Merge commit 'ddced198cdb6e3c9f7d8b612fa1d22c51c36fa4a' into upstream-merge
[qemu-kvm/stefanha.git] / target-i386 / kvm.c
bloba87ed1adfd0f84a669a06f60fdd956297efff1b8
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "ioport.h"
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
32 #endif
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifdef KVM_CAP_EXT_CPUID
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
71 return cpuid;
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
75 uint32_t index, int reg)
77 struct kvm_cpuid2 *cpuid;
78 int i, max;
79 uint32_t ret = 0;
80 uint32_t cpuid_1_edx;
82 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
83 return -1U;
86 max = 1;
87 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
88 max *= 2;
91 for (i = 0; i < cpuid->nent; ++i) {
92 if (cpuid->entries[i].function == function &&
93 cpuid->entries[i].index == index) {
94 switch (reg) {
95 case R_EAX:
96 ret = cpuid->entries[i].eax;
97 break;
98 case R_EBX:
99 ret = cpuid->entries[i].ebx;
100 break;
101 case R_ECX:
102 ret = cpuid->entries[i].ecx;
103 break;
104 case R_EDX:
105 ret = cpuid->entries[i].edx;
106 switch (function) {
107 case 1:
108 /* KVM before 2.6.30 misreports the following features */
109 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
110 break;
111 case 0x80000001:
112 /* On Intel, kvm returns cpuid according to the Intel spec,
113 * so add missing bits according to the AMD spec:
115 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
116 ret |= cpuid_1_edx & 0x183f7ff;
117 break;
119 break;
124 qemu_free(cpuid);
126 return ret;
129 #else
131 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
132 uint32_t index, int reg)
134 return -1U;
137 #endif
139 #ifdef CONFIG_KVM_PARA
140 struct kvm_para_features {
141 int cap;
142 int feature;
143 } para_features[] = {
144 #ifdef KVM_CAP_CLOCKSOURCE
145 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
146 #endif
147 #ifdef KVM_CAP_NOP_IO_DELAY
148 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
149 #endif
150 #ifdef KVM_CAP_PV_MMU
151 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
152 #endif
153 { -1, -1 }
156 static int get_para_features(CPUState *env)
158 int i, features = 0;
160 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
161 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
162 features |= (1 << para_features[i].feature);
165 return features;
167 #endif
169 static int _kvm_arch_init_vcpu(CPUState *env);
171 int kvm_arch_init_vcpu(CPUState *env)
173 int r;
174 struct {
175 struct kvm_cpuid2 cpuid;
176 struct kvm_cpuid_entry2 entries[100];
177 } __attribute__((packed)) cpuid_data;
178 uint32_t limit, i, j, cpuid_i;
179 uint32_t unused;
180 struct kvm_cpuid_entry2 *c;
181 #ifdef KVM_CPUID_SIGNATURE
182 uint32_t signature[3];
183 #endif
185 r = _kvm_arch_init_vcpu(env);
186 if (r < 0) {
187 return r;
190 #ifdef KVM_UPSTREAM
192 env->mp_state = KVM_MP_STATE_RUNNABLE;
194 #endif
196 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
198 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
199 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
200 env->cpuid_ext_features |= i;
202 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
203 0, R_EDX);
204 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
205 0, R_ECX);
207 cpuid_i = 0;
209 #ifdef CONFIG_KVM_PARA
210 /* Paravirtualization CPUIDs */
211 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
212 c = &cpuid_data.entries[cpuid_i++];
213 memset(c, 0, sizeof(*c));
214 c->function = KVM_CPUID_SIGNATURE;
215 c->eax = 0;
216 c->ebx = signature[0];
217 c->ecx = signature[1];
218 c->edx = signature[2];
220 c = &cpuid_data.entries[cpuid_i++];
221 memset(c, 0, sizeof(*c));
222 c->function = KVM_CPUID_FEATURES;
223 c->eax = env->cpuid_kvm_features & get_para_features(env);
224 #endif
226 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
228 for (i = 0; i <= limit; i++) {
229 c = &cpuid_data.entries[cpuid_i++];
231 switch (i) {
232 case 2: {
233 /* Keep reading function 2 till all the input is received */
234 int times;
236 c->function = i;
237 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
238 KVM_CPUID_FLAG_STATE_READ_NEXT;
239 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
240 times = c->eax & 0xff;
242 for (j = 1; j < times; ++j) {
243 c = &cpuid_data.entries[cpuid_i++];
244 c->function = i;
245 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
246 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
248 break;
250 case 4:
251 case 0xb:
252 case 0xd:
253 for (j = 0; ; j++) {
254 c->function = i;
255 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
256 c->index = j;
257 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
259 if (i == 4 && c->eax == 0)
260 break;
261 if (i == 0xb && !(c->ecx & 0xff00))
262 break;
263 if (i == 0xd && c->eax == 0)
264 break;
266 c = &cpuid_data.entries[cpuid_i++];
268 break;
269 default:
270 c->function = i;
271 c->flags = 0;
272 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
273 break;
276 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
278 for (i = 0x80000000; i <= limit; i++) {
279 c = &cpuid_data.entries[cpuid_i++];
281 c->function = i;
282 c->flags = 0;
283 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
286 cpuid_data.cpuid.nent = cpuid_i;
288 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
291 void kvm_arch_reset_vcpu(CPUState *env)
293 env->exception_injected = -1;
294 env->interrupt_injected = -1;
295 env->nmi_injected = 0;
296 env->nmi_pending = 0;
297 /* Legal xcr0 for loading */
298 env->xcr0 = 1;
299 if (kvm_irqchip_in_kernel()) {
300 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
301 KVM_MP_STATE_UNINITIALIZED;
302 } else {
303 env->mp_state = KVM_MP_STATE_RUNNABLE;
306 #ifdef KVM_UPSTREAM
308 static int kvm_has_msr_star(CPUState *env)
310 static int has_msr_star;
311 int ret;
313 /* first time */
314 if (has_msr_star == 0) {
315 struct kvm_msr_list msr_list, *kvm_msr_list;
317 has_msr_star = -1;
319 /* Obtain MSR list from KVM. These are the MSRs that we must
320 * save/restore */
321 msr_list.nmsrs = 0;
322 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
323 if (ret < 0 && ret != -E2BIG) {
324 return 0;
326 /* Old kernel modules had a bug and could write beyond the provided
327 memory. Allocate at least a safe amount of 1K. */
328 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
329 msr_list.nmsrs *
330 sizeof(msr_list.indices[0])));
332 kvm_msr_list->nmsrs = msr_list.nmsrs;
333 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
334 if (ret >= 0) {
335 int i;
337 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
338 if (kvm_msr_list->indices[i] == MSR_STAR) {
339 has_msr_star = 1;
340 break;
345 free(kvm_msr_list);
348 if (has_msr_star == 1)
349 return 1;
350 return 0;
353 static int kvm_init_identity_map_page(KVMState *s)
355 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
356 int ret;
357 uint64_t addr = 0xfffbc000;
359 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
360 return 0;
363 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
364 if (ret < 0) {
365 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
366 return ret;
368 #endif
369 return 0;
372 int kvm_arch_init(KVMState *s, int smp_cpus)
374 int ret;
376 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
377 * directly. In order to use vm86 mode, a TSS is needed. Since this
378 * must be part of guest physical memory, we need to allocate it. Older
379 * versions of KVM just assumed that it would be at the end of physical
380 * memory but that doesn't work with more than 4GB of memory. We simply
381 * refuse to work with those older versions of KVM. */
382 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
383 if (ret <= 0) {
384 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
385 return ret;
388 /* this address is 3 pages before the bios, and the bios should present
389 * as unavaible memory. FIXME, need to ensure the e820 map deals with
390 * this?
393 * Tell fw_cfg to notify the BIOS to reserve the range.
395 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
396 perror("e820_add_entry() table is full");
397 exit(1);
399 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
400 if (ret < 0) {
401 return ret;
404 return kvm_init_identity_map_page(s);
407 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
409 lhs->selector = rhs->selector;
410 lhs->base = rhs->base;
411 lhs->limit = rhs->limit;
412 lhs->type = 3;
413 lhs->present = 1;
414 lhs->dpl = 3;
415 lhs->db = 0;
416 lhs->s = 1;
417 lhs->l = 0;
418 lhs->g = 0;
419 lhs->avl = 0;
420 lhs->unusable = 0;
423 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
425 unsigned flags = rhs->flags;
426 lhs->selector = rhs->selector;
427 lhs->base = rhs->base;
428 lhs->limit = rhs->limit;
429 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
430 lhs->present = (flags & DESC_P_MASK) != 0;
431 lhs->dpl = rhs->selector & 3;
432 lhs->db = (flags >> DESC_B_SHIFT) & 1;
433 lhs->s = (flags & DESC_S_MASK) != 0;
434 lhs->l = (flags >> DESC_L_SHIFT) & 1;
435 lhs->g = (flags & DESC_G_MASK) != 0;
436 lhs->avl = (flags & DESC_AVL_MASK) != 0;
437 lhs->unusable = 0;
440 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
442 lhs->selector = rhs->selector;
443 lhs->base = rhs->base;
444 lhs->limit = rhs->limit;
445 lhs->flags =
446 (rhs->type << DESC_TYPE_SHIFT)
447 | (rhs->present * DESC_P_MASK)
448 | (rhs->dpl << DESC_DPL_SHIFT)
449 | (rhs->db << DESC_B_SHIFT)
450 | (rhs->s * DESC_S_MASK)
451 | (rhs->l << DESC_L_SHIFT)
452 | (rhs->g * DESC_G_MASK)
453 | (rhs->avl * DESC_AVL_MASK);
456 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
458 if (set)
459 *kvm_reg = *qemu_reg;
460 else
461 *qemu_reg = *kvm_reg;
464 static int kvm_getput_regs(CPUState *env, int set)
466 struct kvm_regs regs;
467 int ret = 0;
469 if (!set) {
470 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
471 if (ret < 0)
472 return ret;
475 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
476 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
477 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
478 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
479 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
480 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
481 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
482 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
483 #ifdef TARGET_X86_64
484 kvm_getput_reg(&regs.r8, &env->regs[8], set);
485 kvm_getput_reg(&regs.r9, &env->regs[9], set);
486 kvm_getput_reg(&regs.r10, &env->regs[10], set);
487 kvm_getput_reg(&regs.r11, &env->regs[11], set);
488 kvm_getput_reg(&regs.r12, &env->regs[12], set);
489 kvm_getput_reg(&regs.r13, &env->regs[13], set);
490 kvm_getput_reg(&regs.r14, &env->regs[14], set);
491 kvm_getput_reg(&regs.r15, &env->regs[15], set);
492 #endif
494 kvm_getput_reg(&regs.rflags, &env->eflags, set);
495 kvm_getput_reg(&regs.rip, &env->eip, set);
497 if (set)
498 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
500 return ret;
503 static int kvm_put_fpu(CPUState *env)
505 struct kvm_fpu fpu;
506 int i;
508 memset(&fpu, 0, sizeof fpu);
509 fpu.fsw = env->fpus & ~(7 << 11);
510 fpu.fsw |= (env->fpstt & 7) << 11;
511 fpu.fcw = env->fpuc;
512 for (i = 0; i < 8; ++i)
513 fpu.ftwx |= (!env->fptags[i]) << i;
514 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
515 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
516 fpu.mxcsr = env->mxcsr;
518 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
521 #ifdef KVM_CAP_XSAVE
522 #define XSAVE_CWD_RIP 2
523 #define XSAVE_CWD_RDP 4
524 #define XSAVE_MXCSR 6
525 #define XSAVE_ST_SPACE 8
526 #define XSAVE_XMM_SPACE 40
527 #define XSAVE_XSTATE_BV 128
528 #define XSAVE_YMMH_SPACE 144
529 #endif
531 static int kvm_put_xsave(CPUState *env)
533 #ifdef KVM_CAP_XSAVE
534 int i;
535 struct kvm_xsave* xsave;
536 uint16_t cwd, swd, twd, fop;
538 if (!kvm_has_xsave())
539 return kvm_put_fpu(env);
541 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
542 memset(xsave, 0, sizeof(struct kvm_xsave));
543 cwd = swd = twd = fop = 0;
544 swd = env->fpus & ~(7 << 11);
545 swd |= (env->fpstt & 7) << 11;
546 cwd = env->fpuc;
547 for (i = 0; i < 8; ++i)
548 twd |= (!env->fptags[i]) << i;
549 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
550 xsave->region[1] = (uint32_t)(fop << 16) + twd;
551 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
552 sizeof env->fpregs);
553 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
554 sizeof env->xmm_regs);
555 xsave->region[XSAVE_MXCSR] = env->mxcsr;
556 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
557 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
558 sizeof env->ymmh_regs);
559 return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
560 #else
561 return kvm_put_fpu(env);
562 #endif
565 static int kvm_put_xcrs(CPUState *env)
567 #ifdef KVM_CAP_XCRS
568 struct kvm_xcrs xcrs;
570 if (!kvm_has_xcrs())
571 return 0;
573 xcrs.nr_xcrs = 1;
574 xcrs.flags = 0;
575 xcrs.xcrs[0].xcr = 0;
576 xcrs.xcrs[0].value = env->xcr0;
577 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
578 #else
579 return 0;
580 #endif
583 static int kvm_put_sregs(CPUState *env)
585 struct kvm_sregs sregs;
587 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
588 if (env->interrupt_injected >= 0) {
589 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
590 (uint64_t)1 << (env->interrupt_injected % 64);
593 if ((env->eflags & VM_MASK)) {
594 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
595 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
596 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
597 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
598 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
599 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
600 } else {
601 set_seg(&sregs.cs, &env->segs[R_CS]);
602 set_seg(&sregs.ds, &env->segs[R_DS]);
603 set_seg(&sregs.es, &env->segs[R_ES]);
604 set_seg(&sregs.fs, &env->segs[R_FS]);
605 set_seg(&sregs.gs, &env->segs[R_GS]);
606 set_seg(&sregs.ss, &env->segs[R_SS]);
608 if (env->cr[0] & CR0_PE_MASK) {
609 /* force ss cpl to cs cpl */
610 sregs.ss.selector = (sregs.ss.selector & ~3) |
611 (sregs.cs.selector & 3);
612 sregs.ss.dpl = sregs.ss.selector & 3;
616 set_seg(&sregs.tr, &env->tr);
617 set_seg(&sregs.ldt, &env->ldt);
619 sregs.idt.limit = env->idt.limit;
620 sregs.idt.base = env->idt.base;
621 sregs.gdt.limit = env->gdt.limit;
622 sregs.gdt.base = env->gdt.base;
624 sregs.cr0 = env->cr[0];
625 sregs.cr2 = env->cr[2];
626 sregs.cr3 = env->cr[3];
627 sregs.cr4 = env->cr[4];
629 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
630 sregs.apic_base = cpu_get_apic_base(env->apic_state);
632 sregs.efer = env->efer;
634 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
637 #endif
639 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
640 uint32_t index, uint64_t value)
642 entry->index = index;
643 entry->data = value;
646 #ifdef KVM_UPSTREAM
647 static int kvm_put_msrs(CPUState *env, int level)
649 struct {
650 struct kvm_msrs info;
651 struct kvm_msr_entry entries[100];
652 } msr_data;
653 struct kvm_msr_entry *msrs = msr_data.entries;
654 int n = 0;
656 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
657 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
658 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
659 if (kvm_has_msr_star(env))
660 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
661 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
662 #ifdef TARGET_X86_64
663 /* FIXME if lm capable */
664 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
665 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
666 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
667 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
668 #endif
669 if (level == KVM_PUT_FULL_STATE) {
670 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
671 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
672 env->system_time_msr);
673 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
676 msr_data.info.nmsrs = n;
678 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
683 static int kvm_get_fpu(CPUState *env)
685 struct kvm_fpu fpu;
686 int i, ret;
688 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
689 if (ret < 0)
690 return ret;
692 env->fpstt = (fpu.fsw >> 11) & 7;
693 env->fpus = fpu.fsw;
694 env->fpuc = fpu.fcw;
695 for (i = 0; i < 8; ++i)
696 env->fptags[i] = !((fpu.ftwx >> i) & 1);
697 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
698 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
699 env->mxcsr = fpu.mxcsr;
701 return 0;
704 static int kvm_get_xsave(CPUState *env)
706 #ifdef KVM_CAP_XSAVE
707 struct kvm_xsave* xsave;
708 int ret, i;
709 uint16_t cwd, swd, twd, fop;
711 if (!kvm_has_xsave())
712 return kvm_get_fpu(env);
714 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
715 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
716 if (ret < 0)
717 return ret;
719 cwd = (uint16_t)xsave->region[0];
720 swd = (uint16_t)(xsave->region[0] >> 16);
721 twd = (uint16_t)xsave->region[1];
722 fop = (uint16_t)(xsave->region[1] >> 16);
723 env->fpstt = (swd >> 11) & 7;
724 env->fpus = swd;
725 env->fpuc = cwd;
726 for (i = 0; i < 8; ++i)
727 env->fptags[i] = !((twd >> i) & 1);
728 env->mxcsr = xsave->region[XSAVE_MXCSR];
729 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
730 sizeof env->fpregs);
731 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
732 sizeof env->xmm_regs);
733 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
734 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
735 sizeof env->ymmh_regs);
736 return 0;
737 #else
738 return kvm_get_fpu(env);
739 #endif
742 static int kvm_get_xcrs(CPUState *env)
744 #ifdef KVM_CAP_XCRS
745 int i, ret;
746 struct kvm_xcrs xcrs;
748 if (!kvm_has_xcrs())
749 return 0;
751 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
752 if (ret < 0)
753 return ret;
755 for (i = 0; i < xcrs.nr_xcrs; i++)
756 /* Only support xcr0 now */
757 if (xcrs.xcrs[0].xcr == 0) {
758 env->xcr0 = xcrs.xcrs[0].value;
759 break;
761 return 0;
762 #else
763 return 0;
764 #endif
767 static int kvm_get_sregs(CPUState *env)
769 struct kvm_sregs sregs;
770 uint32_t hflags;
771 int bit, i, ret;
773 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
774 if (ret < 0)
775 return ret;
777 /* There can only be one pending IRQ set in the bitmap at a time, so try
778 to find it and save its number instead (-1 for none). */
779 env->interrupt_injected = -1;
780 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
781 if (sregs.interrupt_bitmap[i]) {
782 bit = ctz64(sregs.interrupt_bitmap[i]);
783 env->interrupt_injected = i * 64 + bit;
784 break;
788 get_seg(&env->segs[R_CS], &sregs.cs);
789 get_seg(&env->segs[R_DS], &sregs.ds);
790 get_seg(&env->segs[R_ES], &sregs.es);
791 get_seg(&env->segs[R_FS], &sregs.fs);
792 get_seg(&env->segs[R_GS], &sregs.gs);
793 get_seg(&env->segs[R_SS], &sregs.ss);
795 get_seg(&env->tr, &sregs.tr);
796 get_seg(&env->ldt, &sregs.ldt);
798 env->idt.limit = sregs.idt.limit;
799 env->idt.base = sregs.idt.base;
800 env->gdt.limit = sregs.gdt.limit;
801 env->gdt.base = sregs.gdt.base;
803 env->cr[0] = sregs.cr0;
804 env->cr[2] = sregs.cr2;
805 env->cr[3] = sregs.cr3;
806 env->cr[4] = sregs.cr4;
808 cpu_set_apic_base(env->apic_state, sregs.apic_base);
810 env->efer = sregs.efer;
811 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
813 #define HFLAG_COPY_MASK ~( \
814 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
815 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
816 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
817 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
821 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
822 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
823 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
824 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
825 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
826 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
827 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
829 if (env->efer & MSR_EFER_LMA) {
830 hflags |= HF_LMA_MASK;
833 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
834 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
835 } else {
836 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
837 (DESC_B_SHIFT - HF_CS32_SHIFT);
838 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
839 (DESC_B_SHIFT - HF_SS32_SHIFT);
840 if (!(env->cr[0] & CR0_PE_MASK) ||
841 (env->eflags & VM_MASK) ||
842 !(hflags & HF_CS32_MASK)) {
843 hflags |= HF_ADDSEG_MASK;
844 } else {
845 hflags |= ((env->segs[R_DS].base |
846 env->segs[R_ES].base |
847 env->segs[R_SS].base) != 0) <<
848 HF_ADDSEG_SHIFT;
851 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
853 return 0;
856 static int kvm_get_msrs(CPUState *env)
858 struct {
859 struct kvm_msrs info;
860 struct kvm_msr_entry entries[100];
861 } msr_data;
862 struct kvm_msr_entry *msrs = msr_data.entries;
863 int ret, i, n;
865 n = 0;
866 msrs[n++].index = MSR_IA32_SYSENTER_CS;
867 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
868 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
869 if (kvm_has_msr_star(env))
870 msrs[n++].index = MSR_STAR;
871 msrs[n++].index = MSR_IA32_TSC;
872 msrs[n++].index = MSR_VM_HSAVE_PA;
873 #ifdef TARGET_X86_64
874 /* FIXME lm_capable_kernel */
875 msrs[n++].index = MSR_CSTAR;
876 msrs[n++].index = MSR_KERNELGSBASE;
877 msrs[n++].index = MSR_FMASK;
878 msrs[n++].index = MSR_LSTAR;
879 #endif
880 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
881 msrs[n++].index = MSR_KVM_WALL_CLOCK;
883 msr_data.info.nmsrs = n;
884 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
885 if (ret < 0)
886 return ret;
888 for (i = 0; i < ret; i++) {
889 switch (msrs[i].index) {
890 case MSR_IA32_SYSENTER_CS:
891 env->sysenter_cs = msrs[i].data;
892 break;
893 case MSR_IA32_SYSENTER_ESP:
894 env->sysenter_esp = msrs[i].data;
895 break;
896 case MSR_IA32_SYSENTER_EIP:
897 env->sysenter_eip = msrs[i].data;
898 break;
899 case MSR_STAR:
900 env->star = msrs[i].data;
901 break;
902 #ifdef TARGET_X86_64
903 case MSR_CSTAR:
904 env->cstar = msrs[i].data;
905 break;
906 case MSR_KERNELGSBASE:
907 env->kernelgsbase = msrs[i].data;
908 break;
909 case MSR_FMASK:
910 env->fmask = msrs[i].data;
911 break;
912 case MSR_LSTAR:
913 env->lstar = msrs[i].data;
914 break;
915 #endif
916 case MSR_IA32_TSC:
917 env->tsc = msrs[i].data;
918 break;
919 case MSR_KVM_SYSTEM_TIME:
920 env->system_time_msr = msrs[i].data;
921 break;
922 case MSR_KVM_WALL_CLOCK:
923 env->wall_clock_msr = msrs[i].data;
924 break;
925 case MSR_VM_HSAVE_PA:
926 env->vm_hsave = msrs[i].data;
927 break;
931 return 0;
934 static int kvm_put_mp_state(CPUState *env)
936 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
938 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
941 static int kvm_get_mp_state(CPUState *env)
943 struct kvm_mp_state mp_state;
944 int ret;
946 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
947 if (ret < 0) {
948 return ret;
950 env->mp_state = mp_state.mp_state;
951 return 0;
953 #endif
955 static int kvm_put_vcpu_events(CPUState *env, int level)
957 #ifdef KVM_CAP_VCPU_EVENTS
958 struct kvm_vcpu_events events;
960 if (!kvm_has_vcpu_events()) {
961 return 0;
964 events.exception.injected = (env->exception_injected >= 0);
965 events.exception.nr = env->exception_injected;
966 events.exception.has_error_code = env->has_error_code;
967 events.exception.error_code = env->error_code;
969 events.interrupt.injected = (env->interrupt_injected >= 0);
970 events.interrupt.nr = env->interrupt_injected;
971 events.interrupt.soft = env->soft_interrupt;
973 events.nmi.injected = env->nmi_injected;
974 events.nmi.pending = env->nmi_pending;
975 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
977 events.sipi_vector = env->sipi_vector;
979 events.flags = 0;
980 if (level >= KVM_PUT_RESET_STATE) {
981 events.flags |=
982 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
985 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
986 #else
987 return 0;
988 #endif
991 static int kvm_get_vcpu_events(CPUState *env)
993 #ifdef KVM_CAP_VCPU_EVENTS
994 struct kvm_vcpu_events events;
995 int ret;
997 if (!kvm_has_vcpu_events()) {
998 return 0;
1001 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1002 if (ret < 0) {
1003 return ret;
1005 env->exception_injected =
1006 events.exception.injected ? events.exception.nr : -1;
1007 env->has_error_code = events.exception.has_error_code;
1008 env->error_code = events.exception.error_code;
1010 env->interrupt_injected =
1011 events.interrupt.injected ? events.interrupt.nr : -1;
1012 env->soft_interrupt = events.interrupt.soft;
1014 env->nmi_injected = events.nmi.injected;
1015 env->nmi_pending = events.nmi.pending;
1016 if (events.nmi.masked) {
1017 env->hflags2 |= HF2_NMI_MASK;
1018 } else {
1019 env->hflags2 &= ~HF2_NMI_MASK;
1022 env->sipi_vector = events.sipi_vector;
1023 #endif
1025 return 0;
1028 static int kvm_guest_debug_workarounds(CPUState *env)
1030 int ret = 0;
1031 #ifdef KVM_CAP_SET_GUEST_DEBUG
1032 unsigned long reinject_trap = 0;
1034 if (!kvm_has_vcpu_events()) {
1035 if (env->exception_injected == 1) {
1036 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1037 } else if (env->exception_injected == 3) {
1038 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1040 env->exception_injected = -1;
1044 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1045 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1046 * by updating the debug state once again if single-stepping is on.
1047 * Another reason to call kvm_update_guest_debug here is a pending debug
1048 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1049 * reinject them via SET_GUEST_DEBUG.
1051 if (reinject_trap ||
1052 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1053 ret = kvm_update_guest_debug(env, reinject_trap);
1055 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1056 return ret;
1059 static int kvm_put_debugregs(CPUState *env)
1061 #ifdef KVM_CAP_DEBUGREGS
1062 struct kvm_debugregs dbgregs;
1063 int i;
1065 if (!kvm_has_debugregs()) {
1066 return 0;
1069 for (i = 0; i < 4; i++) {
1070 dbgregs.db[i] = env->dr[i];
1072 dbgregs.dr6 = env->dr[6];
1073 dbgregs.dr7 = env->dr[7];
1074 dbgregs.flags = 0;
1076 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1077 #else
1078 return 0;
1079 #endif
1082 static int kvm_get_debugregs(CPUState *env)
1084 #ifdef KVM_CAP_DEBUGREGS
1085 struct kvm_debugregs dbgregs;
1086 int i, ret;
1088 if (!kvm_has_debugregs()) {
1089 return 0;
1092 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1093 if (ret < 0) {
1094 return ret;
1096 for (i = 0; i < 4; i++) {
1097 env->dr[i] = dbgregs.db[i];
1099 env->dr[4] = env->dr[6] = dbgregs.dr6;
1100 env->dr[5] = env->dr[7] = dbgregs.dr7;
1101 #endif
1103 return 0;
1106 #ifdef KVM_UPSTREAM
1107 int kvm_arch_put_registers(CPUState *env, int level)
1109 int ret;
1111 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1113 ret = kvm_getput_regs(env, 1);
1114 if (ret < 0)
1115 return ret;
1117 ret = kvm_put_xsave(env);
1118 if (ret < 0)
1119 return ret;
1121 ret = kvm_put_xcrs(env);
1122 if (ret < 0)
1123 return ret;
1125 ret = kvm_put_sregs(env);
1126 if (ret < 0)
1127 return ret;
1129 ret = kvm_put_msrs(env, level);
1130 if (ret < 0)
1131 return ret;
1133 if (level >= KVM_PUT_RESET_STATE) {
1134 ret = kvm_put_mp_state(env);
1135 if (ret < 0)
1136 return ret;
1139 ret = kvm_put_vcpu_events(env, level);
1140 if (ret < 0)
1141 return ret;
1143 /* must be last */
1144 ret = kvm_guest_debug_workarounds(env);
1145 if (ret < 0)
1146 return ret;
1148 ret = kvm_put_debugregs(env);
1149 if (ret < 0)
1150 return ret;
1152 return 0;
1155 int kvm_arch_get_registers(CPUState *env)
1157 int ret;
1159 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1161 ret = kvm_getput_regs(env, 0);
1162 if (ret < 0)
1163 return ret;
1165 ret = kvm_get_xsave(env);
1166 if (ret < 0)
1167 return ret;
1169 ret = kvm_get_xcrs(env);
1170 if (ret < 0)
1171 return ret;
1173 ret = kvm_get_sregs(env);
1174 if (ret < 0)
1175 return ret;
1177 ret = kvm_get_msrs(env);
1178 if (ret < 0)
1179 return ret;
1181 ret = kvm_get_mp_state(env);
1182 if (ret < 0)
1183 return ret;
1185 ret = kvm_get_vcpu_events(env);
1186 if (ret < 0)
1187 return ret;
1189 ret = kvm_get_debugregs(env);
1190 if (ret < 0)
1191 return ret;
1193 return 0;
1196 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1198 /* Try to inject an interrupt if the guest can accept it */
1199 if (run->ready_for_interrupt_injection &&
1200 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1201 (env->eflags & IF_MASK)) {
1202 int irq;
1204 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1205 irq = cpu_get_pic_interrupt(env);
1206 if (irq >= 0) {
1207 struct kvm_interrupt intr;
1208 intr.irq = irq;
1209 /* FIXME: errors */
1210 DPRINTF("injected interrupt %d\n", irq);
1211 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1215 /* If we have an interrupt but the guest is not ready to receive an
1216 * interrupt, request an interrupt window exit. This will
1217 * cause a return to userspace as soon as the guest is ready to
1218 * receive interrupts. */
1219 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1220 run->request_interrupt_window = 1;
1221 else
1222 run->request_interrupt_window = 0;
1224 DPRINTF("setting tpr\n");
1225 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1227 return 0;
1229 #endif
1231 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1233 if (run->if_flag)
1234 env->eflags |= IF_MASK;
1235 else
1236 env->eflags &= ~IF_MASK;
1238 cpu_set_apic_tpr(env->apic_state, run->cr8);
1239 cpu_set_apic_base(env->apic_state, run->apic_base);
1241 return 0;
1244 #ifdef KVM_UPSTREAM
1246 int kvm_arch_process_irqchip_events(CPUState *env)
1248 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1249 kvm_cpu_synchronize_state(env);
1250 do_cpu_init(env);
1251 env->exception_index = EXCP_HALTED;
1254 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1255 kvm_cpu_synchronize_state(env);
1256 do_cpu_sipi(env);
1259 return env->halted;
1262 static int kvm_handle_halt(CPUState *env)
1264 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1265 (env->eflags & IF_MASK)) &&
1266 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1267 env->halted = 1;
1268 env->exception_index = EXCP_HLT;
1269 return 0;
1272 return 1;
1275 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1277 int ret = 0;
1279 switch (run->exit_reason) {
1280 case KVM_EXIT_HLT:
1281 DPRINTF("handle_hlt\n");
1282 ret = kvm_handle_halt(env);
1283 break;
1286 return ret;
1288 #endif
1290 #ifdef KVM_CAP_SET_GUEST_DEBUG
1291 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1293 static const uint8_t int3 = 0xcc;
1295 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1296 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1297 return -EINVAL;
1298 return 0;
1301 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1303 uint8_t int3;
1305 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1306 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1307 return -EINVAL;
1308 return 0;
1311 static struct {
1312 target_ulong addr;
1313 int len;
1314 int type;
1315 } hw_breakpoint[4];
1317 static int nb_hw_breakpoint;
1319 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1321 int n;
1323 for (n = 0; n < nb_hw_breakpoint; n++)
1324 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1325 (hw_breakpoint[n].len == len || len == -1))
1326 return n;
1327 return -1;
1330 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1331 target_ulong len, int type)
1333 switch (type) {
1334 case GDB_BREAKPOINT_HW:
1335 len = 1;
1336 break;
1337 case GDB_WATCHPOINT_WRITE:
1338 case GDB_WATCHPOINT_ACCESS:
1339 switch (len) {
1340 case 1:
1341 break;
1342 case 2:
1343 case 4:
1344 case 8:
1345 if (addr & (len - 1))
1346 return -EINVAL;
1347 break;
1348 default:
1349 return -EINVAL;
1351 break;
1352 default:
1353 return -ENOSYS;
1356 if (nb_hw_breakpoint == 4)
1357 return -ENOBUFS;
1359 if (find_hw_breakpoint(addr, len, type) >= 0)
1360 return -EEXIST;
1362 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1363 hw_breakpoint[nb_hw_breakpoint].len = len;
1364 hw_breakpoint[nb_hw_breakpoint].type = type;
1365 nb_hw_breakpoint++;
1367 return 0;
1370 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1371 target_ulong len, int type)
1373 int n;
1375 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1376 if (n < 0)
1377 return -ENOENT;
1379 nb_hw_breakpoint--;
1380 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1382 return 0;
1385 void kvm_arch_remove_all_hw_breakpoints(void)
1387 nb_hw_breakpoint = 0;
1390 static CPUWatchpoint hw_watchpoint;
1392 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1394 int handle = 0;
1395 int n;
1397 if (arch_info->exception == 1) {
1398 if (arch_info->dr6 & (1 << 14)) {
1399 if (cpu_single_env->singlestep_enabled)
1400 handle = 1;
1401 } else {
1402 for (n = 0; n < 4; n++)
1403 if (arch_info->dr6 & (1 << n))
1404 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1405 case 0x0:
1406 handle = 1;
1407 break;
1408 case 0x1:
1409 handle = 1;
1410 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1411 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1412 hw_watchpoint.flags = BP_MEM_WRITE;
1413 break;
1414 case 0x3:
1415 handle = 1;
1416 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1417 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1418 hw_watchpoint.flags = BP_MEM_ACCESS;
1419 break;
1422 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1423 handle = 1;
1425 if (!handle) {
1426 cpu_synchronize_state(cpu_single_env);
1427 assert(cpu_single_env->exception_injected == -1);
1429 cpu_single_env->exception_injected = arch_info->exception;
1430 cpu_single_env->has_error_code = 0;
1433 return handle;
1436 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1438 const uint8_t type_code[] = {
1439 [GDB_BREAKPOINT_HW] = 0x0,
1440 [GDB_WATCHPOINT_WRITE] = 0x1,
1441 [GDB_WATCHPOINT_ACCESS] = 0x3
1443 const uint8_t len_code[] = {
1444 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1446 int n;
1448 if (kvm_sw_breakpoints_active(env))
1449 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1451 if (nb_hw_breakpoint > 0) {
1452 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1453 dbg->arch.debugreg[7] = 0x0600;
1454 for (n = 0; n < nb_hw_breakpoint; n++) {
1455 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1456 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1457 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1458 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1461 /* Legal xcr0 for loading */
1462 env->xcr0 = 1;
1464 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1466 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1468 return !(env->cr[0] & CR0_PE_MASK) ||
1469 ((env->segs[R_CS].selector & 3) != 3);
1472 #include "qemu-kvm-x86.c"