hsave_pa(env))
1090 msrs[n++].index = MSR_VM_HSAVE_PA;
1091 msrs[n++].index = MSR_IA32_TSC;
1092 msrs[n++].index = MSR_VM_HSAVE_PA;
1093 #ifdef TARGET_X86_64
1094 if (lm_capable_kernel) {
1095 msrs[n++].index = MSR_CSTAR;
1096 msrs[n++].index = MSR_KERNELGSBASE;
1097 msrs[n++].index = MSR_FMASK;
1098 msrs[n++].index = MSR_LSTAR;
1100 #endif
1101 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1102 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1103 #ifdef KVM_CAP_ASYNC_PF
1104 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1105 #endif
1107 #ifdef KVM_CAP_MCE
1108 if (env->mcg_cap) {
1109 msrs[n++].index = MSR_MCG_STATUS;
1110 msrs[n++].index = MSR_MCG_CTL;
1111 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1112 msrs[n++].index = MSR_MC0_CTL + i;
1114 #endif
1116 msr_data.info.nmsrs = n;
1117 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1118 if (ret < 0)
1119 return ret;
1121 for (i = 0; i < ret; i++) {
1122 switch (msrs[i].index) {
1123 case MSR_IA32_SYSENTER_CS:
1124 env->sysenter_cs = msrs[i].data;
1125 break;
1126 case MSR_IA32_SYSENTER_ESP:
1127 env->sysenter_esp = msrs[i].data;
1128 break;
1129 case MSR_IA32_SYSENTER_EIP:
1130 env->sysenter_eip = msrs[i].data;
1131 break;
1132 case MSR_STAR:
1133 env->star = msrs[i].data;
1134 break;
1135 #ifdef TARGET_X86_64
1136 case MSR_CSTAR:
1137 env->cstar = msrs[i].data;
1138 break;
1139 case MSR_KERNELGSBASE:
1140 env->kernelgsbase = msrs[i].data;
1141 break;
1142 case MSR_FMASK:
1143 env->fmask = msrs[i].data;
1144 break;
1145 case MSR_LSTAR:
1146 env->lstar = msrs[i].data;
1147 break;
1148 #endif
1149 case MSR_IA32_TSC:
1150 env->tsc = msrs[i].data;
1151 break;
1152 case MSR_VM_HSAVE_PA:
1153 env->vm_hsave = msrs[i].data;
1154 break;
1155 case MSR_KVM_SYSTEM_TIME:
1156 env->system_time_msr = msrs[i].data;
1157 break;
1158 case MSR_KVM_WALL_CLOCK:
1159 env->wall_clock_msr = msrs[i].data;
1160 break;
1161 #ifdef KVM_CAP_MCE
1162 case MSR_MCG_STATUS:
1163 env->mcg_status = msrs[i].data;
1164 break;
1165 case MSR_MCG_CTL:
1166 env->mcg_ctl = msrs[i].data;
1167 break;
1168 #endif
1169 default:
1170 #ifdef KVM_CAP_MCE
1171 if (msrs[i].index >= MSR_MC0_CTL &&
1172 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1173 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1175 #endif
1176 break;
1177 #ifdef KVM_CAP_ASYNC_PF
1178 case MSR_KVM_ASYNC_PF_EN:
1179 env->async_pf_en_msr = msrs[i].data;
1180 break;
1181 #endif
1185 return 0;
1188 #ifdef OBSOLETE_KVM_IMPL
1189 static int kvm_put_mp_state(CPUState *env)
1191 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1193 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1196 static int kvm_get_mp_state(CPUState *env)
1198 struct kvm_mp_state mp_state;
1199 int ret;
1201 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1202 if (ret < 0) {
1203 return ret;
1205 env->mp_state = mp_state.mp_state;
1206 return 0;
1208 #endif
1210 static int kvm_put_vcpu_events(CPUState *env, int level)
1212 #ifdef KVM_CAP_VCPU_EVENTS
1213 struct kvm_vcpu_events events;
1215 if (!kvm_has_vcpu_events()) {
1216 return 0;
1219 events.exception.injected = (env->exception_injected >= 0);
1220 events.exception.nr = env->exception_injected;
1221 events.exception.has_error_code = env->has_error_code;
1222 events.exception.error_code = env->error_code;
1224 events.interrupt.injected = (env->interrupt_injected >= 0);
1225 events.interrupt.nr = env->interrupt_injected;
1226 events.interrupt.soft = env->soft_interrupt;
1228 events.nmi.injected = env->nmi_injected;
1229 events.nmi.pending = env->nmi_pending;
1230 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1232 events.sipi_vector = env->sipi_vector;
1234 events.flags = 0;
1235 if (level >= KVM_PUT_RESET_STATE) {
1236 events.flags |=
1237 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1240 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1241 #else
1242 return 0;
1243 #endif
1246 static int kvm_get_vcpu_events(CPUState *env)
1248 #ifdef KVM_CAP_VCPU_EVENTS
1249 struct kvm_vcpu_events events;
1250 int ret;
1252 if (!kvm_has_vcpu_events()) {
1253 return 0;
1256 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1257 if (ret < 0) {
1258 return ret;
1260 env->exception_injected =
1261 events.exception.injected ? events.exception.nr : -1;
1262 env->has_error_code = events.exception.has_error_code;
1263 env->error_code = events.exception.error_code;
1265 env->interrupt_injected =
1266 events.interrupt.injected ? events.interrupt.nr : -1;
1267 env->soft_interrupt = events.interrupt.soft;
1269 env->nmi_injected = events.nmi.injected;
1270 env->nmi_pending = events.nmi.pending;
1271 if (events.nmi.masked) {
1272 env->hflags2 |= HF2_NMI_MASK;
1273 } else {
1274 env->hflags2 &= ~HF2_NMI_MASK;
1277 env->sipi_vector = events.sipi_vector;
1278 #endif
1280 return 0;
1283 static int kvm_guest_debug_workarounds(CPUState *env)
1285 int ret = 0;
1286 #ifdef KVM_CAP_SET_GUEST_DEBUG
1287 unsigned long reinject_trap = 0;
1289 if (!kvm_has_vcpu_events()) {
1290 if (env->exception_injected == 1) {
1291 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1292 } else if (env->exception_injected == 3) {
1293 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1295 env->exception_injected = -1;
1299 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1300 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1301 * by updating the debug state once again if single-stepping is on.
1302 * Another reason to call kvm_update_guest_debug here is a pending debug
1303 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1304 * reinject them via SET_GUEST_DEBUG.
1306 if (reinject_trap ||
1307 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1308 ret = kvm_update_guest_debug(env, reinject_trap);
1310 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1311 return ret;
1314 static int kvm_put_debugregs(CPUState *env)
1316 #ifdef KVM_CAP_DEBUGREGS
1317 struct kvm_debugregs dbgregs;
1318 int i;
1320 if (!kvm_has_debugregs()) {
1321 return 0;
1324 for (i = 0; i < 4; i++) {
1325 dbgregs.db[i] = env->dr[i];
1327 dbgregs.dr6 = env->dr[6];
1328 dbgregs.dr7 = env->dr[7];
1329 dbgregs.flags = 0;
1331 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1332 #else
1333 return 0;
1334 #endif
1337 static int kvm_get_debugregs(CPUState *env)
1339 #ifdef KVM_CAP_DEBUGREGS
1340 struct kvm_debugregs dbgregs;
1341 int i, ret;
1343 if (!kvm_has_debugregs()) {
1344 return 0;
1347 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1348 if (ret < 0) {
1349 return ret;
1351 for (i = 0; i < 4; i++) {
1352 env->dr[i] = dbgregs.db[i];
1354 env->dr[4] = env->dr[6] = dbgregs.dr6;
1355 env->dr[5] = env->dr[7] = dbgregs.dr7;
1356 #endif
1358 return 0;
1361 #ifdef OBSOLETE_KVM_IMPL
1362 int kvm_arch_put_registers(CPUState *env, int level)
1364 int ret;
1366 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1368 ret = kvm_getput_regs(env, 1);
1369 if (ret < 0)
1370 return ret;
1372 ret = kvm_put_xsave(env);
1373 if (ret < 0)
1374 return ret;
1376 ret = kvm_put_xcrs(env);
1377 if (ret < 0)
1378 return ret;
1380 ret = kvm_put_sregs(env);
1381 if (ret < 0)
1382 return ret;
1384 ret = kvm_put_msrs(env, level);
1385 if (ret < 0)
1386 return ret;
1388 if (level >= KVM_PUT_RESET_STATE) {
1389 ret = kvm_put_mp_state(env);
1390 if (ret < 0)
1391 return ret;
1394 ret = kvm_put_vcpu_events(env, level);
1395 if (ret < 0)
1396 return ret;
1398 /* must be last */
1399 ret = kvm_guest_debug_workarounds(env);
1400 if (ret < 0)
1401 return ret;
1403 ret = kvm_put_debugregs(env);
1404 if (ret < 0)
1405 return ret;
1407 return 0;
1410 int kvm_arch_get_registers(CPUState *env)
1412 int ret;
1414 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1416 ret = kvm_getput_regs(env, 0);
1417 if (ret < 0)
1418 return ret;
1420 ret = kvm_get_xsave(env);
1421 if (ret < 0)
1422 return ret;
1424 ret = kvm_get_xcrs(env);
1425 if (ret < 0)
1426 return ret;
1428 ret = kvm_get_sregs(env);
1429 if (ret < 0)
1430 return ret;
1432 ret = kvm_get_msrs(env);
1433 if (ret < 0)
1434 return ret;
1436 ret = kvm_get_mp_state(env);
1437 if (ret < 0)
1438 return ret;
1440 ret = kvm_get_vcpu_events(env);
1441 if (ret < 0)
1442 return ret;
1444 ret = kvm_get_debugregs(env);
1445 if (ret < 0)
1446 return ret;
1448 return 0;
1451 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1453 /* Try to inject an interrupt if the guest can accept it */
1454 if (run->ready_for_interrupt_injection &&
1455 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1456 (env->eflags & IF_MASK)) {
1457 int irq;
1459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1460 irq = cpu_get_pic_interrupt(env);
1461 if (irq >= 0) {
1462 struct kvm_interrupt intr;
1463 intr.irq = irq;
1464 /* FIXME: errors */
1465 DPRINTF("injected interrupt %d\n", irq);
1466 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1470 /* If we have an interrupt but the guest is not ready to receive an
1471 * interrupt, request an interrupt window exit. This will
1472 * cause a return to userspace as soon as the guest is ready to
1473 * receive interrupts. */
1474 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1475 run->request_interrupt_window = 1;
1476 else
1477 run->request_interrupt_window = 0;
1479 DPRINTF("setting tpr\n");
1480 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1482 return 0;
1484 #endif
1486 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1488 if (run->if_flag)
1489 env->eflags |= IF_MASK;
1490 else
1491 env->eflags &= ~IF_MASK;
1493 cpu_set_apic_tpr(env->apic_state, run->cr8);
1494 cpu_set_apic_base(env->apic_state, run->apic_base);
1496 return 0;
1499 #ifdef OBSOLETE_KVM_IMPL
1501 int kvm_arch_process_irqchip_events(CPUState *env)
1503 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1504 kvm_cpu_synchronize_state(env);
1505 do_cpu_init(env);
1506 env->exception_index = EXCP_HALTED;
1509 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1510 kvm_cpu_synchronize_state(env);
1511 do_cpu_sipi(env);
1514 return env->halted;
1517 static int kvm_handle_halt(CPUState *env)
1519 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1520 (env->eflags & IF_MASK)) &&
1521 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1522 env->halted = 1;
1523 env->exception_index = EXCP_HLT;
1524 return 0;
1527 return 1;
1530 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1532 int ret = 0;
1534 switch (run->exit_reason) {
1535 case KVM_EXIT_HLT:
1536 DPRINTF("handle_hlt\n");
1537 ret = kvm_handle_halt(env);
1538 break;
1541 return ret;
1543 #endif
1545 #ifdef KVM_CAP_SET_GUEST_DEBUG
1546 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1548 static const uint8_t int3 = 0xcc;
1550 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1551 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1552 return -EINVAL;
1553 return 0;
1556 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1558 uint8_t int3;
1560 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1561 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1562 return -EINVAL;
1563 return 0;
1566 static struct {
1567 target_ulong addr;
1568 int len;
1569 int type;
1570 } hw_breakpoint[4];
1572 static int nb_hw_breakpoint;
1574 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1576 int n;
1578 for (n = 0; n < nb_hw_breakpoint; n++)
1579 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1580 (hw_breakpoint[n].len == len || len == -1))
1581 return n;
1582 return -1;
1585 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1586 target_ulong len, int type)
1588 switch (type) {
1589 case GDB_BREAKPOINT_HW:
1590 len = 1;
1591 break;
1592 case GDB_WATCHPOINT_WRITE:
1593 case GDB_WATCHPOINT_ACCESS:
1594 switch (len) {
1595 case 1:
1596 break;
1597 case 2:
1598 case 4:
1599 case 8:
1600 if (addr & (len - 1))
1601 return -EINVAL;
1602 break;
1603 default:
1604 return -EINVAL;
1606 break;
1607 default:
1608 return -ENOSYS;
1611 if (nb_hw_breakpoint == 4)
1612 return -ENOBUFS;
1614 if (find_hw_breakpoint(addr, len, type) >= 0)
1615 return -EEXIST;
1617 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1618 hw_breakpoint[nb_hw_breakpoint].len = len;
1619 hw_breakpoint[nb_hw_breakpoint].type = type;
1620 nb_hw_breakpoint++;
1622 return 0;
1625 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1626 target_ulong len, int type)
1628 int n;
1630 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1631 if (n < 0)
1632 return -ENOENT;
1634 nb_hw_breakpoint--;
1635 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1637 return 0;
1640 void kvm_arch_remove_all_hw_breakpoints(void)
1642 nb_hw_breakpoint = 0;
1645 static CPUWatchpoint hw_watchpoint;
1647 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1649 int handle = 0;
1650 int n;
1652 if (arch_info->exception == 1) {
1653 if (arch_info->dr6 & (1 << 14)) {
1654 if (cpu_single_env->singlestep_enabled)
1655 handle = 1;
1656 } else {
1657 for (n = 0; n < 4; n++)
1658 if (arch_info->dr6 & (1 << n))
1659 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1660 case 0x0:
1661 handle = 1;
1662 break;
1663 case 0x1:
1664 handle = 1;
1665 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1666 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1667 hw_watchpoint.flags = BP_MEM_WRITE;
1668 break;
1669 case 0x3:
1670 handle = 1;
1671 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1672 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1673 hw_watchpoint.flags = BP_MEM_ACCESS;
1674 break;
1677 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1678 handle = 1;
1680 if (!handle) {
1681 cpu_synchronize_state(cpu_single_env);
1682 assert(cpu_single_env->exception_injected == -1);
1684 cpu_single_env->exception_injected = arch_info->exception;
1685 cpu_single_env->has_error_code = 0;
1688 return handle;
1691 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1693 const uint8_t type_code[] = {
1694 [GDB_BREAKPOINT_HW] = 0x0,
1695 [GDB_WATCHPOINT_WRITE] = 0x1,
1696 [GDB_WATCHPOINT_ACCESS] = 0x3
1698 const uint8_t len_code[] = {
1699 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1701 int n;
1703 if (kvm_sw_breakpoints_active(env))
1704 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1706 if (nb_hw_breakpoint > 0) {
1707 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1708 dbg->arch.debugreg[7] = 0x0600;
1709 for (n = 0; n < nb_hw_breakpoint; n++) {
1710 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1711 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1712 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1713 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1716 /* Legal xcr0 for loading */
1717 env->xcr0 = 1;
1719 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1721 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1723 return !(env->cr[0] & CR0_PE_MASK) ||
1724 ((env->segs[R_CS].selector & 3) != 3);
1727 static void hardware_memory_error(void)
1729 fprintf(stderr, "Hardware memory error!\n");
1730 exit(1);
1733 #ifdef KVM_CAP_MCE
1734 static void kvm_mce_broadcast_rest(CPUState *env)
1736 CPUState *cenv;
1737 int family, model, cpuver = env->cpuid_version;
1739 family = (cpuver >> 8) & 0xf;
1740 model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1742 /* Broadcast MCA signal for processor version 06H_EH and above */
1743 if ((family == 6 && model >= 14) || family > 6) {
1744 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1745 if (cenv == env) {
1746 continue;
1748 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1749 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1753 #endif
1755 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1757 #if defined(KVM_CAP_MCE)
1758 struct kvm_x86_mce mce = {
1759 .bank = 9,
1761 void *vaddr;
1762 ram_addr_t ram_addr;
1763 target_phys_addr_t paddr;
1764 int r;
1766 if ((env->mcg_cap & MCG_SER_P) && addr
1767 && (code == BUS_MCEERR_AR
1768 || code == BUS_MCEERR_AO)) {
1769 if (code == BUS_MCEERR_AR) {
1770 /* Fake an Intel architectural Data Load SRAR UCR */
1771 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1772 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1773 | MCI_STATUS_AR | 0x134;
1774 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1775 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1776 } else {
1778 * If there is an MCE excpetion being processed, ignore
1779 * this SRAO MCE
1781 r = kvm_mce_in_exception(env);
1782 if (r == -1) {
1783 fprintf(stderr, "Failed to get MCE status\n");
1784 } else if (r) {
1785 return 0;
1787 /* Fake an Intel architectural Memory scrubbing UCR */
1788 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1789 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1790 | 0xc0;
1791 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1792 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1794 vaddr = (void *)addr;
1795 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1796 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1797 fprintf(stderr, "Hardware memory error for memory used by "
1798 "QEMU itself instead of guest system!\n");
1799 /* Hope we are lucky for AO MCE */
1800 if (code == BUS_MCEERR_AO) {
1801 return 0;
1802 } else {
1803 hardware_memory_error();
1806 mce.addr = paddr;
1807 r = kvm_set_mce(env, &mce);
1808 if (r < 0) {
1809 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1810 abort();
1812 kvm_mce_broadcast_rest(env);
1813 } else
1814 #endif
1816 if (code == BUS_MCEERR_AO) {
1817 return 0;
1818 } else if (code == BUS_MCEERR_AR) {
1819 hardware_memory_error();
1820 } else {
1821 return 1;
1824 return 0;
1827 int kvm_on_sigbus(int code, void *addr)
1829 #if defined(KVM_CAP_MCE)
1830 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1831 uint64_t status;
1832 void *vaddr;
1833 ram_addr_t ram_addr;
1834 target_phys_addr_t paddr;
1836 /* Hope we are lucky for AO MCE */
1837 vaddr = addr;
1838 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1839 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1840 fprintf(stderr, "Hardware memory error for memory used by "
1841 "QEMU itself instead of guest system!: %p\n", addr);
1842 return 0;
1844 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1845 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1846 | 0xc0;
1847 kvm_inject_x86_mce(first_cpu, 9, status,
1848 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1849 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1850 kvm_mce_broadcast_rest(first_cpu);
1851 } else
1852 #endif
1854 if (code == BUS_MCEERR_AO) {
1855 return 0;
1856 } else if (code == BUS_MCEERR_AR) {
1857 hardware_memory_error();
1858 } else {
1859 return 1;
1862 return 0;
1865 #include "qemu-kvm-x86.c"