Merge commit 'cd4ec0b4d169faba8cc03a16b361700e32a83bd6' into upstream-merge
[qemu-kvm/stefanha.git] / qemu-kvm-x86.c
blob59aacd0154988d596c25ea4630494cb550f08816
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
14 #include "gdbstub.h"
15 #include <sys/io.h>
17 #include "qemu-kvm.h"
18 #include "libkvm.h"
19 #include <pthread.h>
20 #include <sys/utsname.h>
21 #include <linux/kvm_para.h>
22 #include <sys/ioctl.h>
24 #include "kvm.h"
25 #include "hw/apic.h"
27 #define MSR_IA32_TSC 0x10
29 static struct kvm_msr_list *kvm_msr_list;
30 extern unsigned int kvm_shadow_memory;
31 static int kvm_has_msr_star;
32 static int kvm_has_vm_hsave_pa;
34 static int lm_capable_kernel;
36 int kvm_set_tss_addr(kvm_context_t kvm, unsigned long addr)
38 int r;
40 * Tell fw_cfg to notify the BIOS to reserve the range.
42 if (e820_add_entry(addr, 0x4000, E820_RESERVED) < 0) {
43 perror("e820_add_entry() table is full");
44 exit(1);
47 r = kvm_vm_ioctl(kvm_state, KVM_SET_TSS_ADDR, addr);
48 if (r < 0) {
49 fprintf(stderr, "kvm_set_tss_addr: %m\n");
50 return r;
52 return 0;
55 static int kvm_init_tss(kvm_context_t kvm)
57 int r;
59 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
60 if (r > 0) {
62 * this address is 3 pages before the bios, and the bios should present
63 * as unavaible memory
65 r = kvm_set_tss_addr(kvm, 0xfeffd000);
66 if (r < 0) {
67 fprintf(stderr, "kvm_init_tss: unable to set tss addr\n");
68 return r;
70 } else {
71 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
73 return 0;
76 static int kvm_set_identity_map_addr(kvm_context_t kvm, uint64_t addr)
78 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
79 int r;
81 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
82 if (r > 0) {
83 r = kvm_vm_ioctl(kvm_state, KVM_SET_IDENTITY_MAP_ADDR, &addr);
84 if (r == -1) {
85 fprintf(stderr, "kvm_set_identity_map_addr: %m\n");
86 return -errno;
88 return 0;
90 #endif
91 return -ENOSYS;
94 static int kvm_init_identity_map_page(kvm_context_t kvm)
96 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
97 int r;
99 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
100 if (r > 0) {
102 * this address is 4 pages before the bios, and the bios should present
103 * as unavaible memory
105 r = kvm_set_identity_map_addr(kvm, 0xfeffc000);
106 if (r < 0) {
107 fprintf(stderr, "kvm_init_identity_map_page: "
108 "unable to set identity mapping addr\n");
109 return r;
112 #endif
113 return 0;
116 static int kvm_create_pit(kvm_context_t kvm)
118 #ifdef KVM_CAP_PIT
119 int r;
121 kvm_state->pit_in_kernel = 0;
122 if (!kvm->no_pit_creation) {
123 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_PIT);
124 if (r > 0) {
125 r = kvm_vm_ioctl(kvm_state, KVM_CREATE_PIT);
126 if (r >= 0) {
127 kvm_state->pit_in_kernel = 1;
128 } else {
129 fprintf(stderr, "Create kernel PIC irqchip failed\n");
130 return r;
134 #endif
135 return 0;
138 int kvm_arch_create(kvm_context_t kvm, unsigned long phys_mem_bytes,
139 void **vm_mem)
141 int r = 0;
143 r = kvm_init_tss(kvm);
144 if (r < 0) {
145 return r;
148 r = kvm_init_identity_map_page(kvm);
149 if (r < 0) {
150 return r;
153 r = kvm_create_pit(kvm);
154 if (r < 0) {
155 return r;
158 r = kvm_init_coalesced_mmio(kvm);
159 if (r < 0) {
160 return r;
163 return 0;
166 #ifdef KVM_EXIT_TPR_ACCESS
168 static int kvm_handle_tpr_access(CPUState *env)
170 struct kvm_run *run = env->kvm_run;
171 kvm_tpr_access_report(env,
172 run->tpr_access.rip,
173 run->tpr_access.is_write);
174 return 0;
178 int kvm_enable_vapic(CPUState *env, uint64_t vapic)
180 struct kvm_vapic_addr va = {
181 .vapic_addr = vapic,
184 return kvm_vcpu_ioctl(env, KVM_SET_VAPIC_ADDR, &va);
187 #endif
189 int kvm_arch_run(CPUState *env)
191 int r = 0;
192 struct kvm_run *run = env->kvm_run;
194 switch (run->exit_reason) {
195 #ifdef KVM_EXIT_SET_TPR
196 case KVM_EXIT_SET_TPR:
197 break;
198 #endif
199 #ifdef KVM_EXIT_TPR_ACCESS
200 case KVM_EXIT_TPR_ACCESS:
201 r = kvm_handle_tpr_access(env);
202 break;
203 #endif
204 default:
205 r = 1;
206 break;
209 return r;
212 #ifdef KVM_CAP_IRQCHIP
214 int kvm_get_lapic(CPUState *env, struct kvm_lapic_state *s)
216 int r = 0;
218 if (!kvm_irqchip_in_kernel()) {
219 return r;
222 r = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, s);
223 if (r < 0) {
224 fprintf(stderr, "KVM_GET_LAPIC failed\n");
226 return r;
229 int kvm_set_lapic(CPUState *env, struct kvm_lapic_state *s)
231 int r = 0;
233 if (!kvm_irqchip_in_kernel()) {
234 return 0;
237 r = kvm_vcpu_ioctl(env, KVM_SET_LAPIC, s);
239 if (r < 0) {
240 fprintf(stderr, "KVM_SET_LAPIC failed\n");
242 return r;
245 #endif
247 #ifdef KVM_CAP_PIT
249 int kvm_get_pit(kvm_context_t kvm, struct kvm_pit_state *s)
251 if (!kvm_pit_in_kernel()) {
252 return 0;
254 return kvm_vm_ioctl(kvm_state, KVM_GET_PIT, s);
257 int kvm_set_pit(kvm_context_t kvm, struct kvm_pit_state *s)
259 if (!kvm_pit_in_kernel()) {
260 return 0;
262 return kvm_vm_ioctl(kvm_state, KVM_SET_PIT, s);
265 #ifdef KVM_CAP_PIT_STATE2
266 int kvm_get_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
268 if (!kvm_pit_in_kernel()) {
269 return 0;
271 return kvm_vm_ioctl(kvm_state, KVM_GET_PIT2, ps2);
274 int kvm_set_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
276 if (!kvm_pit_in_kernel()) {
277 return 0;
279 return kvm_vm_ioctl(kvm_state, KVM_SET_PIT2, ps2);
282 #endif
283 #endif
285 int kvm_has_pit_state2(kvm_context_t kvm)
287 int r = 0;
289 #ifdef KVM_CAP_PIT_STATE2
290 r = kvm_check_extension(kvm_state, KVM_CAP_PIT_STATE2);
291 #endif
292 return r;
295 void kvm_show_code(CPUState *env)
297 #define SHOW_CODE_LEN 50
298 struct kvm_regs regs;
299 struct kvm_sregs sregs;
300 int r, n;
301 int back_offset;
302 unsigned char code;
303 char code_str[SHOW_CODE_LEN * 3 + 1];
304 unsigned long rip;
306 r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
307 if (r < 0 ) {
308 perror("KVM_GET_SREGS");
309 return;
311 r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
312 if (r < 0) {
313 perror("KVM_GET_REGS");
314 return;
316 rip = sregs.cs.base + regs.rip;
317 back_offset = regs.rip;
318 if (back_offset > 20) {
319 back_offset = 20;
321 *code_str = 0;
322 for (n = -back_offset; n < SHOW_CODE_LEN-back_offset; ++n) {
323 if (n == 0) {
324 strcat(code_str, " -->");
326 cpu_physical_memory_rw(rip + n, &code, 1, 1);
327 sprintf(code_str + strlen(code_str), " %02x", code);
329 fprintf(stderr, "code:%s\n", code_str);
334 * Returns available msr list. User must free.
336 static struct kvm_msr_list *kvm_get_msr_list(void)
338 struct kvm_msr_list sizer, *msrs;
339 int r;
341 sizer.nmsrs = 0;
342 r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, &sizer);
343 if (r < 0 && r != -E2BIG) {
344 return NULL;
346 /* Old kernel modules had a bug and could write beyond the provided
347 memory. Allocate at least a safe amount of 1K. */
348 msrs = qemu_malloc(MAX(1024, sizeof(*msrs) +
349 sizer.nmsrs * sizeof(*msrs->indices)));
351 msrs->nmsrs = sizer.nmsrs;
352 r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, msrs);
353 if (r < 0) {
354 free(msrs);
355 errno = r;
356 return NULL;
358 return msrs;
361 int kvm_get_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
363 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
364 int r;
366 kmsrs->nmsrs = n;
367 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
368 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
369 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
370 free(kmsrs);
371 return r;
374 int kvm_set_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
376 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
377 int r;
379 kmsrs->nmsrs = n;
380 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
381 r = kvm_vcpu_ioctl(env, KVM_SET_MSRS, kmsrs);
382 free(kmsrs);
383 return r;
386 int kvm_get_mce_cap_supported(kvm_context_t kvm, uint64_t *mce_cap,
387 int *max_banks)
389 #ifdef KVM_CAP_MCE
390 int r;
392 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
393 if (r > 0) {
394 *max_banks = r;
395 return kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
397 #endif
398 return -ENOSYS;
401 int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
403 #ifdef KVM_CAP_MCE
404 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
405 #else
406 return -ENOSYS;
407 #endif
410 int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
412 #ifdef KVM_CAP_MCE
413 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
414 #else
415 return -ENOSYS;
416 #endif
419 static void print_seg(FILE *file, const char *name, struct kvm_segment *seg)
421 fprintf(stderr,
422 "%s %04x (%08llx/%08x p %d dpl %d db %d s %d type %x l %d"
423 " g %d avl %d)\n",
424 name, seg->selector, seg->base, seg->limit, seg->present,
425 seg->dpl, seg->db, seg->s, seg->type, seg->l, seg->g,
426 seg->avl);
429 static void print_dt(FILE *file, const char *name, struct kvm_dtable *dt)
431 fprintf(stderr, "%s %llx/%x\n", name, dt->base, dt->limit);
434 void kvm_show_regs(CPUState *env)
436 struct kvm_regs regs;
437 struct kvm_sregs sregs;
438 int r;
440 r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
441 if (r < 0) {
442 perror("KVM_GET_REGS");
443 return;
445 fprintf(stderr,
446 "rax %016llx rbx %016llx rcx %016llx rdx %016llx\n"
447 "rsi %016llx rdi %016llx rsp %016llx rbp %016llx\n"
448 "r8 %016llx r9 %016llx r10 %016llx r11 %016llx\n"
449 "r12 %016llx r13 %016llx r14 %016llx r15 %016llx\n"
450 "rip %016llx rflags %08llx\n",
451 regs.rax, regs.rbx, regs.rcx, regs.rdx,
452 regs.rsi, regs.rdi, regs.rsp, regs.rbp,
453 regs.r8, regs.r9, regs.r10, regs.r11,
454 regs.r12, regs.r13, regs.r14, regs.r15,
455 regs.rip, regs.rflags);
456 r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
457 if (r < 0) {
458 perror("KVM_GET_SREGS");
459 return;
461 print_seg(stderr, "cs", &sregs.cs);
462 print_seg(stderr, "ds", &sregs.ds);
463 print_seg(stderr, "es", &sregs.es);
464 print_seg(stderr, "ss", &sregs.ss);
465 print_seg(stderr, "fs", &sregs.fs);
466 print_seg(stderr, "gs", &sregs.gs);
467 print_seg(stderr, "tr", &sregs.tr);
468 print_seg(stderr, "ldt", &sregs.ldt);
469 print_dt(stderr, "gdt", &sregs.gdt);
470 print_dt(stderr, "idt", &sregs.idt);
471 fprintf(stderr, "cr0 %llx cr2 %llx cr3 %llx cr4 %llx cr8 %llx"
472 " efer %llx\n",
473 sregs.cr0, sregs.cr2, sregs.cr3, sregs.cr4, sregs.cr8,
474 sregs.efer);
477 static void kvm_set_cr8(CPUState *env, uint64_t cr8)
479 env->kvm_run->cr8 = cr8;
482 int kvm_setup_cpuid(CPUState *env, int nent,
483 struct kvm_cpuid_entry *entries)
485 struct kvm_cpuid *cpuid;
486 int r;
488 cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
490 cpuid->nent = nent;
491 memcpy(cpuid->entries, entries, nent * sizeof(*entries));
492 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID, cpuid);
494 free(cpuid);
495 return r;
498 int kvm_setup_cpuid2(CPUState *env, int nent,
499 struct kvm_cpuid_entry2 *entries)
501 struct kvm_cpuid2 *cpuid;
502 int r;
504 cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
506 cpuid->nent = nent;
507 memcpy(cpuid->entries, entries, nent * sizeof(*entries));
508 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, cpuid);
509 free(cpuid);
510 return r;
513 int kvm_set_shadow_pages(kvm_context_t kvm, unsigned int nrshadow_pages)
515 #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
516 int r;
518 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
519 KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
520 if (r > 0) {
521 r = kvm_vm_ioctl(kvm_state, KVM_SET_NR_MMU_PAGES, nrshadow_pages);
522 if (r < 0) {
523 fprintf(stderr, "kvm_set_shadow_pages: %m\n");
524 return r;
526 return 0;
528 #endif
529 return -1;
532 int kvm_get_shadow_pages(kvm_context_t kvm, unsigned int *nrshadow_pages)
534 #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
535 int r;
537 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
538 KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
539 if (r > 0) {
540 *nrshadow_pages = kvm_vm_ioctl(kvm_state, KVM_GET_NR_MMU_PAGES);
541 return 0;
543 #endif
544 return -1;
547 #ifdef KVM_CAP_VAPIC
548 static int kvm_enable_tpr_access_reporting(CPUState *env)
550 int r;
551 struct kvm_tpr_access_ctl tac = { .enabled = 1 };
553 r = kvm_ioctl(env->kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_VAPIC);
554 if (r <= 0) {
555 return -ENOSYS;
557 return kvm_vcpu_ioctl(env, KVM_TPR_ACCESS_REPORTING, &tac);
559 #endif
561 #ifdef KVM_CAP_ADJUST_CLOCK
562 static struct kvm_clock_data kvmclock_data;
564 static void kvmclock_pre_save(void *opaque)
566 struct kvm_clock_data *cl = opaque;
568 kvm_vm_ioctl(kvm_state, KVM_GET_CLOCK, cl);
571 static int kvmclock_post_load(void *opaque, int version_id)
573 struct kvm_clock_data *cl = opaque;
575 return kvm_vm_ioctl(kvm_state, KVM_SET_CLOCK, cl);
578 static const VMStateDescription vmstate_kvmclock= {
579 .name = "kvmclock",
580 .version_id = 1,
581 .minimum_version_id = 1,
582 .minimum_version_id_old = 1,
583 .pre_save = kvmclock_pre_save,
584 .post_load = kvmclock_post_load,
585 .fields = (VMStateField []) {
586 VMSTATE_U64(clock, struct kvm_clock_data),
587 VMSTATE_END_OF_LIST()
590 #endif
592 int kvm_arch_qemu_create_context(void)
594 int i, r;
595 struct utsname utsname;
597 uname(&utsname);
598 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
600 if (kvm_shadow_memory) {
601 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
604 kvm_msr_list = kvm_get_msr_list();
605 if (!kvm_msr_list) {
606 return -1;
608 for (i = 0; i < kvm_msr_list->nmsrs; ++i) {
609 if (kvm_msr_list->indices[i] == MSR_STAR) {
610 kvm_has_msr_star = 1;
612 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
613 kvm_has_vm_hsave_pa = 1;
617 #ifdef KVM_CAP_ADJUST_CLOCK
618 if (kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK)) {
619 vmstate_register(NULL, 0, &vmstate_kvmclock, &kvmclock_data);
621 #endif
623 r = kvm_set_boot_cpu_id(0);
624 if (r < 0 && r != -ENOSYS) {
625 return r;
628 return 0;
631 /* returns 0 on success, non-0 on failure */
632 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
634 switch (entry->index) {
635 case MSR_IA32_SYSENTER_CS:
636 env->sysenter_cs = entry->data;
637 break;
638 case MSR_IA32_SYSENTER_ESP:
639 env->sysenter_esp = entry->data;
640 break;
641 case MSR_IA32_SYSENTER_EIP:
642 env->sysenter_eip = entry->data;
643 break;
644 case MSR_STAR:
645 env->star = entry->data;
646 break;
647 #ifdef TARGET_X86_64
648 case MSR_CSTAR:
649 env->cstar = entry->data;
650 break;
651 case MSR_KERNELGSBASE:
652 env->kernelgsbase = entry->data;
653 break;
654 case MSR_FMASK:
655 env->fmask = entry->data;
656 break;
657 case MSR_LSTAR:
658 env->lstar = entry->data;
659 break;
660 #endif
661 case MSR_IA32_TSC:
662 env->tsc = entry->data;
663 break;
664 case MSR_VM_HSAVE_PA:
665 env->vm_hsave = entry->data;
666 break;
667 case MSR_KVM_SYSTEM_TIME:
668 env->system_time_msr = entry->data;
669 break;
670 case MSR_KVM_WALL_CLOCK:
671 env->wall_clock_msr = entry->data;
672 break;
673 #ifdef KVM_CAP_MCE
674 case MSR_MCG_STATUS:
675 env->mcg_status = entry->data;
676 break;
677 case MSR_MCG_CTL:
678 env->mcg_ctl = entry->data;
679 break;
680 #endif
681 default:
682 #ifdef KVM_CAP_MCE
683 if (entry->index >= MSR_MC0_CTL &&
684 entry->index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
685 env->mce_banks[entry->index - MSR_MC0_CTL] = entry->data;
686 break;
688 #endif
689 printf("Warning unknown msr index 0x%x\n", entry->index);
690 return 1;
692 return 0;
695 static void kvm_arch_save_mpstate(CPUState *env)
697 #ifdef KVM_CAP_MP_STATE
698 int r;
699 struct kvm_mp_state mp_state;
701 r = kvm_get_mpstate(env, &mp_state);
702 if (r < 0) {
703 env->mp_state = -1;
704 } else {
705 env->mp_state = mp_state.mp_state;
706 if (kvm_irqchip_in_kernel()) {
707 env->halted = (env->mp_state == KVM_MP_STATE_HALTED);
710 #else
711 env->mp_state = -1;
712 #endif
715 static void kvm_arch_load_mpstate(CPUState *env)
717 #ifdef KVM_CAP_MP_STATE
718 struct kvm_mp_state mp_state;
721 * -1 indicates that the host did not support GET_MP_STATE ioctl,
722 * so don't touch it.
724 if (env->mp_state != -1) {
725 mp_state.mp_state = env->mp_state;
726 kvm_set_mpstate(env, &mp_state);
728 #endif
731 static void kvm_reset_mpstate(CPUState *env)
733 #ifdef KVM_CAP_MP_STATE
734 if (kvm_check_extension(kvm_state, KVM_CAP_MP_STATE)) {
735 if (kvm_irqchip_in_kernel()) {
736 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
737 KVM_MP_STATE_UNINITIALIZED;
738 } else {
739 env->mp_state = KVM_MP_STATE_RUNNABLE;
742 #endif
745 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
747 lhs->selector = rhs->selector;
748 lhs->base = rhs->base;
749 lhs->limit = rhs->limit;
750 lhs->type = 3;
751 lhs->present = 1;
752 lhs->dpl = 3;
753 lhs->db = 0;
754 lhs->s = 1;
755 lhs->l = 0;
756 lhs->g = 0;
757 lhs->avl = 0;
758 lhs->unusable = 0;
761 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
763 unsigned flags = rhs->flags;
764 lhs->selector = rhs->selector;
765 lhs->base = rhs->base;
766 lhs->limit = rhs->limit;
767 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
768 lhs->present = (flags & DESC_P_MASK) != 0;
769 lhs->dpl = rhs->selector & 3;
770 lhs->db = (flags >> DESC_B_SHIFT) & 1;
771 lhs->s = (flags & DESC_S_MASK) != 0;
772 lhs->l = (flags >> DESC_L_SHIFT) & 1;
773 lhs->g = (flags & DESC_G_MASK) != 0;
774 lhs->avl = (flags & DESC_AVL_MASK) != 0;
775 lhs->unusable = 0;
778 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
780 lhs->selector = rhs->selector;
781 lhs->base = rhs->base;
782 lhs->limit = rhs->limit;
783 lhs->flags =
784 (rhs->type << DESC_TYPE_SHIFT)
785 | (rhs->present * DESC_P_MASK)
786 | (rhs->dpl << DESC_DPL_SHIFT)
787 | (rhs->db << DESC_B_SHIFT)
788 | (rhs->s * DESC_S_MASK)
789 | (rhs->l << DESC_L_SHIFT)
790 | (rhs->g * DESC_G_MASK)
791 | (rhs->avl * DESC_AVL_MASK);
794 #define XSAVE_CWD_RIP 2
795 #define XSAVE_CWD_RDP 4
796 #define XSAVE_MXCSR 6
797 #define XSAVE_ST_SPACE 8
798 #define XSAVE_XMM_SPACE 40
799 #define XSAVE_XSTATE_BV 128
800 #define XSAVE_YMMH_SPACE 144
802 void kvm_arch_load_regs(CPUState *env, int level)
804 struct kvm_regs regs;
805 struct kvm_fpu fpu;
806 struct kvm_sregs sregs;
807 struct kvm_msr_entry msrs[100];
808 int rc, n, i;
810 assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
812 regs.rax = env->regs[R_EAX];
813 regs.rbx = env->regs[R_EBX];
814 regs.rcx = env->regs[R_ECX];
815 regs.rdx = env->regs[R_EDX];
816 regs.rsi = env->regs[R_ESI];
817 regs.rdi = env->regs[R_EDI];
818 regs.rsp = env->regs[R_ESP];
819 regs.rbp = env->regs[R_EBP];
820 #ifdef TARGET_X86_64
821 regs.r8 = env->regs[8];
822 regs.r9 = env->regs[9];
823 regs.r10 = env->regs[10];
824 regs.r11 = env->regs[11];
825 regs.r12 = env->regs[12];
826 regs.r13 = env->regs[13];
827 regs.r14 = env->regs[14];
828 regs.r15 = env->regs[15];
829 #endif
831 regs.rflags = env->eflags;
832 regs.rip = env->eip;
834 kvm_set_regs(env, &regs);
836 #ifdef KVM_CAP_XSAVE
837 if (kvm_check_extension(kvm_state, KVM_CAP_XSAVE)) {
838 struct kvm_xsave* xsave;
840 uint16_t cwd, swd, twd, fop;
842 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
843 memset(xsave, 0, sizeof(struct kvm_xsave));
844 cwd = swd = twd = fop = 0;
845 swd = env->fpus & ~(7 << 11);
846 swd |= (env->fpstt & 7) << 11;
847 cwd = env->fpuc;
848 for (i = 0; i < 8; ++i) {
849 twd |= (!env->fptags[i]) << i;
851 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
852 xsave->region[1] = (uint32_t)(fop << 16) + twd;
853 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
854 sizeof env->fpregs);
855 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
856 sizeof env->xmm_regs);
857 xsave->region[XSAVE_MXCSR] = env->mxcsr;
858 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
859 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
860 sizeof env->ymmh_regs);
861 kvm_set_xsave(env, xsave);
862 if (kvm_check_extension(kvm_state, KVM_CAP_XCRS)) {
863 struct kvm_xcrs xcrs;
865 xcrs.nr_xcrs = 1;
866 xcrs.flags = 0;
867 xcrs.xcrs[0].xcr = 0;
868 xcrs.xcrs[0].value = env->xcr0;
869 kvm_set_xcrs(env, &xcrs);
871 qemu_free(xsave);
872 } else {
873 #endif
874 memset(&fpu, 0, sizeof fpu);
875 fpu.fsw = env->fpus & ~(7 << 11);
876 fpu.fsw |= (env->fpstt & 7) << 11;
877 fpu.fcw = env->fpuc;
878 for (i = 0; i < 8; ++i) {
879 fpu.ftwx |= (!env->fptags[i]) << i;
881 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
882 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
883 fpu.mxcsr = env->mxcsr;
884 kvm_set_fpu(env, &fpu);
885 #ifdef KVM_CAP_XSAVE
887 #endif
889 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
890 if (env->interrupt_injected >= 0) {
891 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
892 (uint64_t)1 << (env->interrupt_injected % 64);
895 if ((env->eflags & VM_MASK)) {
896 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
897 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
898 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
899 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
900 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
901 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
902 } else {
903 set_seg(&sregs.cs, &env->segs[R_CS]);
904 set_seg(&sregs.ds, &env->segs[R_DS]);
905 set_seg(&sregs.es, &env->segs[R_ES]);
906 set_seg(&sregs.fs, &env->segs[R_FS]);
907 set_seg(&sregs.gs, &env->segs[R_GS]);
908 set_seg(&sregs.ss, &env->segs[R_SS]);
910 if (env->cr[0] & CR0_PE_MASK) {
911 /* force ss cpl to cs cpl */
912 sregs.ss.selector = (sregs.ss.selector & ~3) |
913 (sregs.cs.selector & 3);
914 sregs.ss.dpl = sregs.ss.selector & 3;
918 set_seg(&sregs.tr, &env->tr);
919 set_seg(&sregs.ldt, &env->ldt);
921 sregs.idt.limit = env->idt.limit;
922 sregs.idt.base = env->idt.base;
923 sregs.gdt.limit = env->gdt.limit;
924 sregs.gdt.base = env->gdt.base;
926 sregs.cr0 = env->cr[0];
927 sregs.cr2 = env->cr[2];
928 sregs.cr3 = env->cr[3];
929 sregs.cr4 = env->cr[4];
931 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
932 sregs.apic_base = cpu_get_apic_base(env->apic_state);
934 sregs.efer = env->efer;
936 kvm_set_sregs(env, &sregs);
938 /* msrs */
939 n = 0;
940 /* Remember to increase msrs size if you add new registers below */
941 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
942 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
943 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
944 if (kvm_has_msr_star) {
945 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
947 if (kvm_has_vm_hsave_pa) {
948 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
950 #ifdef TARGET_X86_64
951 if (lm_capable_kernel) {
952 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
953 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
954 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
955 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR , env->lstar);
957 #endif
958 if (level == KVM_PUT_FULL_STATE) {
960 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
961 * writeback. Until this is fixed, we only write the offset to SMP
962 * guests after migration, desynchronizing the VCPUs, but avoiding
963 * huge jump-backs that would occur without any writeback at all.
965 if (smp_cpus == 1 || env->tsc != 0) {
966 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
968 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
969 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
971 #ifdef KVM_CAP_MCE
972 if (env->mcg_cap) {
973 if (level == KVM_PUT_RESET_STATE) {
974 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
975 } else if (level == KVM_PUT_FULL_STATE) {
976 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
977 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
978 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
979 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
983 #endif
985 rc = kvm_set_msrs(env, msrs, n);
986 if (rc == -1) {
987 perror("kvm_set_msrs FAILED");
990 if (level >= KVM_PUT_RESET_STATE) {
991 kvm_arch_load_mpstate(env);
992 kvm_load_lapic(env);
994 if (level == KVM_PUT_FULL_STATE) {
995 if (env->kvm_vcpu_update_vapic) {
996 kvm_tpr_enable_vapic(env);
1000 kvm_put_vcpu_events(env, level);
1001 kvm_put_debugregs(env);
1003 /* must be last */
1004 kvm_guest_debug_workarounds(env);
1007 void kvm_arch_save_regs(CPUState *env)
1009 struct kvm_regs regs;
1010 struct kvm_fpu fpu;
1011 struct kvm_sregs sregs;
1012 struct kvm_msr_entry msrs[100];
1013 uint32_t hflags;
1014 uint32_t i, n, rc, bit;
1016 assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
1018 kvm_get_regs(env, &regs);
1020 env->regs[R_EAX] = regs.rax;
1021 env->regs[R_EBX] = regs.rbx;
1022 env->regs[R_ECX] = regs.rcx;
1023 env->regs[R_EDX] = regs.rdx;
1024 env->regs[R_ESI] = regs.rsi;
1025 env->regs[R_EDI] = regs.rdi;
1026 env->regs[R_ESP] = regs.rsp;
1027 env->regs[R_EBP] = regs.rbp;
1028 #ifdef TARGET_X86_64
1029 env->regs[8] = regs.r8;
1030 env->regs[9] = regs.r9;
1031 env->regs[10] = regs.r10;
1032 env->regs[11] = regs.r11;
1033 env->regs[12] = regs.r12;
1034 env->regs[13] = regs.r13;
1035 env->regs[14] = regs.r14;
1036 env->regs[15] = regs.r15;
1037 #endif
1039 env->eflags = regs.rflags;
1040 env->eip = regs.rip;
1042 #ifdef KVM_CAP_XSAVE
1043 if (kvm_check_extension(kvm_state, KVM_CAP_XSAVE)) {
1044 struct kvm_xsave* xsave;
1045 uint16_t cwd, swd, twd, fop;
1046 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
1047 kvm_get_xsave(env, xsave);
1048 cwd = (uint16_t)xsave->region[0];
1049 swd = (uint16_t)(xsave->region[0] >> 16);
1050 twd = (uint16_t)xsave->region[1];
1051 fop = (uint16_t)(xsave->region[1] >> 16);
1052 env->fpstt = (swd >> 11) & 7;
1053 env->fpus = swd;
1054 env->fpuc = cwd;
1055 for (i = 0; i < 8; ++i) {
1056 env->fptags[i] = !((twd >> i) & 1);
1058 env->mxcsr = xsave->region[XSAVE_MXCSR];
1059 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1060 sizeof env->fpregs);
1061 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1062 sizeof env->xmm_regs);
1063 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1064 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1065 sizeof env->ymmh_regs);
1066 if (kvm_check_extension(kvm_state, KVM_CAP_XCRS)) {
1067 struct kvm_xcrs xcrs;
1069 kvm_get_xcrs(env, &xcrs);
1070 if (xcrs.xcrs[0].xcr == 0) {
1071 env->xcr0 = xcrs.xcrs[0].value;
1074 qemu_free(xsave);
1075 } else {
1076 #endif
1077 kvm_get_fpu(env, &fpu);
1078 env->fpstt = (fpu.fsw >> 11) & 7;
1079 env->fpus = fpu.fsw;
1080 env->fpuc = fpu.fcw;
1081 for (i = 0; i < 8; ++i) {
1082 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1084 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1085 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1086 env->mxcsr = fpu.mxcsr;
1087 #ifdef KVM_CAP_XSAVE
1089 #endif
1091 kvm_get_sregs(env, &sregs);
1093 /* There can only be one pending IRQ set in the bitmap at a time, so try
1094 to find it and save its number instead (-1 for none). */
1095 env->interrupt_injected = -1;
1096 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1097 if (sregs.interrupt_bitmap[i]) {
1098 bit = ctz64(sregs.interrupt_bitmap[i]);
1099 env->interrupt_injected = i * 64 + bit;
1100 break;
1104 get_seg(&env->segs[R_CS], &sregs.cs);
1105 get_seg(&env->segs[R_DS], &sregs.ds);
1106 get_seg(&env->segs[R_ES], &sregs.es);
1107 get_seg(&env->segs[R_FS], &sregs.fs);
1108 get_seg(&env->segs[R_GS], &sregs.gs);
1109 get_seg(&env->segs[R_SS], &sregs.ss);
1111 get_seg(&env->tr, &sregs.tr);
1112 get_seg(&env->ldt, &sregs.ldt);
1114 env->idt.limit = sregs.idt.limit;
1115 env->idt.base = sregs.idt.base;
1116 env->gdt.limit = sregs.gdt.limit;
1117 env->gdt.base = sregs.gdt.base;
1119 env->cr[0] = sregs.cr0;
1120 env->cr[2] = sregs.cr2;
1121 env->cr[3] = sregs.cr3;
1122 env->cr[4] = sregs.cr4;
1124 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1126 env->efer = sregs.efer;
1127 //cpu_set_apic_tpr(env, sregs.cr8);
1129 #define HFLAG_COPY_MASK ~( \
1130 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1131 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1132 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1133 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1135 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1136 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1137 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1138 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1139 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1140 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1141 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1143 if (env->efer & MSR_EFER_LMA) {
1144 hflags |= HF_LMA_MASK;
1147 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1148 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1149 } else {
1150 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1151 (DESC_B_SHIFT - HF_CS32_SHIFT);
1152 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1153 (DESC_B_SHIFT - HF_SS32_SHIFT);
1154 if (!(env->cr[0] & CR0_PE_MASK) ||
1155 (env->eflags & VM_MASK) ||
1156 !(hflags & HF_CS32_MASK)) {
1157 hflags |= HF_ADDSEG_MASK;
1158 } else {
1159 hflags |= ((env->segs[R_DS].base |
1160 env->segs[R_ES].base |
1161 env->segs[R_SS].base) != 0) <<
1162 HF_ADDSEG_SHIFT;
1165 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1167 /* msrs */
1168 n = 0;
1169 /* Remember to increase msrs size if you add new registers below */
1170 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1171 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1172 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1173 if (kvm_has_msr_star) {
1174 msrs[n++].index = MSR_STAR;
1176 msrs[n++].index = MSR_IA32_TSC;
1177 if (kvm_has_vm_hsave_pa)
1178 msrs[n++].index = MSR_VM_HSAVE_PA;
1179 #ifdef TARGET_X86_64
1180 if (lm_capable_kernel) {
1181 msrs[n++].index = MSR_CSTAR;
1182 msrs[n++].index = MSR_KERNELGSBASE;
1183 msrs[n++].index = MSR_FMASK;
1184 msrs[n++].index = MSR_LSTAR;
1186 #endif
1187 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1188 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1190 #ifdef KVM_CAP_MCE
1191 if (env->mcg_cap) {
1192 msrs[n++].index = MSR_MCG_STATUS;
1193 msrs[n++].index = MSR_MCG_CTL;
1194 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1195 msrs[n++].index = MSR_MC0_CTL + i;
1197 #endif
1199 rc = kvm_get_msrs(env, msrs, n);
1200 if (rc == -1) {
1201 perror("kvm_get_msrs FAILED");
1202 } else {
1203 n = rc; /* actual number of MSRs */
1204 for (i=0 ; i<n; i++) {
1205 if (get_msr_entry(&msrs[i], env)) {
1206 return;
1210 kvm_arch_save_mpstate(env);
1211 kvm_save_lapic(env);
1212 kvm_get_vcpu_events(env);
1213 kvm_get_debugregs(env);
1216 static int _kvm_arch_init_vcpu(CPUState *env)
1218 kvm_arch_reset_vcpu(env);
1220 #ifdef KVM_CAP_MCE
1221 if (((env->cpuid_version >> 8)&0xF) >= 6
1222 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
1223 && kvm_check_extension(kvm_state, KVM_CAP_MCE) > 0) {
1224 uint64_t mcg_cap;
1225 int banks;
1227 if (kvm_get_mce_cap_supported(kvm_context, &mcg_cap, &banks)) {
1228 perror("kvm_get_mce_cap_supported FAILED");
1229 } else {
1230 if (banks > MCE_BANKS_DEF)
1231 banks = MCE_BANKS_DEF;
1232 mcg_cap &= MCE_CAP_DEF;
1233 mcg_cap |= banks;
1234 if (kvm_setup_mce(env, &mcg_cap)) {
1235 perror("kvm_setup_mce FAILED");
1236 } else {
1237 env->mcg_cap = mcg_cap;
1241 #endif
1243 #ifdef KVM_EXIT_TPR_ACCESS
1244 kvm_enable_tpr_access_reporting(env);
1245 #endif
1246 kvm_reset_mpstate(env);
1247 return 0;
1250 int kvm_arch_halt(CPUState *env)
1253 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1254 (env->eflags & IF_MASK)) &&
1255 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1256 env->halted = 1;
1258 return 1;
1261 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1263 if (!kvm_irqchip_in_kernel()) {
1264 kvm_set_cr8(env, cpu_get_apic_tpr(env->apic_state));
1266 return 0;
1269 int kvm_arch_has_work(CPUState *env)
1271 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1272 (env->eflags & IF_MASK)) ||
1273 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1274 return 1;
1276 return 0;
1279 int kvm_arch_try_push_interrupts(void *opaque)
1281 CPUState *env = cpu_single_env;
1282 int r, irq;
1284 if (kvm_is_ready_for_interrupt_injection(env) &&
1285 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1286 (env->eflags & IF_MASK)) {
1287 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1288 irq = cpu_get_pic_interrupt(env);
1289 if (irq >= 0) {
1290 r = kvm_inject_irq(env, irq);
1291 if (r < 0) {
1292 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
1297 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
1300 #ifdef KVM_CAP_USER_NMI
1301 void kvm_arch_push_nmi(void *opaque)
1303 CPUState *env = cpu_single_env;
1304 int r;
1306 if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI))) {
1307 return;
1310 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1311 r = kvm_inject_nmi(env);
1312 if (r < 0) {
1313 printf("cpu %d fail inject NMI\n", env->cpu_index);
1316 #endif /* KVM_CAP_USER_NMI */
1318 static int kvm_reset_msrs(CPUState *env)
1320 struct {
1321 struct kvm_msrs info;
1322 struct kvm_msr_entry entries[100];
1323 } msr_data;
1324 int n;
1325 struct kvm_msr_entry *msrs = msr_data.entries;
1326 uint32_t index;
1327 uint64_t data;
1329 if (!kvm_msr_list) {
1330 return -1;
1333 for (n = 0; n < kvm_msr_list->nmsrs; n++) {
1334 index = kvm_msr_list->indices[n];
1335 switch (index) {
1336 case MSR_PAT:
1337 data = 0x0007040600070406ULL;
1338 break;
1339 default:
1340 data = 0;
1342 kvm_msr_entry_set(&msrs[n], kvm_msr_list->indices[n], data);
1345 msr_data.info.nmsrs = n;
1347 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1351 void kvm_arch_cpu_reset(CPUState *env)
1353 kvm_reset_msrs(env);
1354 kvm_arch_reset_vcpu(env);
1355 kvm_reset_mpstate(env);
1358 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
1359 void kvm_arch_do_ioperm(void *_data)
1361 struct ioperm_data *data = _data;
1362 ioperm(data->start_port, data->num, data->turn_on);
1364 #endif
1367 * Setup x86 specific IRQ routing
1369 int kvm_arch_init_irq_routing(void)
1371 int i, r;
1373 if (kvm_irqchip && kvm_has_gsi_routing()) {
1374 kvm_clear_gsi_routes();
1375 for (i = 0; i < 8; ++i) {
1376 if (i == 2) {
1377 continue;
1379 r = kvm_add_irq_route(i, KVM_IRQCHIP_PIC_MASTER, i);
1380 if (r < 0) {
1381 return r;
1384 for (i = 8; i < 16; ++i) {
1385 r = kvm_add_irq_route(i, KVM_IRQCHIP_PIC_SLAVE, i - 8);
1386 if (r < 0) {
1387 return r;
1390 for (i = 0; i < 24; ++i) {
1391 if (i == 0 && irq0override) {
1392 r = kvm_add_irq_route(i, KVM_IRQCHIP_IOAPIC, 2);
1393 } else if (i != 2 || !irq0override) {
1394 r = kvm_add_irq_route(i, KVM_IRQCHIP_IOAPIC, i);
1396 if (r < 0) {
1397 return r;
1400 kvm_commit_irq_routes();
1402 return 0;
1405 void kvm_arch_process_irqchip_events(CPUState *env)
1407 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1408 kvm_cpu_synchronize_state(env);
1409 do_cpu_init(env);
1411 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1412 kvm_cpu_synchronize_state(env);
1413 do_cpu_sipi(env);