MCE: Relay UCR MCE to guest
[qemu-kvm/stefanha.git] / target-i386 / kvm.c
blob0161f6d2fb554884d829d8385966617fd929e32c
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "hw/apic.h"
29 #include "ioport.h"
30 #include "kvm_x86.h"
32 #ifdef CONFIG_KVM_PARA
33 #include <linux/kvm_para.h>
34 #endif
36 //#define DEBUG_KVM
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
56 #ifdef KVM_CAP_EXT_CPUID
58 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
60 struct kvm_cpuid2 *cpuid;
61 int r, size;
63 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
64 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
65 cpuid->nent = max;
66 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
67 if (r == 0 && cpuid->nent >= max) {
68 r = -E2BIG;
70 if (r < 0) {
71 if (r == -E2BIG) {
72 qemu_free(cpuid);
73 return NULL;
74 } else {
75 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
76 strerror(-r));
77 exit(1);
80 return cpuid;
83 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
84 uint32_t index, int reg)
86 struct kvm_cpuid2 *cpuid;
87 int i, max;
88 uint32_t ret = 0;
89 uint32_t cpuid_1_edx;
91 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
92 return -1U;
95 max = 1;
96 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
97 max *= 2;
100 for (i = 0; i < cpuid->nent; ++i) {
101 if (cpuid->entries[i].function == function &&
102 cpuid->entries[i].index == index) {
103 switch (reg) {
104 case R_EAX:
105 ret = cpuid->entries[i].eax;
106 break;
107 case R_EBX:
108 ret = cpuid->entries[i].ebx;
109 break;
110 case R_ECX:
111 ret = cpuid->entries[i].ecx;
112 break;
113 case R_EDX:
114 ret = cpuid->entries[i].edx;
115 switch (function) {
116 case 1:
117 /* KVM before 2.6.30 misreports the following features */
118 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
119 break;
120 case 0x80000001:
121 /* On Intel, kvm returns cpuid according to the Intel spec,
122 * so add missing bits according to the AMD spec:
124 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
125 ret |= cpuid_1_edx & 0x183f7ff;
126 break;
128 break;
133 qemu_free(cpuid);
135 return ret;
138 #else
140 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
141 uint32_t index, int reg)
143 return -1U;
146 #endif
148 #ifdef CONFIG_KVM_PARA
149 struct kvm_para_features {
150 int cap;
151 int feature;
152 } para_features[] = {
153 #ifdef KVM_CAP_CLOCKSOURCE
154 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
155 #endif
156 #ifdef KVM_CAP_NOP_IO_DELAY
157 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
158 #endif
159 #ifdef KVM_CAP_PV_MMU
160 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
161 #endif
162 { -1, -1 }
165 static int get_para_features(CPUState *env)
167 int i, features = 0;
169 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
170 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
171 features |= (1 << para_features[i].feature);
174 return features;
176 #endif
178 #ifdef KVM_CAP_MCE
179 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
180 int *max_banks)
182 int r;
184 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
185 if (r > 0) {
186 *max_banks = r;
187 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
189 return -ENOSYS;
192 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
194 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
197 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
199 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
202 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
204 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
205 int r;
207 kmsrs->nmsrs = n;
208 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
209 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
210 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
211 free(kmsrs);
212 return r;
215 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
216 static int kvm_mce_in_exception(CPUState *env)
218 struct kvm_msr_entry msr_mcg_status = {
219 .index = MSR_MCG_STATUS,
221 int r;
223 r = kvm_get_msr(env, &msr_mcg_status, 1);
224 if (r == -1 || r == 0) {
225 return -1;
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
230 struct kvm_x86_mce_data
232 CPUState *env;
233 struct kvm_x86_mce *mce;
234 int abort_on_error;
237 static void kvm_do_inject_x86_mce(void *_data)
239 struct kvm_x86_mce_data *data = _data;
240 int r;
242 /* If there is an MCE excpetion being processed, ignore this SRAO MCE */
243 r = kvm_mce_in_exception(data->env);
244 if (r == -1)
245 fprintf(stderr, "Failed to get MCE status\n");
246 else if (r && !(data->mce->status & MCI_STATUS_AR))
247 return;
249 r = kvm_set_mce(data->env, data->mce);
250 if (r < 0) {
251 perror("kvm_set_mce FAILED");
252 if (data->abort_on_error) {
253 abort();
257 #endif
259 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
260 uint64_t mcg_status, uint64_t addr, uint64_t misc,
261 int abort_on_error)
263 #ifdef KVM_CAP_MCE
264 struct kvm_x86_mce mce = {
265 .bank = bank,
266 .status = status,
267 .mcg_status = mcg_status,
268 .addr = addr,
269 .misc = misc,
271 struct kvm_x86_mce_data data = {
272 .env = cenv,
273 .mce = &mce,
276 if (!cenv->mcg_cap) {
277 fprintf(stderr, "MCE support is not enabled!\n");
278 return;
281 run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
282 #else
283 if (abort_on_error)
284 abort();
285 #endif
288 int kvm_arch_init_vcpu(CPUState *env)
290 struct {
291 struct kvm_cpuid2 cpuid;
292 struct kvm_cpuid_entry2 entries[100];
293 } __attribute__((packed)) cpuid_data;
294 uint32_t limit, i, j, cpuid_i;
295 uint32_t unused;
296 struct kvm_cpuid_entry2 *c;
297 #ifdef KVM_CPUID_SIGNATURE
298 uint32_t signature[3];
299 #endif
301 env->mp_state = KVM_MP_STATE_RUNNABLE;
303 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
305 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
306 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
307 env->cpuid_ext_features |= i;
309 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
310 0, R_EDX);
311 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
312 0, R_ECX);
313 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
314 0, R_EDX);
317 cpuid_i = 0;
319 #ifdef CONFIG_KVM_PARA
320 /* Paravirtualization CPUIDs */
321 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
322 c = &cpuid_data.entries[cpuid_i++];
323 memset(c, 0, sizeof(*c));
324 c->function = KVM_CPUID_SIGNATURE;
325 c->eax = 0;
326 c->ebx = signature[0];
327 c->ecx = signature[1];
328 c->edx = signature[2];
330 c = &cpuid_data.entries[cpuid_i++];
331 memset(c, 0, sizeof(*c));
332 c->function = KVM_CPUID_FEATURES;
333 c->eax = env->cpuid_kvm_features & get_para_features(env);
334 #endif
336 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
338 for (i = 0; i <= limit; i++) {
339 c = &cpuid_data.entries[cpuid_i++];
341 switch (i) {
342 case 2: {
343 /* Keep reading function 2 till all the input is received */
344 int times;
346 c->function = i;
347 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
348 KVM_CPUID_FLAG_STATE_READ_NEXT;
349 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
350 times = c->eax & 0xff;
352 for (j = 1; j < times; ++j) {
353 c = &cpuid_data.entries[cpuid_i++];
354 c->function = i;
355 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
356 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
358 break;
360 case 4:
361 case 0xb:
362 case 0xd:
363 for (j = 0; ; j++) {
364 c->function = i;
365 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
366 c->index = j;
367 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
369 if (i == 4 && c->eax == 0)
370 break;
371 if (i == 0xb && !(c->ecx & 0xff00))
372 break;
373 if (i == 0xd && c->eax == 0)
374 break;
376 c = &cpuid_data.entries[cpuid_i++];
378 break;
379 default:
380 c->function = i;
381 c->flags = 0;
382 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
383 break;
386 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
388 for (i = 0x80000000; i <= limit; i++) {
389 c = &cpuid_data.entries[cpuid_i++];
391 c->function = i;
392 c->flags = 0;
393 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
396 cpuid_data.cpuid.nent = cpuid_i;
398 #ifdef KVM_CAP_MCE
399 if (((env->cpuid_version >> 8)&0xF) >= 6
400 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
401 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
402 uint64_t mcg_cap;
403 int banks;
405 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
406 perror("kvm_get_mce_cap_supported FAILED");
407 else {
408 if (banks > MCE_BANKS_DEF)
409 banks = MCE_BANKS_DEF;
410 mcg_cap &= MCE_CAP_DEF;
411 mcg_cap |= banks;
412 if (kvm_setup_mce(env, &mcg_cap))
413 perror("kvm_setup_mce FAILED");
414 else
415 env->mcg_cap = mcg_cap;
418 #endif
420 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
423 void kvm_arch_reset_vcpu(CPUState *env)
425 env->exception_injected = -1;
426 env->interrupt_injected = -1;
427 env->nmi_injected = 0;
428 env->nmi_pending = 0;
429 if (kvm_irqchip_in_kernel()) {
430 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
431 KVM_MP_STATE_UNINITIALIZED;
432 } else {
433 env->mp_state = KVM_MP_STATE_RUNNABLE;
437 static int kvm_has_msr_star(CPUState *env)
439 static int has_msr_star;
440 int ret;
442 /* first time */
443 if (has_msr_star == 0) {
444 struct kvm_msr_list msr_list, *kvm_msr_list;
446 has_msr_star = -1;
448 /* Obtain MSR list from KVM. These are the MSRs that we must
449 * save/restore */
450 msr_list.nmsrs = 0;
451 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
452 if (ret < 0 && ret != -E2BIG) {
453 return 0;
455 /* Old kernel modules had a bug and could write beyond the provided
456 memory. Allocate at least a safe amount of 1K. */
457 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
458 msr_list.nmsrs *
459 sizeof(msr_list.indices[0])));
461 kvm_msr_list->nmsrs = msr_list.nmsrs;
462 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
463 if (ret >= 0) {
464 int i;
466 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
467 if (kvm_msr_list->indices[i] == MSR_STAR) {
468 has_msr_star = 1;
469 break;
474 free(kvm_msr_list);
477 if (has_msr_star == 1)
478 return 1;
479 return 0;
482 static int kvm_init_identity_map_page(KVMState *s)
484 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
485 int ret;
486 uint64_t addr = 0xfffbc000;
488 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
489 return 0;
492 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
493 if (ret < 0) {
494 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
495 return ret;
497 #endif
498 return 0;
501 int kvm_arch_init(KVMState *s, int smp_cpus)
503 int ret;
505 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
506 * directly. In order to use vm86 mode, a TSS is needed. Since this
507 * must be part of guest physical memory, we need to allocate it. Older
508 * versions of KVM just assumed that it would be at the end of physical
509 * memory but that doesn't work with more than 4GB of memory. We simply
510 * refuse to work with those older versions of KVM. */
511 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
512 if (ret <= 0) {
513 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
514 return ret;
517 /* this address is 3 pages before the bios, and the bios should present
518 * as unavaible memory. FIXME, need to ensure the e820 map deals with
519 * this?
522 * Tell fw_cfg to notify the BIOS to reserve the range.
524 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
525 perror("e820_add_entry() table is full");
526 exit(1);
528 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
529 if (ret < 0) {
530 return ret;
533 return kvm_init_identity_map_page(s);
536 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
538 lhs->selector = rhs->selector;
539 lhs->base = rhs->base;
540 lhs->limit = rhs->limit;
541 lhs->type = 3;
542 lhs->present = 1;
543 lhs->dpl = 3;
544 lhs->db = 0;
545 lhs->s = 1;
546 lhs->l = 0;
547 lhs->g = 0;
548 lhs->avl = 0;
549 lhs->unusable = 0;
552 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
554 unsigned flags = rhs->flags;
555 lhs->selector = rhs->selector;
556 lhs->base = rhs->base;
557 lhs->limit = rhs->limit;
558 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
559 lhs->present = (flags & DESC_P_MASK) != 0;
560 lhs->dpl = rhs->selector & 3;
561 lhs->db = (flags >> DESC_B_SHIFT) & 1;
562 lhs->s = (flags & DESC_S_MASK) != 0;
563 lhs->l = (flags >> DESC_L_SHIFT) & 1;
564 lhs->g = (flags & DESC_G_MASK) != 0;
565 lhs->avl = (flags & DESC_AVL_MASK) != 0;
566 lhs->unusable = 0;
569 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
571 lhs->selector = rhs->selector;
572 lhs->base = rhs->base;
573 lhs->limit = rhs->limit;
574 lhs->flags =
575 (rhs->type << DESC_TYPE_SHIFT)
576 | (rhs->present * DESC_P_MASK)
577 | (rhs->dpl << DESC_DPL_SHIFT)
578 | (rhs->db << DESC_B_SHIFT)
579 | (rhs->s * DESC_S_MASK)
580 | (rhs->l << DESC_L_SHIFT)
581 | (rhs->g * DESC_G_MASK)
582 | (rhs->avl * DESC_AVL_MASK);
585 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
587 if (set)
588 *kvm_reg = *qemu_reg;
589 else
590 *qemu_reg = *kvm_reg;
593 static int kvm_getput_regs(CPUState *env, int set)
595 struct kvm_regs regs;
596 int ret = 0;
598 if (!set) {
599 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
600 if (ret < 0)
601 return ret;
604 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
605 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
606 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
607 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
608 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
609 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
610 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
611 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
612 #ifdef TARGET_X86_64
613 kvm_getput_reg(&regs.r8, &env->regs[8], set);
614 kvm_getput_reg(&regs.r9, &env->regs[9], set);
615 kvm_getput_reg(&regs.r10, &env->regs[10], set);
616 kvm_getput_reg(&regs.r11, &env->regs[11], set);
617 kvm_getput_reg(&regs.r12, &env->regs[12], set);
618 kvm_getput_reg(&regs.r13, &env->regs[13], set);
619 kvm_getput_reg(&regs.r14, &env->regs[14], set);
620 kvm_getput_reg(&regs.r15, &env->regs[15], set);
621 #endif
623 kvm_getput_reg(&regs.rflags, &env->eflags, set);
624 kvm_getput_reg(&regs.rip, &env->eip, set);
626 if (set)
627 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
629 return ret;
632 static int kvm_put_fpu(CPUState *env)
634 struct kvm_fpu fpu;
635 int i;
637 memset(&fpu, 0, sizeof fpu);
638 fpu.fsw = env->fpus & ~(7 << 11);
639 fpu.fsw |= (env->fpstt & 7) << 11;
640 fpu.fcw = env->fpuc;
641 for (i = 0; i < 8; ++i)
642 fpu.ftwx |= (!env->fptags[i]) << i;
643 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
644 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
645 fpu.mxcsr = env->mxcsr;
647 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
650 #ifdef KVM_CAP_XSAVE
651 #define XSAVE_CWD_RIP 2
652 #define XSAVE_CWD_RDP 4
653 #define XSAVE_MXCSR 6
654 #define XSAVE_ST_SPACE 8
655 #define XSAVE_XMM_SPACE 40
656 #define XSAVE_XSTATE_BV 128
657 #define XSAVE_YMMH_SPACE 144
658 #endif
660 static int kvm_put_xsave(CPUState *env)
662 #ifdef KVM_CAP_XSAVE
663 int i;
664 struct kvm_xsave* xsave;
665 uint16_t cwd, swd, twd, fop;
667 if (!kvm_has_xsave())
668 return kvm_put_fpu(env);
670 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
671 memset(xsave, 0, sizeof(struct kvm_xsave));
672 cwd = swd = twd = fop = 0;
673 swd = env->fpus & ~(7 << 11);
674 swd |= (env->fpstt & 7) << 11;
675 cwd = env->fpuc;
676 for (i = 0; i < 8; ++i)
677 twd |= (!env->fptags[i]) << i;
678 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
679 xsave->region[1] = (uint32_t)(fop << 16) + twd;
680 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
681 sizeof env->fpregs);
682 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
683 sizeof env->xmm_regs);
684 xsave->region[XSAVE_MXCSR] = env->mxcsr;
685 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
686 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
687 sizeof env->ymmh_regs);
688 return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
689 #else
690 return kvm_put_fpu(env);
691 #endif
694 static int kvm_put_xcrs(CPUState *env)
696 #ifdef KVM_CAP_XCRS
697 struct kvm_xcrs xcrs;
699 if (!kvm_has_xcrs())
700 return 0;
702 xcrs.nr_xcrs = 1;
703 xcrs.flags = 0;
704 xcrs.xcrs[0].xcr = 0;
705 xcrs.xcrs[0].value = env->xcr0;
706 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
707 #else
708 return 0;
709 #endif
712 static int kvm_put_sregs(CPUState *env)
714 struct kvm_sregs sregs;
716 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
717 if (env->interrupt_injected >= 0) {
718 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
719 (uint64_t)1 << (env->interrupt_injected % 64);
722 if ((env->eflags & VM_MASK)) {
723 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
724 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
725 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
726 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
727 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
728 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
729 } else {
730 set_seg(&sregs.cs, &env->segs[R_CS]);
731 set_seg(&sregs.ds, &env->segs[R_DS]);
732 set_seg(&sregs.es, &env->segs[R_ES]);
733 set_seg(&sregs.fs, &env->segs[R_FS]);
734 set_seg(&sregs.gs, &env->segs[R_GS]);
735 set_seg(&sregs.ss, &env->segs[R_SS]);
737 if (env->cr[0] & CR0_PE_MASK) {
738 /* force ss cpl to cs cpl */
739 sregs.ss.selector = (sregs.ss.selector & ~3) |
740 (sregs.cs.selector & 3);
741 sregs.ss.dpl = sregs.ss.selector & 3;
745 set_seg(&sregs.tr, &env->tr);
746 set_seg(&sregs.ldt, &env->ldt);
748 sregs.idt.limit = env->idt.limit;
749 sregs.idt.base = env->idt.base;
750 sregs.gdt.limit = env->gdt.limit;
751 sregs.gdt.base = env->gdt.base;
753 sregs.cr0 = env->cr[0];
754 sregs.cr2 = env->cr[2];
755 sregs.cr3 = env->cr[3];
756 sregs.cr4 = env->cr[4];
758 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
759 sregs.apic_base = cpu_get_apic_base(env->apic_state);
761 sregs.efer = env->efer;
763 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
766 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
767 uint32_t index, uint64_t value)
769 entry->index = index;
770 entry->data = value;
773 static int kvm_put_msrs(CPUState *env, int level)
775 struct {
776 struct kvm_msrs info;
777 struct kvm_msr_entry entries[100];
778 } msr_data;
779 struct kvm_msr_entry *msrs = msr_data.entries;
780 int n = 0;
782 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
783 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
784 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
785 if (kvm_has_msr_star(env))
786 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
787 #ifdef TARGET_X86_64
788 /* FIXME if lm capable */
789 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
790 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
791 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
792 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
793 #endif
794 if (level == KVM_PUT_FULL_STATE) {
795 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
796 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
797 env->system_time_msr);
798 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
801 msr_data.info.nmsrs = n;
803 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
808 static int kvm_get_fpu(CPUState *env)
810 struct kvm_fpu fpu;
811 int i, ret;
813 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
814 if (ret < 0)
815 return ret;
817 env->fpstt = (fpu.fsw >> 11) & 7;
818 env->fpus = fpu.fsw;
819 env->fpuc = fpu.fcw;
820 for (i = 0; i < 8; ++i)
821 env->fptags[i] = !((fpu.ftwx >> i) & 1);
822 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
823 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
824 env->mxcsr = fpu.mxcsr;
826 return 0;
829 static int kvm_get_xsave(CPUState *env)
831 #ifdef KVM_CAP_XSAVE
832 struct kvm_xsave* xsave;
833 int ret, i;
834 uint16_t cwd, swd, twd, fop;
836 if (!kvm_has_xsave())
837 return kvm_get_fpu(env);
839 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
840 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
841 if (ret < 0)
842 return ret;
844 cwd = (uint16_t)xsave->region[0];
845 swd = (uint16_t)(xsave->region[0] >> 16);
846 twd = (uint16_t)xsave->region[1];
847 fop = (uint16_t)(xsave->region[1] >> 16);
848 env->fpstt = (swd >> 11) & 7;
849 env->fpus = swd;
850 env->fpuc = cwd;
851 for (i = 0; i < 8; ++i)
852 env->fptags[i] = !((twd >> i) & 1);
853 env->mxcsr = xsave->region[XSAVE_MXCSR];
854 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
855 sizeof env->fpregs);
856 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
857 sizeof env->xmm_regs);
858 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
859 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
860 sizeof env->ymmh_regs);
861 return 0;
862 #else
863 return kvm_get_fpu(env);
864 #endif
867 static int kvm_get_xcrs(CPUState *env)
869 #ifdef KVM_CAP_XCRS
870 int i, ret;
871 struct kvm_xcrs xcrs;
873 if (!kvm_has_xcrs())
874 return 0;
876 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
877 if (ret < 0)
878 return ret;
880 for (i = 0; i < xcrs.nr_xcrs; i++)
881 /* Only support xcr0 now */
882 if (xcrs.xcrs[0].xcr == 0) {
883 env->xcr0 = xcrs.xcrs[0].value;
884 break;
886 return 0;
887 #else
888 return 0;
889 #endif
892 static int kvm_get_sregs(CPUState *env)
894 struct kvm_sregs sregs;
895 uint32_t hflags;
896 int bit, i, ret;
898 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
899 if (ret < 0)
900 return ret;
902 /* There can only be one pending IRQ set in the bitmap at a time, so try
903 to find it and save its number instead (-1 for none). */
904 env->interrupt_injected = -1;
905 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
906 if (sregs.interrupt_bitmap[i]) {
907 bit = ctz64(sregs.interrupt_bitmap[i]);
908 env->interrupt_injected = i * 64 + bit;
909 break;
913 get_seg(&env->segs[R_CS], &sregs.cs);
914 get_seg(&env->segs[R_DS], &sregs.ds);
915 get_seg(&env->segs[R_ES], &sregs.es);
916 get_seg(&env->segs[R_FS], &sregs.fs);
917 get_seg(&env->segs[R_GS], &sregs.gs);
918 get_seg(&env->segs[R_SS], &sregs.ss);
920 get_seg(&env->tr, &sregs.tr);
921 get_seg(&env->ldt, &sregs.ldt);
923 env->idt.limit = sregs.idt.limit;
924 env->idt.base = sregs.idt.base;
925 env->gdt.limit = sregs.gdt.limit;
926 env->gdt.base = sregs.gdt.base;
928 env->cr[0] = sregs.cr0;
929 env->cr[2] = sregs.cr2;
930 env->cr[3] = sregs.cr3;
931 env->cr[4] = sregs.cr4;
933 cpu_set_apic_base(env->apic_state, sregs.apic_base);
935 env->efer = sregs.efer;
936 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
938 #define HFLAG_COPY_MASK ~( \
939 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
940 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
941 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
942 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
946 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
947 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
948 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
949 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
950 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
951 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
952 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
954 if (env->efer & MSR_EFER_LMA) {
955 hflags |= HF_LMA_MASK;
958 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
959 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
960 } else {
961 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
962 (DESC_B_SHIFT - HF_CS32_SHIFT);
963 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
964 (DESC_B_SHIFT - HF_SS32_SHIFT);
965 if (!(env->cr[0] & CR0_PE_MASK) ||
966 (env->eflags & VM_MASK) ||
967 !(hflags & HF_CS32_MASK)) {
968 hflags |= HF_ADDSEG_MASK;
969 } else {
970 hflags |= ((env->segs[R_DS].base |
971 env->segs[R_ES].base |
972 env->segs[R_SS].base) != 0) <<
973 HF_ADDSEG_SHIFT;
976 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
978 return 0;
981 static int kvm_get_msrs(CPUState *env)
983 struct {
984 struct kvm_msrs info;
985 struct kvm_msr_entry entries[100];
986 } msr_data;
987 struct kvm_msr_entry *msrs = msr_data.entries;
988 int ret, i, n;
990 n = 0;
991 msrs[n++].index = MSR_IA32_SYSENTER_CS;
992 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
993 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
994 if (kvm_has_msr_star(env))
995 msrs[n++].index = MSR_STAR;
996 msrs[n++].index = MSR_IA32_TSC;
997 #ifdef TARGET_X86_64
998 /* FIXME lm_capable_kernel */
999 msrs[n++].index = MSR_CSTAR;
1000 msrs[n++].index = MSR_KERNELGSBASE;
1001 msrs[n++].index = MSR_FMASK;
1002 msrs[n++].index = MSR_LSTAR;
1003 #endif
1004 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1005 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1007 msr_data.info.nmsrs = n;
1008 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1009 if (ret < 0)
1010 return ret;
1012 for (i = 0; i < ret; i++) {
1013 switch (msrs[i].index) {
1014 case MSR_IA32_SYSENTER_CS:
1015 env->sysenter_cs = msrs[i].data;
1016 break;
1017 case MSR_IA32_SYSENTER_ESP:
1018 env->sysenter_esp = msrs[i].data;
1019 break;
1020 case MSR_IA32_SYSENTER_EIP:
1021 env->sysenter_eip = msrs[i].data;
1022 break;
1023 case MSR_STAR:
1024 env->star = msrs[i].data;
1025 break;
1026 #ifdef TARGET_X86_64
1027 case MSR_CSTAR:
1028 env->cstar = msrs[i].data;
1029 break;
1030 case MSR_KERNELGSBASE:
1031 env->kernelgsbase = msrs[i].data;
1032 break;
1033 case MSR_FMASK:
1034 env->fmask = msrs[i].data;
1035 break;
1036 case MSR_LSTAR:
1037 env->lstar = msrs[i].data;
1038 break;
1039 #endif
1040 case MSR_IA32_TSC:
1041 env->tsc = msrs[i].data;
1042 break;
1043 case MSR_KVM_SYSTEM_TIME:
1044 env->system_time_msr = msrs[i].data;
1045 break;
1046 case MSR_KVM_WALL_CLOCK:
1047 env->wall_clock_msr = msrs[i].data;
1048 break;
1052 return 0;
1055 static int kvm_put_mp_state(CPUState *env)
1057 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1059 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1062 static int kvm_get_mp_state(CPUState *env)
1064 struct kvm_mp_state mp_state;
1065 int ret;
1067 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1068 if (ret < 0) {
1069 return ret;
1071 env->mp_state = mp_state.mp_state;
1072 return 0;
1075 static int kvm_put_vcpu_events(CPUState *env, int level)
1077 #ifdef KVM_CAP_VCPU_EVENTS
1078 struct kvm_vcpu_events events;
1080 if (!kvm_has_vcpu_events()) {
1081 return 0;
1084 events.exception.injected = (env->exception_injected >= 0);
1085 events.exception.nr = env->exception_injected;
1086 events.exception.has_error_code = env->has_error_code;
1087 events.exception.error_code = env->error_code;
1089 events.interrupt.injected = (env->interrupt_injected >= 0);
1090 events.interrupt.nr = env->interrupt_injected;
1091 events.interrupt.soft = env->soft_interrupt;
1093 events.nmi.injected = env->nmi_injected;
1094 events.nmi.pending = env->nmi_pending;
1095 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1097 events.sipi_vector = env->sipi_vector;
1099 events.flags = 0;
1100 if (level >= KVM_PUT_RESET_STATE) {
1101 events.flags |=
1102 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1105 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1106 #else
1107 return 0;
1108 #endif
1111 static int kvm_get_vcpu_events(CPUState *env)
1113 #ifdef KVM_CAP_VCPU_EVENTS
1114 struct kvm_vcpu_events events;
1115 int ret;
1117 if (!kvm_has_vcpu_events()) {
1118 return 0;
1121 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1122 if (ret < 0) {
1123 return ret;
1125 env->exception_injected =
1126 events.exception.injected ? events.exception.nr : -1;
1127 env->has_error_code = events.exception.has_error_code;
1128 env->error_code = events.exception.error_code;
1130 env->interrupt_injected =
1131 events.interrupt.injected ? events.interrupt.nr : -1;
1132 env->soft_interrupt = events.interrupt.soft;
1134 env->nmi_injected = events.nmi.injected;
1135 env->nmi_pending = events.nmi.pending;
1136 if (events.nmi.masked) {
1137 env->hflags2 |= HF2_NMI_MASK;
1138 } else {
1139 env->hflags2 &= ~HF2_NMI_MASK;
1142 env->sipi_vector = events.sipi_vector;
1143 #endif
1145 return 0;
1148 static int kvm_guest_debug_workarounds(CPUState *env)
1150 int ret = 0;
1151 #ifdef KVM_CAP_SET_GUEST_DEBUG
1152 unsigned long reinject_trap = 0;
1154 if (!kvm_has_vcpu_events()) {
1155 if (env->exception_injected == 1) {
1156 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1157 } else if (env->exception_injected == 3) {
1158 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1160 env->exception_injected = -1;
1164 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1165 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1166 * by updating the debug state once again if single-stepping is on.
1167 * Another reason to call kvm_update_guest_debug here is a pending debug
1168 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1169 * reinject them via SET_GUEST_DEBUG.
1171 if (reinject_trap ||
1172 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1173 ret = kvm_update_guest_debug(env, reinject_trap);
1175 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1176 return ret;
1179 static int kvm_put_debugregs(CPUState *env)
1181 #ifdef KVM_CAP_DEBUGREGS
1182 struct kvm_debugregs dbgregs;
1183 int i;
1185 if (!kvm_has_debugregs()) {
1186 return 0;
1189 for (i = 0; i < 4; i++) {
1190 dbgregs.db[i] = env->dr[i];
1192 dbgregs.dr6 = env->dr[6];
1193 dbgregs.dr7 = env->dr[7];
1194 dbgregs.flags = 0;
1196 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1197 #else
1198 return 0;
1199 #endif
1202 static int kvm_get_debugregs(CPUState *env)
1204 #ifdef KVM_CAP_DEBUGREGS
1205 struct kvm_debugregs dbgregs;
1206 int i, ret;
1208 if (!kvm_has_debugregs()) {
1209 return 0;
1212 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1213 if (ret < 0) {
1214 return ret;
1216 for (i = 0; i < 4; i++) {
1217 env->dr[i] = dbgregs.db[i];
1219 env->dr[4] = env->dr[6] = dbgregs.dr6;
1220 env->dr[5] = env->dr[7] = dbgregs.dr7;
1221 #endif
1223 return 0;
1226 int kvm_arch_put_registers(CPUState *env, int level)
1228 int ret;
1230 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1232 ret = kvm_getput_regs(env, 1);
1233 if (ret < 0)
1234 return ret;
1236 ret = kvm_put_xsave(env);
1237 if (ret < 0)
1238 return ret;
1240 ret = kvm_put_xcrs(env);
1241 if (ret < 0)
1242 return ret;
1244 ret = kvm_put_sregs(env);
1245 if (ret < 0)
1246 return ret;
1248 ret = kvm_put_msrs(env, level);
1249 if (ret < 0)
1250 return ret;
1252 if (level >= KVM_PUT_RESET_STATE) {
1253 ret = kvm_put_mp_state(env);
1254 if (ret < 0)
1255 return ret;
1258 ret = kvm_put_vcpu_events(env, level);
1259 if (ret < 0)
1260 return ret;
1262 /* must be last */
1263 ret = kvm_guest_debug_workarounds(env);
1264 if (ret < 0)
1265 return ret;
1267 ret = kvm_put_debugregs(env);
1268 if (ret < 0)
1269 return ret;
1271 return 0;
1274 int kvm_arch_get_registers(CPUState *env)
1276 int ret;
1278 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1280 ret = kvm_getput_regs(env, 0);
1281 if (ret < 0)
1282 return ret;
1284 ret = kvm_get_xsave(env);
1285 if (ret < 0)
1286 return ret;
1288 ret = kvm_get_xcrs(env);
1289 if (ret < 0)
1290 return ret;
1292 ret = kvm_get_sregs(env);
1293 if (ret < 0)
1294 return ret;
1296 ret = kvm_get_msrs(env);
1297 if (ret < 0)
1298 return ret;
1300 ret = kvm_get_mp_state(env);
1301 if (ret < 0)
1302 return ret;
1304 ret = kvm_get_vcpu_events(env);
1305 if (ret < 0)
1306 return ret;
1308 ret = kvm_get_debugregs(env);
1309 if (ret < 0)
1310 return ret;
1312 return 0;
1315 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1317 /* Try to inject an interrupt if the guest can accept it */
1318 if (run->ready_for_interrupt_injection &&
1319 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1320 (env->eflags & IF_MASK)) {
1321 int irq;
1323 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1324 irq = cpu_get_pic_interrupt(env);
1325 if (irq >= 0) {
1326 struct kvm_interrupt intr;
1327 intr.irq = irq;
1328 /* FIXME: errors */
1329 DPRINTF("injected interrupt %d\n", irq);
1330 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1334 /* If we have an interrupt but the guest is not ready to receive an
1335 * interrupt, request an interrupt window exit. This will
1336 * cause a return to userspace as soon as the guest is ready to
1337 * receive interrupts. */
1338 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1339 run->request_interrupt_window = 1;
1340 else
1341 run->request_interrupt_window = 0;
1343 DPRINTF("setting tpr\n");
1344 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1346 return 0;
1349 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1351 if (run->if_flag)
1352 env->eflags |= IF_MASK;
1353 else
1354 env->eflags &= ~IF_MASK;
1356 cpu_set_apic_tpr(env->apic_state, run->cr8);
1357 cpu_set_apic_base(env->apic_state, run->apic_base);
1359 return 0;
1362 int kvm_arch_process_irqchip_events(CPUState *env)
1364 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1365 kvm_cpu_synchronize_state(env);
1366 do_cpu_init(env);
1367 env->exception_index = EXCP_HALTED;
1370 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1371 kvm_cpu_synchronize_state(env);
1372 do_cpu_sipi(env);
1375 return env->halted;
1378 static int kvm_handle_halt(CPUState *env)
1380 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1381 (env->eflags & IF_MASK)) &&
1382 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1383 env->halted = 1;
1384 env->exception_index = EXCP_HLT;
1385 return 0;
1388 return 1;
1391 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1393 int ret = 0;
1395 switch (run->exit_reason) {
1396 case KVM_EXIT_HLT:
1397 DPRINTF("handle_hlt\n");
1398 ret = kvm_handle_halt(env);
1399 break;
1402 return ret;
1405 #ifdef KVM_CAP_SET_GUEST_DEBUG
1406 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1408 static const uint8_t int3 = 0xcc;
1410 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1411 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1412 return -EINVAL;
1413 return 0;
1416 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1418 uint8_t int3;
1420 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1421 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1422 return -EINVAL;
1423 return 0;
1426 static struct {
1427 target_ulong addr;
1428 int len;
1429 int type;
1430 } hw_breakpoint[4];
1432 static int nb_hw_breakpoint;
1434 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1436 int n;
1438 for (n = 0; n < nb_hw_breakpoint; n++)
1439 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1440 (hw_breakpoint[n].len == len || len == -1))
1441 return n;
1442 return -1;
1445 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1446 target_ulong len, int type)
1448 switch (type) {
1449 case GDB_BREAKPOINT_HW:
1450 len = 1;
1451 break;
1452 case GDB_WATCHPOINT_WRITE:
1453 case GDB_WATCHPOINT_ACCESS:
1454 switch (len) {
1455 case 1:
1456 break;
1457 case 2:
1458 case 4:
1459 case 8:
1460 if (addr & (len - 1))
1461 return -EINVAL;
1462 break;
1463 default:
1464 return -EINVAL;
1466 break;
1467 default:
1468 return -ENOSYS;
1471 if (nb_hw_breakpoint == 4)
1472 return -ENOBUFS;
1474 if (find_hw_breakpoint(addr, len, type) >= 0)
1475 return -EEXIST;
1477 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1478 hw_breakpoint[nb_hw_breakpoint].len = len;
1479 hw_breakpoint[nb_hw_breakpoint].type = type;
1480 nb_hw_breakpoint++;
1482 return 0;
1485 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1486 target_ulong len, int type)
1488 int n;
1490 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1491 if (n < 0)
1492 return -ENOENT;
1494 nb_hw_breakpoint--;
1495 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1497 return 0;
1500 void kvm_arch_remove_all_hw_breakpoints(void)
1502 nb_hw_breakpoint = 0;
1505 static CPUWatchpoint hw_watchpoint;
1507 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1509 int handle = 0;
1510 int n;
1512 if (arch_info->exception == 1) {
1513 if (arch_info->dr6 & (1 << 14)) {
1514 if (cpu_single_env->singlestep_enabled)
1515 handle = 1;
1516 } else {
1517 for (n = 0; n < 4; n++)
1518 if (arch_info->dr6 & (1 << n))
1519 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1520 case 0x0:
1521 handle = 1;
1522 break;
1523 case 0x1:
1524 handle = 1;
1525 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1526 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1527 hw_watchpoint.flags = BP_MEM_WRITE;
1528 break;
1529 case 0x3:
1530 handle = 1;
1531 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1532 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1533 hw_watchpoint.flags = BP_MEM_ACCESS;
1534 break;
1537 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1538 handle = 1;
1540 if (!handle) {
1541 cpu_synchronize_state(cpu_single_env);
1542 assert(cpu_single_env->exception_injected == -1);
1544 cpu_single_env->exception_injected = arch_info->exception;
1545 cpu_single_env->has_error_code = 0;
1548 return handle;
1551 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1553 const uint8_t type_code[] = {
1554 [GDB_BREAKPOINT_HW] = 0x0,
1555 [GDB_WATCHPOINT_WRITE] = 0x1,
1556 [GDB_WATCHPOINT_ACCESS] = 0x3
1558 const uint8_t len_code[] = {
1559 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1561 int n;
1563 if (kvm_sw_breakpoints_active(env))
1564 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1566 if (nb_hw_breakpoint > 0) {
1567 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1568 dbg->arch.debugreg[7] = 0x0600;
1569 for (n = 0; n < nb_hw_breakpoint; n++) {
1570 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1571 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1572 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1573 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1576 /* Legal xcr0 for loading */
1577 env->xcr0 = 1;
1579 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1581 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1583 return !(env->cr[0] & CR0_PE_MASK) ||
1584 ((env->segs[R_CS].selector & 3) != 3);
1587 static void hardware_memory_error(void)
1589 fprintf(stderr, "Hardware memory error!\n");
1590 exit(1);
1593 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1595 #if defined(KVM_CAP_MCE)
1596 struct kvm_x86_mce mce = {
1597 .bank = 9,
1599 void *vaddr;
1600 ram_addr_t ram_addr;
1601 target_phys_addr_t paddr;
1602 int r;
1604 if ((env->mcg_cap & MCG_SER_P) && addr
1605 && (code == BUS_MCEERR_AR
1606 || code == BUS_MCEERR_AO)) {
1607 if (code == BUS_MCEERR_AR) {
1608 /* Fake an Intel architectural Data Load SRAR UCR */
1609 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1610 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1611 | MCI_STATUS_AR | 0x134;
1612 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1613 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1614 } else {
1616 * If there is an MCE excpetion being processed, ignore
1617 * this SRAO MCE
1619 r = kvm_mce_in_exception(env);
1620 if (r == -1) {
1621 fprintf(stderr, "Failed to get MCE status\n");
1622 } else if (r) {
1623 return 0;
1625 /* Fake an Intel architectural Memory scrubbing UCR */
1626 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1627 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1628 | 0xc0;
1629 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1630 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1632 vaddr = (void *)addr;
1633 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1634 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1635 fprintf(stderr, "Hardware memory error for memory used by "
1636 "QEMU itself instead of guest system!\n");
1637 /* Hope we are lucky for AO MCE */
1638 if (code == BUS_MCEERR_AO) {
1639 return 0;
1640 } else {
1641 hardware_memory_error();
1644 mce.addr = paddr;
1645 r = kvm_set_mce(env, &mce);
1646 if (r < 0) {
1647 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1648 abort();
1650 } else
1651 #endif
1653 if (code == BUS_MCEERR_AO) {
1654 return 0;
1655 } else if (code == BUS_MCEERR_AR) {
1656 hardware_memory_error();
1657 } else {
1658 return 1;
1661 return 0;
1664 int kvm_on_sigbus(int code, void *addr)
1666 #if defined(KVM_CAP_MCE)
1667 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1668 uint64_t status;
1669 void *vaddr;
1670 ram_addr_t ram_addr;
1671 target_phys_addr_t paddr;
1672 CPUState *cenv;
1674 /* Hope we are lucky for AO MCE */
1675 vaddr = addr;
1676 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1677 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1678 fprintf(stderr, "Hardware memory error for memory used by "
1679 "QEMU itself instead of guest system!: %p\n", addr);
1680 return 0;
1682 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1683 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1684 | 0xc0;
1685 kvm_inject_x86_mce(first_cpu, 9, status,
1686 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1687 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1688 for (cenv = first_cpu->next_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1689 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1690 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1692 } else
1693 #endif
1695 if (code == BUS_MCEERR_AO) {
1696 return 0;
1697 } else if (code == BUS_MCEERR_AR) {
1698 hardware_memory_error();
1699 } else {
1700 return 1;
1703 return 0;