Merge commit 'a88790a14f60ac966a2103a958c3febf5a42836b' into upstream-merge
[qemu-kvm/stefanha.git] / target-i386 / kvm.c
blobb00e80d00de7a2d088025970a4246faaf66352e7
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "hw/apic.h"
29 #include "ioport.h"
31 #ifdef CONFIG_KVM_PARA
32 #include <linux/kvm_para.h>
33 #endif
35 //#define DEBUG_KVM
37 #ifdef DEBUG_KVM
38 #define DPRINTF(fmt, ...) \
39 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF(fmt, ...) \
42 do { } while (0)
43 #endif
45 #define MSR_KVM_WALL_CLOCK 0x11
46 #define MSR_KVM_SYSTEM_TIME 0x12
48 #ifdef KVM_CAP_EXT_CPUID
50 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
52 struct kvm_cpuid2 *cpuid;
53 int r, size;
55 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
56 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
57 cpuid->nent = max;
58 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
59 if (r == 0 && cpuid->nent >= max) {
60 r = -E2BIG;
62 if (r < 0) {
63 if (r == -E2BIG) {
64 qemu_free(cpuid);
65 return NULL;
66 } else {
67 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
68 strerror(-r));
69 exit(1);
72 return cpuid;
75 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
76 uint32_t index, int reg)
78 struct kvm_cpuid2 *cpuid;
79 int i, max;
80 uint32_t ret = 0;
81 uint32_t cpuid_1_edx;
83 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
84 return -1U;
87 max = 1;
88 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
89 max *= 2;
92 for (i = 0; i < cpuid->nent; ++i) {
93 if (cpuid->entries[i].function == function &&
94 cpuid->entries[i].index == index) {
95 switch (reg) {
96 case R_EAX:
97 ret = cpuid->entries[i].eax;
98 break;
99 case R_EBX:
100 ret = cpuid->entries[i].ebx;
101 break;
102 case R_ECX:
103 ret = cpuid->entries[i].ecx;
104 break;
105 case R_EDX:
106 ret = cpuid->entries[i].edx;
107 switch (function) {
108 case 1:
109 /* KVM before 2.6.30 misreports the following features */
110 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
111 break;
112 case 0x80000001:
113 /* On Intel, kvm returns cpuid according to the Intel spec,
114 * so add missing bits according to the AMD spec:
116 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
117 ret |= cpuid_1_edx & 0x183f7ff;
118 break;
120 break;
125 qemu_free(cpuid);
127 return ret;
130 #else
132 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
133 uint32_t index, int reg)
135 return -1U;
138 #endif
140 #ifdef CONFIG_KVM_PARA
141 struct kvm_para_features {
142 int cap;
143 int feature;
144 } para_features[] = {
145 #ifdef KVM_CAP_CLOCKSOURCE
146 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
147 #endif
148 #ifdef KVM_CAP_NOP_IO_DELAY
149 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
150 #endif
151 #ifdef KVM_CAP_PV_MMU
152 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
153 #endif
154 { -1, -1 }
157 static int get_para_features(CPUState *env)
159 int i, features = 0;
161 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
162 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
163 features |= (1 << para_features[i].feature);
166 return features;
168 #endif
170 static int _kvm_arch_init_vcpu(CPUState *env);
172 int kvm_arch_init_vcpu(CPUState *env)
174 int r;
175 struct {
176 struct kvm_cpuid2 cpuid;
177 struct kvm_cpuid_entry2 entries[100];
178 } __attribute__((packed)) cpuid_data;
179 uint32_t limit, i, j, cpuid_i;
180 uint32_t unused;
181 struct kvm_cpuid_entry2 *c;
182 #ifdef KVM_CPUID_SIGNATURE
183 uint32_t signature[3];
184 #endif
186 r = _kvm_arch_init_vcpu(env);
187 if (r < 0) {
188 return r;
191 #ifdef KVM_UPSTREAM
193 env->mp_state = KVM_MP_STATE_RUNNABLE;
195 #endif
197 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
199 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
200 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
201 env->cpuid_ext_features |= i;
203 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
204 0, R_EDX);
205 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
206 0, R_ECX);
208 cpuid_i = 0;
210 #ifdef CONFIG_KVM_PARA
211 /* Paravirtualization CPUIDs */
212 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
213 c = &cpuid_data.entries[cpuid_i++];
214 memset(c, 0, sizeof(*c));
215 c->function = KVM_CPUID_SIGNATURE;
216 c->eax = 0;
217 c->ebx = signature[0];
218 c->ecx = signature[1];
219 c->edx = signature[2];
221 c = &cpuid_data.entries[cpuid_i++];
222 memset(c, 0, sizeof(*c));
223 c->function = KVM_CPUID_FEATURES;
224 c->eax = env->cpuid_kvm_features & get_para_features(env);
225 #endif
227 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
229 for (i = 0; i <= limit; i++) {
230 c = &cpuid_data.entries[cpuid_i++];
232 switch (i) {
233 case 2: {
234 /* Keep reading function 2 till all the input is received */
235 int times;
237 c->function = i;
238 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
239 KVM_CPUID_FLAG_STATE_READ_NEXT;
240 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
241 times = c->eax & 0xff;
243 for (j = 1; j < times; ++j) {
244 c = &cpuid_data.entries[cpuid_i++];
245 c->function = i;
246 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
247 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
249 break;
251 case 4:
252 case 0xb:
253 case 0xd:
254 for (j = 0; ; j++) {
255 c->function = i;
256 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
257 c->index = j;
258 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
260 if (i == 4 && c->eax == 0)
261 break;
262 if (i == 0xb && !(c->ecx & 0xff00))
263 break;
264 if (i == 0xd && c->eax == 0)
265 break;
267 c = &cpuid_data.entries[cpuid_i++];
269 break;
270 default:
271 c->function = i;
272 c->flags = 0;
273 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
274 break;
277 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
279 for (i = 0x80000000; i <= limit; i++) {
280 c = &cpuid_data.entries[cpuid_i++];
282 c->function = i;
283 c->flags = 0;
284 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
287 cpuid_data.cpuid.nent = cpuid_i;
289 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
292 void kvm_arch_reset_vcpu(CPUState *env)
294 env->exception_injected = -1;
295 env->interrupt_injected = -1;
296 env->nmi_injected = 0;
297 env->nmi_pending = 0;
298 /* Legal xcr0 for loading */
299 env->xcr0 = 1;
300 if (kvm_irqchip_in_kernel()) {
301 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
302 KVM_MP_STATE_UNINITIALIZED;
303 } else {
304 env->mp_state = KVM_MP_STATE_RUNNABLE;
307 #ifdef KVM_UPSTREAM
309 static int kvm_has_msr_star(CPUState *env)
311 static int has_msr_star;
312 int ret;
314 /* first time */
315 if (has_msr_star == 0) {
316 struct kvm_msr_list msr_list, *kvm_msr_list;
318 has_msr_star = -1;
320 /* Obtain MSR list from KVM. These are the MSRs that we must
321 * save/restore */
322 msr_list.nmsrs = 0;
323 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
324 if (ret < 0 && ret != -E2BIG) {
325 return 0;
327 /* Old kernel modules had a bug and could write beyond the provided
328 memory. Allocate at least a safe amount of 1K. */
329 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
330 msr_list.nmsrs *
331 sizeof(msr_list.indices[0])));
333 kvm_msr_list->nmsrs = msr_list.nmsrs;
334 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
335 if (ret >= 0) {
336 int i;
338 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
339 if (kvm_msr_list->indices[i] == MSR_STAR) {
340 has_msr_star = 1;
341 break;
346 free(kvm_msr_list);
349 if (has_msr_star == 1)
350 return 1;
351 return 0;
354 static int kvm_init_identity_map_page(KVMState *s)
356 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
357 int ret;
358 uint64_t addr = 0xfffbc000;
360 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
361 return 0;
364 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
365 if (ret < 0) {
366 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
367 return ret;
369 #endif
370 return 0;
373 int kvm_arch_init(KVMState *s, int smp_cpus)
375 int ret;
377 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
378 * directly. In order to use vm86 mode, a TSS is needed. Since this
379 * must be part of guest physical memory, we need to allocate it. Older
380 * versions of KVM just assumed that it would be at the end of physical
381 * memory but that doesn't work with more than 4GB of memory. We simply
382 * refuse to work with those older versions of KVM. */
383 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
384 if (ret <= 0) {
385 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
386 return ret;
389 /* this address is 3 pages before the bios, and the bios should present
390 * as unavaible memory. FIXME, need to ensure the e820 map deals with
391 * this?
394 * Tell fw_cfg to notify the BIOS to reserve the range.
396 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
397 perror("e820_add_entry() table is full");
398 exit(1);
400 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
401 if (ret < 0) {
402 return ret;
405 return kvm_init_identity_map_page(s);
408 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
410 lhs->selector = rhs->selector;
411 lhs->base = rhs->base;
412 lhs->limit = rhs->limit;
413 lhs->type = 3;
414 lhs->present = 1;
415 lhs->dpl = 3;
416 lhs->db = 0;
417 lhs->s = 1;
418 lhs->l = 0;
419 lhs->g = 0;
420 lhs->avl = 0;
421 lhs->unusable = 0;
424 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
426 unsigned flags = rhs->flags;
427 lhs->selector = rhs->selector;
428 lhs->base = rhs->base;
429 lhs->limit = rhs->limit;
430 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
431 lhs->present = (flags & DESC_P_MASK) != 0;
432 lhs->dpl = rhs->selector & 3;
433 lhs->db = (flags >> DESC_B_SHIFT) & 1;
434 lhs->s = (flags & DESC_S_MASK) != 0;
435 lhs->l = (flags >> DESC_L_SHIFT) & 1;
436 lhs->g = (flags & DESC_G_MASK) != 0;
437 lhs->avl = (flags & DESC_AVL_MASK) != 0;
438 lhs->unusable = 0;
441 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
443 lhs->selector = rhs->selector;
444 lhs->base = rhs->base;
445 lhs->limit = rhs->limit;
446 lhs->flags =
447 (rhs->type << DESC_TYPE_SHIFT)
448 | (rhs->present * DESC_P_MASK)
449 | (rhs->dpl << DESC_DPL_SHIFT)
450 | (rhs->db << DESC_B_SHIFT)
451 | (rhs->s * DESC_S_MASK)
452 | (rhs->l << DESC_L_SHIFT)
453 | (rhs->g * DESC_G_MASK)
454 | (rhs->avl * DESC_AVL_MASK);
457 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
459 if (set)
460 *kvm_reg = *qemu_reg;
461 else
462 *qemu_reg = *kvm_reg;
465 static int kvm_getput_regs(CPUState *env, int set)
467 struct kvm_regs regs;
468 int ret = 0;
470 if (!set) {
471 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
472 if (ret < 0)
473 return ret;
476 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
477 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
478 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
479 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
480 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
481 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
482 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
483 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
484 #ifdef TARGET_X86_64
485 kvm_getput_reg(&regs.r8, &env->regs[8], set);
486 kvm_getput_reg(&regs.r9, &env->regs[9], set);
487 kvm_getput_reg(&regs.r10, &env->regs[10], set);
488 kvm_getput_reg(&regs.r11, &env->regs[11], set);
489 kvm_getput_reg(&regs.r12, &env->regs[12], set);
490 kvm_getput_reg(&regs.r13, &env->regs[13], set);
491 kvm_getput_reg(&regs.r14, &env->regs[14], set);
492 kvm_getput_reg(&regs.r15, &env->regs[15], set);
493 #endif
495 kvm_getput_reg(&regs.rflags, &env->eflags, set);
496 kvm_getput_reg(&regs.rip, &env->eip, set);
498 if (set)
499 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
501 return ret;
504 static int kvm_put_fpu(CPUState *env)
506 struct kvm_fpu fpu;
507 int i;
509 memset(&fpu, 0, sizeof fpu);
510 fpu.fsw = env->fpus & ~(7 << 11);
511 fpu.fsw |= (env->fpstt & 7) << 11;
512 fpu.fcw = env->fpuc;
513 for (i = 0; i < 8; ++i)
514 fpu.ftwx |= (!env->fptags[i]) << i;
515 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
516 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
517 fpu.mxcsr = env->mxcsr;
519 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
522 #ifdef KVM_CAP_XSAVE
523 #define XSAVE_CWD_RIP 2
524 #define XSAVE_CWD_RDP 4
525 #define XSAVE_MXCSR 6
526 #define XSAVE_ST_SPACE 8
527 #define XSAVE_XMM_SPACE 40
528 #define XSAVE_XSTATE_BV 128
529 #define XSAVE_YMMH_SPACE 144
530 #endif
532 static int kvm_put_xsave(CPUState *env)
534 #ifdef KVM_CAP_XSAVE
535 int i;
536 struct kvm_xsave* xsave;
537 uint16_t cwd, swd, twd, fop;
539 if (!kvm_has_xsave())
540 return kvm_put_fpu(env);
542 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
543 memset(xsave, 0, sizeof(struct kvm_xsave));
544 cwd = swd = twd = fop = 0;
545 swd = env->fpus & ~(7 << 11);
546 swd |= (env->fpstt & 7) << 11;
547 cwd = env->fpuc;
548 for (i = 0; i < 8; ++i)
549 twd |= (!env->fptags[i]) << i;
550 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
551 xsave->region[1] = (uint32_t)(fop << 16) + twd;
552 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
553 sizeof env->fpregs);
554 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
555 sizeof env->xmm_regs);
556 xsave->region[XSAVE_MXCSR] = env->mxcsr;
557 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
558 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
559 sizeof env->ymmh_regs);
560 return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
561 #else
562 return kvm_put_fpu(env);
563 #endif
566 static int kvm_put_xcrs(CPUState *env)
568 #ifdef KVM_CAP_XCRS
569 struct kvm_xcrs xcrs;
571 if (!kvm_has_xcrs())
572 return 0;
574 xcrs.nr_xcrs = 1;
575 xcrs.flags = 0;
576 xcrs.xcrs[0].xcr = 0;
577 xcrs.xcrs[0].value = env->xcr0;
578 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
579 #else
580 return 0;
581 #endif
584 static int kvm_put_sregs(CPUState *env)
586 struct kvm_sregs sregs;
588 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
589 if (env->interrupt_injected >= 0) {
590 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
591 (uint64_t)1 << (env->interrupt_injected % 64);
594 if ((env->eflags & VM_MASK)) {
595 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
596 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
597 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
598 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
599 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
600 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
601 } else {
602 set_seg(&sregs.cs, &env->segs[R_CS]);
603 set_seg(&sregs.ds, &env->segs[R_DS]);
604 set_seg(&sregs.es, &env->segs[R_ES]);
605 set_seg(&sregs.fs, &env->segs[R_FS]);
606 set_seg(&sregs.gs, &env->segs[R_GS]);
607 set_seg(&sregs.ss, &env->segs[R_SS]);
609 if (env->cr[0] & CR0_PE_MASK) {
610 /* force ss cpl to cs cpl */
611 sregs.ss.selector = (sregs.ss.selector & ~3) |
612 (sregs.cs.selector & 3);
613 sregs.ss.dpl = sregs.ss.selector & 3;
617 set_seg(&sregs.tr, &env->tr);
618 set_seg(&sregs.ldt, &env->ldt);
620 sregs.idt.limit = env->idt.limit;
621 sregs.idt.base = env->idt.base;
622 sregs.gdt.limit = env->gdt.limit;
623 sregs.gdt.base = env->gdt.base;
625 sregs.cr0 = env->cr[0];
626 sregs.cr2 = env->cr[2];
627 sregs.cr3 = env->cr[3];
628 sregs.cr4 = env->cr[4];
630 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
631 sregs.apic_base = cpu_get_apic_base(env->apic_state);
633 sregs.efer = env->efer;
635 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
638 #endif
640 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
641 uint32_t index, uint64_t value)
643 entry->index = index;
644 entry->data = value;
647 #ifdef KVM_UPSTREAM
648 static int kvm_put_msrs(CPUState *env, int level)
650 struct {
651 struct kvm_msrs info;
652 struct kvm_msr_entry entries[100];
653 } msr_data;
654 struct kvm_msr_entry *msrs = msr_data.entries;
655 int n = 0;
657 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
658 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
659 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
660 if (kvm_has_msr_star(env))
661 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
662 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
663 #ifdef TARGET_X86_64
664 /* FIXME if lm capable */
665 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
666 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
667 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
668 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
669 #endif
670 if (level == KVM_PUT_FULL_STATE) {
671 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
672 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
673 env->system_time_msr);
674 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
677 msr_data.info.nmsrs = n;
679 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
684 static int kvm_get_fpu(CPUState *env)
686 struct kvm_fpu fpu;
687 int i, ret;
689 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
690 if (ret < 0)
691 return ret;
693 env->fpstt = (fpu.fsw >> 11) & 7;
694 env->fpus = fpu.fsw;
695 env->fpuc = fpu.fcw;
696 for (i = 0; i < 8; ++i)
697 env->fptags[i] = !((fpu.ftwx >> i) & 1);
698 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
699 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
700 env->mxcsr = fpu.mxcsr;
702 return 0;
705 static int kvm_get_xsave(CPUState *env)
707 #ifdef KVM_CAP_XSAVE
708 struct kvm_xsave* xsave;
709 int ret, i;
710 uint16_t cwd, swd, twd, fop;
712 if (!kvm_has_xsave())
713 return kvm_get_fpu(env);
715 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
716 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
717 if (ret < 0)
718 return ret;
720 cwd = (uint16_t)xsave->region[0];
721 swd = (uint16_t)(xsave->region[0] >> 16);
722 twd = (uint16_t)xsave->region[1];
723 fop = (uint16_t)(xsave->region[1] >> 16);
724 env->fpstt = (swd >> 11) & 7;
725 env->fpus = swd;
726 env->fpuc = cwd;
727 for (i = 0; i < 8; ++i)
728 env->fptags[i] = !((twd >> i) & 1);
729 env->mxcsr = xsave->region[XSAVE_MXCSR];
730 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
731 sizeof env->fpregs);
732 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
733 sizeof env->xmm_regs);
734 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
735 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
736 sizeof env->ymmh_regs);
737 return 0;
738 #else
739 return kvm_get_fpu(env);
740 #endif
743 static int kvm_get_xcrs(CPUState *env)
745 #ifdef KVM_CAP_XCRS
746 int i, ret;
747 struct kvm_xcrs xcrs;
749 if (!kvm_has_xcrs())
750 return 0;
752 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
753 if (ret < 0)
754 return ret;
756 for (i = 0; i < xcrs.nr_xcrs; i++)
757 /* Only support xcr0 now */
758 if (xcrs.xcrs[0].xcr == 0) {
759 env->xcr0 = xcrs.xcrs[0].value;
760 break;
762 return 0;
763 #else
764 return 0;
765 #endif
768 static int kvm_get_sregs(CPUState *env)
770 struct kvm_sregs sregs;
771 uint32_t hflags;
772 int bit, i, ret;
774 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
775 if (ret < 0)
776 return ret;
778 /* There can only be one pending IRQ set in the bitmap at a time, so try
779 to find it and save its number instead (-1 for none). */
780 env->interrupt_injected = -1;
781 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
782 if (sregs.interrupt_bitmap[i]) {
783 bit = ctz64(sregs.interrupt_bitmap[i]);
784 env->interrupt_injected = i * 64 + bit;
785 break;
789 get_seg(&env->segs[R_CS], &sregs.cs);
790 get_seg(&env->segs[R_DS], &sregs.ds);
791 get_seg(&env->segs[R_ES], &sregs.es);
792 get_seg(&env->segs[R_FS], &sregs.fs);
793 get_seg(&env->segs[R_GS], &sregs.gs);
794 get_seg(&env->segs[R_SS], &sregs.ss);
796 get_seg(&env->tr, &sregs.tr);
797 get_seg(&env->ldt, &sregs.ldt);
799 env->idt.limit = sregs.idt.limit;
800 env->idt.base = sregs.idt.base;
801 env->gdt.limit = sregs.gdt.limit;
802 env->gdt.base = sregs.gdt.base;
804 env->cr[0] = sregs.cr0;
805 env->cr[2] = sregs.cr2;
806 env->cr[3] = sregs.cr3;
807 env->cr[4] = sregs.cr4;
809 cpu_set_apic_base(env->apic_state, sregs.apic_base);
811 env->efer = sregs.efer;
812 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
814 #define HFLAG_COPY_MASK ~( \
815 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
816 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
817 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
818 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
822 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
823 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
824 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
825 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
826 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
827 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
828 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
830 if (env->efer & MSR_EFER_LMA) {
831 hflags |= HF_LMA_MASK;
834 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
835 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
836 } else {
837 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
838 (DESC_B_SHIFT - HF_CS32_SHIFT);
839 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
840 (DESC_B_SHIFT - HF_SS32_SHIFT);
841 if (!(env->cr[0] & CR0_PE_MASK) ||
842 (env->eflags & VM_MASK) ||
843 !(hflags & HF_CS32_MASK)) {
844 hflags |= HF_ADDSEG_MASK;
845 } else {
846 hflags |= ((env->segs[R_DS].base |
847 env->segs[R_ES].base |
848 env->segs[R_SS].base) != 0) <<
849 HF_ADDSEG_SHIFT;
852 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
854 return 0;
857 static int kvm_get_msrs(CPUState *env)
859 struct {
860 struct kvm_msrs info;
861 struct kvm_msr_entry entries[100];
862 } msr_data;
863 struct kvm_msr_entry *msrs = msr_data.entries;
864 int ret, i, n;
866 n = 0;
867 msrs[n++].index = MSR_IA32_SYSENTER_CS;
868 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
869 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
870 if (kvm_has_msr_star(env))
871 msrs[n++].index = MSR_STAR;
872 msrs[n++].index = MSR_IA32_TSC;
873 msrs[n++].index = MSR_VM_HSAVE_PA;
874 #ifdef TARGET_X86_64
875 /* FIXME lm_capable_kernel */
876 msrs[n++].index = MSR_CSTAR;
877 msrs[n++].index = MSR_KERNELGSBASE;
878 msrs[n++].index = MSR_FMASK;
879 msrs[n++].index = MSR_LSTAR;
880 #endif
881 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
882 msrs[n++].index = MSR_KVM_WALL_CLOCK;
884 msr_data.info.nmsrs = n;
885 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
886 if (ret < 0)
887 return ret;
889 for (i = 0; i < ret; i++) {
890 switch (msrs[i].index) {
891 case MSR_IA32_SYSENTER_CS:
892 env->sysenter_cs = msrs[i].data;
893 break;
894 case MSR_IA32_SYSENTER_ESP:
895 env->sysenter_esp = msrs[i].data;
896 break;
897 case MSR_IA32_SYSENTER_EIP:
898 env->sysenter_eip = msrs[i].data;
899 break;
900 case MSR_STAR:
901 env->star = msrs[i].data;
902 break;
903 #ifdef TARGET_X86_64
904 case MSR_CSTAR:
905 env->cstar = msrs[i].data;
906 break;
907 case MSR_KERNELGSBASE:
908 env->kernelgsbase = msrs[i].data;
909 break;
910 case MSR_FMASK:
911 env->fmask = msrs[i].data;
912 break;
913 case MSR_LSTAR:
914 env->lstar = msrs[i].data;
915 break;
916 #endif
917 case MSR_IA32_TSC:
918 env->tsc = msrs[i].data;
919 break;
920 case MSR_KVM_SYSTEM_TIME:
921 env->system_time_msr = msrs[i].data;
922 break;
923 case MSR_KVM_WALL_CLOCK:
924 env->wall_clock_msr = msrs[i].data;
925 break;
926 case MSR_VM_HSAVE_PA:
927 env->vm_hsave = msrs[i].data;
928 break;
932 return 0;
935 static int kvm_put_mp_state(CPUState *env)
937 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
939 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
942 static int kvm_get_mp_state(CPUState *env)
944 struct kvm_mp_state mp_state;
945 int ret;
947 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
948 if (ret < 0) {
949 return ret;
951 env->mp_state = mp_state.mp_state;
952 return 0;
954 #endif
956 static int kvm_put_vcpu_events(CPUState *env, int level)
958 #ifdef KVM_CAP_VCPU_EVENTS
959 struct kvm_vcpu_events events;
961 if (!kvm_has_vcpu_events()) {
962 return 0;
965 events.exception.injected = (env->exception_injected >= 0);
966 events.exception.nr = env->exception_injected;
967 events.exception.has_error_code = env->has_error_code;
968 events.exception.error_code = env->error_code;
970 events.interrupt.injected = (env->interrupt_injected >= 0);
971 events.interrupt.nr = env->interrupt_injected;
972 events.interrupt.soft = env->soft_interrupt;
974 events.nmi.injected = env->nmi_injected;
975 events.nmi.pending = env->nmi_pending;
976 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
978 events.sipi_vector = env->sipi_vector;
980 events.flags = 0;
981 if (level >= KVM_PUT_RESET_STATE) {
982 events.flags |=
983 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
986 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
987 #else
988 return 0;
989 #endif
992 static int kvm_get_vcpu_events(CPUState *env)
994 #ifdef KVM_CAP_VCPU_EVENTS
995 struct kvm_vcpu_events events;
996 int ret;
998 if (!kvm_has_vcpu_events()) {
999 return 0;
1002 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1003 if (ret < 0) {
1004 return ret;
1006 env->exception_injected =
1007 events.exception.injected ? events.exception.nr : -1;
1008 env->has_error_code = events.exception.has_error_code;
1009 env->error_code = events.exception.error_code;
1011 env->interrupt_injected =
1012 events.interrupt.injected ? events.interrupt.nr : -1;
1013 env->soft_interrupt = events.interrupt.soft;
1015 env->nmi_injected = events.nmi.injected;
1016 env->nmi_pending = events.nmi.pending;
1017 if (events.nmi.masked) {
1018 env->hflags2 |= HF2_NMI_MASK;
1019 } else {
1020 env->hflags2 &= ~HF2_NMI_MASK;
1023 env->sipi_vector = events.sipi_vector;
1024 #endif
1026 return 0;
1029 static int kvm_guest_debug_workarounds(CPUState *env)
1031 int ret = 0;
1032 #ifdef KVM_CAP_SET_GUEST_DEBUG
1033 unsigned long reinject_trap = 0;
1035 if (!kvm_has_vcpu_events()) {
1036 if (env->exception_injected == 1) {
1037 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1038 } else if (env->exception_injected == 3) {
1039 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1041 env->exception_injected = -1;
1045 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1046 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1047 * by updating the debug state once again if single-stepping is on.
1048 * Another reason to call kvm_update_guest_debug here is a pending debug
1049 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1050 * reinject them via SET_GUEST_DEBUG.
1052 if (reinject_trap ||
1053 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1054 ret = kvm_update_guest_debug(env, reinject_trap);
1056 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1057 return ret;
1060 static int kvm_put_debugregs(CPUState *env)
1062 #ifdef KVM_CAP_DEBUGREGS
1063 struct kvm_debugregs dbgregs;
1064 int i;
1066 if (!kvm_has_debugregs()) {
1067 return 0;
1070 for (i = 0; i < 4; i++) {
1071 dbgregs.db[i] = env->dr[i];
1073 dbgregs.dr6 = env->dr[6];
1074 dbgregs.dr7 = env->dr[7];
1075 dbgregs.flags = 0;
1077 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1078 #else
1079 return 0;
1080 #endif
1083 static int kvm_get_debugregs(CPUState *env)
1085 #ifdef KVM_CAP_DEBUGREGS
1086 struct kvm_debugregs dbgregs;
1087 int i, ret;
1089 if (!kvm_has_debugregs()) {
1090 return 0;
1093 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1094 if (ret < 0) {
1095 return ret;
1097 for (i = 0; i < 4; i++) {
1098 env->dr[i] = dbgregs.db[i];
1100 env->dr[4] = env->dr[6] = dbgregs.dr6;
1101 env->dr[5] = env->dr[7] = dbgregs.dr7;
1102 #endif
1104 return 0;
1107 #ifdef KVM_UPSTREAM
1108 int kvm_arch_put_registers(CPUState *env, int level)
1110 int ret;
1112 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1114 ret = kvm_getput_regs(env, 1);
1115 if (ret < 0)
1116 return ret;
1118 ret = kvm_put_xsave(env);
1119 if (ret < 0)
1120 return ret;
1122 ret = kvm_put_xcrs(env);
1123 if (ret < 0)
1124 return ret;
1126 ret = kvm_put_sregs(env);
1127 if (ret < 0)
1128 return ret;
1130 ret = kvm_put_msrs(env, level);
1131 if (ret < 0)
1132 return ret;
1134 if (level >= KVM_PUT_RESET_STATE) {
1135 ret = kvm_put_mp_state(env);
1136 if (ret < 0)
1137 return ret;
1140 ret = kvm_put_vcpu_events(env, level);
1141 if (ret < 0)
1142 return ret;
1144 /* must be last */
1145 ret = kvm_guest_debug_workarounds(env);
1146 if (ret < 0)
1147 return ret;
1149 ret = kvm_put_debugregs(env);
1150 if (ret < 0)
1151 return ret;
1153 return 0;
1156 int kvm_arch_get_registers(CPUState *env)
1158 int ret;
1160 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1162 ret = kvm_getput_regs(env, 0);
1163 if (ret < 0)
1164 return ret;
1166 ret = kvm_get_xsave(env);
1167 if (ret < 0)
1168 return ret;
1170 ret = kvm_get_xcrs(env);
1171 if (ret < 0)
1172 return ret;
1174 ret = kvm_get_sregs(env);
1175 if (ret < 0)
1176 return ret;
1178 ret = kvm_get_msrs(env);
1179 if (ret < 0)
1180 return ret;
1182 ret = kvm_get_mp_state(env);
1183 if (ret < 0)
1184 return ret;
1186 ret = kvm_get_vcpu_events(env);
1187 if (ret < 0)
1188 return ret;
1190 ret = kvm_get_debugregs(env);
1191 if (ret < 0)
1192 return ret;
1194 return 0;
1197 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1199 /* Try to inject an interrupt if the guest can accept it */
1200 if (run->ready_for_interrupt_injection &&
1201 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1202 (env->eflags & IF_MASK)) {
1203 int irq;
1205 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1206 irq = cpu_get_pic_interrupt(env);
1207 if (irq >= 0) {
1208 struct kvm_interrupt intr;
1209 intr.irq = irq;
1210 /* FIXME: errors */
1211 DPRINTF("injected interrupt %d\n", irq);
1212 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1216 /* If we have an interrupt but the guest is not ready to receive an
1217 * interrupt, request an interrupt window exit. This will
1218 * cause a return to userspace as soon as the guest is ready to
1219 * receive interrupts. */
1220 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1221 run->request_interrupt_window = 1;
1222 else
1223 run->request_interrupt_window = 0;
1225 DPRINTF("setting tpr\n");
1226 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1228 return 0;
1230 #endif
1232 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1234 if (run->if_flag)
1235 env->eflags |= IF_MASK;
1236 else
1237 env->eflags &= ~IF_MASK;
1239 cpu_set_apic_tpr(env->apic_state, run->cr8);
1240 cpu_set_apic_base(env->apic_state, run->apic_base);
1242 return 0;
1245 #ifdef KVM_UPSTREAM
1247 int kvm_arch_process_irqchip_events(CPUState *env)
1249 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1250 kvm_cpu_synchronize_state(env);
1251 do_cpu_init(env);
1252 env->exception_index = EXCP_HALTED;
1255 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1256 kvm_cpu_synchronize_state(env);
1257 do_cpu_sipi(env);
1260 return env->halted;
1263 static int kvm_handle_halt(CPUState *env)
1265 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1266 (env->eflags & IF_MASK)) &&
1267 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1268 env->halted = 1;
1269 env->exception_index = EXCP_HLT;
1270 return 0;
1273 return 1;
1276 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1278 int ret = 0;
1280 switch (run->exit_reason) {
1281 case KVM_EXIT_HLT:
1282 DPRINTF("handle_hlt\n");
1283 ret = kvm_handle_halt(env);
1284 break;
1287 return ret;
1289 #endif
1291 #ifdef KVM_CAP_SET_GUEST_DEBUG
1292 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1294 static const uint8_t int3 = 0xcc;
1296 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1297 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1298 return -EINVAL;
1299 return 0;
1302 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1304 uint8_t int3;
1306 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1307 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1308 return -EINVAL;
1309 return 0;
1312 static struct {
1313 target_ulong addr;
1314 int len;
1315 int type;
1316 } hw_breakpoint[4];
1318 static int nb_hw_breakpoint;
1320 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1322 int n;
1324 for (n = 0; n < nb_hw_breakpoint; n++)
1325 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1326 (hw_breakpoint[n].len == len || len == -1))
1327 return n;
1328 return -1;
1331 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1332 target_ulong len, int type)
1334 switch (type) {
1335 case GDB_BREAKPOINT_HW:
1336 len = 1;
1337 break;
1338 case GDB_WATCHPOINT_WRITE:
1339 case GDB_WATCHPOINT_ACCESS:
1340 switch (len) {
1341 case 1:
1342 break;
1343 case 2:
1344 case 4:
1345 case 8:
1346 if (addr & (len - 1))
1347 return -EINVAL;
1348 break;
1349 default:
1350 return -EINVAL;
1352 break;
1353 default:
1354 return -ENOSYS;
1357 if (nb_hw_breakpoint == 4)
1358 return -ENOBUFS;
1360 if (find_hw_breakpoint(addr, len, type) >= 0)
1361 return -EEXIST;
1363 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1364 hw_breakpoint[nb_hw_breakpoint].len = len;
1365 hw_breakpoint[nb_hw_breakpoint].type = type;
1366 nb_hw_breakpoint++;
1368 return 0;
1371 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1372 target_ulong len, int type)
1374 int n;
1376 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1377 if (n < 0)
1378 return -ENOENT;
1380 nb_hw_breakpoint--;
1381 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1383 return 0;
1386 void kvm_arch_remove_all_hw_breakpoints(void)
1388 nb_hw_breakpoint = 0;
1391 static CPUWatchpoint hw_watchpoint;
1393 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1395 int handle = 0;
1396 int n;
1398 if (arch_info->exception == 1) {
1399 if (arch_info->dr6 & (1 << 14)) {
1400 if (cpu_single_env->singlestep_enabled)
1401 handle = 1;
1402 } else {
1403 for (n = 0; n < 4; n++)
1404 if (arch_info->dr6 & (1 << n))
1405 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1406 case 0x0:
1407 handle = 1;
1408 break;
1409 case 0x1:
1410 handle = 1;
1411 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1412 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1413 hw_watchpoint.flags = BP_MEM_WRITE;
1414 break;
1415 case 0x3:
1416 handle = 1;
1417 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1418 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1419 hw_watchpoint.flags = BP_MEM_ACCESS;
1420 break;
1423 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1424 handle = 1;
1426 if (!handle) {
1427 cpu_synchronize_state(cpu_single_env);
1428 assert(cpu_single_env->exception_injected == -1);
1430 cpu_single_env->exception_injected = arch_info->exception;
1431 cpu_single_env->has_error_code = 0;
1434 return handle;
1437 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1439 const uint8_t type_code[] = {
1440 [GDB_BREAKPOINT_HW] = 0x0,
1441 [GDB_WATCHPOINT_WRITE] = 0x1,
1442 [GDB_WATCHPOINT_ACCESS] = 0x3
1444 const uint8_t len_code[] = {
1445 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1447 int n;
1449 if (kvm_sw_breakpoints_active(env))
1450 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1452 if (nb_hw_breakpoint > 0) {
1453 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1454 dbg->arch.debugreg[7] = 0x0600;
1455 for (n = 0; n < nb_hw_breakpoint; n++) {
1456 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1457 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1458 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1459 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1462 /* Legal xcr0 for loading */
1463 env->xcr0 = 1;
1465 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1467 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1469 return !(env->cr[0] & CR0_PE_MASK) ||
1470 ((env->segs[R_CS].selector & 3) != 3);
1473 #include "qemu-kvm-x86.c"