pci: Remove pci_enable_capability_support()
[qemu-kvm/stefanha.git] / cpu-exec.c
bloba518d766de3541bb58ee3b6acb2ab18601994c8b
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #if !defined(TARGET_IA64)
23 #include "tcg.h"
24 #endif
25 #include "kvm.h"
26 #include "qemu-barrier.h"
28 #if !defined(CONFIG_SOFTMMU)
29 #undef EAX
30 #undef ECX
31 #undef EDX
32 #undef EBX
33 #undef ESP
34 #undef EBP
35 #undef ESI
36 #undef EDI
37 #undef EIP
38 #include <signal.h>
39 #ifdef __linux__
40 #include <sys/ucontext.h>
41 #endif
42 #endif
44 #include "qemu-kvm.h"
46 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
47 // Work around ugly bugs in glibc that mangle global register contents
48 #undef env
49 #define env cpu_single_env
50 #endif
52 int tb_invalidated_flag;
54 //#define CONFIG_DEBUG_EXEC
55 //#define DEBUG_SIGNAL
57 int qemu_cpu_has_work(CPUState *env)
59 return cpu_has_work(env);
62 void cpu_loop_exit(void)
64 env->current_tb = NULL;
65 longjmp(env->jmp_env, 1);
68 /* exit the current TB from a signal handler. The host registers are
69 restored in a state compatible with the CPU emulator
71 void cpu_resume_from_signal(CPUState *env1, void *puc)
73 #if !defined(CONFIG_SOFTMMU)
74 #ifdef __linux__
75 struct ucontext *uc = puc;
76 #elif defined(__OpenBSD__)
77 struct sigcontext *uc = puc;
78 #endif
79 #endif
81 env = env1;
83 /* XXX: restore cpu registers saved in host registers */
85 #if !defined(CONFIG_SOFTMMU)
86 if (puc) {
87 /* XXX: use siglongjmp ? */
88 #ifdef __linux__
89 #ifdef __ia64
90 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
91 #else
92 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
93 #endif
94 #elif defined(__OpenBSD__)
95 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
96 #endif
98 #endif
99 env->exception_index = -1;
100 longjmp(env->jmp_env, 1);
103 /* Execute the code without caching the generated code. An interpreter
104 could be used if available. */
105 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
107 unsigned long next_tb;
108 TranslationBlock *tb;
110 /* Should never happen.
111 We only end up here when an existing TB is too long. */
112 if (max_cycles > CF_COUNT_MASK)
113 max_cycles = CF_COUNT_MASK;
115 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
116 max_cycles);
117 env->current_tb = tb;
118 /* execute the generated code */
119 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
120 env->current_tb = NULL;
122 if ((next_tb & 3) == 2) {
123 /* Restore PC. This may happen if async event occurs before
124 the TB starts executing. */
125 cpu_pc_from_tb(env, tb);
127 tb_phys_invalidate(tb, -1);
128 tb_free(tb);
131 static TranslationBlock *tb_find_slow(target_ulong pc,
132 target_ulong cs_base,
133 uint64_t flags)
135 TranslationBlock *tb, **ptb1;
136 unsigned int h;
137 tb_page_addr_t phys_pc, phys_page1, phys_page2;
138 target_ulong virt_page2;
140 tb_invalidated_flag = 0;
142 /* find translated block using physical mappings */
143 phys_pc = get_page_addr_code(env, pc);
144 phys_page1 = phys_pc & TARGET_PAGE_MASK;
145 phys_page2 = -1;
146 h = tb_phys_hash_func(phys_pc);
147 ptb1 = &tb_phys_hash[h];
148 for(;;) {
149 tb = *ptb1;
150 if (!tb)
151 goto not_found;
152 if (tb->pc == pc &&
153 tb->page_addr[0] == phys_page1 &&
154 tb->cs_base == cs_base &&
155 tb->flags == flags) {
156 /* check next page if needed */
157 if (tb->page_addr[1] != -1) {
158 virt_page2 = (pc & TARGET_PAGE_MASK) +
159 TARGET_PAGE_SIZE;
160 phys_page2 = get_page_addr_code(env, virt_page2);
161 if (tb->page_addr[1] == phys_page2)
162 goto found;
163 } else {
164 goto found;
167 ptb1 = &tb->phys_hash_next;
169 not_found:
170 /* if no translated code available, then translate it now */
171 tb = tb_gen_code(env, pc, cs_base, flags, 0);
173 found:
174 /* we add the TB in the virtual pc hash table */
175 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
176 return tb;
179 static inline TranslationBlock *tb_find_fast(void)
181 TranslationBlock *tb;
182 target_ulong cs_base, pc;
183 int flags;
185 /* we record a subset of the CPU state. It will
186 always be the same before a given translated block
187 is executed. */
188 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
189 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
190 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
191 tb->flags != flags)) {
192 tb = tb_find_slow(pc, cs_base, flags);
194 return tb;
197 static CPUDebugExcpHandler *debug_excp_handler;
199 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
201 CPUDebugExcpHandler *old_handler = debug_excp_handler;
203 debug_excp_handler = handler;
204 return old_handler;
207 static void cpu_handle_debug_exception(CPUState *env)
209 CPUWatchpoint *wp;
211 if (!env->watchpoint_hit)
212 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
213 wp->flags &= ~BP_WATCHPOINT_HIT;
215 if (debug_excp_handler)
216 debug_excp_handler(env);
219 /* main execution loop */
221 volatile sig_atomic_t exit_request;
223 int cpu_exec(CPUState *env1)
225 volatile host_reg_t saved_env_reg;
226 int ret, interrupt_request;
227 TranslationBlock *tb;
228 uint8_t *tc_ptr;
229 unsigned long next_tb;
231 if (cpu_halted(env1) == EXCP_HALTED)
232 return EXCP_HALTED;
234 cpu_single_env = env1;
236 /* the access to env below is actually saving the global register's
237 value, so that files not including target-xyz/exec.h are free to
238 use it. */
239 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
240 saved_env_reg = (host_reg_t) env;
241 barrier();
242 env = env1;
244 if (unlikely(exit_request)) {
245 env->exit_request = 1;
248 #if defined(TARGET_I386)
249 if (!kvm_enabled()) {
250 /* put eflags in CPU temporary format */
251 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
252 DF = 1 - (2 * ((env->eflags >> 10) & 1));
253 CC_OP = CC_OP_EFLAGS;
254 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
256 #elif defined(TARGET_SPARC)
257 #elif defined(TARGET_M68K)
258 env->cc_op = CC_OP_FLAGS;
259 env->cc_dest = env->sr & 0xf;
260 env->cc_x = (env->sr >> 4) & 1;
261 #elif defined(TARGET_ALPHA)
262 #elif defined(TARGET_ARM)
263 #elif defined(TARGET_PPC)
264 #elif defined(TARGET_MICROBLAZE)
265 #elif defined(TARGET_MIPS)
266 #elif defined(TARGET_SH4)
267 #elif defined(TARGET_CRIS)
268 #elif defined(TARGET_S390X)
269 #elif defined(TARGET_IA64)
270 /* XXXXX */
271 #else
272 #error unsupported target CPU
273 #endif
274 env->exception_index = -1;
276 /* prepare setjmp context for exception handling */
277 for(;;) {
278 if (setjmp(env->jmp_env) == 0) {
279 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
280 #undef env
281 env = cpu_single_env;
282 #define env cpu_single_env
283 #endif
284 /* if an exception is pending, we execute it here */
285 if (env->exception_index >= 0) {
286 if (env->exception_index >= EXCP_INTERRUPT) {
287 /* exit request from the cpu execution loop */
288 ret = env->exception_index;
289 if (ret == EXCP_DEBUG)
290 cpu_handle_debug_exception(env);
291 break;
292 } else {
293 #if defined(CONFIG_USER_ONLY)
294 /* if user mode only, we simulate a fake exception
295 which will be handled outside the cpu execution
296 loop */
297 #if defined(TARGET_I386)
298 do_interrupt_user(env->exception_index,
299 env->exception_is_int,
300 env->error_code,
301 env->exception_next_eip);
302 /* successfully delivered */
303 env->old_exception = -1;
304 #endif
305 ret = env->exception_index;
306 break;
307 #else
308 #if defined(TARGET_I386)
309 /* simulate a real cpu exception. On i386, it can
310 trigger new exceptions, but we do not handle
311 double or triple faults yet. */
312 do_interrupt(env->exception_index,
313 env->exception_is_int,
314 env->error_code,
315 env->exception_next_eip, 0);
316 /* successfully delivered */
317 env->old_exception = -1;
318 #elif defined(TARGET_PPC)
319 do_interrupt(env);
320 #elif defined(TARGET_MICROBLAZE)
321 do_interrupt(env);
322 #elif defined(TARGET_MIPS)
323 do_interrupt(env);
324 #elif defined(TARGET_SPARC)
325 do_interrupt(env);
326 #elif defined(TARGET_ARM)
327 do_interrupt(env);
328 #elif defined(TARGET_SH4)
329 do_interrupt(env);
330 #elif defined(TARGET_ALPHA)
331 do_interrupt(env);
332 #elif defined(TARGET_CRIS)
333 do_interrupt(env);
334 #elif defined(TARGET_M68K)
335 do_interrupt(0);
336 #elif defined(TARGET_IA64)
337 do_interrupt(env);
338 #endif
339 env->exception_index = -1;
340 #endif
344 if (kvm_enabled()) {
345 kvm_cpu_exec(env);
346 longjmp(env->jmp_env, 1);
349 next_tb = 0; /* force lookup of first TB */
350 for(;;) {
351 interrupt_request = env->interrupt_request;
352 if (unlikely(interrupt_request)) {
353 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
354 /* Mask out external interrupts for this step. */
355 interrupt_request &= ~(CPU_INTERRUPT_HARD |
356 CPU_INTERRUPT_FIQ |
357 CPU_INTERRUPT_SMI |
358 CPU_INTERRUPT_NMI);
360 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
361 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
362 env->exception_index = EXCP_DEBUG;
363 cpu_loop_exit();
365 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
366 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
367 defined(TARGET_MICROBLAZE)
368 if (interrupt_request & CPU_INTERRUPT_HALT) {
369 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
370 env->halted = 1;
371 env->exception_index = EXCP_HLT;
372 cpu_loop_exit();
374 #endif
375 #if defined(TARGET_I386)
376 if (interrupt_request & CPU_INTERRUPT_INIT) {
377 svm_check_intercept(SVM_EXIT_INIT);
378 do_cpu_init(env);
379 env->exception_index = EXCP_HALTED;
380 cpu_loop_exit();
381 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
382 do_cpu_sipi(env);
383 } else if (env->hflags2 & HF2_GIF_MASK) {
384 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
385 !(env->hflags & HF_SMM_MASK)) {
386 svm_check_intercept(SVM_EXIT_SMI);
387 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
388 do_smm_enter();
389 next_tb = 0;
390 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
391 !(env->hflags2 & HF2_NMI_MASK)) {
392 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
393 env->hflags2 |= HF2_NMI_MASK;
394 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
395 next_tb = 0;
396 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
397 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
398 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
399 next_tb = 0;
400 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
401 (((env->hflags2 & HF2_VINTR_MASK) &&
402 (env->hflags2 & HF2_HIF_MASK)) ||
403 (!(env->hflags2 & HF2_VINTR_MASK) &&
404 (env->eflags & IF_MASK &&
405 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
406 int intno;
407 svm_check_intercept(SVM_EXIT_INTR);
408 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
409 intno = cpu_get_pic_interrupt(env);
410 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
411 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
412 #undef env
413 env = cpu_single_env;
414 #define env cpu_single_env
415 #endif
416 do_interrupt(intno, 0, 0, 0, 1);
417 /* ensure that no TB jump will be modified as
418 the program flow was changed */
419 next_tb = 0;
420 #if !defined(CONFIG_USER_ONLY)
421 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
422 (env->eflags & IF_MASK) &&
423 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
424 int intno;
425 /* FIXME: this should respect TPR */
426 svm_check_intercept(SVM_EXIT_VINTR);
427 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
428 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
429 do_interrupt(intno, 0, 0, 0, 1);
430 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
431 next_tb = 0;
432 #endif
435 #elif defined(TARGET_PPC)
436 #if 0
437 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
438 cpu_reset(env);
440 #endif
441 if (interrupt_request & CPU_INTERRUPT_HARD) {
442 ppc_hw_interrupt(env);
443 if (env->pending_interrupts == 0)
444 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
445 next_tb = 0;
447 #elif defined(TARGET_MICROBLAZE)
448 if ((interrupt_request & CPU_INTERRUPT_HARD)
449 && (env->sregs[SR_MSR] & MSR_IE)
450 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
451 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
452 env->exception_index = EXCP_IRQ;
453 do_interrupt(env);
454 next_tb = 0;
456 #elif defined(TARGET_MIPS)
457 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
458 cpu_mips_hw_interrupts_pending(env) &&
459 (env->CP0_Status & (1 << CP0St_IE)) &&
460 !(env->CP0_Status & (1 << CP0St_EXL)) &&
461 !(env->CP0_Status & (1 << CP0St_ERL)) &&
462 !(env->hflags & MIPS_HFLAG_DM)) {
463 /* Raise it */
464 env->exception_index = EXCP_EXT_INTERRUPT;
465 env->error_code = 0;
466 do_interrupt(env);
467 next_tb = 0;
469 #elif defined(TARGET_SPARC)
470 if (interrupt_request & CPU_INTERRUPT_HARD) {
471 if (cpu_interrupts_enabled(env) &&
472 env->interrupt_index > 0) {
473 int pil = env->interrupt_index & 0xf;
474 int type = env->interrupt_index & 0xf0;
476 if (((type == TT_EXTINT) &&
477 cpu_pil_allowed(env, pil)) ||
478 type != TT_EXTINT) {
479 env->exception_index = env->interrupt_index;
480 do_interrupt(env);
481 next_tb = 0;
484 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
485 //do_interrupt(0, 0, 0, 0, 0);
486 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
488 #elif defined(TARGET_ARM)
489 if (interrupt_request & CPU_INTERRUPT_FIQ
490 && !(env->uncached_cpsr & CPSR_F)) {
491 env->exception_index = EXCP_FIQ;
492 do_interrupt(env);
493 next_tb = 0;
495 /* ARMv7-M interrupt return works by loading a magic value
496 into the PC. On real hardware the load causes the
497 return to occur. The qemu implementation performs the
498 jump normally, then does the exception return when the
499 CPU tries to execute code at the magic address.
500 This will cause the magic PC value to be pushed to
501 the stack if an interrupt occured at the wrong time.
502 We avoid this by disabling interrupts when
503 pc contains a magic address. */
504 if (interrupt_request & CPU_INTERRUPT_HARD
505 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
506 || !(env->uncached_cpsr & CPSR_I))) {
507 env->exception_index = EXCP_IRQ;
508 do_interrupt(env);
509 next_tb = 0;
511 #elif defined(TARGET_SH4)
512 if (interrupt_request & CPU_INTERRUPT_HARD) {
513 do_interrupt(env);
514 next_tb = 0;
516 #elif defined(TARGET_ALPHA)
517 if (interrupt_request & CPU_INTERRUPT_HARD) {
518 do_interrupt(env);
519 next_tb = 0;
521 #elif defined(TARGET_CRIS)
522 if (interrupt_request & CPU_INTERRUPT_HARD
523 && (env->pregs[PR_CCS] & I_FLAG)
524 && !env->locked_irq) {
525 env->exception_index = EXCP_IRQ;
526 do_interrupt(env);
527 next_tb = 0;
529 if (interrupt_request & CPU_INTERRUPT_NMI
530 && (env->pregs[PR_CCS] & M_FLAG)) {
531 env->exception_index = EXCP_NMI;
532 do_interrupt(env);
533 next_tb = 0;
535 #elif defined(TARGET_M68K)
536 if (interrupt_request & CPU_INTERRUPT_HARD
537 && ((env->sr & SR_I) >> SR_I_SHIFT)
538 < env->pending_level) {
539 /* Real hardware gets the interrupt vector via an
540 IACK cycle at this point. Current emulated
541 hardware doesn't rely on this, so we
542 provide/save the vector when the interrupt is
543 first signalled. */
544 env->exception_index = env->pending_vector;
545 do_interrupt(1);
546 next_tb = 0;
548 #endif
549 /* Don't use the cached interupt_request value,
550 do_interrupt may have updated the EXITTB flag. */
551 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
552 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
553 /* ensure that no TB jump will be modified as
554 the program flow was changed */
555 next_tb = 0;
558 if (unlikely(env->exit_request)) {
559 env->exit_request = 0;
560 env->exception_index = EXCP_INTERRUPT;
561 cpu_loop_exit();
563 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
564 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
565 /* restore flags in standard format */
566 #if defined(TARGET_I386)
567 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
568 log_cpu_state(env, X86_DUMP_CCOP);
569 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
570 #elif defined(TARGET_M68K)
571 cpu_m68k_flush_flags(env, env->cc_op);
572 env->cc_op = CC_OP_FLAGS;
573 env->sr = (env->sr & 0xffe0)
574 | env->cc_dest | (env->cc_x << 4);
575 log_cpu_state(env, 0);
576 #else
577 log_cpu_state(env, 0);
578 #endif
580 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
581 spin_lock(&tb_lock);
582 tb = tb_find_fast();
583 /* Note: we do it here to avoid a gcc bug on Mac OS X when
584 doing it in tb_find_slow */
585 if (tb_invalidated_flag) {
586 /* as some TB could have been invalidated because
587 of memory exceptions while generating the code, we
588 must recompute the hash index here */
589 next_tb = 0;
590 tb_invalidated_flag = 0;
592 #ifdef CONFIG_DEBUG_EXEC
593 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
594 (long)tb->tc_ptr, tb->pc,
595 lookup_symbol(tb->pc));
596 #endif
597 /* see if we can patch the calling TB. When the TB
598 spans two pages, we cannot safely do a direct
599 jump. */
600 if (next_tb != 0 && tb->page_addr[1] == -1) {
601 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
603 spin_unlock(&tb_lock);
605 /* cpu_interrupt might be called while translating the
606 TB, but before it is linked into a potentially
607 infinite loop and becomes env->current_tb. Avoid
608 starting execution if there is a pending interrupt. */
609 env->current_tb = tb;
610 barrier();
611 if (likely(!env->exit_request)) {
612 tc_ptr = tb->tc_ptr;
613 /* execute the generated code */
614 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
615 #undef env
616 env = cpu_single_env;
617 #define env cpu_single_env
618 #endif
619 next_tb = tcg_qemu_tb_exec(tc_ptr);
620 if ((next_tb & 3) == 2) {
621 /* Instruction counter expired. */
622 int insns_left;
623 tb = (TranslationBlock *)(long)(next_tb & ~3);
624 /* Restore PC. */
625 cpu_pc_from_tb(env, tb);
626 insns_left = env->icount_decr.u32;
627 if (env->icount_extra && insns_left >= 0) {
628 /* Refill decrementer and continue execution. */
629 env->icount_extra += insns_left;
630 if (env->icount_extra > 0xffff) {
631 insns_left = 0xffff;
632 } else {
633 insns_left = env->icount_extra;
635 env->icount_extra -= insns_left;
636 env->icount_decr.u16.low = insns_left;
637 } else {
638 if (insns_left > 0) {
639 /* Execute remaining instructions. */
640 cpu_exec_nocache(insns_left, tb);
642 env->exception_index = EXCP_INTERRUPT;
643 next_tb = 0;
644 cpu_loop_exit();
648 env->current_tb = NULL;
649 /* reset soft MMU for next block (it can currently
650 only be set by a memory fault) */
651 } /* for(;;) */
653 } /* for(;;) */
656 #if defined(TARGET_I386)
657 /* restore flags in standard format */
658 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
659 #elif defined(TARGET_ARM)
660 /* XXX: Save/restore host fpu exception state?. */
661 #elif defined(TARGET_SPARC)
662 #elif defined(TARGET_PPC)
663 #elif defined(TARGET_M68K)
664 cpu_m68k_flush_flags(env, env->cc_op);
665 env->cc_op = CC_OP_FLAGS;
666 env->sr = (env->sr & 0xffe0)
667 | env->cc_dest | (env->cc_x << 4);
668 #elif defined(TARGET_MICROBLAZE)
669 #elif defined(TARGET_MIPS)
670 #elif defined(TARGET_SH4)
671 #elif defined(TARGET_IA64)
672 #elif defined(TARGET_ALPHA)
673 #elif defined(TARGET_CRIS)
674 #elif defined(TARGET_S390X)
675 /* XXXXX */
676 #else
677 #error unsupported target CPU
678 #endif
680 /* restore global registers */
681 barrier();
682 env = (void *) saved_env_reg;
684 /* fail safe : never use cpu_single_env outside cpu_exec() */
685 cpu_single_env = NULL;
686 return ret;
689 /* must only be called from the generated code as an exception can be
690 generated */
691 void tb_invalidate_page_range(target_ulong start, target_ulong end)
693 /* XXX: cannot enable it yet because it yields to MMU exception
694 where NIP != read address on PowerPC */
695 #if 0
696 target_ulong phys_addr;
697 phys_addr = get_phys_addr_code(env, start);
698 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
699 #endif
702 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
704 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
706 CPUX86State *saved_env;
708 saved_env = env;
709 env = s;
710 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
711 selector &= 0xffff;
712 cpu_x86_load_seg_cache(env, seg_reg, selector,
713 (selector << 4), 0xffff, 0);
714 } else {
715 helper_load_seg(seg_reg, selector);
717 env = saved_env;
720 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
722 CPUX86State *saved_env;
724 saved_env = env;
725 env = s;
727 helper_fsave(ptr, data32);
729 env = saved_env;
732 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
734 CPUX86State *saved_env;
736 saved_env = env;
737 env = s;
739 helper_frstor(ptr, data32);
741 env = saved_env;
744 #endif /* TARGET_I386 */
746 #if !defined(CONFIG_SOFTMMU)
748 #if defined(TARGET_I386)
749 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
750 #else
751 #define EXCEPTION_ACTION cpu_loop_exit()
752 #endif
754 /* 'pc' is the host PC at which the exception was raised. 'address' is
755 the effective address of the memory exception. 'is_write' is 1 if a
756 write caused the exception and otherwise 0'. 'old_set' is the
757 signal set which should be restored */
758 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
759 int is_write, sigset_t *old_set,
760 void *puc)
762 TranslationBlock *tb;
763 int ret;
765 if (cpu_single_env)
766 env = cpu_single_env; /* XXX: find a correct solution for multithread */
767 #if defined(DEBUG_SIGNAL)
768 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
769 pc, address, is_write, *(unsigned long *)old_set);
770 #endif
771 /* XXX: locking issue */
772 if (is_write && page_unprotect(h2g(address), pc, puc)) {
773 return 1;
776 /* see if it is an MMU fault */
777 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
778 if (ret < 0)
779 return 0; /* not an MMU fault */
780 if (ret == 0)
781 return 1; /* the MMU fault was handled without causing real CPU fault */
782 /* now we have a real cpu fault */
783 tb = tb_find_pc(pc);
784 if (tb) {
785 /* the PC is inside the translated code. It means that we have
786 a virtual CPU fault */
787 cpu_restore_state(tb, env, pc, puc);
790 /* we restore the process signal mask as the sigreturn should
791 do it (XXX: use sigsetjmp) */
792 sigprocmask(SIG_SETMASK, old_set, NULL);
793 EXCEPTION_ACTION;
795 /* never comes here */
796 return 1;
799 #if defined(__i386__)
801 #if defined(__APPLE__)
802 # include <sys/ucontext.h>
804 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
805 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
806 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
807 # define MASK_sig(context) ((context)->uc_sigmask)
808 #elif defined (__NetBSD__)
809 # include <ucontext.h>
811 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
812 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
813 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
814 # define MASK_sig(context) ((context)->uc_sigmask)
815 #elif defined (__FreeBSD__) || defined(__DragonFly__)
816 # include <ucontext.h>
818 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
819 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
820 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
821 # define MASK_sig(context) ((context)->uc_sigmask)
822 #elif defined(__OpenBSD__)
823 # define EIP_sig(context) ((context)->sc_eip)
824 # define TRAP_sig(context) ((context)->sc_trapno)
825 # define ERROR_sig(context) ((context)->sc_err)
826 # define MASK_sig(context) ((context)->sc_mask)
827 #else
828 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
829 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
830 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
831 # define MASK_sig(context) ((context)->uc_sigmask)
832 #endif
834 int cpu_signal_handler(int host_signum, void *pinfo,
835 void *puc)
837 siginfo_t *info = pinfo;
838 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
839 ucontext_t *uc = puc;
840 #elif defined(__OpenBSD__)
841 struct sigcontext *uc = puc;
842 #else
843 struct ucontext *uc = puc;
844 #endif
845 unsigned long pc;
846 int trapno;
848 #ifndef REG_EIP
849 /* for glibc 2.1 */
850 #define REG_EIP EIP
851 #define REG_ERR ERR
852 #define REG_TRAPNO TRAPNO
853 #endif
854 pc = EIP_sig(uc);
855 trapno = TRAP_sig(uc);
856 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
857 trapno == 0xe ?
858 (ERROR_sig(uc) >> 1) & 1 : 0,
859 &MASK_sig(uc), puc);
862 #elif defined(__x86_64__)
864 #ifdef __NetBSD__
865 #define PC_sig(context) _UC_MACHINE_PC(context)
866 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
867 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
868 #define MASK_sig(context) ((context)->uc_sigmask)
869 #elif defined(__OpenBSD__)
870 #define PC_sig(context) ((context)->sc_rip)
871 #define TRAP_sig(context) ((context)->sc_trapno)
872 #define ERROR_sig(context) ((context)->sc_err)
873 #define MASK_sig(context) ((context)->sc_mask)
874 #elif defined (__FreeBSD__) || defined(__DragonFly__)
875 #include <ucontext.h>
877 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
878 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
879 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
880 #define MASK_sig(context) ((context)->uc_sigmask)
881 #else
882 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
883 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
884 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
885 #define MASK_sig(context) ((context)->uc_sigmask)
886 #endif
888 int cpu_signal_handler(int host_signum, void *pinfo,
889 void *puc)
891 siginfo_t *info = pinfo;
892 unsigned long pc;
893 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
894 ucontext_t *uc = puc;
895 #elif defined(__OpenBSD__)
896 struct sigcontext *uc = puc;
897 #else
898 struct ucontext *uc = puc;
899 #endif
901 pc = PC_sig(uc);
902 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
903 TRAP_sig(uc) == 0xe ?
904 (ERROR_sig(uc) >> 1) & 1 : 0,
905 &MASK_sig(uc), puc);
908 #elif defined(_ARCH_PPC)
910 /***********************************************************************
911 * signal context platform-specific definitions
912 * From Wine
914 #ifdef linux
915 /* All Registers access - only for local access */
916 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
917 /* Gpr Registers access */
918 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
919 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
920 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
921 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
922 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
923 # define LR_sig(context) REG_sig(link, context) /* Link register */
924 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
925 /* Float Registers access */
926 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
927 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
928 /* Exception Registers access */
929 # define DAR_sig(context) REG_sig(dar, context)
930 # define DSISR_sig(context) REG_sig(dsisr, context)
931 # define TRAP_sig(context) REG_sig(trap, context)
932 #endif /* linux */
934 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
935 #include <ucontext.h>
936 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
937 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
938 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
939 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
940 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
941 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
942 /* Exception Registers access */
943 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
944 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
945 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
946 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
948 #ifdef __APPLE__
949 # include <sys/ucontext.h>
950 typedef struct ucontext SIGCONTEXT;
951 /* All Registers access - only for local access */
952 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
953 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
954 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
955 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
956 /* Gpr Registers access */
957 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
958 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
959 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
960 # define CTR_sig(context) REG_sig(ctr, context)
961 # define XER_sig(context) REG_sig(xer, context) /* Link register */
962 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
963 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
964 /* Float Registers access */
965 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
966 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
967 /* Exception Registers access */
968 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
969 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
970 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
971 #endif /* __APPLE__ */
973 int cpu_signal_handler(int host_signum, void *pinfo,
974 void *puc)
976 siginfo_t *info = pinfo;
977 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
978 ucontext_t *uc = puc;
979 #else
980 struct ucontext *uc = puc;
981 #endif
982 unsigned long pc;
983 int is_write;
985 pc = IAR_sig(uc);
986 is_write = 0;
987 #if 0
988 /* ppc 4xx case */
989 if (DSISR_sig(uc) & 0x00800000)
990 is_write = 1;
991 #else
992 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
993 is_write = 1;
994 #endif
995 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
996 is_write, &uc->uc_sigmask, puc);
999 #elif defined(__alpha__)
1001 int cpu_signal_handler(int host_signum, void *pinfo,
1002 void *puc)
1004 siginfo_t *info = pinfo;
1005 struct ucontext *uc = puc;
1006 uint32_t *pc = uc->uc_mcontext.sc_pc;
1007 uint32_t insn = *pc;
1008 int is_write = 0;
1010 /* XXX: need kernel patch to get write flag faster */
1011 switch (insn >> 26) {
1012 case 0x0d: // stw
1013 case 0x0e: // stb
1014 case 0x0f: // stq_u
1015 case 0x24: // stf
1016 case 0x25: // stg
1017 case 0x26: // sts
1018 case 0x27: // stt
1019 case 0x2c: // stl
1020 case 0x2d: // stq
1021 case 0x2e: // stl_c
1022 case 0x2f: // stq_c
1023 is_write = 1;
1026 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1027 is_write, &uc->uc_sigmask, puc);
1029 #elif defined(__sparc__)
1031 int cpu_signal_handler(int host_signum, void *pinfo,
1032 void *puc)
1034 siginfo_t *info = pinfo;
1035 int is_write;
1036 uint32_t insn;
1037 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1038 uint32_t *regs = (uint32_t *)(info + 1);
1039 void *sigmask = (regs + 20);
1040 /* XXX: is there a standard glibc define ? */
1041 unsigned long pc = regs[1];
1042 #else
1043 #ifdef __linux__
1044 struct sigcontext *sc = puc;
1045 unsigned long pc = sc->sigc_regs.tpc;
1046 void *sigmask = (void *)sc->sigc_mask;
1047 #elif defined(__OpenBSD__)
1048 struct sigcontext *uc = puc;
1049 unsigned long pc = uc->sc_pc;
1050 void *sigmask = (void *)(long)uc->sc_mask;
1051 #endif
1052 #endif
1054 /* XXX: need kernel patch to get write flag faster */
1055 is_write = 0;
1056 insn = *(uint32_t *)pc;
1057 if ((insn >> 30) == 3) {
1058 switch((insn >> 19) & 0x3f) {
1059 case 0x05: // stb
1060 case 0x15: // stba
1061 case 0x06: // sth
1062 case 0x16: // stha
1063 case 0x04: // st
1064 case 0x14: // sta
1065 case 0x07: // std
1066 case 0x17: // stda
1067 case 0x0e: // stx
1068 case 0x1e: // stxa
1069 case 0x24: // stf
1070 case 0x34: // stfa
1071 case 0x27: // stdf
1072 case 0x37: // stdfa
1073 case 0x26: // stqf
1074 case 0x36: // stqfa
1075 case 0x25: // stfsr
1076 case 0x3c: // casa
1077 case 0x3e: // casxa
1078 is_write = 1;
1079 break;
1082 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1083 is_write, sigmask, NULL);
1086 #elif defined(__arm__)
1088 int cpu_signal_handler(int host_signum, void *pinfo,
1089 void *puc)
1091 siginfo_t *info = pinfo;
1092 struct ucontext *uc = puc;
1093 unsigned long pc;
1094 int is_write;
1096 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1097 pc = uc->uc_mcontext.gregs[R15];
1098 #else
1099 pc = uc->uc_mcontext.arm_pc;
1100 #endif
1101 /* XXX: compute is_write */
1102 is_write = 0;
1103 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1104 is_write,
1105 &uc->uc_sigmask, puc);
1108 #elif defined(__mc68000)
1110 int cpu_signal_handler(int host_signum, void *pinfo,
1111 void *puc)
1113 siginfo_t *info = pinfo;
1114 struct ucontext *uc = puc;
1115 unsigned long pc;
1116 int is_write;
1118 pc = uc->uc_mcontext.gregs[16];
1119 /* XXX: compute is_write */
1120 is_write = 0;
1121 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1122 is_write,
1123 &uc->uc_sigmask, puc);
1126 #elif defined(__ia64)
1128 #ifndef __ISR_VALID
1129 /* This ought to be in <bits/siginfo.h>... */
1130 # define __ISR_VALID 1
1131 #endif
1133 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1135 siginfo_t *info = pinfo;
1136 struct ucontext *uc = puc;
1137 unsigned long ip;
1138 int is_write = 0;
1140 ip = uc->uc_mcontext.sc_ip;
1141 switch (host_signum) {
1142 case SIGILL:
1143 case SIGFPE:
1144 case SIGSEGV:
1145 case SIGBUS:
1146 case SIGTRAP:
1147 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1148 /* ISR.W (write-access) is bit 33: */
1149 is_write = (info->si_isr >> 33) & 1;
1150 break;
1152 default:
1153 break;
1155 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1156 is_write,
1157 (sigset_t *)&uc->uc_sigmask, puc);
1160 #elif defined(__s390__)
1162 int cpu_signal_handler(int host_signum, void *pinfo,
1163 void *puc)
1165 siginfo_t *info = pinfo;
1166 struct ucontext *uc = puc;
1167 unsigned long pc;
1168 uint16_t *pinsn;
1169 int is_write = 0;
1171 pc = uc->uc_mcontext.psw.addr;
1173 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1174 of the normal 2 arguments. The 3rd argument contains the "int_code"
1175 from the hardware which does in fact contain the is_write value.
1176 The rt signal handler, as far as I can tell, does not give this value
1177 at all. Not that we could get to it from here even if it were. */
1178 /* ??? This is not even close to complete, since it ignores all
1179 of the read-modify-write instructions. */
1180 pinsn = (uint16_t *)pc;
1181 switch (pinsn[0] >> 8) {
1182 case 0x50: /* ST */
1183 case 0x42: /* STC */
1184 case 0x40: /* STH */
1185 is_write = 1;
1186 break;
1187 case 0xc4: /* RIL format insns */
1188 switch (pinsn[0] & 0xf) {
1189 case 0xf: /* STRL */
1190 case 0xb: /* STGRL */
1191 case 0x7: /* STHRL */
1192 is_write = 1;
1194 break;
1195 case 0xe3: /* RXY format insns */
1196 switch (pinsn[2] & 0xff) {
1197 case 0x50: /* STY */
1198 case 0x24: /* STG */
1199 case 0x72: /* STCY */
1200 case 0x70: /* STHY */
1201 case 0x8e: /* STPQ */
1202 case 0x3f: /* STRVH */
1203 case 0x3e: /* STRV */
1204 case 0x2f: /* STRVG */
1205 is_write = 1;
1207 break;
1209 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1210 is_write, &uc->uc_sigmask, puc);
1213 #elif defined(__mips__)
1215 int cpu_signal_handler(int host_signum, void *pinfo,
1216 void *puc)
1218 siginfo_t *info = pinfo;
1219 struct ucontext *uc = puc;
1220 greg_t pc = uc->uc_mcontext.pc;
1221 int is_write;
1223 /* XXX: compute is_write */
1224 is_write = 0;
1225 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1226 is_write, &uc->uc_sigmask, puc);
1229 #elif defined(__hppa__)
1231 int cpu_signal_handler(int host_signum, void *pinfo,
1232 void *puc)
1234 struct siginfo *info = pinfo;
1235 struct ucontext *uc = puc;
1236 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1237 uint32_t insn = *(uint32_t *)pc;
1238 int is_write = 0;
1240 /* XXX: need kernel patch to get write flag faster. */
1241 switch (insn >> 26) {
1242 case 0x1a: /* STW */
1243 case 0x19: /* STH */
1244 case 0x18: /* STB */
1245 case 0x1b: /* STWM */
1246 is_write = 1;
1247 break;
1249 case 0x09: /* CSTWX, FSTWX, FSTWS */
1250 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1251 /* Distinguish from coprocessor load ... */
1252 is_write = (insn >> 9) & 1;
1253 break;
1255 case 0x03:
1256 switch ((insn >> 6) & 15) {
1257 case 0xa: /* STWS */
1258 case 0x9: /* STHS */
1259 case 0x8: /* STBS */
1260 case 0xe: /* STWAS */
1261 case 0xc: /* STBYS */
1262 is_write = 1;
1264 break;
1267 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1268 is_write, &uc->uc_sigmask, puc);
1271 #else
1273 #error host CPU specific signal handler needed
1275 #endif
1277 #endif /* !defined(CONFIG_SOFTMMU) */