4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
48 GDB_SIGNAL_UNKNOWN
= 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table
[] = {
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
226 static int gdb_signal_table
[] = {
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig
)
240 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
241 if (gdb_signal_table
[i
] == sig
)
243 return GDB_SIGNAL_UNKNOWN
;
247 static int gdb_signal_to_target (int sig
)
249 if (sig
< ARRAY_SIZE (gdb_signal_table
))
250 return gdb_signal_table
[sig
];
257 typedef struct GDBRegisterState
{
263 struct GDBRegisterState
*next
;
274 typedef struct GDBState
{
275 CPUState
*c_cpu
; /* current CPU for step/continue ops */
276 CPUState
*g_cpu
; /* current CPU for other ops */
277 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
278 enum RSState state
; /* parsing state */
279 char line_buf
[MAX_PACKET_LENGTH
];
282 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
285 #ifdef CONFIG_USER_ONLY
289 CharDriverState
*chr
;
290 CharDriverState
*mon_chr
;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
299 static GDBState
*gdbserver_state
;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml
;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd
= -1;
310 static int get_char(GDBState
*s
)
316 ret
= recv(s
->fd
, &ch
, 1, 0);
318 if (errno
== ECONNRESET
)
320 if (errno
!= EINTR
&& errno
!= EAGAIN
)
322 } else if (ret
== 0) {
334 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
347 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
350 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState
*s
)
356 #ifdef CONFIG_USER_ONLY
357 s
->running_state
= 1;
363 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
365 #ifdef CONFIG_USER_ONLY
369 ret
= send(s
->fd
, buf
, len
, 0);
371 if (errno
!= EINTR
&& errno
!= EAGAIN
)
379 qemu_chr_write(s
->chr
, buf
, len
);
383 static inline int fromhex(int v
)
385 if (v
>= '0' && v
<= '9')
387 else if (v
>= 'A' && v
<= 'F')
389 else if (v
>= 'a' && v
<= 'f')
395 static inline int tohex(int v
)
403 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
408 for(i
= 0; i
< len
; i
++) {
410 *q
++ = tohex(c
>> 4);
411 *q
++ = tohex(c
& 0xf);
416 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
420 for(i
= 0; i
< len
; i
++) {
421 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
438 for(i
= 0; i
< len
; i
++) {
442 *(p
++) = tohex((csum
>> 4) & 0xf);
443 *(p
++) = tohex((csum
) & 0xf);
445 s
->last_packet_len
= p
- s
->last_packet
;
446 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
448 #ifdef CONFIG_USER_ONLY
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState
*s
, const char *buf
)
465 printf("reply='%s'\n", buf
);
468 return put_packet_binary(s
, buf
, strlen(buf
));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
500 #if defined(TARGET_I386)
503 static const int gpr_map
[16] = {
504 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
505 8, 9, 10, 11, 12, 13, 14, 15
508 #define gpr_map gpr_map32
510 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 #define IDX_IP_REG CPU_NB_REGS
515 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
516 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
517 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
518 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
519 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
521 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
523 if (n
< CPU_NB_REGS
) {
524 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
525 GET_REG64(env
->regs
[gpr_map
[n
]]);
526 } else if (n
< CPU_NB_REGS32
) {
527 GET_REG32(env
->regs
[gpr_map32
[n
]]);
529 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
530 #ifdef USE_X86LDOUBLE
531 /* FIXME: byteswap float values - after fixing fpregs layout. */
532 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
534 memset(mem_buf
, 0, 10);
537 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
539 if (n
< CPU_NB_REGS32
||
540 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
541 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
542 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
548 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
553 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
555 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
556 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
557 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
558 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
559 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
560 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
562 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
563 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
564 (env
->fpstt
& 0x7) << 11);
565 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
566 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
567 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
568 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
569 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
570 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
572 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
578 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
580 uint16_t selector
= ldl_p(mem_buf
);
582 if (selector
!= env
->segs
[sreg
].selector
) {
583 #if defined(CONFIG_USER_ONLY)
584 cpu_x86_load_seg(env
, sreg
, selector
);
586 unsigned int limit
, flags
;
589 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
590 base
= selector
<< 4;
594 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
597 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
603 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
607 if (n
< CPU_NB_REGS
) {
608 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
609 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
610 return sizeof(target_ulong
);
611 } else if (n
< CPU_NB_REGS32
) {
613 env
->regs
[n
] &= ~0xffffffffUL
;
614 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
617 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
618 #ifdef USE_X86LDOUBLE
619 /* FIXME: byteswap float values - after fixing fpregs layout. */
620 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
623 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
625 if (n
< CPU_NB_REGS32
||
626 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
627 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
628 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
634 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
635 env
->eip
= ldq_p(mem_buf
);
638 env
->eip
&= ~0xffffffffUL
;
639 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
643 env
->eflags
= ldl_p(mem_buf
);
646 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
647 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
648 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
649 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
650 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
651 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
653 case IDX_FP_REGS
+ 8:
654 env
->fpuc
= ldl_p(mem_buf
);
656 case IDX_FP_REGS
+ 9:
657 tmp
= ldl_p(mem_buf
);
658 env
->fpstt
= (tmp
>> 11) & 7;
659 env
->fpus
= tmp
& ~0x3800;
661 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
662 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
663 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
664 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
665 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
666 case IDX_FP_REGS
+ 15: /* fop */ return 4;
669 env
->mxcsr
= ldl_p(mem_buf
);
673 /* Unrecognised register. */
677 #elif defined (TARGET_PPC)
679 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
680 expects whatever the target description contains. Due to a
681 historical mishap the FP registers appear in between core integer
682 regs and PC, MSR, CR, and so forth. We hack round this by giving the
683 FP regs zero size when talking to a newer gdb. */
684 #define NUM_CORE_REGS 71
685 #if defined (TARGET_PPC64)
686 #define GDB_CORE_XML "power64-core.xml"
688 #define GDB_CORE_XML "power-core.xml"
691 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
695 GET_REGL(env
->gpr
[n
]);
700 stfq_p(mem_buf
, env
->fpr
[n
-32]);
704 case 64: GET_REGL(env
->nip
);
705 case 65: GET_REGL(env
->msr
);
710 for (i
= 0; i
< 8; i
++)
711 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
714 case 67: GET_REGL(env
->lr
);
715 case 68: GET_REGL(env
->ctr
);
716 case 69: GET_REGL(env
->xer
);
721 GET_REG32(0); /* fpscr */
728 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
732 env
->gpr
[n
] = ldtul_p(mem_buf
);
733 return sizeof(target_ulong
);
738 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
743 env
->nip
= ldtul_p(mem_buf
);
744 return sizeof(target_ulong
);
746 ppc_store_msr(env
, ldtul_p(mem_buf
));
747 return sizeof(target_ulong
);
750 uint32_t cr
= ldl_p(mem_buf
);
752 for (i
= 0; i
< 8; i
++)
753 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
757 env
->lr
= ldtul_p(mem_buf
);
758 return sizeof(target_ulong
);
760 env
->ctr
= ldtul_p(mem_buf
);
761 return sizeof(target_ulong
);
763 env
->xer
= ldtul_p(mem_buf
);
764 return sizeof(target_ulong
);
775 #elif defined (TARGET_SPARC)
777 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
778 #define NUM_CORE_REGS 86
780 #define NUM_CORE_REGS 72
784 #define GET_REGA(val) GET_REG32(val)
786 #define GET_REGA(val) GET_REGL(val)
789 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
793 GET_REGA(env
->gregs
[n
]);
796 /* register window */
797 GET_REGA(env
->regwptr
[n
- 8]);
799 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
802 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
804 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
806 case 64: GET_REGA(env
->y
);
807 case 65: GET_REGA(cpu_get_psr(env
));
808 case 66: GET_REGA(env
->wim
);
809 case 67: GET_REGA(env
->tbr
);
810 case 68: GET_REGA(env
->pc
);
811 case 69: GET_REGA(env
->npc
);
812 case 70: GET_REGA(env
->fsr
);
813 case 71: GET_REGA(0); /* csr */
814 default: GET_REGA(0);
819 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
822 /* f32-f62 (double width, even numbers only) */
825 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
826 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
830 case 80: GET_REGL(env
->pc
);
831 case 81: GET_REGL(env
->npc
);
832 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
833 ((env
->asi
& 0xff) << 24) |
834 ((env
->pstate
& 0xfff) << 8) |
836 case 83: GET_REGL(env
->fsr
);
837 case 84: GET_REGL(env
->fprs
);
838 case 85: GET_REGL(env
->y
);
844 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
846 #if defined(TARGET_ABI32)
849 tmp
= ldl_p(mem_buf
);
853 tmp
= ldtul_p(mem_buf
);
860 /* register window */
861 env
->regwptr
[n
- 8] = tmp
;
863 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
866 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
868 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
870 case 64: env
->y
= tmp
; break;
871 case 65: cpu_put_psr(env
, tmp
); break;
872 case 66: env
->wim
= tmp
; break;
873 case 67: env
->tbr
= tmp
; break;
874 case 68: env
->pc
= tmp
; break;
875 case 69: env
->npc
= tmp
; break;
876 case 70: env
->fsr
= tmp
; break;
884 env
->fpr
[n
] = ldfl_p(mem_buf
);
887 /* f32-f62 (double width, even numbers only) */
888 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
889 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
892 case 80: env
->pc
= tmp
; break;
893 case 81: env
->npc
= tmp
; break;
895 cpu_put_ccr(env
, tmp
>> 32);
896 env
->asi
= (tmp
>> 24) & 0xff;
897 env
->pstate
= (tmp
>> 8) & 0xfff;
898 cpu_put_cwp64(env
, tmp
& 0xff);
900 case 83: env
->fsr
= tmp
; break;
901 case 84: env
->fprs
= tmp
; break;
902 case 85: env
->y
= tmp
; break;
909 #elif defined (TARGET_ARM)
911 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
912 whatever the target description contains. Due to a historical mishap
913 the FPA registers appear in between core integer regs and the CPSR.
914 We hack round this by giving the FPA regs zero size when talking to a
916 #define NUM_CORE_REGS 26
917 #define GDB_CORE_XML "arm-core.xml"
919 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
922 /* Core integer register. */
923 GET_REG32(env
->regs
[n
]);
929 memset(mem_buf
, 0, 12);
934 /* FPA status register. */
940 GET_REG32(cpsr_read(env
));
942 /* Unknown register. */
946 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
950 tmp
= ldl_p(mem_buf
);
952 /* Mask out low bit of PC to workaround gdb bugs. This will probably
953 cause problems if we ever implement the Jazelle DBX extensions. */
958 /* Core integer register. */
962 if (n
< 24) { /* 16-23 */
963 /* FPA registers (ignored). */
970 /* FPA status register (ignored). */
976 cpsr_write (env
, tmp
, 0xffffffff);
979 /* Unknown register. */
983 #elif defined (TARGET_M68K)
985 #define NUM_CORE_REGS 18
987 #define GDB_CORE_XML "cf-core.xml"
989 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
993 GET_REG32(env
->dregs
[n
]);
996 GET_REG32(env
->aregs
[n
- 8]);
999 case 16: GET_REG32(env
->sr
);
1000 case 17: GET_REG32(env
->pc
);
1003 /* FP registers not included here because they vary between
1004 ColdFire and m68k. Use XML bits for these. */
1008 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1012 tmp
= ldl_p(mem_buf
);
1016 env
->dregs
[n
] = tmp
;
1017 } else if (n
< 16) {
1019 env
->aregs
[n
- 8] = tmp
;
1022 case 16: env
->sr
= tmp
; break;
1023 case 17: env
->pc
= tmp
; break;
1029 #elif defined (TARGET_MIPS)
1031 #define NUM_CORE_REGS 73
1033 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1036 GET_REGL(env
->active_tc
.gpr
[n
]);
1038 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1039 if (n
>= 38 && n
< 70) {
1040 if (env
->CP0_Status
& (1 << CP0St_FR
))
1041 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1043 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1046 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1047 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1051 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1052 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1053 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1054 case 35: GET_REGL(env
->CP0_BadVAddr
);
1055 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1056 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1057 case 72: GET_REGL(0); /* fp */
1058 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1060 if (n
>= 73 && n
<= 88) {
1061 /* 16 embedded regs. */
1068 /* convert MIPS rounding mode in FCR31 to IEEE library */
1069 static unsigned int ieee_rm
[] =
1071 float_round_nearest_even
,
1072 float_round_to_zero
,
1076 #define RESTORE_ROUNDING_MODE \
1077 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1079 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1083 tmp
= ldtul_p(mem_buf
);
1086 env
->active_tc
.gpr
[n
] = tmp
;
1087 return sizeof(target_ulong
);
1089 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1090 && n
>= 38 && n
< 73) {
1092 if (env
->CP0_Status
& (1 << CP0St_FR
))
1093 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1095 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1099 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1100 /* set rounding mode */
1101 RESTORE_ROUNDING_MODE
;
1102 #ifndef CONFIG_SOFTFLOAT
1103 /* no floating point exception for native float */
1104 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1107 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1109 return sizeof(target_ulong
);
1112 case 32: env
->CP0_Status
= tmp
; break;
1113 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1114 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1115 case 35: env
->CP0_BadVAddr
= tmp
; break;
1116 case 36: env
->CP0_Cause
= tmp
; break;
1118 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1120 env
->hflags
|= MIPS_HFLAG_M16
;
1122 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1125 case 72: /* fp, ignored */ break;
1129 /* Other registers are readonly. Ignore writes. */
1133 return sizeof(target_ulong
);
1135 #elif defined (TARGET_SH4)
1137 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1138 /* FIXME: We should use XML for this. */
1140 #define NUM_CORE_REGS 59
1142 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1145 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1146 GET_REGL(env
->gregs
[n
+ 16]);
1148 GET_REGL(env
->gregs
[n
]);
1150 } else if (n
< 16) {
1151 GET_REGL(env
->gregs
[n
]);
1152 } else if (n
>= 25 && n
< 41) {
1153 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1154 } else if (n
>= 43 && n
< 51) {
1155 GET_REGL(env
->gregs
[n
- 43]);
1156 } else if (n
>= 51 && n
< 59) {
1157 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1160 case 16: GET_REGL(env
->pc
);
1161 case 17: GET_REGL(env
->pr
);
1162 case 18: GET_REGL(env
->gbr
);
1163 case 19: GET_REGL(env
->vbr
);
1164 case 20: GET_REGL(env
->mach
);
1165 case 21: GET_REGL(env
->macl
);
1166 case 22: GET_REGL(env
->sr
);
1167 case 23: GET_REGL(env
->fpul
);
1168 case 24: GET_REGL(env
->fpscr
);
1169 case 41: GET_REGL(env
->ssr
);
1170 case 42: GET_REGL(env
->spc
);
1176 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1180 tmp
= ldl_p(mem_buf
);
1183 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1184 env
->gregs
[n
+ 16] = tmp
;
1186 env
->gregs
[n
] = tmp
;
1189 } else if (n
< 16) {
1190 env
->gregs
[n
] = tmp
;
1192 } else if (n
>= 25 && n
< 41) {
1193 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1195 } else if (n
>= 43 && n
< 51) {
1196 env
->gregs
[n
- 43] = tmp
;
1198 } else if (n
>= 51 && n
< 59) {
1199 env
->gregs
[n
- (51 - 16)] = tmp
;
1203 case 16: env
->pc
= tmp
; break;
1204 case 17: env
->pr
= tmp
; break;
1205 case 18: env
->gbr
= tmp
; break;
1206 case 19: env
->vbr
= tmp
; break;
1207 case 20: env
->mach
= tmp
; break;
1208 case 21: env
->macl
= tmp
; break;
1209 case 22: env
->sr
= tmp
; break;
1210 case 23: env
->fpul
= tmp
; break;
1211 case 24: env
->fpscr
= tmp
; break;
1212 case 41: env
->ssr
= tmp
; break;
1213 case 42: env
->spc
= tmp
; break;
1219 #elif defined (TARGET_MICROBLAZE)
1221 #define NUM_CORE_REGS (32 + 5)
1223 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1226 GET_REG32(env
->regs
[n
]);
1228 GET_REG32(env
->sregs
[n
- 32]);
1233 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1237 if (n
> NUM_CORE_REGS
)
1240 tmp
= ldl_p(mem_buf
);
1245 env
->sregs
[n
- 32] = tmp
;
1249 #elif defined (TARGET_CRIS)
1251 #define NUM_CORE_REGS 49
1254 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1257 GET_REG32(env
->regs
[n
]);
1267 GET_REG8(env
->pregs
[n
- 16]);
1270 GET_REG8(env
->pregs
[n
- 16]);
1274 GET_REG16(env
->pregs
[n
- 16]);
1278 GET_REG32(env
->pregs
[n
- 16]);
1286 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1290 if (env
->pregs
[PR_VR
] < 32)
1291 return read_register_crisv10(env
, mem_buf
, n
);
1293 srs
= env
->pregs
[PR_SRS
];
1295 GET_REG32(env
->regs
[n
]);
1298 if (n
>= 21 && n
< 32) {
1299 GET_REG32(env
->pregs
[n
- 16]);
1301 if (n
>= 33 && n
< 49) {
1302 GET_REG32(env
->sregs
[srs
][n
- 33]);
1305 case 16: GET_REG8(env
->pregs
[0]);
1306 case 17: GET_REG8(env
->pregs
[1]);
1307 case 18: GET_REG32(env
->pregs
[2]);
1308 case 19: GET_REG8(srs
);
1309 case 20: GET_REG16(env
->pregs
[4]);
1310 case 32: GET_REG32(env
->pc
);
1316 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1323 tmp
= ldl_p(mem_buf
);
1329 if (n
>= 21 && n
< 32) {
1330 env
->pregs
[n
- 16] = tmp
;
1333 /* FIXME: Should support function regs be writable? */
1337 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1340 case 32: env
->pc
= tmp
; break;
1345 #elif defined (TARGET_ALPHA)
1347 #define NUM_CORE_REGS 67
1349 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1359 d
.d
= env
->fir
[n
- 32];
1363 val
= cpu_alpha_load_fpcr(env
);
1373 /* 31 really is the zero register; 65 is unassigned in the
1374 gdb protocol, but is still required to occupy 8 bytes. */
1383 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1385 target_ulong tmp
= ldtul_p(mem_buf
);
1394 env
->fir
[n
- 32] = d
.d
;
1397 cpu_alpha_store_fpcr(env
, tmp
);
1407 /* 31 really is the zero register; 65 is unassigned in the
1408 gdb protocol, but is still required to occupy 8 bytes. */
1415 #elif defined (TARGET_S390X)
1417 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1419 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1422 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1423 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1424 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1425 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1426 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1427 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1428 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1429 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1432 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1433 case S390_CC_REGNUM
: GET_REG32(env
->cc
); break;
1439 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1444 tmpl
= ldtul_p(mem_buf
);
1445 tmp32
= ldl_p(mem_buf
);
1448 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1449 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1450 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1451 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1452 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1453 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1454 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1455 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1458 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1459 case S390_CC_REGNUM
: env
->cc
= tmp32
; r
=4; break;
1466 #define NUM_CORE_REGS 0
1468 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1473 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1480 static int num_g_regs
= NUM_CORE_REGS
;
1483 /* Encode data using the encoding for 'x' packets. */
1484 static int memtox(char *buf
, const char *mem
, int len
)
1492 case '#': case '$': case '*': case '}':
1504 static const char *get_feature_xml(const char *p
, const char **newp
)
1506 extern const char *const xml_builtin
[][2];
1510 static char target_xml
[1024];
1513 while (p
[len
] && p
[len
] != ':')
1518 if (strncmp(p
, "target.xml", len
) == 0) {
1519 /* Generate the XML description for this CPU. */
1520 if (!target_xml
[0]) {
1521 GDBRegisterState
*r
;
1523 snprintf(target_xml
, sizeof(target_xml
),
1524 "<?xml version=\"1.0\"?>"
1525 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1527 "<xi:include href=\"%s\"/>",
1530 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1531 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1532 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1533 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1535 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1539 for (i
= 0; ; i
++) {
1540 name
= xml_builtin
[i
][0];
1541 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1544 return name
? xml_builtin
[i
][1] : NULL
;
1548 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1550 GDBRegisterState
*r
;
1552 if (reg
< NUM_CORE_REGS
)
1553 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1555 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1556 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1557 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1563 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1565 GDBRegisterState
*r
;
1567 if (reg
< NUM_CORE_REGS
)
1568 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1570 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1571 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1572 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1578 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1579 specifies the first register number and these registers are included in
1580 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1581 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1584 void gdb_register_coprocessor(CPUState
* env
,
1585 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1586 int num_regs
, const char *xml
, int g_pos
)
1588 GDBRegisterState
*s
;
1589 GDBRegisterState
**p
;
1590 static int last_reg
= NUM_CORE_REGS
;
1592 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1593 s
->base_reg
= last_reg
;
1594 s
->num_regs
= num_regs
;
1595 s
->get_reg
= get_reg
;
1596 s
->set_reg
= set_reg
;
1600 /* Check for duplicates. */
1601 if (strcmp((*p
)->xml
, xml
) == 0)
1605 /* Add to end of list. */
1606 last_reg
+= num_regs
;
1609 if (g_pos
!= s
->base_reg
) {
1610 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1611 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1613 num_g_regs
= last_reg
;
1618 #ifndef CONFIG_USER_ONLY
1619 static const int xlat_gdb_type
[] = {
1620 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1621 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1622 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1626 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1632 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1635 case GDB_BREAKPOINT_SW
:
1636 case GDB_BREAKPOINT_HW
:
1637 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1638 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1643 #ifndef CONFIG_USER_ONLY
1644 case GDB_WATCHPOINT_WRITE
:
1645 case GDB_WATCHPOINT_READ
:
1646 case GDB_WATCHPOINT_ACCESS
:
1647 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1648 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1660 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1666 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1669 case GDB_BREAKPOINT_SW
:
1670 case GDB_BREAKPOINT_HW
:
1671 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1672 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1677 #ifndef CONFIG_USER_ONLY
1678 case GDB_WATCHPOINT_WRITE
:
1679 case GDB_WATCHPOINT_READ
:
1680 case GDB_WATCHPOINT_ACCESS
:
1681 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1682 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1693 static void gdb_breakpoint_remove_all(void)
1697 if (kvm_enabled()) {
1698 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1702 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1703 cpu_breakpoint_remove_all(env
, BP_GDB
);
1704 #ifndef CONFIG_USER_ONLY
1705 cpu_watchpoint_remove_all(env
, BP_GDB
);
1710 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1712 #if defined(TARGET_I386)
1713 cpu_synchronize_state(s
->c_cpu
);
1715 #elif defined (TARGET_PPC)
1717 #elif defined (TARGET_SPARC)
1719 s
->c_cpu
->npc
= pc
+ 4;
1720 #elif defined (TARGET_ARM)
1721 s
->c_cpu
->regs
[15] = pc
;
1722 #elif defined (TARGET_SH4)
1724 #elif defined (TARGET_MIPS)
1725 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1727 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1729 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1731 #elif defined (TARGET_MICROBLAZE)
1732 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1733 #elif defined (TARGET_CRIS)
1735 #elif defined (TARGET_ALPHA)
1737 #elif defined (TARGET_S390X)
1738 cpu_synchronize_state(s
->c_cpu
);
1739 s
->c_cpu
->psw
.addr
= pc
;
1743 static inline int gdb_id(CPUState
*env
)
1745 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1746 return env
->host_tid
;
1748 return env
->cpu_index
+ 1;
1752 static CPUState
*find_cpu(uint32_t thread_id
)
1756 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1757 if (gdb_id(env
) == thread_id
) {
1765 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1770 int ch
, reg_size
, type
, res
;
1771 char buf
[MAX_PACKET_LENGTH
];
1772 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1774 target_ulong addr
, len
;
1777 printf("command='%s'\n", line_buf
);
1783 /* TODO: Make this return the correct value for user-mode. */
1784 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1787 /* Remove all the breakpoints when this query is issued,
1788 * because gdb is doing and initial connect and the state
1789 * should be cleaned up.
1791 gdb_breakpoint_remove_all();
1795 addr
= strtoull(p
, (char **)&p
, 16);
1796 gdb_set_cpu_pc(s
, addr
);
1802 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1803 if (s
->signal
== -1)
1808 if (strncmp(p
, "Cont", 4) == 0) {
1809 int res_signal
, res_thread
;
1813 put_packet(s
, "vCont;c;C;s;S");
1828 if (action
== 'C' || action
== 'S') {
1829 signal
= strtoul(p
, (char **)&p
, 16);
1830 } else if (action
!= 'c' && action
!= 's') {
1836 thread
= strtoull(p
+1, (char **)&p
, 16);
1838 action
= tolower(action
);
1839 if (res
== 0 || (res
== 'c' && action
== 's')) {
1841 res_signal
= signal
;
1842 res_thread
= thread
;
1846 if (res_thread
!= -1 && res_thread
!= 0) {
1847 env
= find_cpu(res_thread
);
1849 put_packet(s
, "E22");
1855 cpu_single_step(s
->c_cpu
, sstep_flags
);
1857 s
->signal
= res_signal
;
1863 goto unknown_command
;
1866 /* Kill the target */
1867 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1871 gdb_breakpoint_remove_all();
1872 gdb_syscall_mode
= GDB_SYS_DISABLED
;
1874 put_packet(s
, "OK");
1878 addr
= strtoull(p
, (char **)&p
, 16);
1879 gdb_set_cpu_pc(s
, addr
);
1881 cpu_single_step(s
->c_cpu
, sstep_flags
);
1889 ret
= strtoull(p
, (char **)&p
, 16);
1892 err
= strtoull(p
, (char **)&p
, 16);
1899 if (gdb_current_syscall_cb
)
1900 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1902 put_packet(s
, "T02");
1909 cpu_synchronize_state(s
->g_cpu
);
1911 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1912 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1915 memtohex(buf
, mem_buf
, len
);
1919 cpu_synchronize_state(s
->g_cpu
);
1920 registers
= mem_buf
;
1921 len
= strlen(p
) / 2;
1922 hextomem((uint8_t *)registers
, p
, len
);
1923 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1924 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1926 registers
+= reg_size
;
1928 put_packet(s
, "OK");
1931 addr
= strtoull(p
, (char **)&p
, 16);
1934 len
= strtoull(p
, NULL
, 16);
1935 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1936 put_packet (s
, "E14");
1938 memtohex(buf
, mem_buf
, len
);
1943 addr
= strtoull(p
, (char **)&p
, 16);
1946 len
= strtoull(p
, (char **)&p
, 16);
1949 hextomem(mem_buf
, p
, len
);
1950 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1951 put_packet(s
, "E14");
1953 put_packet(s
, "OK");
1956 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1957 This works, but can be very slow. Anything new enough to
1958 understand XML also knows how to use this properly. */
1960 goto unknown_command
;
1961 addr
= strtoull(p
, (char **)&p
, 16);
1962 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1964 memtohex(buf
, mem_buf
, reg_size
);
1967 put_packet(s
, "E14");
1972 goto unknown_command
;
1973 addr
= strtoull(p
, (char **)&p
, 16);
1976 reg_size
= strlen(p
) / 2;
1977 hextomem(mem_buf
, p
, reg_size
);
1978 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1979 put_packet(s
, "OK");
1983 type
= strtoul(p
, (char **)&p
, 16);
1986 addr
= strtoull(p
, (char **)&p
, 16);
1989 len
= strtoull(p
, (char **)&p
, 16);
1991 res
= gdb_breakpoint_insert(addr
, len
, type
);
1993 res
= gdb_breakpoint_remove(addr
, len
, type
);
1995 put_packet(s
, "OK");
1996 else if (res
== -ENOSYS
)
1999 put_packet(s
, "E22");
2003 thread
= strtoull(p
, (char **)&p
, 16);
2004 if (thread
== -1 || thread
== 0) {
2005 put_packet(s
, "OK");
2008 env
= find_cpu(thread
);
2010 put_packet(s
, "E22");
2016 put_packet(s
, "OK");
2020 put_packet(s
, "OK");
2023 put_packet(s
, "E22");
2028 thread
= strtoull(p
, (char **)&p
, 16);
2029 env
= find_cpu(thread
);
2032 put_packet(s
, "OK");
2034 put_packet(s
, "E22");
2039 /* parse any 'q' packets here */
2040 if (!strcmp(p
,"qemu.sstepbits")) {
2041 /* Query Breakpoint bit definitions */
2042 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2048 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2049 /* Display or change the sstep_flags */
2052 /* Display current setting */
2053 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2058 type
= strtoul(p
, (char **)&p
, 16);
2060 put_packet(s
, "OK");
2062 } else if (strcmp(p
,"C") == 0) {
2063 /* "Current thread" remains vague in the spec, so always return
2064 * the first CPU (gdb returns the first thread). */
2065 put_packet(s
, "QC1");
2067 } else if (strcmp(p
,"fThreadInfo") == 0) {
2068 s
->query_cpu
= first_cpu
;
2069 goto report_cpuinfo
;
2070 } else if (strcmp(p
,"sThreadInfo") == 0) {
2073 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2075 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2079 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2080 thread
= strtoull(p
+16, (char **)&p
, 16);
2081 env
= find_cpu(thread
);
2083 cpu_synchronize_state(env
);
2084 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2085 "CPU#%d [%s]", env
->cpu_index
,
2086 env
->halted
? "halted " : "running");
2087 memtohex(buf
, mem_buf
, len
);
2092 #ifdef CONFIG_USER_ONLY
2093 else if (strncmp(p
, "Offsets", 7) == 0) {
2094 TaskState
*ts
= s
->c_cpu
->opaque
;
2096 snprintf(buf
, sizeof(buf
),
2097 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2098 ";Bss=" TARGET_ABI_FMT_lx
,
2099 ts
->info
->code_offset
,
2100 ts
->info
->data_offset
,
2101 ts
->info
->data_offset
);
2105 #else /* !CONFIG_USER_ONLY */
2106 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2107 int len
= strlen(p
+ 5);
2109 if ((len
% 2) != 0) {
2110 put_packet(s
, "E01");
2113 hextomem(mem_buf
, p
+ 5, len
);
2116 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
2117 put_packet(s
, "OK");
2120 #endif /* !CONFIG_USER_ONLY */
2121 if (strncmp(p
, "Supported", 9) == 0) {
2122 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2124 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2130 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2132 target_ulong total_len
;
2136 xml
= get_feature_xml(p
, &p
);
2138 snprintf(buf
, sizeof(buf
), "E00");
2145 addr
= strtoul(p
, (char **)&p
, 16);
2148 len
= strtoul(p
, (char **)&p
, 16);
2150 total_len
= strlen(xml
);
2151 if (addr
> total_len
) {
2152 snprintf(buf
, sizeof(buf
), "E00");
2156 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2157 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2158 if (len
< total_len
- addr
) {
2160 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2163 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2165 put_packet_binary(s
, buf
, len
+ 1);
2169 /* Unrecognised 'q' command. */
2170 goto unknown_command
;
2174 /* put empty packet */
2182 void gdb_set_stop_cpu(CPUState
*env
)
2184 gdbserver_state
->c_cpu
= env
;
2185 gdbserver_state
->g_cpu
= env
;
2188 #ifndef CONFIG_USER_ONLY
2189 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
2191 GDBState
*s
= gdbserver_state
;
2192 CPUState
*env
= s
->c_cpu
;
2197 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
2198 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
)
2201 /* disable single step if it was enable */
2202 cpu_single_step(env
, 0);
2204 if (reason
== EXCP_DEBUG
) {
2205 if (env
->watchpoint_hit
) {
2206 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2217 snprintf(buf
, sizeof(buf
),
2218 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2219 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2220 env
->watchpoint_hit
->vaddr
);
2222 env
->watchpoint_hit
= NULL
;
2226 ret
= GDB_SIGNAL_TRAP
;
2228 ret
= GDB_SIGNAL_INT
;
2230 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2235 /* Send a gdb syscall request.
2236 This accepts limited printf-style format specifiers, specifically:
2237 %x - target_ulong argument printed in hex.
2238 %lx - 64-bit argument printed in hex.
2239 %s - string pointer (target_ulong) and length (int) pair. */
2240 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2249 s
= gdbserver_state
;
2252 gdb_current_syscall_cb
= cb
;
2253 s
->state
= RS_SYSCALL
;
2254 #ifndef CONFIG_USER_ONLY
2255 vm_stop(EXCP_DEBUG
);
2266 addr
= va_arg(va
, target_ulong
);
2267 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2270 if (*(fmt
++) != 'x')
2272 i64
= va_arg(va
, uint64_t);
2273 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2276 addr
= va_arg(va
, target_ulong
);
2277 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2278 addr
, va_arg(va
, int));
2282 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2293 #ifdef CONFIG_USER_ONLY
2294 gdb_handlesig(s
->c_cpu
, 0);
2300 static void gdb_read_byte(GDBState
*s
, int ch
)
2305 #ifndef CONFIG_USER_ONLY
2306 if (s
->last_packet_len
) {
2307 /* Waiting for a response to the last packet. If we see the start
2308 of a new command then abandon the previous response. */
2311 printf("Got NACK, retransmitting\n");
2313 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2317 printf("Got ACK\n");
2319 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2321 if (ch
== '+' || ch
== '$')
2322 s
->last_packet_len
= 0;
2327 /* when the CPU is running, we cannot do anything except stop
2328 it when receiving a char */
2329 vm_stop(EXCP_INTERRUPT
);
2336 s
->line_buf_index
= 0;
2337 s
->state
= RS_GETLINE
;
2342 s
->state
= RS_CHKSUM1
;
2343 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2346 s
->line_buf
[s
->line_buf_index
++] = ch
;
2350 s
->line_buf
[s
->line_buf_index
] = '\0';
2351 s
->line_csum
= fromhex(ch
) << 4;
2352 s
->state
= RS_CHKSUM2
;
2355 s
->line_csum
|= fromhex(ch
);
2357 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2358 csum
+= s
->line_buf
[i
];
2360 if (s
->line_csum
!= (csum
& 0xff)) {
2362 put_buffer(s
, &reply
, 1);
2366 put_buffer(s
, &reply
, 1);
2367 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2376 #ifdef CONFIG_USER_ONLY
2382 s
= gdbserver_state
;
2384 if (gdbserver_fd
< 0 || s
->fd
< 0)
2391 gdb_handlesig (CPUState
*env
, int sig
)
2397 s
= gdbserver_state
;
2398 if (gdbserver_fd
< 0 || s
->fd
< 0)
2401 /* disable single step if it was enabled */
2402 cpu_single_step(env
, 0);
2407 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2410 /* put_packet() might have detected that the peer terminated the
2417 s
->running_state
= 0;
2418 while (s
->running_state
== 0) {
2419 n
= read (s
->fd
, buf
, 256);
2424 for (i
= 0; i
< n
; i
++)
2425 gdb_read_byte (s
, buf
[i
]);
2427 else if (n
== 0 || errno
!= EAGAIN
)
2429 /* XXX: Connection closed. Should probably wait for annother
2430 connection before continuing. */
2439 /* Tell the remote gdb that the process has exited. */
2440 void gdb_exit(CPUState
*env
, int code
)
2445 s
= gdbserver_state
;
2446 if (gdbserver_fd
< 0 || s
->fd
< 0)
2449 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2453 /* Tell the remote gdb that the process has exited due to SIG. */
2454 void gdb_signalled(CPUState
*env
, int sig
)
2459 s
= gdbserver_state
;
2460 if (gdbserver_fd
< 0 || s
->fd
< 0)
2463 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2467 static void gdb_accept(void)
2470 struct sockaddr_in sockaddr
;
2475 len
= sizeof(sockaddr
);
2476 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2477 if (fd
< 0 && errno
!= EINTR
) {
2480 } else if (fd
>= 0) {
2482 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2488 /* set short latency */
2490 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2492 s
= qemu_mallocz(sizeof(GDBState
));
2493 s
->c_cpu
= first_cpu
;
2494 s
->g_cpu
= first_cpu
;
2498 gdbserver_state
= s
;
2500 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2503 static int gdbserver_open(int port
)
2505 struct sockaddr_in sockaddr
;
2508 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2514 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2517 /* allow fast reuse */
2519 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2521 sockaddr
.sin_family
= AF_INET
;
2522 sockaddr
.sin_port
= htons(port
);
2523 sockaddr
.sin_addr
.s_addr
= 0;
2524 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2529 ret
= listen(fd
, 0);
2537 int gdbserver_start(int port
)
2539 gdbserver_fd
= gdbserver_open(port
);
2540 if (gdbserver_fd
< 0)
2542 /* accept connections */
2547 /* Disable gdb stub for child processes. */
2548 void gdbserver_fork(CPUState
*env
)
2550 GDBState
*s
= gdbserver_state
;
2551 if (gdbserver_fd
< 0 || s
->fd
< 0)
2555 cpu_breakpoint_remove_all(env
, BP_GDB
);
2556 cpu_watchpoint_remove_all(env
, BP_GDB
);
2559 static int gdb_chr_can_receive(void *opaque
)
2561 /* We can handle an arbitrarily large amount of data.
2562 Pick the maximum packet size, which is as good as anything. */
2563 return MAX_PACKET_LENGTH
;
2566 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2570 for (i
= 0; i
< size
; i
++) {
2571 gdb_read_byte(gdbserver_state
, buf
[i
]);
2575 static void gdb_chr_event(void *opaque
, int event
)
2578 case CHR_EVENT_OPENED
:
2579 vm_stop(EXCP_INTERRUPT
);
2587 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2589 char buf
[MAX_PACKET_LENGTH
];
2592 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2593 len
= (MAX_PACKET_LENGTH
/2) - 1;
2594 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2598 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2600 const char *p
= (const char *)buf
;
2603 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2605 if (len
<= max_sz
) {
2606 gdb_monitor_output(gdbserver_state
, p
, len
);
2609 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2617 static void gdb_sigterm_handler(int signal
)
2620 vm_stop(EXCP_INTERRUPT
);
2624 int gdbserver_start(const char *device
)
2627 char gdbstub_device_name
[128];
2628 CharDriverState
*chr
= NULL
;
2629 CharDriverState
*mon_chr
;
2633 if (strcmp(device
, "none") != 0) {
2634 if (strstart(device
, "tcp:", NULL
)) {
2635 /* enforce required TCP attributes */
2636 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2637 "%s,nowait,nodelay,server", device
);
2638 device
= gdbstub_device_name
;
2641 else if (strcmp(device
, "stdio") == 0) {
2642 struct sigaction act
;
2644 memset(&act
, 0, sizeof(act
));
2645 act
.sa_handler
= gdb_sigterm_handler
;
2646 sigaction(SIGINT
, &act
, NULL
);
2649 chr
= qemu_chr_open("gdb", device
, NULL
);
2653 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2654 gdb_chr_event
, NULL
);
2657 s
= gdbserver_state
;
2659 s
= qemu_mallocz(sizeof(GDBState
));
2660 gdbserver_state
= s
;
2662 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2664 /* Initialize a monitor terminal for gdb */
2665 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2666 mon_chr
->chr_write
= gdb_monitor_write
;
2667 monitor_init(mon_chr
, 0);
2670 qemu_chr_close(s
->chr
);
2671 mon_chr
= s
->mon_chr
;
2672 memset(s
, 0, sizeof(GDBState
));
2674 s
->c_cpu
= first_cpu
;
2675 s
->g_cpu
= first_cpu
;
2677 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2678 s
->mon_chr
= mon_chr
;