bios: Load SMBIOS entries and files from qemu (Alex Williamson)
[qemu-kvm/stefanha.git] / gdbstub.c
blob0a7abab1c1f97d0a0fb5548f6669207869710921
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "monitor.h"
34 #include "qemu-char.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #endif
38 #include "qemu-kvm.h"
40 #define MAX_PACKET_LENGTH 4096
42 #include "qemu_socket.h"
43 #include "kvm.h"
46 enum {
47 GDB_SIGNAL_0 = 0,
48 GDB_SIGNAL_INT = 2,
49 GDB_SIGNAL_TRAP = 5,
50 GDB_SIGNAL_UNKNOWN = 143
53 #ifdef CONFIG_USER_ONLY
55 /* Map target signal numbers to GDB protocol signal numbers and vice
56 * versa. For user emulation's currently supported systems, we can
57 * assume most signals are defined.
60 static int gdb_signal_table[] = {
62 TARGET_SIGHUP,
63 TARGET_SIGINT,
64 TARGET_SIGQUIT,
65 TARGET_SIGILL,
66 TARGET_SIGTRAP,
67 TARGET_SIGABRT,
68 -1, /* SIGEMT */
69 TARGET_SIGFPE,
70 TARGET_SIGKILL,
71 TARGET_SIGBUS,
72 TARGET_SIGSEGV,
73 TARGET_SIGSYS,
74 TARGET_SIGPIPE,
75 TARGET_SIGALRM,
76 TARGET_SIGTERM,
77 TARGET_SIGURG,
78 TARGET_SIGSTOP,
79 TARGET_SIGTSTP,
80 TARGET_SIGCONT,
81 TARGET_SIGCHLD,
82 TARGET_SIGTTIN,
83 TARGET_SIGTTOU,
84 TARGET_SIGIO,
85 TARGET_SIGXCPU,
86 TARGET_SIGXFSZ,
87 TARGET_SIGVTALRM,
88 TARGET_SIGPROF,
89 TARGET_SIGWINCH,
90 -1, /* SIGLOST */
91 TARGET_SIGUSR1,
92 TARGET_SIGUSR2,
93 #ifdef TARGET_SIGPWR
94 TARGET_SIGPWR,
95 #else
96 -1,
97 #endif
98 -1, /* SIGPOLL */
99 -1,
110 #ifdef __SIGRTMIN
111 __SIGRTMIN + 1,
112 __SIGRTMIN + 2,
113 __SIGRTMIN + 3,
114 __SIGRTMIN + 4,
115 __SIGRTMIN + 5,
116 __SIGRTMIN + 6,
117 __SIGRTMIN + 7,
118 __SIGRTMIN + 8,
119 __SIGRTMIN + 9,
120 __SIGRTMIN + 10,
121 __SIGRTMIN + 11,
122 __SIGRTMIN + 12,
123 __SIGRTMIN + 13,
124 __SIGRTMIN + 14,
125 __SIGRTMIN + 15,
126 __SIGRTMIN + 16,
127 __SIGRTMIN + 17,
128 __SIGRTMIN + 18,
129 __SIGRTMIN + 19,
130 __SIGRTMIN + 20,
131 __SIGRTMIN + 21,
132 __SIGRTMIN + 22,
133 __SIGRTMIN + 23,
134 __SIGRTMIN + 24,
135 __SIGRTMIN + 25,
136 __SIGRTMIN + 26,
137 __SIGRTMIN + 27,
138 __SIGRTMIN + 28,
139 __SIGRTMIN + 29,
140 __SIGRTMIN + 30,
141 __SIGRTMIN + 31,
142 -1, /* SIGCANCEL */
143 __SIGRTMIN,
144 __SIGRTMIN + 32,
145 __SIGRTMIN + 33,
146 __SIGRTMIN + 34,
147 __SIGRTMIN + 35,
148 __SIGRTMIN + 36,
149 __SIGRTMIN + 37,
150 __SIGRTMIN + 38,
151 __SIGRTMIN + 39,
152 __SIGRTMIN + 40,
153 __SIGRTMIN + 41,
154 __SIGRTMIN + 42,
155 __SIGRTMIN + 43,
156 __SIGRTMIN + 44,
157 __SIGRTMIN + 45,
158 __SIGRTMIN + 46,
159 __SIGRTMIN + 47,
160 __SIGRTMIN + 48,
161 __SIGRTMIN + 49,
162 __SIGRTMIN + 50,
163 __SIGRTMIN + 51,
164 __SIGRTMIN + 52,
165 __SIGRTMIN + 53,
166 __SIGRTMIN + 54,
167 __SIGRTMIN + 55,
168 __SIGRTMIN + 56,
169 __SIGRTMIN + 57,
170 __SIGRTMIN + 58,
171 __SIGRTMIN + 59,
172 __SIGRTMIN + 60,
173 __SIGRTMIN + 61,
174 __SIGRTMIN + 62,
175 __SIGRTMIN + 63,
176 __SIGRTMIN + 64,
177 __SIGRTMIN + 65,
178 __SIGRTMIN + 66,
179 __SIGRTMIN + 67,
180 __SIGRTMIN + 68,
181 __SIGRTMIN + 69,
182 __SIGRTMIN + 70,
183 __SIGRTMIN + 71,
184 __SIGRTMIN + 72,
185 __SIGRTMIN + 73,
186 __SIGRTMIN + 74,
187 __SIGRTMIN + 75,
188 __SIGRTMIN + 76,
189 __SIGRTMIN + 77,
190 __SIGRTMIN + 78,
191 __SIGRTMIN + 79,
192 __SIGRTMIN + 80,
193 __SIGRTMIN + 81,
194 __SIGRTMIN + 82,
195 __SIGRTMIN + 83,
196 __SIGRTMIN + 84,
197 __SIGRTMIN + 85,
198 __SIGRTMIN + 86,
199 __SIGRTMIN + 87,
200 __SIGRTMIN + 88,
201 __SIGRTMIN + 89,
202 __SIGRTMIN + 90,
203 __SIGRTMIN + 91,
204 __SIGRTMIN + 92,
205 __SIGRTMIN + 93,
206 __SIGRTMIN + 94,
207 __SIGRTMIN + 95,
208 -1, /* SIGINFO */
209 -1, /* UNKNOWN */
210 -1, /* DEFAULT */
217 #endif
219 #else
220 /* In system mode we only need SIGINT and SIGTRAP; other signals
221 are not yet supported. */
223 enum {
224 TARGET_SIGINT = 2,
225 TARGET_SIGTRAP = 5
228 static int gdb_signal_table[] = {
231 TARGET_SIGINT,
234 TARGET_SIGTRAP
236 #endif
238 #ifdef CONFIG_USER_ONLY
239 static int target_signal_to_gdb (int sig)
241 int i;
242 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
243 if (gdb_signal_table[i] == sig)
244 return i;
245 return GDB_SIGNAL_UNKNOWN;
247 #endif
249 static int gdb_signal_to_target (int sig)
251 if (sig < ARRAY_SIZE (gdb_signal_table))
252 return gdb_signal_table[sig];
253 else
254 return -1;
257 //#define DEBUG_GDB
259 typedef struct GDBRegisterState {
260 int base_reg;
261 int num_regs;
262 gdb_reg_cb get_reg;
263 gdb_reg_cb set_reg;
264 const char *xml;
265 struct GDBRegisterState *next;
266 } GDBRegisterState;
268 enum RSState {
269 RS_INACTIVE,
270 RS_IDLE,
271 RS_GETLINE,
272 RS_CHKSUM1,
273 RS_CHKSUM2,
274 RS_SYSCALL,
276 typedef struct GDBState {
277 CPUState *c_cpu; /* current CPU for step/continue ops */
278 CPUState *g_cpu; /* current CPU for other ops */
279 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
280 enum RSState state; /* parsing state */
281 char line_buf[MAX_PACKET_LENGTH];
282 int line_buf_index;
283 int line_csum;
284 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
285 int last_packet_len;
286 int signal;
287 #ifdef CONFIG_USER_ONLY
288 int fd;
289 int running_state;
290 #else
291 CharDriverState *chr;
292 CharDriverState *mon_chr;
293 #endif
294 } GDBState;
296 /* By default use no IRQs and no timers while single stepping so as to
297 * make single stepping like an ICE HW step.
299 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
301 static GDBState *gdbserver_state;
303 /* This is an ugly hack to cope with both new and old gdb.
304 If gdb sends qXfer:features:read then assume we're talking to a newish
305 gdb that understands target descriptions. */
306 static int gdb_has_xml;
308 #ifdef CONFIG_USER_ONLY
309 /* XXX: This is not thread safe. Do we care? */
310 static int gdbserver_fd = -1;
312 static int get_char(GDBState *s)
314 uint8_t ch;
315 int ret;
317 for(;;) {
318 ret = recv(s->fd, &ch, 1, 0);
319 if (ret < 0) {
320 if (errno == ECONNRESET)
321 s->fd = -1;
322 if (errno != EINTR && errno != EAGAIN)
323 return -1;
324 } else if (ret == 0) {
325 close(s->fd);
326 s->fd = -1;
327 return -1;
328 } else {
329 break;
332 return ch;
334 #endif
336 static gdb_syscall_complete_cb gdb_current_syscall_cb;
338 static enum {
339 GDB_SYS_UNKNOWN,
340 GDB_SYS_ENABLED,
341 GDB_SYS_DISABLED,
342 } gdb_syscall_mode;
344 /* If gdb is connected when the first semihosting syscall occurs then use
345 remote gdb syscalls. Otherwise use native file IO. */
346 int use_gdb_syscalls(void)
348 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
349 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
350 : GDB_SYS_DISABLED);
352 return gdb_syscall_mode == GDB_SYS_ENABLED;
355 /* Resume execution. */
356 static inline void gdb_continue(GDBState *s)
358 #ifdef CONFIG_USER_ONLY
359 s->running_state = 1;
360 #else
361 vm_start();
362 #endif
365 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
367 #ifdef CONFIG_USER_ONLY
368 int ret;
370 while (len > 0) {
371 ret = send(s->fd, buf, len, 0);
372 if (ret < 0) {
373 if (errno != EINTR && errno != EAGAIN)
374 return;
375 } else {
376 buf += ret;
377 len -= ret;
380 #else
381 qemu_chr_write(s->chr, buf, len);
382 #endif
385 static inline int fromhex(int v)
387 if (v >= '0' && v <= '9')
388 return v - '0';
389 else if (v >= 'A' && v <= 'F')
390 return v - 'A' + 10;
391 else if (v >= 'a' && v <= 'f')
392 return v - 'a' + 10;
393 else
394 return 0;
397 static inline int tohex(int v)
399 if (v < 10)
400 return v + '0';
401 else
402 return v - 10 + 'a';
405 static void memtohex(char *buf, const uint8_t *mem, int len)
407 int i, c;
408 char *q;
409 q = buf;
410 for(i = 0; i < len; i++) {
411 c = mem[i];
412 *q++ = tohex(c >> 4);
413 *q++ = tohex(c & 0xf);
415 *q = '\0';
418 static void hextomem(uint8_t *mem, const char *buf, int len)
420 int i;
422 for(i = 0; i < len; i++) {
423 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
424 buf += 2;
428 /* return -1 if error, 0 if OK */
429 static int put_packet_binary(GDBState *s, const char *buf, int len)
431 int csum, i;
432 uint8_t *p;
434 for(;;) {
435 p = s->last_packet;
436 *(p++) = '$';
437 memcpy(p, buf, len);
438 p += len;
439 csum = 0;
440 for(i = 0; i < len; i++) {
441 csum += buf[i];
443 *(p++) = '#';
444 *(p++) = tohex((csum >> 4) & 0xf);
445 *(p++) = tohex((csum) & 0xf);
447 s->last_packet_len = p - s->last_packet;
448 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
450 #ifdef CONFIG_USER_ONLY
451 i = get_char(s);
452 if (i < 0)
453 return -1;
454 if (i == '+')
455 break;
456 #else
457 break;
458 #endif
460 return 0;
463 /* return -1 if error, 0 if OK */
464 static int put_packet(GDBState *s, const char *buf)
466 #ifdef DEBUG_GDB
467 printf("reply='%s'\n", buf);
468 #endif
470 return put_packet_binary(s, buf, strlen(buf));
473 /* The GDB remote protocol transfers values in target byte order. This means
474 we can use the raw memory access routines to access the value buffer.
475 Conveniently, these also handle the case where the buffer is mis-aligned.
477 #define GET_REG8(val) do { \
478 stb_p(mem_buf, val); \
479 return 1; \
480 } while(0)
481 #define GET_REG16(val) do { \
482 stw_p(mem_buf, val); \
483 return 2; \
484 } while(0)
485 #define GET_REG32(val) do { \
486 stl_p(mem_buf, val); \
487 return 4; \
488 } while(0)
489 #define GET_REG64(val) do { \
490 stq_p(mem_buf, val); \
491 return 8; \
492 } while(0)
494 #if TARGET_LONG_BITS == 64
495 #define GET_REGL(val) GET_REG64(val)
496 #define ldtul_p(addr) ldq_p(addr)
497 #else
498 #define GET_REGL(val) GET_REG32(val)
499 #define ldtul_p(addr) ldl_p(addr)
500 #endif
502 #if defined(TARGET_I386)
504 #ifdef TARGET_X86_64
505 static const int gpr_map[16] = {
506 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
507 8, 9, 10, 11, 12, 13, 14, 15
509 #else
510 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
511 #endif
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
517 if (n < CPU_NB_REGS) {
518 GET_REGL(env->regs[gpr_map[n]]);
519 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
520 /* FIXME: byteswap float values. */
521 #ifdef USE_X86LDOUBLE
522 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
523 #else
524 memset(mem_buf, 0, 10);
525 #endif
526 return 10;
527 } else if (n >= CPU_NB_REGS + 24) {
528 n -= CPU_NB_REGS + 24;
529 if (n < CPU_NB_REGS) {
530 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
531 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
532 return 16;
533 } else if (n == CPU_NB_REGS) {
534 GET_REG32(env->mxcsr);
536 } else {
537 n -= CPU_NB_REGS;
538 switch (n) {
539 case 0: GET_REGL(env->eip);
540 case 1: GET_REG32(env->eflags);
541 case 2: GET_REG32(env->segs[R_CS].selector);
542 case 3: GET_REG32(env->segs[R_SS].selector);
543 case 4: GET_REG32(env->segs[R_DS].selector);
544 case 5: GET_REG32(env->segs[R_ES].selector);
545 case 6: GET_REG32(env->segs[R_FS].selector);
546 case 7: GET_REG32(env->segs[R_GS].selector);
547 /* 8...15 x87 regs. */
548 case 16: GET_REG32(env->fpuc);
549 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
550 case 18: GET_REG32(0); /* ftag */
551 case 19: GET_REG32(0); /* fiseg */
552 case 20: GET_REG32(0); /* fioff */
553 case 21: GET_REG32(0); /* foseg */
554 case 22: GET_REG32(0); /* fooff */
555 case 23: GET_REG32(0); /* fop */
556 /* 24+ xmm regs. */
559 return 0;
562 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
564 uint32_t tmp;
566 if (i < CPU_NB_REGS) {
567 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
568 return sizeof(target_ulong);
569 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
570 i -= CPU_NB_REGS + 8;
571 #ifdef USE_X86LDOUBLE
572 memcpy(&env->fpregs[i], mem_buf, 10);
573 #endif
574 return 10;
575 } else if (i >= CPU_NB_REGS + 24) {
576 i -= CPU_NB_REGS + 24;
577 if (i < CPU_NB_REGS) {
578 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
579 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
580 return 16;
581 } else if (i == CPU_NB_REGS) {
582 env->mxcsr = ldl_p(mem_buf);
583 return 4;
585 } else {
586 i -= CPU_NB_REGS;
587 switch (i) {
588 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
589 case 1: env->eflags = ldl_p(mem_buf); return 4;
590 #if defined(CONFIG_USER_ONLY)
591 #define LOAD_SEG(index, sreg)\
592 tmp = ldl_p(mem_buf);\
593 if (tmp != env->segs[sreg].selector)\
594 cpu_x86_load_seg(env, sreg, tmp);
595 #else
596 /* FIXME: Honor segment registers. Needs to avoid raising an exception
597 when the selector is invalid. */
598 #define LOAD_SEG(index, sreg) do {} while(0)
599 #endif
600 case 2: LOAD_SEG(10, R_CS); return 4;
601 case 3: LOAD_SEG(11, R_SS); return 4;
602 case 4: LOAD_SEG(12, R_DS); return 4;
603 case 5: LOAD_SEG(13, R_ES); return 4;
604 case 6: LOAD_SEG(14, R_FS); return 4;
605 case 7: LOAD_SEG(15, R_GS); return 4;
606 /* 8...15 x87 regs. */
607 case 16: env->fpuc = ldl_p(mem_buf); return 4;
608 case 17:
609 tmp = ldl_p(mem_buf);
610 env->fpstt = (tmp >> 11) & 7;
611 env->fpus = tmp & ~0x3800;
612 return 4;
613 case 18: /* ftag */ return 4;
614 case 19: /* fiseg */ return 4;
615 case 20: /* fioff */ return 4;
616 case 21: /* foseg */ return 4;
617 case 22: /* fooff */ return 4;
618 case 23: /* fop */ return 4;
619 /* 24+ xmm regs. */
622 /* Unrecognised register. */
623 return 0;
626 #elif defined (TARGET_PPC)
628 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
629 expects whatever the target description contains. Due to a
630 historical mishap the FP registers appear in between core integer
631 regs and PC, MSR, CR, and so forth. We hack round this by giving the
632 FP regs zero size when talking to a newer gdb. */
633 #define NUM_CORE_REGS 71
634 #if defined (TARGET_PPC64)
635 #define GDB_CORE_XML "power64-core.xml"
636 #else
637 #define GDB_CORE_XML "power-core.xml"
638 #endif
640 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
642 if (n < 32) {
643 /* gprs */
644 GET_REGL(env->gpr[n]);
645 } else if (n < 64) {
646 /* fprs */
647 if (gdb_has_xml)
648 return 0;
649 stfq_p(mem_buf, env->fpr[n-32]);
650 return 8;
651 } else {
652 switch (n) {
653 case 64: GET_REGL(env->nip);
654 case 65: GET_REGL(env->msr);
655 case 66:
657 uint32_t cr = 0;
658 int i;
659 for (i = 0; i < 8; i++)
660 cr |= env->crf[i] << (32 - ((i + 1) * 4));
661 GET_REG32(cr);
663 case 67: GET_REGL(env->lr);
664 case 68: GET_REGL(env->ctr);
665 case 69: GET_REGL(env->xer);
666 case 70:
668 if (gdb_has_xml)
669 return 0;
670 GET_REG32(0); /* fpscr */
674 return 0;
677 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
679 if (n < 32) {
680 /* gprs */
681 env->gpr[n] = ldtul_p(mem_buf);
682 return sizeof(target_ulong);
683 } else if (n < 64) {
684 /* fprs */
685 if (gdb_has_xml)
686 return 0;
687 env->fpr[n-32] = ldfq_p(mem_buf);
688 return 8;
689 } else {
690 switch (n) {
691 case 64:
692 env->nip = ldtul_p(mem_buf);
693 return sizeof(target_ulong);
694 case 65:
695 ppc_store_msr(env, ldtul_p(mem_buf));
696 return sizeof(target_ulong);
697 case 66:
699 uint32_t cr = ldl_p(mem_buf);
700 int i;
701 for (i = 0; i < 8; i++)
702 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
703 return 4;
705 case 67:
706 env->lr = ldtul_p(mem_buf);
707 return sizeof(target_ulong);
708 case 68:
709 env->ctr = ldtul_p(mem_buf);
710 return sizeof(target_ulong);
711 case 69:
712 env->xer = ldtul_p(mem_buf);
713 return sizeof(target_ulong);
714 case 70:
715 /* fpscr */
716 if (gdb_has_xml)
717 return 0;
718 return 4;
721 return 0;
724 #elif defined (TARGET_SPARC)
726 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
727 #define NUM_CORE_REGS 86
728 #else
729 #define NUM_CORE_REGS 72
730 #endif
732 #ifdef TARGET_ABI32
733 #define GET_REGA(val) GET_REG32(val)
734 #else
735 #define GET_REGA(val) GET_REGL(val)
736 #endif
738 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
740 if (n < 8) {
741 /* g0..g7 */
742 GET_REGA(env->gregs[n]);
744 if (n < 32) {
745 /* register window */
746 GET_REGA(env->regwptr[n - 8]);
748 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
749 if (n < 64) {
750 /* fprs */
751 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
753 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
754 switch (n) {
755 case 64: GET_REGA(env->y);
756 case 65: GET_REGA(GET_PSR(env));
757 case 66: GET_REGA(env->wim);
758 case 67: GET_REGA(env->tbr);
759 case 68: GET_REGA(env->pc);
760 case 69: GET_REGA(env->npc);
761 case 70: GET_REGA(env->fsr);
762 case 71: GET_REGA(0); /* csr */
763 default: GET_REGA(0);
765 #else
766 if (n < 64) {
767 /* f0-f31 */
768 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
770 if (n < 80) {
771 /* f32-f62 (double width, even numbers only) */
772 uint64_t val;
774 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
775 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
776 GET_REG64(val);
778 switch (n) {
779 case 80: GET_REGL(env->pc);
780 case 81: GET_REGL(env->npc);
781 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
782 ((env->asi & 0xff) << 24) |
783 ((env->pstate & 0xfff) << 8) |
784 GET_CWP64(env));
785 case 83: GET_REGL(env->fsr);
786 case 84: GET_REGL(env->fprs);
787 case 85: GET_REGL(env->y);
789 #endif
790 return 0;
793 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
795 #if defined(TARGET_ABI32)
796 abi_ulong tmp;
798 tmp = ldl_p(mem_buf);
799 #else
800 target_ulong tmp;
802 tmp = ldtul_p(mem_buf);
803 #endif
805 if (n < 8) {
806 /* g0..g7 */
807 env->gregs[n] = tmp;
808 } else if (n < 32) {
809 /* register window */
810 env->regwptr[n - 8] = tmp;
812 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
813 else if (n < 64) {
814 /* fprs */
815 *((uint32_t *)&env->fpr[n - 32]) = tmp;
816 } else {
817 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
818 switch (n) {
819 case 64: env->y = tmp; break;
820 case 65: PUT_PSR(env, tmp); break;
821 case 66: env->wim = tmp; break;
822 case 67: env->tbr = tmp; break;
823 case 68: env->pc = tmp; break;
824 case 69: env->npc = tmp; break;
825 case 70: env->fsr = tmp; break;
826 default: return 0;
829 return 4;
830 #else
831 else if (n < 64) {
832 /* f0-f31 */
833 env->fpr[n] = ldfl_p(mem_buf);
834 return 4;
835 } else if (n < 80) {
836 /* f32-f62 (double width, even numbers only) */
837 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
838 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
839 } else {
840 switch (n) {
841 case 80: env->pc = tmp; break;
842 case 81: env->npc = tmp; break;
843 case 82:
844 PUT_CCR(env, tmp >> 32);
845 env->asi = (tmp >> 24) & 0xff;
846 env->pstate = (tmp >> 8) & 0xfff;
847 PUT_CWP64(env, tmp & 0xff);
848 break;
849 case 83: env->fsr = tmp; break;
850 case 84: env->fprs = tmp; break;
851 case 85: env->y = tmp; break;
852 default: return 0;
855 return 8;
856 #endif
858 #elif defined (TARGET_ARM)
860 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
861 whatever the target description contains. Due to a historical mishap
862 the FPA registers appear in between core integer regs and the CPSR.
863 We hack round this by giving the FPA regs zero size when talking to a
864 newer gdb. */
865 #define NUM_CORE_REGS 26
866 #define GDB_CORE_XML "arm-core.xml"
868 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
870 if (n < 16) {
871 /* Core integer register. */
872 GET_REG32(env->regs[n]);
874 if (n < 24) {
875 /* FPA registers. */
876 if (gdb_has_xml)
877 return 0;
878 memset(mem_buf, 0, 12);
879 return 12;
881 switch (n) {
882 case 24:
883 /* FPA status register. */
884 if (gdb_has_xml)
885 return 0;
886 GET_REG32(0);
887 case 25:
888 /* CPSR */
889 GET_REG32(cpsr_read(env));
891 /* Unknown register. */
892 return 0;
895 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
897 uint32_t tmp;
899 tmp = ldl_p(mem_buf);
901 /* Mask out low bit of PC to workaround gdb bugs. This will probably
902 cause problems if we ever implement the Jazelle DBX extensions. */
903 if (n == 15)
904 tmp &= ~1;
906 if (n < 16) {
907 /* Core integer register. */
908 env->regs[n] = tmp;
909 return 4;
911 if (n < 24) { /* 16-23 */
912 /* FPA registers (ignored). */
913 if (gdb_has_xml)
914 return 0;
915 return 12;
917 switch (n) {
918 case 24:
919 /* FPA status register (ignored). */
920 if (gdb_has_xml)
921 return 0;
922 return 4;
923 case 25:
924 /* CPSR */
925 cpsr_write (env, tmp, 0xffffffff);
926 return 4;
928 /* Unknown register. */
929 return 0;
932 #elif defined (TARGET_M68K)
934 #define NUM_CORE_REGS 18
936 #define GDB_CORE_XML "cf-core.xml"
938 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
940 if (n < 8) {
941 /* D0-D7 */
942 GET_REG32(env->dregs[n]);
943 } else if (n < 16) {
944 /* A0-A7 */
945 GET_REG32(env->aregs[n - 8]);
946 } else {
947 switch (n) {
948 case 16: GET_REG32(env->sr);
949 case 17: GET_REG32(env->pc);
952 /* FP registers not included here because they vary between
953 ColdFire and m68k. Use XML bits for these. */
954 return 0;
957 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
959 uint32_t tmp;
961 tmp = ldl_p(mem_buf);
963 if (n < 8) {
964 /* D0-D7 */
965 env->dregs[n] = tmp;
966 } else if (n < 8) {
967 /* A0-A7 */
968 env->aregs[n - 8] = tmp;
969 } else {
970 switch (n) {
971 case 16: env->sr = tmp; break;
972 case 17: env->pc = tmp; break;
973 default: return 0;
976 return 4;
978 #elif defined (TARGET_MIPS)
980 #define NUM_CORE_REGS 73
982 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
984 if (n < 32) {
985 GET_REGL(env->active_tc.gpr[n]);
987 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
988 if (n >= 38 && n < 70) {
989 if (env->CP0_Status & (1 << CP0St_FR))
990 GET_REGL(env->active_fpu.fpr[n - 38].d);
991 else
992 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
994 switch (n) {
995 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
996 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
999 switch (n) {
1000 case 32: GET_REGL((int32_t)env->CP0_Status);
1001 case 33: GET_REGL(env->active_tc.LO[0]);
1002 case 34: GET_REGL(env->active_tc.HI[0]);
1003 case 35: GET_REGL(env->CP0_BadVAddr);
1004 case 36: GET_REGL((int32_t)env->CP0_Cause);
1005 case 37: GET_REGL(env->active_tc.PC);
1006 case 72: GET_REGL(0); /* fp */
1007 case 89: GET_REGL((int32_t)env->CP0_PRid);
1009 if (n >= 73 && n <= 88) {
1010 /* 16 embedded regs. */
1011 GET_REGL(0);
1014 return 0;
1017 /* convert MIPS rounding mode in FCR31 to IEEE library */
1018 static unsigned int ieee_rm[] =
1020 float_round_nearest_even,
1021 float_round_to_zero,
1022 float_round_up,
1023 float_round_down
1025 #define RESTORE_ROUNDING_MODE \
1026 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1028 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1030 target_ulong tmp;
1032 tmp = ldtul_p(mem_buf);
1034 if (n < 32) {
1035 env->active_tc.gpr[n] = tmp;
1036 return sizeof(target_ulong);
1038 if (env->CP0_Config1 & (1 << CP0C1_FP)
1039 && n >= 38 && n < 73) {
1040 if (n < 70) {
1041 if (env->CP0_Status & (1 << CP0St_FR))
1042 env->active_fpu.fpr[n - 38].d = tmp;
1043 else
1044 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1046 switch (n) {
1047 case 70:
1048 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1049 /* set rounding mode */
1050 RESTORE_ROUNDING_MODE;
1051 #ifndef CONFIG_SOFTFLOAT
1052 /* no floating point exception for native float */
1053 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1054 #endif
1055 break;
1056 case 71: env->active_fpu.fcr0 = tmp; break;
1058 return sizeof(target_ulong);
1060 switch (n) {
1061 case 32: env->CP0_Status = tmp; break;
1062 case 33: env->active_tc.LO[0] = tmp; break;
1063 case 34: env->active_tc.HI[0] = tmp; break;
1064 case 35: env->CP0_BadVAddr = tmp; break;
1065 case 36: env->CP0_Cause = tmp; break;
1066 case 37: env->active_tc.PC = tmp; break;
1067 case 72: /* fp, ignored */ break;
1068 default:
1069 if (n > 89)
1070 return 0;
1071 /* Other registers are readonly. Ignore writes. */
1072 break;
1075 return sizeof(target_ulong);
1077 #elif defined (TARGET_SH4)
1079 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1080 /* FIXME: We should use XML for this. */
1082 #define NUM_CORE_REGS 59
1084 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1086 if (n < 8) {
1087 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1088 GET_REGL(env->gregs[n + 16]);
1089 } else {
1090 GET_REGL(env->gregs[n]);
1092 } else if (n < 16) {
1093 GET_REGL(env->gregs[n - 8]);
1094 } else if (n >= 25 && n < 41) {
1095 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1096 } else if (n >= 43 && n < 51) {
1097 GET_REGL(env->gregs[n - 43]);
1098 } else if (n >= 51 && n < 59) {
1099 GET_REGL(env->gregs[n - (51 - 16)]);
1101 switch (n) {
1102 case 16: GET_REGL(env->pc);
1103 case 17: GET_REGL(env->pr);
1104 case 18: GET_REGL(env->gbr);
1105 case 19: GET_REGL(env->vbr);
1106 case 20: GET_REGL(env->mach);
1107 case 21: GET_REGL(env->macl);
1108 case 22: GET_REGL(env->sr);
1109 case 23: GET_REGL(env->fpul);
1110 case 24: GET_REGL(env->fpscr);
1111 case 41: GET_REGL(env->ssr);
1112 case 42: GET_REGL(env->spc);
1115 return 0;
1118 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1120 uint32_t tmp;
1122 tmp = ldl_p(mem_buf);
1124 if (n < 8) {
1125 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1126 env->gregs[n + 16] = tmp;
1127 } else {
1128 env->gregs[n] = tmp;
1130 return 4;
1131 } else if (n < 16) {
1132 env->gregs[n - 8] = tmp;
1133 return 4;
1134 } else if (n >= 25 && n < 41) {
1135 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1136 } else if (n >= 43 && n < 51) {
1137 env->gregs[n - 43] = tmp;
1138 return 4;
1139 } else if (n >= 51 && n < 59) {
1140 env->gregs[n - (51 - 16)] = tmp;
1141 return 4;
1143 switch (n) {
1144 case 16: env->pc = tmp;
1145 case 17: env->pr = tmp;
1146 case 18: env->gbr = tmp;
1147 case 19: env->vbr = tmp;
1148 case 20: env->mach = tmp;
1149 case 21: env->macl = tmp;
1150 case 22: env->sr = tmp;
1151 case 23: env->fpul = tmp;
1152 case 24: env->fpscr = tmp;
1153 case 41: env->ssr = tmp;
1154 case 42: env->spc = tmp;
1155 default: return 0;
1158 return 4;
1160 #elif defined (TARGET_CRIS)
1162 #define NUM_CORE_REGS 49
1164 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1166 uint8_t srs;
1168 srs = env->pregs[PR_SRS];
1169 if (n < 16) {
1170 GET_REG32(env->regs[n]);
1173 if (n >= 21 && n < 32) {
1174 GET_REG32(env->pregs[n - 16]);
1176 if (n >= 33 && n < 49) {
1177 GET_REG32(env->sregs[srs][n - 33]);
1179 switch (n) {
1180 case 16: GET_REG8(env->pregs[0]);
1181 case 17: GET_REG8(env->pregs[1]);
1182 case 18: GET_REG32(env->pregs[2]);
1183 case 19: GET_REG8(srs);
1184 case 20: GET_REG16(env->pregs[4]);
1185 case 32: GET_REG32(env->pc);
1188 return 0;
1191 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1193 uint32_t tmp;
1195 if (n > 49)
1196 return 0;
1198 tmp = ldl_p(mem_buf);
1200 if (n < 16) {
1201 env->regs[n] = tmp;
1204 if (n >= 21 && n < 32) {
1205 env->pregs[n - 16] = tmp;
1208 /* FIXME: Should support function regs be writable? */
1209 switch (n) {
1210 case 16: return 1;
1211 case 17: return 1;
1212 case 18: env->pregs[PR_PID] = tmp; break;
1213 case 19: return 1;
1214 case 20: return 2;
1215 case 32: env->pc = tmp; break;
1218 return 4;
1220 #elif defined (TARGET_ALPHA)
1222 #define NUM_CORE_REGS 65
1224 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1226 if (n < 31) {
1227 GET_REGL(env->ir[n]);
1229 else if (n == 31) {
1230 GET_REGL(0);
1232 else if (n<63) {
1233 uint64_t val;
1235 val=*((uint64_t *)&env->fir[n-32]);
1236 GET_REGL(val);
1238 else if (n==63) {
1239 GET_REGL(env->fpcr);
1241 else if (n==64) {
1242 GET_REGL(env->pc);
1244 else {
1245 GET_REGL(0);
1248 return 0;
1251 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1253 target_ulong tmp;
1254 tmp = ldtul_p(mem_buf);
1256 if (n < 31) {
1257 env->ir[n] = tmp;
1260 if (n > 31 && n < 63) {
1261 env->fir[n - 32] = ldfl_p(mem_buf);
1264 if (n == 64 ) {
1265 env->pc=tmp;
1268 return 8;
1270 #else
1272 #define NUM_CORE_REGS 0
1274 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1276 return 0;
1279 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1281 return 0;
1284 #endif
1286 static int num_g_regs = NUM_CORE_REGS;
1288 #ifdef GDB_CORE_XML
1289 /* Encode data using the encoding for 'x' packets. */
1290 static int memtox(char *buf, const char *mem, int len)
1292 char *p = buf;
1293 char c;
1295 while (len--) {
1296 c = *(mem++);
1297 switch (c) {
1298 case '#': case '$': case '*': case '}':
1299 *(p++) = '}';
1300 *(p++) = c ^ 0x20;
1301 break;
1302 default:
1303 *(p++) = c;
1304 break;
1307 return p - buf;
1310 static const char *get_feature_xml(const char *p, const char **newp)
1312 extern const char *const xml_builtin[][2];
1313 size_t len;
1314 int i;
1315 const char *name;
1316 static char target_xml[1024];
1318 len = 0;
1319 while (p[len] && p[len] != ':')
1320 len++;
1321 *newp = p + len;
1323 name = NULL;
1324 if (strncmp(p, "target.xml", len) == 0) {
1325 /* Generate the XML description for this CPU. */
1326 if (!target_xml[0]) {
1327 GDBRegisterState *r;
1329 snprintf(target_xml, sizeof(target_xml),
1330 "<?xml version=\"1.0\"?>"
1331 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1332 "<target>"
1333 "<xi:include href=\"%s\"/>",
1334 GDB_CORE_XML);
1336 for (r = first_cpu->gdb_regs; r; r = r->next) {
1337 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1338 pstrcat(target_xml, sizeof(target_xml), r->xml);
1339 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1341 pstrcat(target_xml, sizeof(target_xml), "</target>");
1343 return target_xml;
1345 for (i = 0; ; i++) {
1346 name = xml_builtin[i][0];
1347 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1348 break;
1350 return name ? xml_builtin[i][1] : NULL;
1352 #endif
1354 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1356 GDBRegisterState *r;
1358 if (reg < NUM_CORE_REGS)
1359 return cpu_gdb_read_register(env, mem_buf, reg);
1361 for (r = env->gdb_regs; r; r = r->next) {
1362 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1363 return r->get_reg(env, mem_buf, reg - r->base_reg);
1366 return 0;
1369 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1371 GDBRegisterState *r;
1373 if (reg < NUM_CORE_REGS)
1374 return cpu_gdb_write_register(env, mem_buf, reg);
1376 for (r = env->gdb_regs; r; r = r->next) {
1377 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1378 return r->set_reg(env, mem_buf, reg - r->base_reg);
1381 return 0;
1384 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1385 specifies the first register number and these registers are included in
1386 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1387 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1390 void gdb_register_coprocessor(CPUState * env,
1391 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1392 int num_regs, const char *xml, int g_pos)
1394 GDBRegisterState *s;
1395 GDBRegisterState **p;
1396 static int last_reg = NUM_CORE_REGS;
1398 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1399 s->base_reg = last_reg;
1400 s->num_regs = num_regs;
1401 s->get_reg = get_reg;
1402 s->set_reg = set_reg;
1403 s->xml = xml;
1404 p = &env->gdb_regs;
1405 while (*p) {
1406 /* Check for duplicates. */
1407 if (strcmp((*p)->xml, xml) == 0)
1408 return;
1409 p = &(*p)->next;
1411 /* Add to end of list. */
1412 last_reg += num_regs;
1413 *p = s;
1414 if (g_pos) {
1415 if (g_pos != s->base_reg) {
1416 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1417 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1418 } else {
1419 num_g_regs = last_reg;
1424 #ifndef CONFIG_USER_ONLY
1425 static const int xlat_gdb_type[] = {
1426 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1427 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1428 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1430 #endif
1432 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1434 CPUState *env;
1435 int err = 0;
1437 if (kvm_enabled())
1438 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1440 switch (type) {
1441 case GDB_BREAKPOINT_SW:
1442 case GDB_BREAKPOINT_HW:
1443 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1444 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1445 if (err)
1446 break;
1448 return err;
1449 #ifndef CONFIG_USER_ONLY
1450 case GDB_WATCHPOINT_WRITE:
1451 case GDB_WATCHPOINT_READ:
1452 case GDB_WATCHPOINT_ACCESS:
1453 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1454 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1455 NULL);
1456 if (err)
1457 break;
1459 return err;
1460 #endif
1461 default:
1462 return -ENOSYS;
1466 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1468 CPUState *env;
1469 int err = 0;
1471 if (kvm_enabled())
1472 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1474 switch (type) {
1475 case GDB_BREAKPOINT_SW:
1476 case GDB_BREAKPOINT_HW:
1477 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1478 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1479 if (err)
1480 break;
1482 return err;
1483 #ifndef CONFIG_USER_ONLY
1484 case GDB_WATCHPOINT_WRITE:
1485 case GDB_WATCHPOINT_READ:
1486 case GDB_WATCHPOINT_ACCESS:
1487 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1488 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1489 if (err)
1490 break;
1492 return err;
1493 #endif
1494 default:
1495 return -ENOSYS;
1499 static void gdb_breakpoint_remove_all(void)
1501 CPUState *env;
1503 if (kvm_enabled()) {
1504 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1505 return;
1508 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1509 cpu_breakpoint_remove_all(env, BP_GDB);
1510 #ifndef CONFIG_USER_ONLY
1511 cpu_watchpoint_remove_all(env, BP_GDB);
1512 #endif
1516 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1518 #if defined(TARGET_I386)
1519 s->c_cpu->eip = pc;
1520 cpu_synchronize_state(s->c_cpu, 1);
1521 #elif defined (TARGET_PPC)
1522 s->c_cpu->nip = pc;
1523 #elif defined (TARGET_SPARC)
1524 s->c_cpu->pc = pc;
1525 s->c_cpu->npc = pc + 4;
1526 #elif defined (TARGET_ARM)
1527 s->c_cpu->regs[15] = pc;
1528 #elif defined (TARGET_SH4)
1529 s->c_cpu->pc = pc;
1530 #elif defined (TARGET_MIPS)
1531 s->c_cpu->active_tc.PC = pc;
1532 #elif defined (TARGET_CRIS)
1533 s->c_cpu->pc = pc;
1534 #elif defined (TARGET_ALPHA)
1535 s->c_cpu->pc = pc;
1536 #endif
1539 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1541 CPUState *env;
1542 const char *p;
1543 int ch, reg_size, type, res, thread;
1544 char buf[MAX_PACKET_LENGTH];
1545 uint8_t mem_buf[MAX_PACKET_LENGTH];
1546 uint8_t *registers;
1547 target_ulong addr, len;
1549 #ifdef DEBUG_GDB
1550 printf("command='%s'\n", line_buf);
1551 #endif
1552 p = line_buf;
1553 ch = *p++;
1554 switch(ch) {
1555 case '?':
1556 /* TODO: Make this return the correct value for user-mode. */
1557 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1558 s->c_cpu->cpu_index+1);
1559 put_packet(s, buf);
1560 /* Remove all the breakpoints when this query is issued,
1561 * because gdb is doing and initial connect and the state
1562 * should be cleaned up.
1564 gdb_breakpoint_remove_all();
1565 break;
1566 case 'c':
1567 if (*p != '\0') {
1568 addr = strtoull(p, (char **)&p, 16);
1569 gdb_set_cpu_pc(s, addr);
1571 s->signal = 0;
1572 gdb_continue(s);
1573 return RS_IDLE;
1574 case 'C':
1575 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1576 if (s->signal == -1)
1577 s->signal = 0;
1578 gdb_continue(s);
1579 return RS_IDLE;
1580 case 'k':
1581 /* Kill the target */
1582 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1583 exit(0);
1584 case 'D':
1585 /* Detach packet */
1586 gdb_breakpoint_remove_all();
1587 gdb_continue(s);
1588 put_packet(s, "OK");
1589 break;
1590 case 's':
1591 if (*p != '\0') {
1592 addr = strtoull(p, (char **)&p, 16);
1593 gdb_set_cpu_pc(s, addr);
1595 cpu_single_step(s->c_cpu, sstep_flags);
1596 gdb_continue(s);
1597 return RS_IDLE;
1598 case 'F':
1600 target_ulong ret;
1601 target_ulong err;
1603 ret = strtoull(p, (char **)&p, 16);
1604 if (*p == ',') {
1605 p++;
1606 err = strtoull(p, (char **)&p, 16);
1607 } else {
1608 err = 0;
1610 if (*p == ',')
1611 p++;
1612 type = *p;
1613 if (gdb_current_syscall_cb)
1614 gdb_current_syscall_cb(s->c_cpu, ret, err);
1615 if (type == 'C') {
1616 put_packet(s, "T02");
1617 } else {
1618 gdb_continue(s);
1621 break;
1622 case 'g':
1623 cpu_synchronize_state(s->g_cpu, 0);
1624 len = 0;
1625 for (addr = 0; addr < num_g_regs; addr++) {
1626 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1627 len += reg_size;
1629 memtohex(buf, mem_buf, len);
1630 put_packet(s, buf);
1631 break;
1632 case 'G':
1633 registers = mem_buf;
1634 len = strlen(p) / 2;
1635 hextomem((uint8_t *)registers, p, len);
1636 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1637 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1638 len -= reg_size;
1639 registers += reg_size;
1641 cpu_synchronize_state(s->g_cpu, 1);
1642 put_packet(s, "OK");
1643 break;
1644 case 'm':
1645 addr = strtoull(p, (char **)&p, 16);
1646 if (*p == ',')
1647 p++;
1648 len = strtoull(p, NULL, 16);
1649 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1650 put_packet (s, "E14");
1651 } else {
1652 memtohex(buf, mem_buf, len);
1653 put_packet(s, buf);
1655 break;
1656 case 'M':
1657 addr = strtoull(p, (char **)&p, 16);
1658 if (*p == ',')
1659 p++;
1660 len = strtoull(p, (char **)&p, 16);
1661 if (*p == ':')
1662 p++;
1663 hextomem(mem_buf, p, len);
1664 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1665 put_packet(s, "E14");
1666 else
1667 put_packet(s, "OK");
1668 break;
1669 case 'p':
1670 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1671 This works, but can be very slow. Anything new enough to
1672 understand XML also knows how to use this properly. */
1673 if (!gdb_has_xml)
1674 goto unknown_command;
1675 addr = strtoull(p, (char **)&p, 16);
1676 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1677 if (reg_size) {
1678 memtohex(buf, mem_buf, reg_size);
1679 put_packet(s, buf);
1680 } else {
1681 put_packet(s, "E14");
1683 break;
1684 case 'P':
1685 if (!gdb_has_xml)
1686 goto unknown_command;
1687 addr = strtoull(p, (char **)&p, 16);
1688 if (*p == '=')
1689 p++;
1690 reg_size = strlen(p) / 2;
1691 hextomem(mem_buf, p, reg_size);
1692 gdb_write_register(s->g_cpu, mem_buf, addr);
1693 put_packet(s, "OK");
1694 break;
1695 case 'Z':
1696 case 'z':
1697 type = strtoul(p, (char **)&p, 16);
1698 if (*p == ',')
1699 p++;
1700 addr = strtoull(p, (char **)&p, 16);
1701 if (*p == ',')
1702 p++;
1703 len = strtoull(p, (char **)&p, 16);
1704 if (ch == 'Z')
1705 res = gdb_breakpoint_insert(addr, len, type);
1706 else
1707 res = gdb_breakpoint_remove(addr, len, type);
1708 if (res >= 0)
1709 put_packet(s, "OK");
1710 else if (res == -ENOSYS)
1711 put_packet(s, "");
1712 else
1713 put_packet(s, "E22");
1714 break;
1715 case 'H':
1716 type = *p++;
1717 thread = strtoull(p, (char **)&p, 16);
1718 if (thread == -1 || thread == 0) {
1719 put_packet(s, "OK");
1720 break;
1722 for (env = first_cpu; env != NULL; env = env->next_cpu)
1723 if (env->cpu_index + 1 == thread)
1724 break;
1725 if (env == NULL) {
1726 put_packet(s, "E22");
1727 break;
1729 switch (type) {
1730 case 'c':
1731 s->c_cpu = env;
1732 put_packet(s, "OK");
1733 break;
1734 case 'g':
1735 s->g_cpu = env;
1736 put_packet(s, "OK");
1737 break;
1738 default:
1739 put_packet(s, "E22");
1740 break;
1742 break;
1743 case 'T':
1744 thread = strtoull(p, (char **)&p, 16);
1745 #ifndef CONFIG_USER_ONLY
1746 if (thread > 0 && thread < smp_cpus + 1)
1747 #else
1748 if (thread == 1)
1749 #endif
1750 put_packet(s, "OK");
1751 else
1752 put_packet(s, "E22");
1753 break;
1754 case 'q':
1755 case 'Q':
1756 /* parse any 'q' packets here */
1757 if (!strcmp(p,"qemu.sstepbits")) {
1758 /* Query Breakpoint bit definitions */
1759 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1760 SSTEP_ENABLE,
1761 SSTEP_NOIRQ,
1762 SSTEP_NOTIMER);
1763 put_packet(s, buf);
1764 break;
1765 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1766 /* Display or change the sstep_flags */
1767 p += 10;
1768 if (*p != '=') {
1769 /* Display current setting */
1770 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1771 put_packet(s, buf);
1772 break;
1774 p++;
1775 type = strtoul(p, (char **)&p, 16);
1776 sstep_flags = type;
1777 put_packet(s, "OK");
1778 break;
1779 } else if (strcmp(p,"C") == 0) {
1780 /* "Current thread" remains vague in the spec, so always return
1781 * the first CPU (gdb returns the first thread). */
1782 put_packet(s, "QC1");
1783 break;
1784 } else if (strcmp(p,"fThreadInfo") == 0) {
1785 s->query_cpu = first_cpu;
1786 goto report_cpuinfo;
1787 } else if (strcmp(p,"sThreadInfo") == 0) {
1788 report_cpuinfo:
1789 if (s->query_cpu) {
1790 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1791 put_packet(s, buf);
1792 s->query_cpu = s->query_cpu->next_cpu;
1793 } else
1794 put_packet(s, "l");
1795 break;
1796 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1797 thread = strtoull(p+16, (char **)&p, 16);
1798 for (env = first_cpu; env != NULL; env = env->next_cpu)
1799 if (env->cpu_index + 1 == thread) {
1800 cpu_synchronize_state(env, 0);
1801 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1802 "CPU#%d [%s]", env->cpu_index,
1803 env->halted ? "halted " : "running");
1804 memtohex(buf, mem_buf, len);
1805 put_packet(s, buf);
1806 break;
1808 break;
1810 #ifdef CONFIG_USER_ONLY
1811 else if (strncmp(p, "Offsets", 7) == 0) {
1812 TaskState *ts = s->c_cpu->opaque;
1814 snprintf(buf, sizeof(buf),
1815 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1816 ";Bss=" TARGET_ABI_FMT_lx,
1817 ts->info->code_offset,
1818 ts->info->data_offset,
1819 ts->info->data_offset);
1820 put_packet(s, buf);
1821 break;
1823 #else /* !CONFIG_USER_ONLY */
1824 else if (strncmp(p, "Rcmd,", 5) == 0) {
1825 int len = strlen(p + 5);
1827 if ((len % 2) != 0) {
1828 put_packet(s, "E01");
1829 break;
1831 hextomem(mem_buf, p + 5, len);
1832 len = len / 2;
1833 mem_buf[len++] = 0;
1834 qemu_chr_read(s->mon_chr, mem_buf, len);
1835 put_packet(s, "OK");
1836 break;
1838 #endif /* !CONFIG_USER_ONLY */
1839 if (strncmp(p, "Supported", 9) == 0) {
1840 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1841 #ifdef GDB_CORE_XML
1842 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1843 #endif
1844 put_packet(s, buf);
1845 break;
1847 #ifdef GDB_CORE_XML
1848 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1849 const char *xml;
1850 target_ulong total_len;
1852 gdb_has_xml = 1;
1853 p += 19;
1854 xml = get_feature_xml(p, &p);
1855 if (!xml) {
1856 snprintf(buf, sizeof(buf), "E00");
1857 put_packet(s, buf);
1858 break;
1861 if (*p == ':')
1862 p++;
1863 addr = strtoul(p, (char **)&p, 16);
1864 if (*p == ',')
1865 p++;
1866 len = strtoul(p, (char **)&p, 16);
1868 total_len = strlen(xml);
1869 if (addr > total_len) {
1870 snprintf(buf, sizeof(buf), "E00");
1871 put_packet(s, buf);
1872 break;
1874 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1875 len = (MAX_PACKET_LENGTH - 5) / 2;
1876 if (len < total_len - addr) {
1877 buf[0] = 'm';
1878 len = memtox(buf + 1, xml + addr, len);
1879 } else {
1880 buf[0] = 'l';
1881 len = memtox(buf + 1, xml + addr, total_len - addr);
1883 put_packet_binary(s, buf, len + 1);
1884 break;
1886 #endif
1887 /* Unrecognised 'q' command. */
1888 goto unknown_command;
1890 default:
1891 unknown_command:
1892 /* put empty packet */
1893 buf[0] = '\0';
1894 put_packet(s, buf);
1895 break;
1897 return RS_IDLE;
1900 void gdb_set_stop_cpu(CPUState *env)
1902 gdbserver_state->c_cpu = env;
1903 gdbserver_state->g_cpu = env;
1906 #ifndef CONFIG_USER_ONLY
1907 static void gdb_vm_state_change(void *opaque, int running, int reason)
1909 GDBState *s = gdbserver_state;
1910 CPUState *env = s->c_cpu;
1911 char buf[256];
1912 const char *type;
1913 int ret;
1915 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1916 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
1917 return;
1919 /* disable single step if it was enable */
1920 cpu_single_step(env, 0);
1922 if (reason == EXCP_DEBUG) {
1923 if (env->watchpoint_hit) {
1924 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1925 case BP_MEM_READ:
1926 type = "r";
1927 break;
1928 case BP_MEM_ACCESS:
1929 type = "a";
1930 break;
1931 default:
1932 type = "";
1933 break;
1935 snprintf(buf, sizeof(buf),
1936 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1937 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1938 env->watchpoint_hit->vaddr);
1939 put_packet(s, buf);
1940 env->watchpoint_hit = NULL;
1941 return;
1943 tb_flush(env);
1944 ret = GDB_SIGNAL_TRAP;
1945 } else {
1946 ret = GDB_SIGNAL_INT;
1948 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1949 put_packet(s, buf);
1951 #endif
1953 /* Send a gdb syscall request.
1954 This accepts limited printf-style format specifiers, specifically:
1955 %x - target_ulong argument printed in hex.
1956 %lx - 64-bit argument printed in hex.
1957 %s - string pointer (target_ulong) and length (int) pair. */
1958 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1960 va_list va;
1961 char buf[256];
1962 char *p;
1963 target_ulong addr;
1964 uint64_t i64;
1965 GDBState *s;
1967 s = gdbserver_state;
1968 if (!s)
1969 return;
1970 gdb_current_syscall_cb = cb;
1971 s->state = RS_SYSCALL;
1972 #ifndef CONFIG_USER_ONLY
1973 vm_stop(EXCP_DEBUG);
1974 #endif
1975 s->state = RS_IDLE;
1976 va_start(va, fmt);
1977 p = buf;
1978 *(p++) = 'F';
1979 while (*fmt) {
1980 if (*fmt == '%') {
1981 fmt++;
1982 switch (*fmt++) {
1983 case 'x':
1984 addr = va_arg(va, target_ulong);
1985 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1986 break;
1987 case 'l':
1988 if (*(fmt++) != 'x')
1989 goto bad_format;
1990 i64 = va_arg(va, uint64_t);
1991 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1992 break;
1993 case 's':
1994 addr = va_arg(va, target_ulong);
1995 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1996 addr, va_arg(va, int));
1997 break;
1998 default:
1999 bad_format:
2000 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2001 fmt - 1);
2002 break;
2004 } else {
2005 *(p++) = *(fmt++);
2008 *p = 0;
2009 va_end(va);
2010 put_packet(s, buf);
2011 #ifdef CONFIG_USER_ONLY
2012 gdb_handlesig(s->c_cpu, 0);
2013 #else
2014 cpu_exit(s->c_cpu);
2015 #endif
2018 static void gdb_read_byte(GDBState *s, int ch)
2020 int i, csum;
2021 uint8_t reply;
2023 #ifndef CONFIG_USER_ONLY
2024 if (s->last_packet_len) {
2025 /* Waiting for a response to the last packet. If we see the start
2026 of a new command then abandon the previous response. */
2027 if (ch == '-') {
2028 #ifdef DEBUG_GDB
2029 printf("Got NACK, retransmitting\n");
2030 #endif
2031 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2033 #ifdef DEBUG_GDB
2034 else if (ch == '+')
2035 printf("Got ACK\n");
2036 else
2037 printf("Got '%c' when expecting ACK/NACK\n", ch);
2038 #endif
2039 if (ch == '+' || ch == '$')
2040 s->last_packet_len = 0;
2041 if (ch != '$')
2042 return;
2044 if (vm_running) {
2045 /* when the CPU is running, we cannot do anything except stop
2046 it when receiving a char */
2047 vm_stop(EXCP_INTERRUPT);
2048 } else
2049 #endif
2051 switch(s->state) {
2052 case RS_IDLE:
2053 if (ch == '$') {
2054 s->line_buf_index = 0;
2055 s->state = RS_GETLINE;
2057 break;
2058 case RS_GETLINE:
2059 if (ch == '#') {
2060 s->state = RS_CHKSUM1;
2061 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2062 s->state = RS_IDLE;
2063 } else {
2064 s->line_buf[s->line_buf_index++] = ch;
2066 break;
2067 case RS_CHKSUM1:
2068 s->line_buf[s->line_buf_index] = '\0';
2069 s->line_csum = fromhex(ch) << 4;
2070 s->state = RS_CHKSUM2;
2071 break;
2072 case RS_CHKSUM2:
2073 s->line_csum |= fromhex(ch);
2074 csum = 0;
2075 for(i = 0; i < s->line_buf_index; i++) {
2076 csum += s->line_buf[i];
2078 if (s->line_csum != (csum & 0xff)) {
2079 reply = '-';
2080 put_buffer(s, &reply, 1);
2081 s->state = RS_IDLE;
2082 } else {
2083 reply = '+';
2084 put_buffer(s, &reply, 1);
2085 s->state = gdb_handle_packet(s, s->line_buf);
2087 break;
2088 default:
2089 abort();
2094 #ifdef CONFIG_USER_ONLY
2096 gdb_queuesig (void)
2098 GDBState *s;
2100 s = gdbserver_state;
2102 if (gdbserver_fd < 0 || s->fd < 0)
2103 return 0;
2104 else
2105 return 1;
2109 gdb_handlesig (CPUState *env, int sig)
2111 GDBState *s;
2112 char buf[256];
2113 int n;
2115 s = gdbserver_state;
2116 if (gdbserver_fd < 0 || s->fd < 0)
2117 return sig;
2119 /* disable single step if it was enabled */
2120 cpu_single_step(env, 0);
2121 tb_flush(env);
2123 if (sig != 0)
2125 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2126 put_packet(s, buf);
2128 /* put_packet() might have detected that the peer terminated the
2129 connection. */
2130 if (s->fd < 0)
2131 return sig;
2133 sig = 0;
2134 s->state = RS_IDLE;
2135 s->running_state = 0;
2136 while (s->running_state == 0) {
2137 n = read (s->fd, buf, 256);
2138 if (n > 0)
2140 int i;
2142 for (i = 0; i < n; i++)
2143 gdb_read_byte (s, buf[i]);
2145 else if (n == 0 || errno != EAGAIN)
2147 /* XXX: Connection closed. Should probably wait for annother
2148 connection before continuing. */
2149 return sig;
2152 sig = s->signal;
2153 s->signal = 0;
2154 return sig;
2157 /* Tell the remote gdb that the process has exited. */
2158 void gdb_exit(CPUState *env, int code)
2160 GDBState *s;
2161 char buf[4];
2163 s = gdbserver_state;
2164 if (gdbserver_fd < 0 || s->fd < 0)
2165 return;
2167 snprintf(buf, sizeof(buf), "W%02x", code);
2168 put_packet(s, buf);
2171 /* Tell the remote gdb that the process has exited due to SIG. */
2172 void gdb_signalled(CPUState *env, int sig)
2174 GDBState *s;
2175 char buf[4];
2177 s = gdbserver_state;
2178 if (gdbserver_fd < 0 || s->fd < 0)
2179 return;
2181 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2182 put_packet(s, buf);
2185 static void gdb_accept(void)
2187 GDBState *s;
2188 struct sockaddr_in sockaddr;
2189 socklen_t len;
2190 int val, fd;
2192 for(;;) {
2193 len = sizeof(sockaddr);
2194 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2195 if (fd < 0 && errno != EINTR) {
2196 perror("accept");
2197 return;
2198 } else if (fd >= 0) {
2199 break;
2203 /* set short latency */
2204 val = 1;
2205 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2207 s = qemu_mallocz(sizeof(GDBState));
2208 s->c_cpu = first_cpu;
2209 s->g_cpu = first_cpu;
2210 s->fd = fd;
2211 gdb_has_xml = 0;
2213 gdbserver_state = s;
2215 fcntl(fd, F_SETFL, O_NONBLOCK);
2218 static int gdbserver_open(int port)
2220 struct sockaddr_in sockaddr;
2221 int fd, val, ret;
2223 fd = socket(PF_INET, SOCK_STREAM, 0);
2224 if (fd < 0) {
2225 perror("socket");
2226 return -1;
2229 /* allow fast reuse */
2230 val = 1;
2231 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2233 sockaddr.sin_family = AF_INET;
2234 sockaddr.sin_port = htons(port);
2235 sockaddr.sin_addr.s_addr = 0;
2236 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2237 if (ret < 0) {
2238 perror("bind");
2239 return -1;
2241 ret = listen(fd, 0);
2242 if (ret < 0) {
2243 perror("listen");
2244 return -1;
2246 return fd;
2249 int gdbserver_start(int port)
2251 gdbserver_fd = gdbserver_open(port);
2252 if (gdbserver_fd < 0)
2253 return -1;
2254 /* accept connections */
2255 gdb_accept();
2256 return 0;
2259 /* Disable gdb stub for child processes. */
2260 void gdbserver_fork(CPUState *env)
2262 GDBState *s = gdbserver_state;
2263 if (gdbserver_fd < 0 || s->fd < 0)
2264 return;
2265 close(s->fd);
2266 s->fd = -1;
2267 cpu_breakpoint_remove_all(env, BP_GDB);
2268 cpu_watchpoint_remove_all(env, BP_GDB);
2270 #else
2271 static int gdb_chr_can_receive(void *opaque)
2273 /* We can handle an arbitrarily large amount of data.
2274 Pick the maximum packet size, which is as good as anything. */
2275 return MAX_PACKET_LENGTH;
2278 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2280 int i;
2282 for (i = 0; i < size; i++) {
2283 gdb_read_byte(gdbserver_state, buf[i]);
2287 static void gdb_chr_event(void *opaque, int event)
2289 switch (event) {
2290 case CHR_EVENT_RESET:
2291 vm_stop(EXCP_INTERRUPT);
2292 gdb_has_xml = 0;
2293 break;
2294 default:
2295 break;
2299 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2301 char buf[MAX_PACKET_LENGTH];
2303 buf[0] = 'O';
2304 if (len > (MAX_PACKET_LENGTH/2) - 1)
2305 len = (MAX_PACKET_LENGTH/2) - 1;
2306 memtohex(buf + 1, (uint8_t *)msg, len);
2307 put_packet(s, buf);
2310 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2312 const char *p = (const char *)buf;
2313 int max_sz;
2315 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2316 for (;;) {
2317 if (len <= max_sz) {
2318 gdb_monitor_output(gdbserver_state, p, len);
2319 break;
2321 gdb_monitor_output(gdbserver_state, p, max_sz);
2322 p += max_sz;
2323 len -= max_sz;
2325 return len;
2328 #ifndef _WIN32
2329 static void gdb_sigterm_handler(int signal)
2331 if (vm_running)
2332 vm_stop(EXCP_INTERRUPT);
2334 #endif
2336 int gdbserver_start(const char *device)
2338 GDBState *s;
2339 char gdbstub_device_name[128];
2340 CharDriverState *chr = NULL;
2341 CharDriverState *mon_chr;
2343 if (!device)
2344 return -1;
2345 if (strcmp(device, "none") != 0) {
2346 if (strstart(device, "tcp:", NULL)) {
2347 /* enforce required TCP attributes */
2348 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2349 "%s,nowait,nodelay,server", device);
2350 device = gdbstub_device_name;
2352 #ifndef _WIN32
2353 else if (strcmp(device, "stdio") == 0) {
2354 struct sigaction act;
2356 memset(&act, 0, sizeof(act));
2357 act.sa_handler = gdb_sigterm_handler;
2358 sigaction(SIGINT, &act, NULL);
2360 #endif
2361 chr = qemu_chr_open("gdb", device, NULL);
2362 if (!chr)
2363 return -1;
2365 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2366 gdb_chr_event, NULL);
2369 s = gdbserver_state;
2370 if (!s) {
2371 s = qemu_mallocz(sizeof(GDBState));
2372 gdbserver_state = s;
2374 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2376 /* Initialize a monitor terminal for gdb */
2377 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2378 mon_chr->chr_write = gdb_monitor_write;
2379 monitor_init(mon_chr, 0);
2380 } else {
2381 if (s->chr)
2382 qemu_chr_close(s->chr);
2383 mon_chr = s->mon_chr;
2384 memset(s, 0, sizeof(GDBState));
2386 s->c_cpu = first_cpu;
2387 s->g_cpu = first_cpu;
2388 s->chr = chr;
2389 s->state = chr ? RS_IDLE : RS_INACTIVE;
2390 s->mon_chr = mon_chr;
2392 return 0;
2394 #endif