Merge commit 'a4673e276248ada38f40d39191a197e7e35d3f8b' into upstream-merge
[qemu-kvm/stefanha.git] / exec.c
blobb0b41b0d469c3daf0bf8627cf57bb75a138eb69a
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "cache-utils.h"
39 #if !defined(TARGET_IA64)
40 #include "tcg.h"
41 #endif
42 #include "qemu-kvm.h"
44 #include "hw/hw.h"
45 #include "osdep.h"
46 #include "kvm.h"
47 #include "qemu-timer.h"
48 #if defined(CONFIG_USER_ONLY)
49 #include <qemu.h>
50 #include <signal.h>
51 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
52 #include <sys/param.h>
53 #if __FreeBSD_version >= 700104
54 #define HAVE_KINFO_GETVMMAP
55 #define sigqueue sigqueue_freebsd /* avoid redefinition */
56 #include <sys/time.h>
57 #include <sys/proc.h>
58 #include <machine/profile.h>
59 #define _KERNEL
60 #include <sys/user.h>
61 #undef _KERNEL
62 #undef sigqueue
63 #include <libutil.h>
64 #endif
65 #endif
66 #endif
68 //#define DEBUG_TB_INVALIDATE
69 //#define DEBUG_FLUSH
70 //#define DEBUG_TLB
71 //#define DEBUG_UNASSIGNED
73 /* make various TB consistency checks */
74 //#define DEBUG_TB_CHECK
75 //#define DEBUG_TLB_CHECK
77 //#define DEBUG_IOPORT
78 //#define DEBUG_SUBPAGE
80 #if !defined(CONFIG_USER_ONLY)
81 /* TB consistency checks only implemented for usermode emulation. */
82 #undef DEBUG_TB_CHECK
83 #endif
85 #define SMC_BITMAP_USE_THRESHOLD 10
87 static TranslationBlock *tbs;
88 int code_gen_max_blocks;
89 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
90 static int nb_tbs;
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101 #elif defined(_WIN32)
102 /* Maximum alignment for Win32 is 16. */
103 #define code_gen_section \
104 __attribute__((aligned (16)))
105 #else
106 #define code_gen_section \
107 __attribute__((aligned (32)))
108 #endif
110 uint8_t code_gen_prologue[1024] code_gen_section;
111 static uint8_t *code_gen_buffer;
112 static unsigned long code_gen_buffer_size;
113 /* threshold to flush the translated code buffer */
114 static unsigned long code_gen_buffer_max_size;
115 uint8_t *code_gen_ptr;
117 #if !defined(CONFIG_USER_ONLY)
118 int phys_ram_fd;
119 uint8_t *phys_ram_dirty;
120 static int in_migration;
122 typedef struct RAMBlock {
123 uint8_t *host;
124 ram_addr_t offset;
125 ram_addr_t length;
126 struct RAMBlock *next;
127 } RAMBlock;
129 static RAMBlock *ram_blocks;
130 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
131 then we can no longer assume contiguous ram offsets, and external uses
132 of this variable will break. */
133 ram_addr_t last_ram_offset;
134 #endif
136 CPUState *first_cpu;
137 /* current CPU in the current thread. It is only valid inside
138 cpu_exec() */
139 CPUState *cpu_single_env;
140 /* 0 = Do not count executed instructions.
141 1 = Precise instruction counting.
142 2 = Adaptive rate instruction counting. */
143 int use_icount = 0;
144 /* Current instruction counter. While executing translated code this may
145 include some instructions that have not yet been executed. */
146 int64_t qemu_icount;
148 typedef struct PageDesc {
149 /* list of TBs intersecting this ram page */
150 TranslationBlock *first_tb;
151 /* in order to optimize self modifying code, we count the number
152 of lookups we do to a given page to use a bitmap */
153 unsigned int code_write_count;
154 uint8_t *code_bitmap;
155 #if defined(CONFIG_USER_ONLY)
156 unsigned long flags;
157 #endif
158 } PageDesc;
160 /* In system mode we want L1_MAP to be based on ram offsets,
161 while in user mode we want it to be based on virtual addresses. */
162 #if !defined(CONFIG_USER_ONLY)
163 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
164 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
165 #else
166 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
167 #endif
168 #else
169 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
170 #endif
172 /* Size of the L2 (and L3, etc) page tables. */
173 #define L2_BITS 10
174 #define L2_SIZE (1 << L2_BITS)
176 /* The bits remaining after N lower levels of page tables. */
177 #define P_L1_BITS_REM \
178 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
179 #define V_L1_BITS_REM \
180 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
182 /* Size of the L1 page table. Avoid silly small sizes. */
183 #if P_L1_BITS_REM < 4
184 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
185 #else
186 #define P_L1_BITS P_L1_BITS_REM
187 #endif
189 #if V_L1_BITS_REM < 4
190 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
191 #else
192 #define V_L1_BITS V_L1_BITS_REM
193 #endif
195 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
196 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
198 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
199 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
201 unsigned long qemu_real_host_page_size;
202 unsigned long qemu_host_page_bits;
203 unsigned long qemu_host_page_size;
204 unsigned long qemu_host_page_mask;
206 /* This is a multi-level map on the virtual address space.
207 The bottom level has pointers to PageDesc. */
208 static void *l1_map[V_L1_SIZE];
210 #if !defined(CONFIG_USER_ONLY)
211 typedef struct PhysPageDesc {
212 /* offset in host memory of the page + io_index in the low bits */
213 ram_addr_t phys_offset;
214 ram_addr_t region_offset;
215 } PhysPageDesc;
217 /* This is a multi-level map on the physical address space.
218 The bottom level has pointers to PhysPageDesc. */
219 static void *l1_phys_map[P_L1_SIZE];
221 static void io_mem_init(void);
223 /* io memory support */
224 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
225 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
226 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
227 static char io_mem_used[IO_MEM_NB_ENTRIES];
228 static int io_mem_watch;
229 #endif
231 /* log support */
232 #ifdef WIN32
233 static const char *logfilename = "qemu.log";
234 #else
235 static const char *logfilename = "/tmp/qemu.log";
236 #endif
237 FILE *logfile;
238 int loglevel;
239 static int log_append = 0;
241 /* statistics */
242 #if !defined(CONFIG_USER_ONLY)
243 static int tlb_flush_count;
244 #endif
245 static int tb_flush_count;
246 static int tb_phys_invalidate_count;
248 #ifdef _WIN32
249 static void map_exec(void *addr, long size)
251 DWORD old_protect;
252 VirtualProtect(addr, size,
253 PAGE_EXECUTE_READWRITE, &old_protect);
256 #else
257 static void map_exec(void *addr, long size)
259 unsigned long start, end, page_size;
261 page_size = getpagesize();
262 start = (unsigned long)addr;
263 start &= ~(page_size - 1);
265 end = (unsigned long)addr + size;
266 end += page_size - 1;
267 end &= ~(page_size - 1);
269 mprotect((void *)start, end - start,
270 PROT_READ | PROT_WRITE | PROT_EXEC);
272 #endif
274 static void page_init(void)
276 /* NOTE: we can always suppose that qemu_host_page_size >=
277 TARGET_PAGE_SIZE */
278 #ifdef _WIN32
280 SYSTEM_INFO system_info;
282 GetSystemInfo(&system_info);
283 qemu_real_host_page_size = system_info.dwPageSize;
285 #else
286 qemu_real_host_page_size = getpagesize();
287 #endif
288 if (qemu_host_page_size == 0)
289 qemu_host_page_size = qemu_real_host_page_size;
290 if (qemu_host_page_size < TARGET_PAGE_SIZE)
291 qemu_host_page_size = TARGET_PAGE_SIZE;
292 qemu_host_page_bits = 0;
293 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
294 qemu_host_page_bits++;
295 qemu_host_page_mask = ~(qemu_host_page_size - 1);
297 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
299 #ifdef HAVE_KINFO_GETVMMAP
300 struct kinfo_vmentry *freep;
301 int i, cnt;
303 freep = kinfo_getvmmap(getpid(), &cnt);
304 if (freep) {
305 mmap_lock();
306 for (i = 0; i < cnt; i++) {
307 unsigned long startaddr, endaddr;
309 startaddr = freep[i].kve_start;
310 endaddr = freep[i].kve_end;
311 if (h2g_valid(startaddr)) {
312 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
314 if (h2g_valid(endaddr)) {
315 endaddr = h2g(endaddr);
316 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
317 } else {
318 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
319 endaddr = ~0ul;
320 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
321 #endif
325 free(freep);
326 mmap_unlock();
328 #else
329 FILE *f;
331 last_brk = (unsigned long)sbrk(0);
333 f = fopen("/compat/linux/proc/self/maps", "r");
334 if (f) {
335 mmap_lock();
337 do {
338 unsigned long startaddr, endaddr;
339 int n;
341 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
343 if (n == 2 && h2g_valid(startaddr)) {
344 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
346 if (h2g_valid(endaddr)) {
347 endaddr = h2g(endaddr);
348 } else {
349 endaddr = ~0ul;
351 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
353 } while (!feof(f));
355 fclose(f);
356 mmap_unlock();
358 #endif
360 #endif
363 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
365 PageDesc *pd;
366 void **lp;
367 int i;
369 #if defined(CONFIG_USER_ONLY)
370 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
371 # define ALLOC(P, SIZE) \
372 do { \
373 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
374 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
375 } while (0)
376 #else
377 # define ALLOC(P, SIZE) \
378 do { P = qemu_mallocz(SIZE); } while (0)
379 #endif
381 /* Level 1. Always allocated. */
382 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
384 /* Level 2..N-1. */
385 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
386 void **p = *lp;
388 if (p == NULL) {
389 if (!alloc) {
390 return NULL;
392 ALLOC(p, sizeof(void *) * L2_SIZE);
393 *lp = p;
396 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
399 pd = *lp;
400 if (pd == NULL) {
401 if (!alloc) {
402 return NULL;
404 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
405 *lp = pd;
408 #undef ALLOC
410 return pd + (index & (L2_SIZE - 1));
413 static inline PageDesc *page_find(tb_page_addr_t index)
415 return page_find_alloc(index, 0);
418 #if !defined(CONFIG_USER_ONLY)
419 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
421 PhysPageDesc *pd;
422 void **lp;
423 int i;
425 /* Level 1. Always allocated. */
426 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
428 /* Level 2..N-1. */
429 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
430 void **p = *lp;
431 if (p == NULL) {
432 if (!alloc) {
433 return NULL;
435 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
437 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
440 pd = *lp;
441 if (pd == NULL) {
442 int i;
444 if (!alloc) {
445 return NULL;
448 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
450 for (i = 0; i < L2_SIZE; i++) {
451 pd[i].phys_offset = IO_MEM_UNASSIGNED;
452 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
456 return pd + (index & (L2_SIZE - 1));
459 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
461 return phys_page_find_alloc(index, 0);
464 static void tlb_protect_code(ram_addr_t ram_addr);
465 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
466 target_ulong vaddr);
467 #define mmap_lock() do { } while(0)
468 #define mmap_unlock() do { } while(0)
469 #endif
471 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
473 #if defined(CONFIG_USER_ONLY)
474 /* Currently it is not recommended to allocate big chunks of data in
475 user mode. It will change when a dedicated libc will be used */
476 #define USE_STATIC_CODE_GEN_BUFFER
477 #endif
479 #ifdef USE_STATIC_CODE_GEN_BUFFER
480 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
481 __attribute__((aligned (CODE_GEN_ALIGN)));
482 #endif
484 static void code_gen_alloc(unsigned long tb_size)
486 if (kvm_enabled())
487 return;
489 #ifdef USE_STATIC_CODE_GEN_BUFFER
490 code_gen_buffer = static_code_gen_buffer;
491 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
492 map_exec(code_gen_buffer, code_gen_buffer_size);
493 #else
494 code_gen_buffer_size = tb_size;
495 if (code_gen_buffer_size == 0) {
496 #if defined(CONFIG_USER_ONLY)
497 /* in user mode, phys_ram_size is not meaningful */
498 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
499 #else
500 /* XXX: needs adjustments */
501 code_gen_buffer_size = (unsigned long)(ram_size / 4);
502 #endif
504 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
505 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
506 /* The code gen buffer location may have constraints depending on
507 the host cpu and OS */
508 #if defined(__linux__)
510 int flags;
511 void *start = NULL;
513 flags = MAP_PRIVATE | MAP_ANONYMOUS;
514 #if defined(__x86_64__)
515 flags |= MAP_32BIT;
516 /* Cannot map more than that */
517 if (code_gen_buffer_size > (800 * 1024 * 1024))
518 code_gen_buffer_size = (800 * 1024 * 1024);
519 #elif defined(__sparc_v9__)
520 // Map the buffer below 2G, so we can use direct calls and branches
521 flags |= MAP_FIXED;
522 start = (void *) 0x60000000UL;
523 if (code_gen_buffer_size > (512 * 1024 * 1024))
524 code_gen_buffer_size = (512 * 1024 * 1024);
525 #elif defined(__arm__)
526 /* Map the buffer below 32M, so we can use direct calls and branches */
527 flags |= MAP_FIXED;
528 start = (void *) 0x01000000UL;
529 if (code_gen_buffer_size > 16 * 1024 * 1024)
530 code_gen_buffer_size = 16 * 1024 * 1024;
531 #elif defined(__s390x__)
532 /* Map the buffer so that we can use direct calls and branches. */
533 /* We have a +- 4GB range on the branches; leave some slop. */
534 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
535 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
537 start = (void *)0x90000000UL;
538 #endif
539 code_gen_buffer = mmap(start, code_gen_buffer_size,
540 PROT_WRITE | PROT_READ | PROT_EXEC,
541 flags, -1, 0);
542 if (code_gen_buffer == MAP_FAILED) {
543 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
544 exit(1);
547 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
549 int flags;
550 void *addr = NULL;
551 flags = MAP_PRIVATE | MAP_ANONYMOUS;
552 #if defined(__x86_64__)
553 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
554 * 0x40000000 is free */
555 flags |= MAP_FIXED;
556 addr = (void *)0x40000000;
557 /* Cannot map more than that */
558 if (code_gen_buffer_size > (800 * 1024 * 1024))
559 code_gen_buffer_size = (800 * 1024 * 1024);
560 #endif
561 code_gen_buffer = mmap(addr, code_gen_buffer_size,
562 PROT_WRITE | PROT_READ | PROT_EXEC,
563 flags, -1, 0);
564 if (code_gen_buffer == MAP_FAILED) {
565 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
566 exit(1);
569 #else
570 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
571 map_exec(code_gen_buffer, code_gen_buffer_size);
572 #endif
573 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
574 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
575 code_gen_buffer_max_size = code_gen_buffer_size -
576 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
577 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
578 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
581 /* Must be called before using the QEMU cpus. 'tb_size' is the size
582 (in bytes) allocated to the translation buffer. Zero means default
583 size. */
584 void cpu_exec_init_all(unsigned long tb_size)
586 cpu_gen_init();
587 code_gen_alloc(tb_size);
588 code_gen_ptr = code_gen_buffer;
589 page_init();
590 #if !defined(CONFIG_USER_ONLY)
591 io_mem_init();
592 #endif
593 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
594 /* There's no guest base to take into account, so go ahead and
595 initialize the prologue now. */
596 tcg_prologue_init(&tcg_ctx);
597 #endif
600 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
602 static int cpu_common_post_load(void *opaque, int version_id)
604 CPUState *env = opaque;
606 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
607 version_id is increased. */
608 env->interrupt_request &= ~0x01;
609 tlb_flush(env, 1);
611 return 0;
614 static const VMStateDescription vmstate_cpu_common = {
615 .name = "cpu_common",
616 .version_id = 1,
617 .minimum_version_id = 1,
618 .minimum_version_id_old = 1,
619 .post_load = cpu_common_post_load,
620 .fields = (VMStateField []) {
621 VMSTATE_UINT32(halted, CPUState),
622 VMSTATE_UINT32(interrupt_request, CPUState),
623 VMSTATE_END_OF_LIST()
626 #endif
628 CPUState *qemu_get_cpu(int cpu)
630 CPUState *env = first_cpu;
632 while (env) {
633 if (env->cpu_index == cpu)
634 break;
635 env = env->next_cpu;
638 return env;
641 void cpu_exec_init(CPUState *env)
643 CPUState **penv;
644 int cpu_index;
646 #if defined(CONFIG_USER_ONLY)
647 cpu_list_lock();
648 #endif
649 env->next_cpu = NULL;
650 penv = &first_cpu;
651 cpu_index = 0;
652 while (*penv != NULL) {
653 penv = &(*penv)->next_cpu;
654 cpu_index++;
656 env->cpu_index = cpu_index;
657 env->numa_node = 0;
658 QTAILQ_INIT(&env->breakpoints);
659 QTAILQ_INIT(&env->watchpoints);
660 #ifdef __WIN32
661 env->thread_id = GetCurrentProcessId();
662 #else
663 env->thread_id = getpid();
664 #endif
665 *penv = env;
666 #if defined(CONFIG_USER_ONLY)
667 cpu_list_unlock();
668 #endif
669 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
670 vmstate_register(cpu_index, &vmstate_cpu_common, env);
671 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
672 cpu_save, cpu_load, env);
673 #endif
676 static inline void invalidate_page_bitmap(PageDesc *p)
678 if (p->code_bitmap) {
679 qemu_free(p->code_bitmap);
680 p->code_bitmap = NULL;
682 p->code_write_count = 0;
685 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
687 static void page_flush_tb_1 (int level, void **lp)
689 int i;
691 if (*lp == NULL) {
692 return;
694 if (level == 0) {
695 PageDesc *pd = *lp;
696 for (i = 0; i < L2_SIZE; ++i) {
697 pd[i].first_tb = NULL;
698 invalidate_page_bitmap(pd + i);
700 } else {
701 void **pp = *lp;
702 for (i = 0; i < L2_SIZE; ++i) {
703 page_flush_tb_1 (level - 1, pp + i);
708 static void page_flush_tb(void)
710 int i;
711 for (i = 0; i < V_L1_SIZE; i++) {
712 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
716 /* flush all the translation blocks */
717 /* XXX: tb_flush is currently not thread safe */
718 void tb_flush(CPUState *env1)
720 CPUState *env;
721 #if defined(DEBUG_FLUSH)
722 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
723 (unsigned long)(code_gen_ptr - code_gen_buffer),
724 nb_tbs, nb_tbs > 0 ?
725 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
726 #endif
727 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
728 cpu_abort(env1, "Internal error: code buffer overflow\n");
730 nb_tbs = 0;
732 for(env = first_cpu; env != NULL; env = env->next_cpu) {
733 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
736 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
737 page_flush_tb();
739 code_gen_ptr = code_gen_buffer;
740 /* XXX: flush processor icache at this point if cache flush is
741 expensive */
742 tb_flush_count++;
745 #ifdef DEBUG_TB_CHECK
747 static void tb_invalidate_check(target_ulong address)
749 TranslationBlock *tb;
750 int i;
751 address &= TARGET_PAGE_MASK;
752 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
753 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
754 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
755 address >= tb->pc + tb->size)) {
756 printf("ERROR invalidate: address=" TARGET_FMT_lx
757 " PC=%08lx size=%04x\n",
758 address, (long)tb->pc, tb->size);
764 /* verify that all the pages have correct rights for code */
765 static void tb_page_check(void)
767 TranslationBlock *tb;
768 int i, flags1, flags2;
770 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
771 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
772 flags1 = page_get_flags(tb->pc);
773 flags2 = page_get_flags(tb->pc + tb->size - 1);
774 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
775 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
776 (long)tb->pc, tb->size, flags1, flags2);
782 #endif
784 /* invalidate one TB */
785 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
786 int next_offset)
788 TranslationBlock *tb1;
789 for(;;) {
790 tb1 = *ptb;
791 if (tb1 == tb) {
792 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
793 break;
795 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
799 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
801 TranslationBlock *tb1;
802 unsigned int n1;
804 for(;;) {
805 tb1 = *ptb;
806 n1 = (long)tb1 & 3;
807 tb1 = (TranslationBlock *)((long)tb1 & ~3);
808 if (tb1 == tb) {
809 *ptb = tb1->page_next[n1];
810 break;
812 ptb = &tb1->page_next[n1];
816 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
818 TranslationBlock *tb1, **ptb;
819 unsigned int n1;
821 ptb = &tb->jmp_next[n];
822 tb1 = *ptb;
823 if (tb1) {
824 /* find tb(n) in circular list */
825 for(;;) {
826 tb1 = *ptb;
827 n1 = (long)tb1 & 3;
828 tb1 = (TranslationBlock *)((long)tb1 & ~3);
829 if (n1 == n && tb1 == tb)
830 break;
831 if (n1 == 2) {
832 ptb = &tb1->jmp_first;
833 } else {
834 ptb = &tb1->jmp_next[n1];
837 /* now we can suppress tb(n) from the list */
838 *ptb = tb->jmp_next[n];
840 tb->jmp_next[n] = NULL;
844 /* reset the jump entry 'n' of a TB so that it is not chained to
845 another TB */
846 static inline void tb_reset_jump(TranslationBlock *tb, int n)
848 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
851 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
853 CPUState *env;
854 PageDesc *p;
855 unsigned int h, n1;
856 tb_page_addr_t phys_pc;
857 TranslationBlock *tb1, *tb2;
859 /* remove the TB from the hash list */
860 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
861 h = tb_phys_hash_func(phys_pc);
862 tb_remove(&tb_phys_hash[h], tb,
863 offsetof(TranslationBlock, phys_hash_next));
865 /* remove the TB from the page list */
866 if (tb->page_addr[0] != page_addr) {
867 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
868 tb_page_remove(&p->first_tb, tb);
869 invalidate_page_bitmap(p);
871 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
872 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
877 tb_invalidated_flag = 1;
879 /* remove the TB from the hash list */
880 h = tb_jmp_cache_hash_func(tb->pc);
881 for(env = first_cpu; env != NULL; env = env->next_cpu) {
882 if (env->tb_jmp_cache[h] == tb)
883 env->tb_jmp_cache[h] = NULL;
886 /* suppress this TB from the two jump lists */
887 tb_jmp_remove(tb, 0);
888 tb_jmp_remove(tb, 1);
890 /* suppress any remaining jumps to this TB */
891 tb1 = tb->jmp_first;
892 for(;;) {
893 n1 = (long)tb1 & 3;
894 if (n1 == 2)
895 break;
896 tb1 = (TranslationBlock *)((long)tb1 & ~3);
897 tb2 = tb1->jmp_next[n1];
898 tb_reset_jump(tb1, n1);
899 tb1->jmp_next[n1] = NULL;
900 tb1 = tb2;
902 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
904 tb_phys_invalidate_count++;
907 static inline void set_bits(uint8_t *tab, int start, int len)
909 int end, mask, end1;
911 end = start + len;
912 tab += start >> 3;
913 mask = 0xff << (start & 7);
914 if ((start & ~7) == (end & ~7)) {
915 if (start < end) {
916 mask &= ~(0xff << (end & 7));
917 *tab |= mask;
919 } else {
920 *tab++ |= mask;
921 start = (start + 8) & ~7;
922 end1 = end & ~7;
923 while (start < end1) {
924 *tab++ = 0xff;
925 start += 8;
927 if (start < end) {
928 mask = ~(0xff << (end & 7));
929 *tab |= mask;
934 static void build_page_bitmap(PageDesc *p)
936 int n, tb_start, tb_end;
937 TranslationBlock *tb;
939 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
941 tb = p->first_tb;
942 while (tb != NULL) {
943 n = (long)tb & 3;
944 tb = (TranslationBlock *)((long)tb & ~3);
945 /* NOTE: this is subtle as a TB may span two physical pages */
946 if (n == 0) {
947 /* NOTE: tb_end may be after the end of the page, but
948 it is not a problem */
949 tb_start = tb->pc & ~TARGET_PAGE_MASK;
950 tb_end = tb_start + tb->size;
951 if (tb_end > TARGET_PAGE_SIZE)
952 tb_end = TARGET_PAGE_SIZE;
953 } else {
954 tb_start = 0;
955 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
957 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
958 tb = tb->page_next[n];
962 TranslationBlock *tb_gen_code(CPUState *env,
963 target_ulong pc, target_ulong cs_base,
964 int flags, int cflags)
966 TranslationBlock *tb;
967 uint8_t *tc_ptr;
968 tb_page_addr_t phys_pc, phys_page2;
969 target_ulong virt_page2;
970 int code_gen_size;
972 phys_pc = get_page_addr_code(env, pc);
973 tb = tb_alloc(pc);
974 if (!tb) {
975 /* flush must be done */
976 tb_flush(env);
977 /* cannot fail at this point */
978 tb = tb_alloc(pc);
979 /* Don't forget to invalidate previous TB info. */
980 tb_invalidated_flag = 1;
982 tc_ptr = code_gen_ptr;
983 tb->tc_ptr = tc_ptr;
984 tb->cs_base = cs_base;
985 tb->flags = flags;
986 tb->cflags = cflags;
987 cpu_gen_code(env, tb, &code_gen_size);
988 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
990 /* check next page if needed */
991 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
992 phys_page2 = -1;
993 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
994 phys_page2 = get_page_addr_code(env, virt_page2);
996 tb_link_page(tb, phys_pc, phys_page2);
997 return tb;
1000 /* invalidate all TBs which intersect with the target physical page
1001 starting in range [start;end[. NOTE: start and end must refer to
1002 the same physical page. 'is_cpu_write_access' should be true if called
1003 from a real cpu write access: the virtual CPU will exit the current
1004 TB if code is modified inside this TB. */
1005 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1006 int is_cpu_write_access)
1008 TranslationBlock *tb, *tb_next, *saved_tb;
1009 CPUState *env = cpu_single_env;
1010 tb_page_addr_t tb_start, tb_end;
1011 PageDesc *p;
1012 int n;
1013 #ifdef TARGET_HAS_PRECISE_SMC
1014 int current_tb_not_found = is_cpu_write_access;
1015 TranslationBlock *current_tb = NULL;
1016 int current_tb_modified = 0;
1017 target_ulong current_pc = 0;
1018 target_ulong current_cs_base = 0;
1019 int current_flags = 0;
1020 #endif /* TARGET_HAS_PRECISE_SMC */
1022 p = page_find(start >> TARGET_PAGE_BITS);
1023 if (!p)
1024 return;
1025 if (!p->code_bitmap &&
1026 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1027 is_cpu_write_access) {
1028 /* build code bitmap */
1029 build_page_bitmap(p);
1032 /* we remove all the TBs in the range [start, end[ */
1033 /* XXX: see if in some cases it could be faster to invalidate all the code */
1034 tb = p->first_tb;
1035 while (tb != NULL) {
1036 n = (long)tb & 3;
1037 tb = (TranslationBlock *)((long)tb & ~3);
1038 tb_next = tb->page_next[n];
1039 /* NOTE: this is subtle as a TB may span two physical pages */
1040 if (n == 0) {
1041 /* NOTE: tb_end may be after the end of the page, but
1042 it is not a problem */
1043 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1044 tb_end = tb_start + tb->size;
1045 } else {
1046 tb_start = tb->page_addr[1];
1047 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1049 if (!(tb_end <= start || tb_start >= end)) {
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 if (current_tb_not_found) {
1052 current_tb_not_found = 0;
1053 current_tb = NULL;
1054 if (env->mem_io_pc) {
1055 /* now we have a real cpu fault */
1056 current_tb = tb_find_pc(env->mem_io_pc);
1059 if (current_tb == tb &&
1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
1067 current_tb_modified = 1;
1068 cpu_restore_state(current_tb, env,
1069 env->mem_io_pc, NULL);
1070 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1071 &current_flags);
1073 #endif /* TARGET_HAS_PRECISE_SMC */
1074 /* we need to do that to handle the case where a signal
1075 occurs while doing tb_phys_invalidate() */
1076 saved_tb = NULL;
1077 if (env) {
1078 saved_tb = env->current_tb;
1079 env->current_tb = NULL;
1081 tb_phys_invalidate(tb, -1);
1082 if (env) {
1083 env->current_tb = saved_tb;
1084 if (env->interrupt_request && env->current_tb)
1085 cpu_interrupt(env, env->interrupt_request);
1088 tb = tb_next;
1090 #if !defined(CONFIG_USER_ONLY)
1091 /* if no code remaining, no need to continue to use slow writes */
1092 if (!p->first_tb) {
1093 invalidate_page_bitmap(p);
1094 if (is_cpu_write_access) {
1095 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1098 #endif
1099 #ifdef TARGET_HAS_PRECISE_SMC
1100 if (current_tb_modified) {
1101 /* we generate a block containing just the instruction
1102 modifying the memory. It will ensure that it cannot modify
1103 itself */
1104 env->current_tb = NULL;
1105 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1106 cpu_resume_from_signal(env, NULL);
1108 #endif
1111 /* len must be <= 8 and start must be a multiple of len */
1112 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1114 PageDesc *p;
1115 int offset, b;
1116 #if 0
1117 if (1) {
1118 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1119 cpu_single_env->mem_io_vaddr, len,
1120 cpu_single_env->eip,
1121 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1123 #endif
1124 p = page_find(start >> TARGET_PAGE_BITS);
1125 if (!p)
1126 return;
1127 if (p->code_bitmap) {
1128 offset = start & ~TARGET_PAGE_MASK;
1129 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1130 if (b & ((1 << len) - 1))
1131 goto do_invalidate;
1132 } else {
1133 do_invalidate:
1134 tb_invalidate_phys_page_range(start, start + len, 1);
1138 #if !defined(CONFIG_SOFTMMU)
1139 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1140 unsigned long pc, void *puc)
1142 TranslationBlock *tb;
1143 PageDesc *p;
1144 int n;
1145 #ifdef TARGET_HAS_PRECISE_SMC
1146 TranslationBlock *current_tb = NULL;
1147 CPUState *env = cpu_single_env;
1148 int current_tb_modified = 0;
1149 target_ulong current_pc = 0;
1150 target_ulong current_cs_base = 0;
1151 int current_flags = 0;
1152 #endif
1154 addr &= TARGET_PAGE_MASK;
1155 p = page_find(addr >> TARGET_PAGE_BITS);
1156 if (!p)
1157 return;
1158 tb = p->first_tb;
1159 #ifdef TARGET_HAS_PRECISE_SMC
1160 if (tb && pc != 0) {
1161 current_tb = tb_find_pc(pc);
1163 #endif
1164 while (tb != NULL) {
1165 n = (long)tb & 3;
1166 tb = (TranslationBlock *)((long)tb & ~3);
1167 #ifdef TARGET_HAS_PRECISE_SMC
1168 if (current_tb == tb &&
1169 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1170 /* If we are modifying the current TB, we must stop
1171 its execution. We could be more precise by checking
1172 that the modification is after the current PC, but it
1173 would require a specialized function to partially
1174 restore the CPU state */
1176 current_tb_modified = 1;
1177 cpu_restore_state(current_tb, env, pc, puc);
1178 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1179 &current_flags);
1181 #endif /* TARGET_HAS_PRECISE_SMC */
1182 tb_phys_invalidate(tb, addr);
1183 tb = tb->page_next[n];
1185 p->first_tb = NULL;
1186 #ifdef TARGET_HAS_PRECISE_SMC
1187 if (current_tb_modified) {
1188 /* we generate a block containing just the instruction
1189 modifying the memory. It will ensure that it cannot modify
1190 itself */
1191 env->current_tb = NULL;
1192 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1193 cpu_resume_from_signal(env, puc);
1195 #endif
1197 #endif
1199 /* add the tb in the target page and protect it if necessary */
1200 static inline void tb_alloc_page(TranslationBlock *tb,
1201 unsigned int n, tb_page_addr_t page_addr)
1203 PageDesc *p;
1204 TranslationBlock *last_first_tb;
1206 tb->page_addr[n] = page_addr;
1207 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1208 tb->page_next[n] = p->first_tb;
1209 last_first_tb = p->first_tb;
1210 p->first_tb = (TranslationBlock *)((long)tb | n);
1211 invalidate_page_bitmap(p);
1213 #if defined(TARGET_HAS_SMC) || 1
1215 #if defined(CONFIG_USER_ONLY)
1216 if (p->flags & PAGE_WRITE) {
1217 target_ulong addr;
1218 PageDesc *p2;
1219 int prot;
1221 /* force the host page as non writable (writes will have a
1222 page fault + mprotect overhead) */
1223 page_addr &= qemu_host_page_mask;
1224 prot = 0;
1225 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1226 addr += TARGET_PAGE_SIZE) {
1228 p2 = page_find (addr >> TARGET_PAGE_BITS);
1229 if (!p2)
1230 continue;
1231 prot |= p2->flags;
1232 p2->flags &= ~PAGE_WRITE;
1234 mprotect(g2h(page_addr), qemu_host_page_size,
1235 (prot & PAGE_BITS) & ~PAGE_WRITE);
1236 #ifdef DEBUG_TB_INVALIDATE
1237 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1238 page_addr);
1239 #endif
1241 #else
1242 /* if some code is already present, then the pages are already
1243 protected. So we handle the case where only the first TB is
1244 allocated in a physical page */
1245 if (!last_first_tb) {
1246 tlb_protect_code(page_addr);
1248 #endif
1250 #endif /* TARGET_HAS_SMC */
1253 /* Allocate a new translation block. Flush the translation buffer if
1254 too many translation blocks or too much generated code. */
1255 TranslationBlock *tb_alloc(target_ulong pc)
1257 TranslationBlock *tb;
1259 if (nb_tbs >= code_gen_max_blocks ||
1260 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1261 return NULL;
1262 tb = &tbs[nb_tbs++];
1263 tb->pc = pc;
1264 tb->cflags = 0;
1265 return tb;
1268 void tb_free(TranslationBlock *tb)
1270 /* In practice this is mostly used for single use temporary TB
1271 Ignore the hard cases and just back up if this TB happens to
1272 be the last one generated. */
1273 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1274 code_gen_ptr = tb->tc_ptr;
1275 nb_tbs--;
1279 /* add a new TB and link it to the physical page tables. phys_page2 is
1280 (-1) to indicate that only one page contains the TB. */
1281 void tb_link_page(TranslationBlock *tb,
1282 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1284 unsigned int h;
1285 TranslationBlock **ptb;
1287 /* Grab the mmap lock to stop another thread invalidating this TB
1288 before we are done. */
1289 mmap_lock();
1290 /* add in the physical hash table */
1291 h = tb_phys_hash_func(phys_pc);
1292 ptb = &tb_phys_hash[h];
1293 tb->phys_hash_next = *ptb;
1294 *ptb = tb;
1296 /* add in the page list */
1297 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1298 if (phys_page2 != -1)
1299 tb_alloc_page(tb, 1, phys_page2);
1300 else
1301 tb->page_addr[1] = -1;
1303 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1304 tb->jmp_next[0] = NULL;
1305 tb->jmp_next[1] = NULL;
1307 /* init original jump addresses */
1308 if (tb->tb_next_offset[0] != 0xffff)
1309 tb_reset_jump(tb, 0);
1310 if (tb->tb_next_offset[1] != 0xffff)
1311 tb_reset_jump(tb, 1);
1313 #ifdef DEBUG_TB_CHECK
1314 tb_page_check();
1315 #endif
1316 mmap_unlock();
1319 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1320 tb[1].tc_ptr. Return NULL if not found */
1321 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1323 int m_min, m_max, m;
1324 unsigned long v;
1325 TranslationBlock *tb;
1327 if (nb_tbs <= 0)
1328 return NULL;
1329 if (tc_ptr < (unsigned long)code_gen_buffer ||
1330 tc_ptr >= (unsigned long)code_gen_ptr)
1331 return NULL;
1332 /* binary search (cf Knuth) */
1333 m_min = 0;
1334 m_max = nb_tbs - 1;
1335 while (m_min <= m_max) {
1336 m = (m_min + m_max) >> 1;
1337 tb = &tbs[m];
1338 v = (unsigned long)tb->tc_ptr;
1339 if (v == tc_ptr)
1340 return tb;
1341 else if (tc_ptr < v) {
1342 m_max = m - 1;
1343 } else {
1344 m_min = m + 1;
1347 return &tbs[m_max];
1350 static void tb_reset_jump_recursive(TranslationBlock *tb);
1352 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1354 TranslationBlock *tb1, *tb_next, **ptb;
1355 unsigned int n1;
1357 tb1 = tb->jmp_next[n];
1358 if (tb1 != NULL) {
1359 /* find head of list */
1360 for(;;) {
1361 n1 = (long)tb1 & 3;
1362 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1363 if (n1 == 2)
1364 break;
1365 tb1 = tb1->jmp_next[n1];
1367 /* we are now sure now that tb jumps to tb1 */
1368 tb_next = tb1;
1370 /* remove tb from the jmp_first list */
1371 ptb = &tb_next->jmp_first;
1372 for(;;) {
1373 tb1 = *ptb;
1374 n1 = (long)tb1 & 3;
1375 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1376 if (n1 == n && tb1 == tb)
1377 break;
1378 ptb = &tb1->jmp_next[n1];
1380 *ptb = tb->jmp_next[n];
1381 tb->jmp_next[n] = NULL;
1383 /* suppress the jump to next tb in generated code */
1384 tb_reset_jump(tb, n);
1386 /* suppress jumps in the tb on which we could have jumped */
1387 tb_reset_jump_recursive(tb_next);
1391 static void tb_reset_jump_recursive(TranslationBlock *tb)
1393 tb_reset_jump_recursive2(tb, 0);
1394 tb_reset_jump_recursive2(tb, 1);
1397 #if defined(TARGET_HAS_ICE)
1398 #if defined(CONFIG_USER_ONLY)
1399 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1401 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1403 #else
1404 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1406 target_phys_addr_t addr;
1407 target_ulong pd;
1408 ram_addr_t ram_addr;
1409 PhysPageDesc *p;
1411 addr = cpu_get_phys_page_debug(env, pc);
1412 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1413 if (!p) {
1414 pd = IO_MEM_UNASSIGNED;
1415 } else {
1416 pd = p->phys_offset;
1418 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1419 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1421 #endif
1422 #endif /* TARGET_HAS_ICE */
1424 #if defined(CONFIG_USER_ONLY)
1425 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1430 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1431 int flags, CPUWatchpoint **watchpoint)
1433 return -ENOSYS;
1435 #else
1436 /* Add a watchpoint. */
1437 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags, CPUWatchpoint **watchpoint)
1440 target_ulong len_mask = ~(len - 1);
1441 CPUWatchpoint *wp;
1443 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1444 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1445 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1446 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1447 return -EINVAL;
1449 wp = qemu_malloc(sizeof(*wp));
1451 wp->vaddr = addr;
1452 wp->len_mask = len_mask;
1453 wp->flags = flags;
1455 /* keep all GDB-injected watchpoints in front */
1456 if (flags & BP_GDB)
1457 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1458 else
1459 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1461 tlb_flush_page(env, addr);
1463 if (watchpoint)
1464 *watchpoint = wp;
1465 return 0;
1468 /* Remove a specific watchpoint. */
1469 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1470 int flags)
1472 target_ulong len_mask = ~(len - 1);
1473 CPUWatchpoint *wp;
1475 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1476 if (addr == wp->vaddr && len_mask == wp->len_mask
1477 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1478 cpu_watchpoint_remove_by_ref(env, wp);
1479 return 0;
1482 return -ENOENT;
1485 /* Remove a specific watchpoint by reference. */
1486 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1488 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1490 tlb_flush_page(env, watchpoint->vaddr);
1492 qemu_free(watchpoint);
1495 /* Remove all matching watchpoints. */
1496 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1498 CPUWatchpoint *wp, *next;
1500 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1501 if (wp->flags & mask)
1502 cpu_watchpoint_remove_by_ref(env, wp);
1505 #endif
1507 /* Add a breakpoint. */
1508 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1509 CPUBreakpoint **breakpoint)
1511 #if defined(TARGET_HAS_ICE)
1512 CPUBreakpoint *bp;
1514 bp = qemu_malloc(sizeof(*bp));
1516 bp->pc = pc;
1517 bp->flags = flags;
1519 /* keep all GDB-injected breakpoints in front */
1520 if (flags & BP_GDB)
1521 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1522 else
1523 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1525 breakpoint_invalidate(env, pc);
1527 if (breakpoint)
1528 *breakpoint = bp;
1529 return 0;
1530 #else
1531 return -ENOSYS;
1532 #endif
1535 /* Remove a specific breakpoint. */
1536 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1538 #if defined(TARGET_HAS_ICE)
1539 CPUBreakpoint *bp;
1541 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1542 if (bp->pc == pc && bp->flags == flags) {
1543 cpu_breakpoint_remove_by_ref(env, bp);
1544 return 0;
1547 return -ENOENT;
1548 #else
1549 return -ENOSYS;
1550 #endif
1553 /* Remove a specific breakpoint by reference. */
1554 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1556 #if defined(TARGET_HAS_ICE)
1557 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1559 breakpoint_invalidate(env, breakpoint->pc);
1561 qemu_free(breakpoint);
1562 #endif
1565 /* Remove all matching breakpoints. */
1566 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1568 #if defined(TARGET_HAS_ICE)
1569 CPUBreakpoint *bp, *next;
1571 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1572 if (bp->flags & mask)
1573 cpu_breakpoint_remove_by_ref(env, bp);
1575 #endif
1578 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1579 CPU loop after each instruction */
1580 void cpu_single_step(CPUState *env, int enabled)
1582 #if defined(TARGET_HAS_ICE)
1583 if (env->singlestep_enabled != enabled) {
1584 env->singlestep_enabled = enabled;
1585 if (kvm_enabled())
1586 kvm_update_guest_debug(env, 0);
1587 else {
1588 /* must flush all the translated code to avoid inconsistencies */
1589 /* XXX: only flush what is necessary */
1590 tb_flush(env);
1593 #endif
1596 /* enable or disable low levels log */
1597 void cpu_set_log(int log_flags)
1599 loglevel = log_flags;
1600 if (loglevel && !logfile) {
1601 logfile = fopen(logfilename, log_append ? "a" : "w");
1602 if (!logfile) {
1603 perror(logfilename);
1604 _exit(1);
1606 #if !defined(CONFIG_SOFTMMU)
1607 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1609 static char logfile_buf[4096];
1610 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1612 #elif !defined(_WIN32)
1613 /* Win32 doesn't support line-buffering and requires size >= 2 */
1614 setvbuf(logfile, NULL, _IOLBF, 0);
1615 #endif
1616 log_append = 1;
1618 if (!loglevel && logfile) {
1619 fclose(logfile);
1620 logfile = NULL;
1624 void cpu_set_log_filename(const char *filename)
1626 logfilename = strdup(filename);
1627 if (logfile) {
1628 fclose(logfile);
1629 logfile = NULL;
1631 cpu_set_log(loglevel);
1634 static void cpu_unlink_tb(CPUState *env)
1636 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1637 problem and hope the cpu will stop of its own accord. For userspace
1638 emulation this often isn't actually as bad as it sounds. Often
1639 signals are used primarily to interrupt blocking syscalls. */
1640 TranslationBlock *tb;
1641 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1643 spin_lock(&interrupt_lock);
1644 tb = env->current_tb;
1645 /* if the cpu is currently executing code, we must unlink it and
1646 all the potentially executing TB */
1647 if (tb) {
1648 env->current_tb = NULL;
1649 tb_reset_jump_recursive(tb);
1651 spin_unlock(&interrupt_lock);
1654 /* mask must never be zero, except for A20 change call */
1655 void cpu_interrupt(CPUState *env, int mask)
1657 int old_mask;
1659 old_mask = env->interrupt_request;
1660 env->interrupt_request |= mask;
1661 if (kvm_enabled() && !kvm_irqchip_in_kernel())
1662 kvm_update_interrupt_request(env);
1664 #ifndef CONFIG_USER_ONLY
1666 * If called from iothread context, wake the target cpu in
1667 * case its halted.
1669 if (!qemu_cpu_self(env)) {
1670 qemu_cpu_kick(env);
1671 return;
1673 #endif
1675 if (use_icount) {
1676 env->icount_decr.u16.high = 0xffff;
1677 #ifndef CONFIG_USER_ONLY
1678 if (!can_do_io(env)
1679 && (mask & ~old_mask) != 0) {
1680 cpu_abort(env, "Raised interrupt while not in I/O function");
1682 #endif
1683 } else {
1684 cpu_unlink_tb(env);
1688 void cpu_reset_interrupt(CPUState *env, int mask)
1690 env->interrupt_request &= ~mask;
1693 void cpu_exit(CPUState *env)
1695 env->exit_request = 1;
1696 cpu_unlink_tb(env);
1699 const CPULogItem cpu_log_items[] = {
1700 { CPU_LOG_TB_OUT_ASM, "out_asm",
1701 "show generated host assembly code for each compiled TB" },
1702 { CPU_LOG_TB_IN_ASM, "in_asm",
1703 "show target assembly code for each compiled TB" },
1704 { CPU_LOG_TB_OP, "op",
1705 "show micro ops for each compiled TB" },
1706 { CPU_LOG_TB_OP_OPT, "op_opt",
1707 "show micro ops "
1708 #ifdef TARGET_I386
1709 "before eflags optimization and "
1710 #endif
1711 "after liveness analysis" },
1712 { CPU_LOG_INT, "int",
1713 "show interrupts/exceptions in short format" },
1714 { CPU_LOG_EXEC, "exec",
1715 "show trace before each executed TB (lots of logs)" },
1716 { CPU_LOG_TB_CPU, "cpu",
1717 "show CPU state before block translation" },
1718 #ifdef TARGET_I386
1719 { CPU_LOG_PCALL, "pcall",
1720 "show protected mode far calls/returns/exceptions" },
1721 { CPU_LOG_RESET, "cpu_reset",
1722 "show CPU state before CPU resets" },
1723 #endif
1724 #ifdef DEBUG_IOPORT
1725 { CPU_LOG_IOPORT, "ioport",
1726 "show all i/o ports accesses" },
1727 #endif
1728 { 0, NULL, NULL },
1731 #ifndef CONFIG_USER_ONLY
1732 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1733 = QLIST_HEAD_INITIALIZER(memory_client_list);
1735 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1736 ram_addr_t size,
1737 ram_addr_t phys_offset)
1739 CPUPhysMemoryClient *client;
1740 QLIST_FOREACH(client, &memory_client_list, list) {
1741 client->set_memory(client, start_addr, size, phys_offset);
1745 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1746 target_phys_addr_t end)
1748 CPUPhysMemoryClient *client;
1749 QLIST_FOREACH(client, &memory_client_list, list) {
1750 int r = client->sync_dirty_bitmap(client, start, end);
1751 if (r < 0)
1752 return r;
1754 return 0;
1757 static int cpu_notify_migration_log(int enable)
1759 CPUPhysMemoryClient *client;
1760 QLIST_FOREACH(client, &memory_client_list, list) {
1761 int r = client->migration_log(client, enable);
1762 if (r < 0)
1763 return r;
1765 return 0;
1768 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1769 int level, void **lp)
1771 int i;
1773 if (*lp == NULL) {
1774 return;
1776 if (level == 0) {
1777 PhysPageDesc *pd = *lp;
1778 for (i = 0; i < L2_SIZE; ++i) {
1779 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1780 client->set_memory(client, pd[i].region_offset,
1781 TARGET_PAGE_SIZE, pd[i].phys_offset);
1784 } else {
1785 void **pp = *lp;
1786 for (i = 0; i < L2_SIZE; ++i) {
1787 phys_page_for_each_1(client, level - 1, pp + i);
1792 static void phys_page_for_each(CPUPhysMemoryClient *client)
1794 int i;
1795 for (i = 0; i < P_L1_SIZE; ++i) {
1796 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1797 l1_phys_map + 1);
1801 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1803 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1804 phys_page_for_each(client);
1807 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1809 QLIST_REMOVE(client, list);
1811 #endif
1813 static int cmp1(const char *s1, int n, const char *s2)
1815 if (strlen(s2) != n)
1816 return 0;
1817 return memcmp(s1, s2, n) == 0;
1820 /* takes a comma separated list of log masks. Return 0 if error. */
1821 int cpu_str_to_log_mask(const char *str)
1823 const CPULogItem *item;
1824 int mask;
1825 const char *p, *p1;
1827 p = str;
1828 mask = 0;
1829 for(;;) {
1830 p1 = strchr(p, ',');
1831 if (!p1)
1832 p1 = p + strlen(p);
1833 if(cmp1(p,p1-p,"all")) {
1834 for(item = cpu_log_items; item->mask != 0; item++) {
1835 mask |= item->mask;
1837 } else {
1838 for(item = cpu_log_items; item->mask != 0; item++) {
1839 if (cmp1(p, p1 - p, item->name))
1840 goto found;
1842 return 0;
1844 found:
1845 mask |= item->mask;
1846 if (*p1 != ',')
1847 break;
1848 p = p1 + 1;
1850 return mask;
1853 void cpu_abort(CPUState *env, const char *fmt, ...)
1855 va_list ap;
1856 va_list ap2;
1858 va_start(ap, fmt);
1859 va_copy(ap2, ap);
1860 fprintf(stderr, "qemu: fatal: ");
1861 vfprintf(stderr, fmt, ap);
1862 fprintf(stderr, "\n");
1863 #ifdef TARGET_I386
1864 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1865 #else
1866 cpu_dump_state(env, stderr, fprintf, 0);
1867 #endif
1868 if (qemu_log_enabled()) {
1869 qemu_log("qemu: fatal: ");
1870 qemu_log_vprintf(fmt, ap2);
1871 qemu_log("\n");
1872 #ifdef TARGET_I386
1873 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1874 #else
1875 log_cpu_state(env, 0);
1876 #endif
1877 qemu_log_flush();
1878 qemu_log_close();
1880 va_end(ap2);
1881 va_end(ap);
1882 #if defined(CONFIG_USER_ONLY)
1884 struct sigaction act;
1885 sigfillset(&act.sa_mask);
1886 act.sa_handler = SIG_DFL;
1887 sigaction(SIGABRT, &act, NULL);
1889 #endif
1890 abort();
1893 CPUState *cpu_copy(CPUState *env)
1895 CPUState *new_env = cpu_init(env->cpu_model_str);
1896 CPUState *next_cpu = new_env->next_cpu;
1897 int cpu_index = new_env->cpu_index;
1898 #if defined(TARGET_HAS_ICE)
1899 CPUBreakpoint *bp;
1900 CPUWatchpoint *wp;
1901 #endif
1903 memcpy(new_env, env, sizeof(CPUState));
1905 /* Preserve chaining and index. */
1906 new_env->next_cpu = next_cpu;
1907 new_env->cpu_index = cpu_index;
1909 /* Clone all break/watchpoints.
1910 Note: Once we support ptrace with hw-debug register access, make sure
1911 BP_CPU break/watchpoints are handled correctly on clone. */
1912 QTAILQ_INIT(&env->breakpoints);
1913 QTAILQ_INIT(&env->watchpoints);
1914 #if defined(TARGET_HAS_ICE)
1915 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1916 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1918 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1919 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1920 wp->flags, NULL);
1922 #endif
1924 return new_env;
1927 #if !defined(CONFIG_USER_ONLY)
1929 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1931 unsigned int i;
1933 /* Discard jump cache entries for any tb which might potentially
1934 overlap the flushed page. */
1935 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1936 memset (&env->tb_jmp_cache[i], 0,
1937 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1939 i = tb_jmp_cache_hash_page(addr);
1940 memset (&env->tb_jmp_cache[i], 0,
1941 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1944 static CPUTLBEntry s_cputlb_empty_entry = {
1945 .addr_read = -1,
1946 .addr_write = -1,
1947 .addr_code = -1,
1948 .addend = -1,
1951 /* NOTE: if flush_global is true, also flush global entries (not
1952 implemented yet) */
1953 void tlb_flush(CPUState *env, int flush_global)
1955 int i;
1957 #if defined(DEBUG_TLB)
1958 printf("tlb_flush:\n");
1959 #endif
1960 /* must reset current TB so that interrupts cannot modify the
1961 links while we are modifying them */
1962 env->current_tb = NULL;
1964 for(i = 0; i < CPU_TLB_SIZE; i++) {
1965 int mmu_idx;
1966 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1967 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1971 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1973 env->tlb_flush_addr = -1;
1974 env->tlb_flush_mask = 0;
1975 tlb_flush_count++;
1978 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1980 if (addr == (tlb_entry->addr_read &
1981 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1982 addr == (tlb_entry->addr_write &
1983 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1984 addr == (tlb_entry->addr_code &
1985 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1986 *tlb_entry = s_cputlb_empty_entry;
1990 void tlb_flush_page(CPUState *env, target_ulong addr)
1992 int i;
1993 int mmu_idx;
1995 #if defined(DEBUG_TLB)
1996 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1997 #endif
1998 /* Check if we need to flush due to large pages. */
1999 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2000 #if defined(DEBUG_TLB)
2001 printf("tlb_flush_page: forced full flush ("
2002 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2003 env->tlb_flush_addr, env->tlb_flush_mask);
2004 #endif
2005 tlb_flush(env, 1);
2006 return;
2008 /* must reset current TB so that interrupts cannot modify the
2009 links while we are modifying them */
2010 env->current_tb = NULL;
2012 addr &= TARGET_PAGE_MASK;
2013 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2014 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2015 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2017 tlb_flush_jmp_cache(env, addr);
2020 /* update the TLBs so that writes to code in the virtual page 'addr'
2021 can be detected */
2022 static void tlb_protect_code(ram_addr_t ram_addr)
2024 cpu_physical_memory_reset_dirty(ram_addr,
2025 ram_addr + TARGET_PAGE_SIZE,
2026 CODE_DIRTY_FLAG);
2029 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2030 tested for self modifying code */
2031 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2032 target_ulong vaddr)
2034 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2037 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2038 unsigned long start, unsigned long length)
2040 unsigned long addr;
2041 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2042 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2043 if ((addr - start) < length) {
2044 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2049 /* Note: start and end must be within the same ram block. */
2050 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2051 int dirty_flags)
2053 CPUState *env;
2054 unsigned long length, start1;
2055 int i;
2057 start &= TARGET_PAGE_MASK;
2058 end = TARGET_PAGE_ALIGN(end);
2060 length = end - start;
2061 if (length == 0)
2062 return;
2063 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2065 /* we modify the TLB cache so that the dirty bit will be set again
2066 when accessing the range */
2067 start1 = (unsigned long)qemu_get_ram_ptr(start);
2068 /* Chek that we don't span multiple blocks - this breaks the
2069 address comparisons below. */
2070 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2071 != (end - 1) - start) {
2072 abort();
2075 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2076 int mmu_idx;
2077 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2078 for(i = 0; i < CPU_TLB_SIZE; i++)
2079 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2080 start1, length);
2085 int cpu_physical_memory_set_dirty_tracking(int enable)
2087 int ret = 0;
2088 in_migration = enable;
2089 ret = cpu_notify_migration_log(!!enable);
2090 return ret;
2093 int cpu_physical_memory_get_dirty_tracking(void)
2095 return in_migration;
2098 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2099 target_phys_addr_t end_addr)
2101 int ret;
2103 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2104 return ret;
2107 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2109 ram_addr_t ram_addr;
2110 void *p;
2112 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2113 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2114 + tlb_entry->addend);
2115 ram_addr = qemu_ram_addr_from_host(p);
2116 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2117 tlb_entry->addr_write |= TLB_NOTDIRTY;
2122 /* update the TLB according to the current state of the dirty bits */
2123 void cpu_tlb_update_dirty(CPUState *env)
2125 int i;
2126 int mmu_idx;
2127 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2128 for(i = 0; i < CPU_TLB_SIZE; i++)
2129 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2133 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2135 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2136 tlb_entry->addr_write = vaddr;
2139 /* update the TLB corresponding to virtual page vaddr
2140 so that it is no longer dirty */
2141 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2143 int i;
2144 int mmu_idx;
2146 vaddr &= TARGET_PAGE_MASK;
2147 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2148 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2149 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2152 /* Our TLB does not support large pages, so remember the area covered by
2153 large pages and trigger a full TLB flush if these are invalidated. */
2154 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2155 target_ulong size)
2157 target_ulong mask = ~(size - 1);
2159 if (env->tlb_flush_addr == (target_ulong)-1) {
2160 env->tlb_flush_addr = vaddr & mask;
2161 env->tlb_flush_mask = mask;
2162 return;
2164 /* Extend the existing region to include the new page.
2165 This is a compromise between unnecessary flushes and the cost
2166 of maintaining a full variable size TLB. */
2167 mask &= env->tlb_flush_mask;
2168 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2169 mask <<= 1;
2171 env->tlb_flush_addr &= mask;
2172 env->tlb_flush_mask = mask;
2175 /* Add a new TLB entry. At most one entry for a given virtual address
2176 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2177 supplied size is only used by tlb_flush_page. */
2178 void tlb_set_page(CPUState *env, target_ulong vaddr,
2179 target_phys_addr_t paddr, int prot,
2180 int mmu_idx, target_ulong size)
2182 PhysPageDesc *p;
2183 unsigned long pd;
2184 unsigned int index;
2185 target_ulong address;
2186 target_ulong code_address;
2187 unsigned long addend;
2188 CPUTLBEntry *te;
2189 CPUWatchpoint *wp;
2190 target_phys_addr_t iotlb;
2192 assert(size >= TARGET_PAGE_SIZE);
2193 if (size != TARGET_PAGE_SIZE) {
2194 tlb_add_large_page(env, vaddr, size);
2196 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2197 if (!p) {
2198 pd = IO_MEM_UNASSIGNED;
2199 } else {
2200 pd = p->phys_offset;
2202 #if defined(DEBUG_TLB)
2203 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2204 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2205 #endif
2207 address = vaddr;
2208 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2209 /* IO memory case (romd handled later) */
2210 address |= TLB_MMIO;
2212 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2213 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2214 /* Normal RAM. */
2215 iotlb = pd & TARGET_PAGE_MASK;
2216 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2217 iotlb |= IO_MEM_NOTDIRTY;
2218 else
2219 iotlb |= IO_MEM_ROM;
2220 } else {
2221 /* IO handlers are currently passed a physical address.
2222 It would be nice to pass an offset from the base address
2223 of that region. This would avoid having to special case RAM,
2224 and avoid full address decoding in every device.
2225 We can't use the high bits of pd for this because
2226 IO_MEM_ROMD uses these as a ram address. */
2227 iotlb = (pd & ~TARGET_PAGE_MASK);
2228 if (p) {
2229 iotlb += p->region_offset;
2230 } else {
2231 iotlb += paddr;
2235 code_address = address;
2236 /* Make accesses to pages with watchpoints go via the
2237 watchpoint trap routines. */
2238 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2239 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2240 iotlb = io_mem_watch + paddr;
2241 /* TODO: The memory case can be optimized by not trapping
2242 reads of pages with a write breakpoint. */
2243 address |= TLB_MMIO;
2247 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2248 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2249 te = &env->tlb_table[mmu_idx][index];
2250 te->addend = addend - vaddr;
2251 if (prot & PAGE_READ) {
2252 te->addr_read = address;
2253 } else {
2254 te->addr_read = -1;
2257 if (prot & PAGE_EXEC) {
2258 te->addr_code = code_address;
2259 } else {
2260 te->addr_code = -1;
2262 if (prot & PAGE_WRITE) {
2263 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2264 (pd & IO_MEM_ROMD)) {
2265 /* Write access calls the I/O callback. */
2266 te->addr_write = address | TLB_MMIO;
2267 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2268 !cpu_physical_memory_is_dirty(pd)) {
2269 te->addr_write = address | TLB_NOTDIRTY;
2270 } else {
2271 te->addr_write = address;
2273 } else {
2274 te->addr_write = -1;
2278 #else
2280 void tlb_flush(CPUState *env, int flush_global)
2284 void tlb_flush_page(CPUState *env, target_ulong addr)
2289 * Walks guest process memory "regions" one by one
2290 * and calls callback function 'fn' for each region.
2293 struct walk_memory_regions_data
2295 walk_memory_regions_fn fn;
2296 void *priv;
2297 unsigned long start;
2298 int prot;
2301 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2302 abi_ulong end, int new_prot)
2304 if (data->start != -1ul) {
2305 int rc = data->fn(data->priv, data->start, end, data->prot);
2306 if (rc != 0) {
2307 return rc;
2311 data->start = (new_prot ? end : -1ul);
2312 data->prot = new_prot;
2314 return 0;
2317 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2318 abi_ulong base, int level, void **lp)
2320 abi_ulong pa;
2321 int i, rc;
2323 if (*lp == NULL) {
2324 return walk_memory_regions_end(data, base, 0);
2327 if (level == 0) {
2328 PageDesc *pd = *lp;
2329 for (i = 0; i < L2_SIZE; ++i) {
2330 int prot = pd[i].flags;
2332 pa = base | (i << TARGET_PAGE_BITS);
2333 if (prot != data->prot) {
2334 rc = walk_memory_regions_end(data, pa, prot);
2335 if (rc != 0) {
2336 return rc;
2340 } else {
2341 void **pp = *lp;
2342 for (i = 0; i < L2_SIZE; ++i) {
2343 pa = base | ((abi_ulong)i <<
2344 (TARGET_PAGE_BITS + L2_BITS * level));
2345 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2346 if (rc != 0) {
2347 return rc;
2352 return 0;
2355 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2357 struct walk_memory_regions_data data;
2358 unsigned long i;
2360 data.fn = fn;
2361 data.priv = priv;
2362 data.start = -1ul;
2363 data.prot = 0;
2365 for (i = 0; i < V_L1_SIZE; i++) {
2366 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2367 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2368 if (rc != 0) {
2369 return rc;
2373 return walk_memory_regions_end(&data, 0, 0);
2376 static int dump_region(void *priv, abi_ulong start,
2377 abi_ulong end, unsigned long prot)
2379 FILE *f = (FILE *)priv;
2381 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2382 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2383 start, end, end - start,
2384 ((prot & PAGE_READ) ? 'r' : '-'),
2385 ((prot & PAGE_WRITE) ? 'w' : '-'),
2386 ((prot & PAGE_EXEC) ? 'x' : '-'));
2388 return (0);
2391 /* dump memory mappings */
2392 void page_dump(FILE *f)
2394 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2395 "start", "end", "size", "prot");
2396 walk_memory_regions(f, dump_region);
2399 int page_get_flags(target_ulong address)
2401 PageDesc *p;
2403 p = page_find(address >> TARGET_PAGE_BITS);
2404 if (!p)
2405 return 0;
2406 return p->flags;
2409 /* Modify the flags of a page and invalidate the code if necessary.
2410 The flag PAGE_WRITE_ORG is positioned automatically depending
2411 on PAGE_WRITE. The mmap_lock should already be held. */
2412 void page_set_flags(target_ulong start, target_ulong end, int flags)
2414 target_ulong addr, len;
2416 /* This function should never be called with addresses outside the
2417 guest address space. If this assert fires, it probably indicates
2418 a missing call to h2g_valid. */
2419 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2420 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2421 #endif
2422 assert(start < end);
2424 start = start & TARGET_PAGE_MASK;
2425 end = TARGET_PAGE_ALIGN(end);
2427 if (flags & PAGE_WRITE) {
2428 flags |= PAGE_WRITE_ORG;
2431 for (addr = start, len = end - start;
2432 len != 0;
2433 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2434 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2436 /* If the write protection bit is set, then we invalidate
2437 the code inside. */
2438 if (!(p->flags & PAGE_WRITE) &&
2439 (flags & PAGE_WRITE) &&
2440 p->first_tb) {
2441 tb_invalidate_phys_page(addr, 0, NULL);
2443 p->flags = flags;
2447 int page_check_range(target_ulong start, target_ulong len, int flags)
2449 PageDesc *p;
2450 target_ulong end;
2451 target_ulong addr;
2453 /* This function should never be called with addresses outside the
2454 guest address space. If this assert fires, it probably indicates
2455 a missing call to h2g_valid. */
2456 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2457 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2458 #endif
2460 if (len == 0) {
2461 return 0;
2463 if (start + len - 1 < start) {
2464 /* We've wrapped around. */
2465 return -1;
2468 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2469 start = start & TARGET_PAGE_MASK;
2471 for (addr = start, len = end - start;
2472 len != 0;
2473 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2474 p = page_find(addr >> TARGET_PAGE_BITS);
2475 if( !p )
2476 return -1;
2477 if( !(p->flags & PAGE_VALID) )
2478 return -1;
2480 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2481 return -1;
2482 if (flags & PAGE_WRITE) {
2483 if (!(p->flags & PAGE_WRITE_ORG))
2484 return -1;
2485 /* unprotect the page if it was put read-only because it
2486 contains translated code */
2487 if (!(p->flags & PAGE_WRITE)) {
2488 if (!page_unprotect(addr, 0, NULL))
2489 return -1;
2491 return 0;
2494 return 0;
2497 /* called from signal handler: invalidate the code and unprotect the
2498 page. Return TRUE if the fault was successfully handled. */
2499 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2501 unsigned int prot;
2502 PageDesc *p;
2503 target_ulong host_start, host_end, addr;
2505 /* Technically this isn't safe inside a signal handler. However we
2506 know this only ever happens in a synchronous SEGV handler, so in
2507 practice it seems to be ok. */
2508 mmap_lock();
2510 p = page_find(address >> TARGET_PAGE_BITS);
2511 if (!p) {
2512 mmap_unlock();
2513 return 0;
2516 /* if the page was really writable, then we change its
2517 protection back to writable */
2518 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2519 host_start = address & qemu_host_page_mask;
2520 host_end = host_start + qemu_host_page_size;
2522 prot = 0;
2523 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2524 p = page_find(addr >> TARGET_PAGE_BITS);
2525 p->flags |= PAGE_WRITE;
2526 prot |= p->flags;
2528 /* and since the content will be modified, we must invalidate
2529 the corresponding translated code. */
2530 tb_invalidate_phys_page(addr, pc, puc);
2531 #ifdef DEBUG_TB_CHECK
2532 tb_invalidate_check(addr);
2533 #endif
2535 mprotect((void *)g2h(host_start), qemu_host_page_size,
2536 prot & PAGE_BITS);
2538 mmap_unlock();
2539 return 1;
2541 mmap_unlock();
2542 return 0;
2545 static inline void tlb_set_dirty(CPUState *env,
2546 unsigned long addr, target_ulong vaddr)
2549 #endif /* defined(CONFIG_USER_ONLY) */
2551 #if !defined(CONFIG_USER_ONLY)
2553 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2554 typedef struct subpage_t {
2555 target_phys_addr_t base;
2556 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2557 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2558 } subpage_t;
2560 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2561 ram_addr_t memory, ram_addr_t region_offset);
2562 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2563 ram_addr_t orig_memory,
2564 ram_addr_t region_offset);
2565 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2566 need_subpage) \
2567 do { \
2568 if (addr > start_addr) \
2569 start_addr2 = 0; \
2570 else { \
2571 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2572 if (start_addr2 > 0) \
2573 need_subpage = 1; \
2576 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2577 end_addr2 = TARGET_PAGE_SIZE - 1; \
2578 else { \
2579 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2580 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2581 need_subpage = 1; \
2583 } while (0)
2585 /* register physical memory.
2586 For RAM, 'size' must be a multiple of the target page size.
2587 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2588 io memory page. The address used when calling the IO function is
2589 the offset from the start of the region, plus region_offset. Both
2590 start_addr and region_offset are rounded down to a page boundary
2591 before calculating this offset. This should not be a problem unless
2592 the low bits of start_addr and region_offset differ. */
2593 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2594 ram_addr_t size,
2595 ram_addr_t phys_offset,
2596 ram_addr_t region_offset)
2598 target_phys_addr_t addr, end_addr;
2599 PhysPageDesc *p;
2600 CPUState *env;
2601 ram_addr_t orig_size = size;
2602 subpage_t *subpage;
2604 cpu_notify_set_memory(start_addr, size, phys_offset);
2606 if (phys_offset == IO_MEM_UNASSIGNED) {
2607 region_offset = start_addr;
2609 region_offset &= TARGET_PAGE_MASK;
2610 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2611 end_addr = start_addr + (target_phys_addr_t)size;
2612 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2613 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2614 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2615 ram_addr_t orig_memory = p->phys_offset;
2616 target_phys_addr_t start_addr2, end_addr2;
2617 int need_subpage = 0;
2619 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2620 need_subpage);
2621 if (need_subpage) {
2622 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2623 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2624 &p->phys_offset, orig_memory,
2625 p->region_offset);
2626 } else {
2627 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2628 >> IO_MEM_SHIFT];
2630 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2631 region_offset);
2632 p->region_offset = 0;
2633 } else {
2634 p->phys_offset = phys_offset;
2635 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2636 (phys_offset & IO_MEM_ROMD))
2637 phys_offset += TARGET_PAGE_SIZE;
2639 } else {
2640 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2641 p->phys_offset = phys_offset;
2642 p->region_offset = region_offset;
2643 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2644 (phys_offset & IO_MEM_ROMD)) {
2645 phys_offset += TARGET_PAGE_SIZE;
2646 } else {
2647 target_phys_addr_t start_addr2, end_addr2;
2648 int need_subpage = 0;
2650 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2651 end_addr2, need_subpage);
2653 if (need_subpage) {
2654 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2655 &p->phys_offset, IO_MEM_UNASSIGNED,
2656 addr & TARGET_PAGE_MASK);
2657 subpage_register(subpage, start_addr2, end_addr2,
2658 phys_offset, region_offset);
2659 p->region_offset = 0;
2663 region_offset += TARGET_PAGE_SIZE;
2666 /* since each CPU stores ram addresses in its TLB cache, we must
2667 reset the modified entries */
2668 /* XXX: slow ! */
2669 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2670 tlb_flush(env, 1);
2674 /* XXX: temporary until new memory mapping API */
2675 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2677 PhysPageDesc *p;
2679 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2680 if (!p)
2681 return IO_MEM_UNASSIGNED;
2682 return p->phys_offset;
2685 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2687 if (kvm_enabled())
2688 kvm_coalesce_mmio_region(addr, size);
2691 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2693 if (kvm_enabled())
2694 kvm_uncoalesce_mmio_region(addr, size);
2697 void qemu_flush_coalesced_mmio_buffer(void)
2699 if (kvm_enabled())
2700 kvm_flush_coalesced_mmio_buffer();
2703 #if defined(__linux__) && !defined(TARGET_S390X)
2705 #include <sys/vfs.h>
2707 #define HUGETLBFS_MAGIC 0x958458f6
2709 static long gethugepagesize(const char *path)
2711 struct statfs fs;
2712 int ret;
2714 do {
2715 ret = statfs(path, &fs);
2716 } while (ret != 0 && errno == EINTR);
2718 if (ret != 0) {
2719 perror(path);
2720 return 0;
2723 if (fs.f_type != HUGETLBFS_MAGIC)
2724 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2726 return fs.f_bsize;
2729 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2731 char *filename;
2732 void *area;
2733 int fd;
2734 #ifdef MAP_POPULATE
2735 int flags;
2736 #endif
2737 unsigned long hpagesize;
2739 hpagesize = gethugepagesize(path);
2740 if (!hpagesize) {
2741 return NULL;
2744 if (memory < hpagesize) {
2745 return NULL;
2748 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2749 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2750 return NULL;
2753 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2754 return NULL;
2757 fd = mkstemp(filename);
2758 if (fd < 0) {
2759 perror("unable to create backing store for hugepages");
2760 free(filename);
2761 return NULL;
2763 unlink(filename);
2764 free(filename);
2766 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2769 * ftruncate is not supported by hugetlbfs in older
2770 * hosts, so don't bother bailing out on errors.
2771 * If anything goes wrong with it under other filesystems,
2772 * mmap will fail.
2774 if (ftruncate(fd, memory))
2775 perror("ftruncate");
2777 #ifdef MAP_POPULATE
2778 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2779 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2780 * to sidestep this quirk.
2782 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2783 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2784 #else
2785 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2786 #endif
2787 if (area == MAP_FAILED) {
2788 perror("file_ram_alloc: can't mmap RAM pages");
2789 close(fd);
2790 return (NULL);
2792 return area;
2794 #endif
2796 ram_addr_t qemu_ram_map(ram_addr_t size, void *host)
2798 RAMBlock *new_block;
2800 size = TARGET_PAGE_ALIGN(size);
2801 new_block = qemu_malloc(sizeof(*new_block));
2803 new_block->host = host;
2805 new_block->offset = last_ram_offset;
2806 new_block->length = size;
2808 new_block->next = ram_blocks;
2809 ram_blocks = new_block;
2811 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2812 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2813 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2814 0xff, size >> TARGET_PAGE_BITS);
2816 last_ram_offset += size;
2818 if (kvm_enabled())
2819 kvm_setup_guest_memory(new_block->host, size);
2821 return new_block->offset;
2824 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2826 RAMBlock *new_block;
2828 size = TARGET_PAGE_ALIGN(size);
2829 new_block = qemu_malloc(sizeof(*new_block));
2831 if (mem_path) {
2832 #if defined (__linux__) && !defined(TARGET_S390X)
2833 new_block->host = file_ram_alloc(size, mem_path);
2834 if (!new_block->host) {
2835 new_block->host = qemu_vmalloc(size);
2836 #ifdef MADV_MERGEABLE
2837 madvise(new_block->host, size, MADV_MERGEABLE);
2838 #endif
2840 #else
2841 fprintf(stderr, "-mem-path option unsupported\n");
2842 exit(1);
2843 #endif
2844 } else {
2845 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2846 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2847 new_block->host = mmap((void*)0x1000000, size,
2848 PROT_EXEC|PROT_READ|PROT_WRITE,
2849 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2850 #else
2851 new_block->host = qemu_vmalloc(size);
2852 #endif
2853 #ifdef MADV_MERGEABLE
2854 madvise(new_block->host, size, MADV_MERGEABLE);
2855 #endif
2857 new_block->offset = last_ram_offset;
2858 new_block->length = size;
2860 new_block->next = ram_blocks;
2861 ram_blocks = new_block;
2863 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2864 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2865 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2866 0xff, size >> TARGET_PAGE_BITS);
2868 last_ram_offset += size;
2870 if (kvm_enabled())
2871 kvm_setup_guest_memory(new_block->host, size);
2873 return new_block->offset;
2876 void qemu_ram_free(ram_addr_t addr)
2878 /* TODO: implement this. */
2881 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2882 With the exception of the softmmu code in this file, this should
2883 only be used for local memory (e.g. video ram) that the device owns,
2884 and knows it isn't going to access beyond the end of the block.
2886 It should not be used for general purpose DMA.
2887 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2889 void *qemu_get_ram_ptr(ram_addr_t addr)
2891 RAMBlock *prev;
2892 RAMBlock **prevp;
2893 RAMBlock *block;
2895 prev = NULL;
2896 prevp = &ram_blocks;
2897 block = ram_blocks;
2898 while (block && (block->offset > addr
2899 || block->offset + block->length <= addr)) {
2900 if (prev)
2901 prevp = &prev->next;
2902 prev = block;
2903 block = block->next;
2905 if (!block) {
2906 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2907 abort();
2909 /* Move this entry to to start of the list. */
2910 if (prev) {
2911 prev->next = block->next;
2912 block->next = *prevp;
2913 *prevp = block;
2915 return block->host + (addr - block->offset);
2918 int do_qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2920 RAMBlock *block;
2921 uint8_t *host = ptr;
2923 block = ram_blocks;
2924 while (block && (block->host > host
2925 || block->host + block->length <= host)) {
2926 block = block->next;
2928 if (!block)
2929 return -1;
2930 *ram_addr = block->offset + (host - block->host);
2931 return 0;
2934 /* Some of the softmmu routines need to translate from a host pointer
2935 (typically a TLB entry) back to a ram offset. */
2936 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2938 ram_addr_t ram_addr;
2940 if (do_qemu_ram_addr_from_host(ptr, &ram_addr)) {
2941 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2942 abort();
2944 return ram_addr;
2947 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2949 #ifdef DEBUG_UNASSIGNED
2950 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2951 #endif
2952 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2953 do_unassigned_access(addr, 0, 0, 0, 1);
2954 #endif
2955 return 0;
2958 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2960 #ifdef DEBUG_UNASSIGNED
2961 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2962 #endif
2963 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2964 do_unassigned_access(addr, 0, 0, 0, 2);
2965 #endif
2966 return 0;
2969 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2971 #ifdef DEBUG_UNASSIGNED
2972 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2973 #endif
2974 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2975 do_unassigned_access(addr, 0, 0, 0, 4);
2976 #endif
2977 return 0;
2980 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2982 #ifdef DEBUG_UNASSIGNED
2983 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2984 #endif
2985 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2986 do_unassigned_access(addr, 1, 0, 0, 1);
2987 #endif
2990 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2992 #ifdef DEBUG_UNASSIGNED
2993 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2994 #endif
2995 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2996 do_unassigned_access(addr, 1, 0, 0, 2);
2997 #endif
3000 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3002 #ifdef DEBUG_UNASSIGNED
3003 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3004 #endif
3005 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3006 do_unassigned_access(addr, 1, 0, 0, 4);
3007 #endif
3010 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3011 unassigned_mem_readb,
3012 unassigned_mem_readw,
3013 unassigned_mem_readl,
3016 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3017 unassigned_mem_writeb,
3018 unassigned_mem_writew,
3019 unassigned_mem_writel,
3022 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3023 uint32_t val)
3025 int dirty_flags;
3026 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3027 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3028 #if !defined(CONFIG_USER_ONLY)
3029 tb_invalidate_phys_page_fast(ram_addr, 1);
3030 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3031 #endif
3033 stb_p(qemu_get_ram_ptr(ram_addr), val);
3034 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3035 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3036 /* we remove the notdirty callback only if the code has been
3037 flushed */
3038 if (dirty_flags == 0xff)
3039 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3042 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3043 uint32_t val)
3045 int dirty_flags;
3046 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3047 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3048 #if !defined(CONFIG_USER_ONLY)
3049 tb_invalidate_phys_page_fast(ram_addr, 2);
3050 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3051 #endif
3053 stw_p(qemu_get_ram_ptr(ram_addr), val);
3054 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3055 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3056 /* we remove the notdirty callback only if the code has been
3057 flushed */
3058 if (dirty_flags == 0xff)
3059 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3062 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3063 uint32_t val)
3065 int dirty_flags;
3066 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3067 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3068 #if !defined(CONFIG_USER_ONLY)
3069 tb_invalidate_phys_page_fast(ram_addr, 4);
3070 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3071 #endif
3073 stl_p(qemu_get_ram_ptr(ram_addr), val);
3074 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3075 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3076 /* we remove the notdirty callback only if the code has been
3077 flushed */
3078 if (dirty_flags == 0xff)
3079 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3082 static CPUReadMemoryFunc * const error_mem_read[3] = {
3083 NULL, /* never used */
3084 NULL, /* never used */
3085 NULL, /* never used */
3088 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3089 notdirty_mem_writeb,
3090 notdirty_mem_writew,
3091 notdirty_mem_writel,
3094 /* Generate a debug exception if a watchpoint has been hit. */
3095 static void check_watchpoint(int offset, int len_mask, int flags)
3097 CPUState *env = cpu_single_env;
3098 target_ulong pc, cs_base;
3099 TranslationBlock *tb;
3100 target_ulong vaddr;
3101 CPUWatchpoint *wp;
3102 int cpu_flags;
3104 if (env->watchpoint_hit) {
3105 /* We re-entered the check after replacing the TB. Now raise
3106 * the debug interrupt so that is will trigger after the
3107 * current instruction. */
3108 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3109 return;
3111 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3112 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3113 if ((vaddr == (wp->vaddr & len_mask) ||
3114 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3115 wp->flags |= BP_WATCHPOINT_HIT;
3116 if (!env->watchpoint_hit) {
3117 env->watchpoint_hit = wp;
3118 tb = tb_find_pc(env->mem_io_pc);
3119 if (!tb) {
3120 cpu_abort(env, "check_watchpoint: could not find TB for "
3121 "pc=%p", (void *)env->mem_io_pc);
3123 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3124 tb_phys_invalidate(tb, -1);
3125 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3126 env->exception_index = EXCP_DEBUG;
3127 } else {
3128 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3129 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3131 cpu_resume_from_signal(env, NULL);
3133 } else {
3134 wp->flags &= ~BP_WATCHPOINT_HIT;
3139 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3140 so these check for a hit then pass through to the normal out-of-line
3141 phys routines. */
3142 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3144 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3145 return ldub_phys(addr);
3148 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3150 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3151 return lduw_phys(addr);
3154 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3156 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3157 return ldl_phys(addr);
3160 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3161 uint32_t val)
3163 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3164 stb_phys(addr, val);
3167 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3168 uint32_t val)
3170 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3171 stw_phys(addr, val);
3174 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3175 uint32_t val)
3177 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3178 stl_phys(addr, val);
3181 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3182 watch_mem_readb,
3183 watch_mem_readw,
3184 watch_mem_readl,
3187 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3188 watch_mem_writeb,
3189 watch_mem_writew,
3190 watch_mem_writel,
3193 static inline uint32_t subpage_readlen (subpage_t *mmio,
3194 target_phys_addr_t addr,
3195 unsigned int len)
3197 unsigned int idx = SUBPAGE_IDX(addr);
3198 #if defined(DEBUG_SUBPAGE)
3199 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3200 mmio, len, addr, idx);
3201 #endif
3203 addr += mmio->region_offset[idx];
3204 idx = mmio->sub_io_index[idx];
3205 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3208 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3209 uint32_t value, unsigned int len)
3211 unsigned int idx = SUBPAGE_IDX(addr);
3212 #if defined(DEBUG_SUBPAGE)
3213 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3214 __func__, mmio, len, addr, idx, value);
3215 #endif
3217 addr += mmio->region_offset[idx];
3218 idx = mmio->sub_io_index[idx];
3219 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3222 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3224 return subpage_readlen(opaque, addr, 0);
3227 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3228 uint32_t value)
3230 subpage_writelen(opaque, addr, value, 0);
3233 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3235 return subpage_readlen(opaque, addr, 1);
3238 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3239 uint32_t value)
3241 subpage_writelen(opaque, addr, value, 1);
3244 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3246 return subpage_readlen(opaque, addr, 2);
3249 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3250 uint32_t value)
3252 subpage_writelen(opaque, addr, value, 2);
3255 static CPUReadMemoryFunc * const subpage_read[] = {
3256 &subpage_readb,
3257 &subpage_readw,
3258 &subpage_readl,
3261 static CPUWriteMemoryFunc * const subpage_write[] = {
3262 &subpage_writeb,
3263 &subpage_writew,
3264 &subpage_writel,
3267 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3268 ram_addr_t memory, ram_addr_t region_offset)
3270 int idx, eidx;
3272 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3273 return -1;
3274 idx = SUBPAGE_IDX(start);
3275 eidx = SUBPAGE_IDX(end);
3276 #if defined(DEBUG_SUBPAGE)
3277 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3278 mmio, start, end, idx, eidx, memory);
3279 #endif
3280 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3281 for (; idx <= eidx; idx++) {
3282 mmio->sub_io_index[idx] = memory;
3283 mmio->region_offset[idx] = region_offset;
3286 return 0;
3289 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3290 ram_addr_t orig_memory,
3291 ram_addr_t region_offset)
3293 subpage_t *mmio;
3294 int subpage_memory;
3296 mmio = qemu_mallocz(sizeof(subpage_t));
3298 mmio->base = base;
3299 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3300 #if defined(DEBUG_SUBPAGE)
3301 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3302 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3303 #endif
3304 *phys = subpage_memory | IO_MEM_SUBPAGE;
3305 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3307 return mmio;
3310 static int get_free_io_mem_idx(void)
3312 int i;
3314 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3315 if (!io_mem_used[i]) {
3316 io_mem_used[i] = 1;
3317 return i;
3319 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3320 return -1;
3323 /* mem_read and mem_write are arrays of functions containing the
3324 function to access byte (index 0), word (index 1) and dword (index
3325 2). Functions can be omitted with a NULL function pointer.
3326 If io_index is non zero, the corresponding io zone is
3327 modified. If it is zero, a new io zone is allocated. The return
3328 value can be used with cpu_register_physical_memory(). (-1) is
3329 returned if error. */
3330 static int cpu_register_io_memory_fixed(int io_index,
3331 CPUReadMemoryFunc * const *mem_read,
3332 CPUWriteMemoryFunc * const *mem_write,
3333 void *opaque)
3335 int i;
3337 if (io_index <= 0) {
3338 io_index = get_free_io_mem_idx();
3339 if (io_index == -1)
3340 return io_index;
3341 } else {
3342 io_index >>= IO_MEM_SHIFT;
3343 if (io_index >= IO_MEM_NB_ENTRIES)
3344 return -1;
3347 for (i = 0; i < 3; ++i) {
3348 io_mem_read[io_index][i]
3349 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3351 for (i = 0; i < 3; ++i) {
3352 io_mem_write[io_index][i]
3353 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3355 io_mem_opaque[io_index] = opaque;
3357 return (io_index << IO_MEM_SHIFT);
3360 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3361 CPUWriteMemoryFunc * const *mem_write,
3362 void *opaque)
3364 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3367 void cpu_unregister_io_memory(int io_table_address)
3369 int i;
3370 int io_index = io_table_address >> IO_MEM_SHIFT;
3372 for (i=0;i < 3; i++) {
3373 io_mem_read[io_index][i] = unassigned_mem_read[i];
3374 io_mem_write[io_index][i] = unassigned_mem_write[i];
3376 io_mem_opaque[io_index] = NULL;
3377 io_mem_used[io_index] = 0;
3380 static void io_mem_init(void)
3382 int i;
3384 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3385 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3386 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3387 for (i=0; i<5; i++)
3388 io_mem_used[i] = 1;
3390 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3391 watch_mem_write, NULL);
3394 #endif /* !defined(CONFIG_USER_ONLY) */
3396 /* physical memory access (slow version, mainly for debug) */
3397 #if defined(CONFIG_USER_ONLY)
3398 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3399 uint8_t *buf, int len, int is_write)
3401 int l, flags;
3402 target_ulong page;
3403 void * p;
3405 while (len > 0) {
3406 page = addr & TARGET_PAGE_MASK;
3407 l = (page + TARGET_PAGE_SIZE) - addr;
3408 if (l > len)
3409 l = len;
3410 flags = page_get_flags(page);
3411 if (!(flags & PAGE_VALID))
3412 return -1;
3413 if (is_write) {
3414 if (!(flags & PAGE_WRITE))
3415 return -1;
3416 /* XXX: this code should not depend on lock_user */
3417 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3418 return -1;
3419 memcpy(p, buf, l);
3420 unlock_user(p, addr, l);
3421 } else {
3422 if (!(flags & PAGE_READ))
3423 return -1;
3424 /* XXX: this code should not depend on lock_user */
3425 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3426 return -1;
3427 memcpy(buf, p, l);
3428 unlock_user(p, addr, 0);
3430 len -= l;
3431 buf += l;
3432 addr += l;
3434 return 0;
3437 #else
3438 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3439 int len, int is_write)
3441 int l, io_index;
3442 uint8_t *ptr;
3443 uint32_t val;
3444 target_phys_addr_t page;
3445 unsigned long pd;
3446 PhysPageDesc *p;
3448 while (len > 0) {
3449 page = addr & TARGET_PAGE_MASK;
3450 l = (page + TARGET_PAGE_SIZE) - addr;
3451 if (l > len)
3452 l = len;
3453 p = phys_page_find(page >> TARGET_PAGE_BITS);
3454 if (!p) {
3455 pd = IO_MEM_UNASSIGNED;
3456 } else {
3457 pd = p->phys_offset;
3460 if (is_write) {
3461 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3462 target_phys_addr_t addr1 = addr;
3463 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3464 if (p)
3465 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3466 /* XXX: could force cpu_single_env to NULL to avoid
3467 potential bugs */
3468 if (l >= 4 && ((addr1 & 3) == 0)) {
3469 /* 32 bit write access */
3470 val = ldl_p(buf);
3471 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3472 l = 4;
3473 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3474 /* 16 bit write access */
3475 val = lduw_p(buf);
3476 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3477 l = 2;
3478 } else {
3479 /* 8 bit write access */
3480 val = ldub_p(buf);
3481 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3482 l = 1;
3484 } else {
3485 unsigned long addr1;
3486 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3487 /* RAM case */
3488 ptr = qemu_get_ram_ptr(addr1);
3489 memcpy(ptr, buf, l);
3490 if (!cpu_physical_memory_is_dirty(addr1)) {
3491 /* invalidate code */
3492 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3493 /* set dirty bit */
3494 cpu_physical_memory_set_dirty_flags(
3495 addr1, (0xff & ~CODE_DIRTY_FLAG));
3497 /* qemu doesn't execute guest code directly, but kvm does
3498 therefore flush instruction caches */
3499 if (kvm_enabled())
3500 flush_icache_range((unsigned long)ptr,
3501 ((unsigned long)ptr)+l);
3503 } else {
3504 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3505 !(pd & IO_MEM_ROMD)) {
3506 target_phys_addr_t addr1 = addr;
3507 /* I/O case */
3508 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3509 if (p)
3510 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3511 if (l >= 4 && ((addr1 & 3) == 0)) {
3512 /* 32 bit read access */
3513 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3514 stl_p(buf, val);
3515 l = 4;
3516 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3517 /* 16 bit read access */
3518 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3519 stw_p(buf, val);
3520 l = 2;
3521 } else {
3522 /* 8 bit read access */
3523 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3524 stb_p(buf, val);
3525 l = 1;
3527 } else {
3528 /* RAM case */
3529 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3530 (addr & ~TARGET_PAGE_MASK);
3531 memcpy(buf, ptr, l);
3534 len -= l;
3535 buf += l;
3536 addr += l;
3540 /* used for ROM loading : can write in RAM and ROM */
3541 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3542 const uint8_t *buf, int len)
3544 int l;
3545 uint8_t *ptr;
3546 target_phys_addr_t page;
3547 unsigned long pd;
3548 PhysPageDesc *p;
3550 while (len > 0) {
3551 page = addr & TARGET_PAGE_MASK;
3552 l = (page + TARGET_PAGE_SIZE) - addr;
3553 if (l > len)
3554 l = len;
3555 p = phys_page_find(page >> TARGET_PAGE_BITS);
3556 if (!p) {
3557 pd = IO_MEM_UNASSIGNED;
3558 } else {
3559 pd = p->phys_offset;
3562 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3563 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3564 !(pd & IO_MEM_ROMD)) {
3565 /* do nothing */
3566 } else {
3567 unsigned long addr1;
3568 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3569 /* ROM/RAM case */
3570 ptr = qemu_get_ram_ptr(addr1);
3571 memcpy(ptr, buf, l);
3573 len -= l;
3574 buf += l;
3575 addr += l;
3579 typedef struct {
3580 void *buffer;
3581 target_phys_addr_t addr;
3582 target_phys_addr_t len;
3583 } BounceBuffer;
3585 static BounceBuffer bounce;
3587 typedef struct MapClient {
3588 void *opaque;
3589 void (*callback)(void *opaque);
3590 QLIST_ENTRY(MapClient) link;
3591 } MapClient;
3593 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3594 = QLIST_HEAD_INITIALIZER(map_client_list);
3596 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3598 MapClient *client = qemu_malloc(sizeof(*client));
3600 client->opaque = opaque;
3601 client->callback = callback;
3602 QLIST_INSERT_HEAD(&map_client_list, client, link);
3603 return client;
3606 void cpu_unregister_map_client(void *_client)
3608 MapClient *client = (MapClient *)_client;
3610 QLIST_REMOVE(client, link);
3611 qemu_free(client);
3614 static void cpu_notify_map_clients(void)
3616 MapClient *client;
3618 while (!QLIST_EMPTY(&map_client_list)) {
3619 client = QLIST_FIRST(&map_client_list);
3620 client->callback(client->opaque);
3621 cpu_unregister_map_client(client);
3625 /* Map a physical memory region into a host virtual address.
3626 * May map a subset of the requested range, given by and returned in *plen.
3627 * May return NULL if resources needed to perform the mapping are exhausted.
3628 * Use only for reads OR writes - not for read-modify-write operations.
3629 * Use cpu_register_map_client() to know when retrying the map operation is
3630 * likely to succeed.
3632 void *cpu_physical_memory_map(target_phys_addr_t addr,
3633 target_phys_addr_t *plen,
3634 int is_write)
3636 target_phys_addr_t len = *plen;
3637 target_phys_addr_t done = 0;
3638 int l;
3639 uint8_t *ret = NULL;
3640 uint8_t *ptr;
3641 target_phys_addr_t page;
3642 unsigned long pd;
3643 PhysPageDesc *p;
3644 unsigned long addr1;
3646 while (len > 0) {
3647 page = addr & TARGET_PAGE_MASK;
3648 l = (page + TARGET_PAGE_SIZE) - addr;
3649 if (l > len)
3650 l = len;
3651 p = phys_page_find(page >> TARGET_PAGE_BITS);
3652 if (!p) {
3653 pd = IO_MEM_UNASSIGNED;
3654 } else {
3655 pd = p->phys_offset;
3658 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3659 if (done || bounce.buffer) {
3660 break;
3662 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3663 bounce.addr = addr;
3664 bounce.len = l;
3665 if (!is_write) {
3666 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3668 ptr = bounce.buffer;
3669 } else {
3670 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3671 ptr = qemu_get_ram_ptr(addr1);
3673 if (!done) {
3674 ret = ptr;
3675 } else if (ret + done != ptr) {
3676 break;
3679 len -= l;
3680 addr += l;
3681 done += l;
3683 *plen = done;
3684 return ret;
3687 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3688 * Will also mark the memory as dirty if is_write == 1. access_len gives
3689 * the amount of memory that was actually read or written by the caller.
3691 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3692 int is_write, target_phys_addr_t access_len)
3694 unsigned long flush_len = (unsigned long)access_len;
3696 if (buffer != bounce.buffer) {
3697 if (is_write) {
3698 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3699 while (access_len) {
3700 unsigned l;
3701 l = TARGET_PAGE_SIZE;
3702 if (l > access_len)
3703 l = access_len;
3704 if (!cpu_physical_memory_is_dirty(addr1)) {
3705 /* invalidate code */
3706 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3707 /* set dirty bit */
3708 cpu_physical_memory_set_dirty_flags(
3709 addr1, (0xff & ~CODE_DIRTY_FLAG));
3711 addr1 += l;
3712 access_len -= l;
3714 dma_flush_range((unsigned long)buffer,
3715 (unsigned long)buffer + flush_len);
3717 return;
3719 if (is_write) {
3720 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3722 qemu_vfree(bounce.buffer);
3723 bounce.buffer = NULL;
3724 cpu_notify_map_clients();
3727 /* warning: addr must be aligned */
3728 uint32_t ldl_phys(target_phys_addr_t addr)
3730 int io_index;
3731 uint8_t *ptr;
3732 uint32_t val;
3733 unsigned long pd;
3734 PhysPageDesc *p;
3736 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3737 if (!p) {
3738 pd = IO_MEM_UNASSIGNED;
3739 } else {
3740 pd = p->phys_offset;
3743 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3744 !(pd & IO_MEM_ROMD)) {
3745 /* I/O case */
3746 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3747 if (p)
3748 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3749 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3750 } else {
3751 /* RAM case */
3752 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3753 (addr & ~TARGET_PAGE_MASK);
3754 val = ldl_p(ptr);
3756 return val;
3759 /* warning: addr must be aligned */
3760 uint64_t ldq_phys(target_phys_addr_t addr)
3762 int io_index;
3763 uint8_t *ptr;
3764 uint64_t val;
3765 unsigned long pd;
3766 PhysPageDesc *p;
3768 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3769 if (!p) {
3770 pd = IO_MEM_UNASSIGNED;
3771 } else {
3772 pd = p->phys_offset;
3775 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3776 !(pd & IO_MEM_ROMD)) {
3777 /* I/O case */
3778 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3779 if (p)
3780 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3781 #ifdef TARGET_WORDS_BIGENDIAN
3782 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3783 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3784 #else
3785 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3786 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3787 #endif
3788 } else {
3789 /* RAM case */
3790 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3791 (addr & ~TARGET_PAGE_MASK);
3792 val = ldq_p(ptr);
3794 return val;
3797 /* XXX: optimize */
3798 uint32_t ldub_phys(target_phys_addr_t addr)
3800 uint8_t val;
3801 cpu_physical_memory_read(addr, &val, 1);
3802 return val;
3805 /* warning: addr must be aligned */
3806 uint32_t lduw_phys(target_phys_addr_t addr)
3808 int io_index;
3809 uint8_t *ptr;
3810 uint64_t val;
3811 unsigned long pd;
3812 PhysPageDesc *p;
3814 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3815 if (!p) {
3816 pd = IO_MEM_UNASSIGNED;
3817 } else {
3818 pd = p->phys_offset;
3821 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3822 !(pd & IO_MEM_ROMD)) {
3823 /* I/O case */
3824 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3825 if (p)
3826 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3827 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3828 } else {
3829 /* RAM case */
3830 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3831 (addr & ~TARGET_PAGE_MASK);
3832 val = lduw_p(ptr);
3834 return val;
3837 /* warning: addr must be aligned. The ram page is not masked as dirty
3838 and the code inside is not invalidated. It is useful if the dirty
3839 bits are used to track modified PTEs */
3840 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3842 int io_index;
3843 uint8_t *ptr;
3844 unsigned long pd;
3845 PhysPageDesc *p;
3847 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3848 if (!p) {
3849 pd = IO_MEM_UNASSIGNED;
3850 } else {
3851 pd = p->phys_offset;
3854 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3855 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3856 if (p)
3857 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3858 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3859 } else {
3860 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3861 ptr = qemu_get_ram_ptr(addr1);
3862 stl_p(ptr, val);
3864 if (unlikely(in_migration)) {
3865 if (!cpu_physical_memory_is_dirty(addr1)) {
3866 /* invalidate code */
3867 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3868 /* set dirty bit */
3869 cpu_physical_memory_set_dirty_flags(
3870 addr1, (0xff & ~CODE_DIRTY_FLAG));
3876 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3878 int io_index;
3879 uint8_t *ptr;
3880 unsigned long pd;
3881 PhysPageDesc *p;
3883 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3884 if (!p) {
3885 pd = IO_MEM_UNASSIGNED;
3886 } else {
3887 pd = p->phys_offset;
3890 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3891 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3892 if (p)
3893 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3894 #ifdef TARGET_WORDS_BIGENDIAN
3895 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3896 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3897 #else
3898 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3899 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3900 #endif
3901 } else {
3902 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3903 (addr & ~TARGET_PAGE_MASK);
3904 stq_p(ptr, val);
3908 /* warning: addr must be aligned */
3909 void stl_phys(target_phys_addr_t addr, uint32_t val)
3911 int io_index;
3912 uint8_t *ptr;
3913 unsigned long pd;
3914 PhysPageDesc *p;
3916 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3917 if (!p) {
3918 pd = IO_MEM_UNASSIGNED;
3919 } else {
3920 pd = p->phys_offset;
3923 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3924 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3925 if (p)
3926 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3927 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3928 } else {
3929 unsigned long addr1;
3930 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3931 /* RAM case */
3932 ptr = qemu_get_ram_ptr(addr1);
3933 stl_p(ptr, val);
3934 if (!cpu_physical_memory_is_dirty(addr1)) {
3935 /* invalidate code */
3936 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3937 /* set dirty bit */
3938 cpu_physical_memory_set_dirty_flags(addr1,
3939 (0xff & ~CODE_DIRTY_FLAG));
3944 /* XXX: optimize */
3945 void stb_phys(target_phys_addr_t addr, uint32_t val)
3947 uint8_t v = val;
3948 cpu_physical_memory_write(addr, &v, 1);
3951 /* warning: addr must be aligned */
3952 void stw_phys(target_phys_addr_t addr, uint32_t val)
3954 int io_index;
3955 uint8_t *ptr;
3956 unsigned long pd;
3957 PhysPageDesc *p;
3959 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3960 if (!p) {
3961 pd = IO_MEM_UNASSIGNED;
3962 } else {
3963 pd = p->phys_offset;
3966 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3967 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3968 if (p)
3969 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3970 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3971 } else {
3972 unsigned long addr1;
3973 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3974 /* RAM case */
3975 ptr = qemu_get_ram_ptr(addr1);
3976 stw_p(ptr, val);
3977 if (!cpu_physical_memory_is_dirty(addr1)) {
3978 /* invalidate code */
3979 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3980 /* set dirty bit */
3981 cpu_physical_memory_set_dirty_flags(addr1,
3982 (0xff & ~CODE_DIRTY_FLAG));
3987 /* XXX: optimize */
3988 void stq_phys(target_phys_addr_t addr, uint64_t val)
3990 val = tswap64(val);
3991 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3994 /* virtual memory access for debug (includes writing to ROM) */
3995 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3996 uint8_t *buf, int len, int is_write)
3998 int l;
3999 target_phys_addr_t phys_addr;
4000 target_ulong page;
4002 while (len > 0) {
4003 page = addr & TARGET_PAGE_MASK;
4004 phys_addr = cpu_get_phys_page_debug(env, page);
4005 /* if no physical page mapped, return an error */
4006 if (phys_addr == -1)
4007 return -1;
4008 l = (page + TARGET_PAGE_SIZE) - addr;
4009 if (l > len)
4010 l = len;
4011 phys_addr += (addr & ~TARGET_PAGE_MASK);
4012 if (is_write)
4013 cpu_physical_memory_write_rom(phys_addr, buf, l);
4014 else
4015 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4016 len -= l;
4017 buf += l;
4018 addr += l;
4020 return 0;
4022 #endif
4024 /* in deterministic execution mode, instructions doing device I/Os
4025 must be at the end of the TB */
4026 void cpu_io_recompile(CPUState *env, void *retaddr)
4028 TranslationBlock *tb;
4029 uint32_t n, cflags;
4030 target_ulong pc, cs_base;
4031 uint64_t flags;
4033 tb = tb_find_pc((unsigned long)retaddr);
4034 if (!tb) {
4035 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4036 retaddr);
4038 n = env->icount_decr.u16.low + tb->icount;
4039 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4040 /* Calculate how many instructions had been executed before the fault
4041 occurred. */
4042 n = n - env->icount_decr.u16.low;
4043 /* Generate a new TB ending on the I/O insn. */
4044 n++;
4045 /* On MIPS and SH, delay slot instructions can only be restarted if
4046 they were already the first instruction in the TB. If this is not
4047 the first instruction in a TB then re-execute the preceding
4048 branch. */
4049 #if defined(TARGET_MIPS)
4050 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4051 env->active_tc.PC -= 4;
4052 env->icount_decr.u16.low++;
4053 env->hflags &= ~MIPS_HFLAG_BMASK;
4055 #elif defined(TARGET_SH4)
4056 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4057 && n > 1) {
4058 env->pc -= 2;
4059 env->icount_decr.u16.low++;
4060 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4062 #endif
4063 /* This should never happen. */
4064 if (n > CF_COUNT_MASK)
4065 cpu_abort(env, "TB too big during recompile");
4067 cflags = n | CF_LAST_IO;
4068 pc = tb->pc;
4069 cs_base = tb->cs_base;
4070 flags = tb->flags;
4071 tb_phys_invalidate(tb, -1);
4072 /* FIXME: In theory this could raise an exception. In practice
4073 we have already translated the block once so it's probably ok. */
4074 tb_gen_code(env, pc, cs_base, flags, cflags);
4075 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4076 the first in the TB) then we end up generating a whole new TB and
4077 repeating the fault, which is horribly inefficient.
4078 Better would be to execute just this insn uncached, or generate a
4079 second new TB. */
4080 cpu_resume_from_signal(env, NULL);
4083 #if !defined(CONFIG_USER_ONLY)
4085 void dump_exec_info(FILE *f,
4086 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4088 int i, target_code_size, max_target_code_size;
4089 int direct_jmp_count, direct_jmp2_count, cross_page;
4090 TranslationBlock *tb;
4092 target_code_size = 0;
4093 max_target_code_size = 0;
4094 cross_page = 0;
4095 direct_jmp_count = 0;
4096 direct_jmp2_count = 0;
4097 for(i = 0; i < nb_tbs; i++) {
4098 tb = &tbs[i];
4099 target_code_size += tb->size;
4100 if (tb->size > max_target_code_size)
4101 max_target_code_size = tb->size;
4102 if (tb->page_addr[1] != -1)
4103 cross_page++;
4104 if (tb->tb_next_offset[0] != 0xffff) {
4105 direct_jmp_count++;
4106 if (tb->tb_next_offset[1] != 0xffff) {
4107 direct_jmp2_count++;
4111 /* XXX: avoid using doubles ? */
4112 cpu_fprintf(f, "Translation buffer state:\n");
4113 cpu_fprintf(f, "gen code size %ld/%ld\n",
4114 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4115 cpu_fprintf(f, "TB count %d/%d\n",
4116 nb_tbs, code_gen_max_blocks);
4117 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4118 nb_tbs ? target_code_size / nb_tbs : 0,
4119 max_target_code_size);
4120 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4121 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4122 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4123 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4124 cross_page,
4125 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4126 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4127 direct_jmp_count,
4128 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4129 direct_jmp2_count,
4130 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4131 cpu_fprintf(f, "\nStatistics:\n");
4132 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4133 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4134 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4135 #ifdef CONFIG_PROFILER
4136 tcg_dump_info(f, cpu_fprintf);
4137 #endif
4140 #define MMUSUFFIX _cmmu
4141 #define GETPC() NULL
4142 #define env cpu_single_env
4143 #define SOFTMMU_CODE_ACCESS
4145 #define SHIFT 0
4146 #include "softmmu_template.h"
4148 #define SHIFT 1
4149 #include "softmmu_template.h"
4151 #define SHIFT 2
4152 #include "softmmu_template.h"
4154 #define SHIFT 3
4155 #include "softmmu_template.h"
4157 #undef env
4159 #endif