qemu-kvm: use upstream sregs save/restore code
[qemu-kvm/stefanha.git] / target-i386 / kvm.c
blob1e98a2eb7bdbb068c446db69a64bf6e7c28ce170
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 #ifdef OBSOLETE_KVM_IMPL
58 static int lm_capable_kernel;
59 #endif
61 #ifdef KVM_CAP_EXT_CPUID
63 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
65 struct kvm_cpuid2 *cpuid;
66 int r, size;
68 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
69 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
70 cpuid->nent = max;
71 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
72 if (r == 0 && cpuid->nent >= max) {
73 r = -E2BIG;
75 if (r < 0) {
76 if (r == -E2BIG) {
77 qemu_free(cpuid);
78 return NULL;
79 } else {
80 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
81 strerror(-r));
82 exit(1);
85 return cpuid;
88 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
89 uint32_t index, int reg)
91 struct kvm_cpuid2 *cpuid;
92 int i, max;
93 uint32_t ret = 0;
94 uint32_t cpuid_1_edx;
96 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
97 return -1U;
100 max = 1;
101 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
102 max *= 2;
105 for (i = 0; i < cpuid->nent; ++i) {
106 if (cpuid->entries[i].function == function &&
107 cpuid->entries[i].index == index) {
108 switch (reg) {
109 case R_EAX:
110 ret = cpuid->entries[i].eax;
111 break;
112 case R_EBX:
113 ret = cpuid->entries[i].ebx;
114 break;
115 case R_ECX:
116 ret = cpuid->entries[i].ecx;
117 break;
118 case R_EDX:
119 ret = cpuid->entries[i].edx;
120 switch (function) {
121 case 1:
122 /* KVM before 2.6.30 misreports the following features */
123 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
124 break;
125 case 0x80000001:
126 /* On Intel, kvm returns cpuid according to the Intel spec,
127 * so add missing bits according to the AMD spec:
129 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
130 ret |= cpuid_1_edx & 0x183f7ff;
131 break;
133 break;
138 qemu_free(cpuid);
140 return ret;
143 #else
145 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
146 uint32_t index, int reg)
148 return -1U;
151 #endif
153 #ifdef CONFIG_KVM_PARA
154 struct kvm_para_features {
155 int cap;
156 int feature;
157 } para_features[] = {
158 #ifdef KVM_CAP_CLOCKSOURCE
159 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
160 #endif
161 #ifdef KVM_CAP_NOP_IO_DELAY
162 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
163 #endif
164 #ifdef KVM_CAP_PV_MMU
165 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
166 #endif
167 { -1, -1 }
170 static int get_para_features(CPUState *env)
172 int i, features = 0;
174 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
175 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
176 features |= (1 << para_features[i].feature);
179 return features;
181 #endif
183 #ifdef KVM_CAP_MCE
184 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
185 int *max_banks)
187 int r;
189 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
190 if (r > 0) {
191 *max_banks = r;
192 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194 return -ENOSYS;
197 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
202 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
207 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
210 int r;
212 kmsrs->nmsrs = n;
213 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
214 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
215 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
216 free(kmsrs);
217 return r;
220 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
221 static int kvm_mce_in_exception(CPUState *env)
223 struct kvm_msr_entry msr_mcg_status = {
224 .index = MSR_MCG_STATUS,
226 int r;
228 r = kvm_get_msr(env, &msr_mcg_status, 1);
229 if (r == -1 || r == 0) {
230 return -1;
232 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
235 struct kvm_x86_mce_data
237 CPUState *env;
238 struct kvm_x86_mce *mce;
239 int abort_on_error;
242 static void kvm_do_inject_x86_mce(void *_data)
244 struct kvm_x86_mce_data *data = _data;
245 int r;
247 /* If there is an MCE exception being processed, ignore this SRAO MCE */
248 if ((data->env->mcg_cap & MCG_SER_P) &&
249 !(data->mce->status & MCI_STATUS_AR)) {
250 r = kvm_mce_in_exception(data->env);
251 if (r == -1) {
252 fprintf(stderr, "Failed to get MCE status\n");
253 } else if (r) {
254 return;
258 r = kvm_set_mce(data->env, data->mce);
259 if (r < 0) {
260 perror("kvm_set_mce FAILED");
261 if (data->abort_on_error) {
262 abort();
266 #endif
268 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
269 uint64_t mcg_status, uint64_t addr, uint64_t misc,
270 int abort_on_error)
272 #ifdef KVM_CAP_MCE
273 struct kvm_x86_mce mce = {
274 .bank = bank,
275 .status = status,
276 .mcg_status = mcg_status,
277 .addr = addr,
278 .misc = misc,
280 struct kvm_x86_mce_data data = {
281 .env = cenv,
282 .mce = &mce,
285 if (!cenv->mcg_cap) {
286 fprintf(stderr, "MCE support is not enabled!\n");
287 return;
290 on_vcpu(cenv, kvm_do_inject_x86_mce, &data);
291 #else
292 if (abort_on_error)
293 abort();
294 #endif
297 static int _kvm_arch_init_vcpu(CPUState *env);
299 int kvm_arch_init_vcpu(CPUState *env)
301 int r;
302 struct {
303 struct kvm_cpuid2 cpuid;
304 struct kvm_cpuid_entry2 entries[100];
305 } __attribute__((packed)) cpuid_data;
306 uint32_t limit, i, j, cpuid_i;
307 uint32_t unused;
308 struct kvm_cpuid_entry2 *c;
309 #ifdef KVM_CPUID_SIGNATURE
310 uint32_t signature[3];
311 #endif
313 r = _kvm_arch_init_vcpu(env);
314 if (r < 0) {
315 return r;
318 #ifdef OBSOLETE_KVM_IMPL
320 env->mp_state = KVM_MP_STATE_RUNNABLE;
322 #endif
324 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
326 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
327 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
328 env->cpuid_ext_features |= i;
330 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
331 0, R_EDX);
332 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333 0, R_ECX);
334 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
335 0, R_EDX);
338 cpuid_i = 0;
340 #ifdef CONFIG_KVM_PARA
341 /* Paravirtualization CPUIDs */
342 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
343 c = &cpuid_data.entries[cpuid_i++];
344 memset(c, 0, sizeof(*c));
345 c->function = KVM_CPUID_SIGNATURE;
346 c->eax = 0;
347 c->ebx = signature[0];
348 c->ecx = signature[1];
349 c->edx = signature[2];
351 c = &cpuid_data.entries[cpuid_i++];
352 memset(c, 0, sizeof(*c));
353 c->function = KVM_CPUID_FEATURES;
354 c->eax = env->cpuid_kvm_features & get_para_features(env);
355 #endif
357 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
359 for (i = 0; i <= limit; i++) {
360 c = &cpuid_data.entries[cpuid_i++];
362 switch (i) {
363 case 2: {
364 /* Keep reading function 2 till all the input is received */
365 int times;
367 c->function = i;
368 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
369 KVM_CPUID_FLAG_STATE_READ_NEXT;
370 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
371 times = c->eax & 0xff;
373 for (j = 1; j < times; ++j) {
374 c = &cpuid_data.entries[cpuid_i++];
375 c->function = i;
376 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
377 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
379 break;
381 case 4:
382 case 0xb:
383 case 0xd:
384 for (j = 0; ; j++) {
385 c->function = i;
386 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
387 c->index = j;
388 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
390 if (i == 4 && c->eax == 0)
391 break;
392 if (i == 0xb && !(c->ecx & 0xff00))
393 break;
394 if (i == 0xd && c->eax == 0)
395 break;
397 c = &cpuid_data.entries[cpuid_i++];
399 break;
400 default:
401 c->function = i;
402 c->flags = 0;
403 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
404 break;
407 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
409 for (i = 0x80000000; i <= limit; i++) {
410 c = &cpuid_data.entries[cpuid_i++];
412 c->function = i;
413 c->flags = 0;
414 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417 cpuid_data.cpuid.nent = cpuid_i;
419 #ifdef KVM_CAP_MCE
420 if (((env->cpuid_version >> 8)&0xF) >= 6
421 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
422 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
423 uint64_t mcg_cap;
424 int banks;
426 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
427 perror("kvm_get_mce_cap_supported FAILED");
428 else {
429 if (banks > MCE_BANKS_DEF)
430 banks = MCE_BANKS_DEF;
431 mcg_cap &= MCE_CAP_DEF;
432 mcg_cap |= banks;
433 if (kvm_setup_mce(env, &mcg_cap))
434 perror("kvm_setup_mce FAILED");
435 else
436 env->mcg_cap = mcg_cap;
439 #endif
441 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
444 void kvm_arch_reset_vcpu(CPUState *env)
446 env->exception_injected = -1;
447 env->interrupt_injected = -1;
448 env->nmi_injected = 0;
449 env->nmi_pending = 0;
450 /* Legal xcr0 for loading */
451 env->xcr0 = 1;
452 if (kvm_irqchip_in_kernel()) {
453 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
454 KVM_MP_STATE_UNINITIALIZED;
455 } else {
456 env->mp_state = KVM_MP_STATE_RUNNABLE;
459 #ifdef OBSOLETE_KVM_IMPL
461 int has_msr_star;
462 int has_msr_hsave_pa;
464 static void kvm_supported_msrs(CPUState *env)
466 static int kvm_supported_msrs;
467 int ret;
469 /* first time */
470 if (kvm_supported_msrs == 0) {
471 struct kvm_msr_list msr_list, *kvm_msr_list;
473 kvm_supported_msrs = -1;
475 /* Obtain MSR list from KVM. These are the MSRs that we must
476 * save/restore */
477 msr_list.nmsrs = 0;
478 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
479 if (ret < 0 && ret != -E2BIG) {
480 return;
482 /* Old kernel modules had a bug and could write beyond the provided
483 memory. Allocate at least a safe amount of 1K. */
484 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
485 msr_list.nmsrs *
486 sizeof(msr_list.indices[0])));
488 kvm_msr_list->nmsrs = msr_list.nmsrs;
489 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
490 if (ret >= 0) {
491 int i;
493 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
494 if (kvm_msr_list->indices[i] == MSR_STAR) {
495 has_msr_star = 1;
496 continue;
498 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
499 has_msr_hsave_pa = 1;
500 continue;
505 free(kvm_msr_list);
508 return;
511 static int kvm_has_msr_hsave_pa(CPUState *env)
513 kvm_supported_msrs(env);
514 return has_msr_hsave_pa;
517 static int kvm_has_msr_star(CPUState *env)
519 kvm_supported_msrs(env);
520 return has_msr_star;
523 static int kvm_init_identity_map_page(KVMState *s)
525 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
526 int ret;
527 uint64_t addr = 0xfffbc000;
529 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
530 return 0;
533 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
534 if (ret < 0) {
535 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
536 return ret;
538 #endif
539 return 0;
542 int kvm_arch_init(KVMState *s, int smp_cpus)
544 int ret;
546 struct utsname utsname;
548 uname(&utsname);
549 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
551 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
552 * directly. In order to use vm86 mode, a TSS is needed. Since this
553 * must be part of guest physical memory, we need to allocate it. Older
554 * versions of KVM just assumed that it would be at the end of physical
555 * memory but that doesn't work with more than 4GB of memory. We simply
556 * refuse to work with those older versions of KVM. */
557 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
558 if (ret <= 0) {
559 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
560 return ret;
563 /* this address is 3 pages before the bios, and the bios should present
564 * as unavaible memory. FIXME, need to ensure the e820 map deals with
565 * this?
568 * Tell fw_cfg to notify the BIOS to reserve the range.
570 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
571 perror("e820_add_entry() table is full");
572 exit(1);
574 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
575 if (ret < 0) {
576 return ret;
579 return kvm_init_identity_map_page(s);
582 #endif
584 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
586 lhs->selector = rhs->selector;
587 lhs->base = rhs->base;
588 lhs->limit = rhs->limit;
589 lhs->type = 3;
590 lhs->present = 1;
591 lhs->dpl = 3;
592 lhs->db = 0;
593 lhs->s = 1;
594 lhs->l = 0;
595 lhs->g = 0;
596 lhs->avl = 0;
597 lhs->unusable = 0;
600 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
602 unsigned flags = rhs->flags;
603 lhs->selector = rhs->selector;
604 lhs->base = rhs->base;
605 lhs->limit = rhs->limit;
606 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
607 lhs->present = (flags & DESC_P_MASK) != 0;
608 lhs->dpl = rhs->selector & 3;
609 lhs->db = (flags >> DESC_B_SHIFT) & 1;
610 lhs->s = (flags & DESC_S_MASK) != 0;
611 lhs->l = (flags >> DESC_L_SHIFT) & 1;
612 lhs->g = (flags & DESC_G_MASK) != 0;
613 lhs->avl = (flags & DESC_AVL_MASK) != 0;
614 lhs->unusable = 0;
617 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
619 lhs->selector = rhs->selector;
620 lhs->base = rhs->base;
621 lhs->limit = rhs->limit;
622 lhs->flags =
623 (rhs->type << DESC_TYPE_SHIFT)
624 | (rhs->present * DESC_P_MASK)
625 | (rhs->dpl << DESC_DPL_SHIFT)
626 | (rhs->db << DESC_B_SHIFT)
627 | (rhs->s * DESC_S_MASK)
628 | (rhs->l << DESC_L_SHIFT)
629 | (rhs->g * DESC_G_MASK)
630 | (rhs->avl * DESC_AVL_MASK);
633 #ifdef OBSOLETE_KVM_IMPL
635 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
637 if (set)
638 *kvm_reg = *qemu_reg;
639 else
640 *qemu_reg = *kvm_reg;
643 static int kvm_getput_regs(CPUState *env, int set)
645 struct kvm_regs regs;
646 int ret = 0;
648 if (!set) {
649 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
650 if (ret < 0)
651 return ret;
654 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
655 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
656 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
657 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
658 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
659 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
660 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
661 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
662 #ifdef TARGET_X86_64
663 kvm_getput_reg(&regs.r8, &env->regs[8], set);
664 kvm_getput_reg(&regs.r9, &env->regs[9], set);
665 kvm_getput_reg(&regs.r10, &env->regs[10], set);
666 kvm_getput_reg(&regs.r11, &env->regs[11], set);
667 kvm_getput_reg(&regs.r12, &env->regs[12], set);
668 kvm_getput_reg(&regs.r13, &env->regs[13], set);
669 kvm_getput_reg(&regs.r14, &env->regs[14], set);
670 kvm_getput_reg(&regs.r15, &env->regs[15], set);
671 #endif
673 kvm_getput_reg(&regs.rflags, &env->eflags, set);
674 kvm_getput_reg(&regs.rip, &env->eip, set);
676 if (set)
677 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
679 return ret;
682 #endif
684 static int kvm_put_fpu(CPUState *env)
686 struct kvm_fpu fpu;
687 int i;
689 memset(&fpu, 0, sizeof fpu);
690 fpu.fsw = env->fpus & ~(7 << 11);
691 fpu.fsw |= (env->fpstt & 7) << 11;
692 fpu.fcw = env->fpuc;
693 for (i = 0; i < 8; ++i)
694 fpu.ftwx |= (!env->fptags[i]) << i;
695 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
696 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
697 fpu.mxcsr = env->mxcsr;
699 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
702 #ifdef KVM_CAP_XSAVE
703 #define XSAVE_CWD_RIP 2
704 #define XSAVE_CWD_RDP 4
705 #define XSAVE_MXCSR 6
706 #define XSAVE_ST_SPACE 8
707 #define XSAVE_XMM_SPACE 40
708 #define XSAVE_XSTATE_BV 128
709 #define XSAVE_YMMH_SPACE 144
710 #endif
712 static int kvm_put_xsave(CPUState *env)
714 #ifdef KVM_CAP_XSAVE
715 int i, r;
716 struct kvm_xsave* xsave;
717 uint16_t cwd, swd, twd, fop;
719 if (!kvm_has_xsave())
720 return kvm_put_fpu(env);
722 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
723 memset(xsave, 0, sizeof(struct kvm_xsave));
724 cwd = swd = twd = fop = 0;
725 swd = env->fpus & ~(7 << 11);
726 swd |= (env->fpstt & 7) << 11;
727 cwd = env->fpuc;
728 for (i = 0; i < 8; ++i)
729 twd |= (!env->fptags[i]) << i;
730 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
731 xsave->region[1] = (uint32_t)(fop << 16) + twd;
732 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
733 sizeof env->fpregs);
734 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
735 sizeof env->xmm_regs);
736 xsave->region[XSAVE_MXCSR] = env->mxcsr;
737 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
738 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
739 sizeof env->ymmh_regs);
740 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
741 qemu_free(xsave);
742 return r;
743 #else
744 return kvm_put_fpu(env);
745 #endif
748 static int kvm_put_xcrs(CPUState *env)
750 #ifdef KVM_CAP_XCRS
751 struct kvm_xcrs xcrs;
753 if (!kvm_has_xcrs())
754 return 0;
756 xcrs.nr_xcrs = 1;
757 xcrs.flags = 0;
758 xcrs.xcrs[0].xcr = 0;
759 xcrs.xcrs[0].value = env->xcr0;
760 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
761 #else
762 return 0;
763 #endif
766 static int kvm_put_sregs(CPUState *env)
768 struct kvm_sregs sregs;
770 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
771 if (env->interrupt_injected >= 0) {
772 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
773 (uint64_t)1 << (env->interrupt_injected % 64);
776 if ((env->eflags & VM_MASK)) {
777 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
778 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
779 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
780 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
781 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
782 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
783 } else {
784 set_seg(&sregs.cs, &env->segs[R_CS]);
785 set_seg(&sregs.ds, &env->segs[R_DS]);
786 set_seg(&sregs.es, &env->segs[R_ES]);
787 set_seg(&sregs.fs, &env->segs[R_FS]);
788 set_seg(&sregs.gs, &env->segs[R_GS]);
789 set_seg(&sregs.ss, &env->segs[R_SS]);
791 if (env->cr[0] & CR0_PE_MASK) {
792 /* force ss cpl to cs cpl */
793 sregs.ss.selector = (sregs.ss.selector & ~3) |
794 (sregs.cs.selector & 3);
795 sregs.ss.dpl = sregs.ss.selector & 3;
799 set_seg(&sregs.tr, &env->tr);
800 set_seg(&sregs.ldt, &env->ldt);
802 sregs.idt.limit = env->idt.limit;
803 sregs.idt.base = env->idt.base;
804 sregs.gdt.limit = env->gdt.limit;
805 sregs.gdt.base = env->gdt.base;
807 sregs.cr0 = env->cr[0];
808 sregs.cr2 = env->cr[2];
809 sregs.cr3 = env->cr[3];
810 sregs.cr4 = env->cr[4];
812 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
813 sregs.apic_base = cpu_get_apic_base(env->apic_state);
815 sregs.efer = env->efer;
817 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
820 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
821 uint32_t index, uint64_t value)
823 entry->index = index;
824 entry->data = value;
827 #ifdef OBSOLETE_KVM_IMPL
828 static int kvm_put_msrs(CPUState *env, int level)
830 struct {
831 struct kvm_msrs info;
832 struct kvm_msr_entry entries[100];
833 } msr_data;
834 struct kvm_msr_entry *msrs = msr_data.entries;
835 int n = 0;
837 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
838 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
839 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
840 if (kvm_has_msr_star(env))
841 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
842 if (kvm_has_msr_hsave_pa(env))
843 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
844 #ifdef TARGET_X86_64
845 if (lm_capable_kernel) {
846 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
847 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
848 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
849 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
851 #endif
852 if (level == KVM_PUT_FULL_STATE) {
854 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
855 * writeback. Until this is fixed, we only write the offset to SMP
856 * guests after migration, desynchronizing the VCPUs, but avoiding
857 * huge jump-backs that would occur without any writeback at all.
859 if (smp_cpus == 1 || env->tsc != 0) {
860 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
862 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
863 env->system_time_msr);
864 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
866 #ifdef KVM_CAP_MCE
867 if (env->mcg_cap) {
868 int i;
869 if (level == KVM_PUT_RESET_STATE)
870 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
871 else if (level == KVM_PUT_FULL_STATE) {
872 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
873 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
874 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
875 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
878 #endif
880 msr_data.info.nmsrs = n;
882 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
886 #endif
888 static int kvm_get_fpu(CPUState *env)
890 struct kvm_fpu fpu;
891 int i, ret;
893 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
894 if (ret < 0)
895 return ret;
897 env->fpstt = (fpu.fsw >> 11) & 7;
898 env->fpus = fpu.fsw;
899 env->fpuc = fpu.fcw;
900 for (i = 0; i < 8; ++i)
901 env->fptags[i] = !((fpu.ftwx >> i) & 1);
902 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
903 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
904 env->mxcsr = fpu.mxcsr;
906 return 0;
909 static int kvm_get_xsave(CPUState *env)
911 #ifdef KVM_CAP_XSAVE
912 struct kvm_xsave* xsave;
913 int ret, i;
914 uint16_t cwd, swd, twd, fop;
916 if (!kvm_has_xsave())
917 return kvm_get_fpu(env);
919 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
920 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
921 if (ret < 0) {
922 qemu_free(xsave);
923 return ret;
926 cwd = (uint16_t)xsave->region[0];
927 swd = (uint16_t)(xsave->region[0] >> 16);
928 twd = (uint16_t)xsave->region[1];
929 fop = (uint16_t)(xsave->region[1] >> 16);
930 env->fpstt = (swd >> 11) & 7;
931 env->fpus = swd;
932 env->fpuc = cwd;
933 for (i = 0; i < 8; ++i)
934 env->fptags[i] = !((twd >> i) & 1);
935 env->mxcsr = xsave->region[XSAVE_MXCSR];
936 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
937 sizeof env->fpregs);
938 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
939 sizeof env->xmm_regs);
940 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
941 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
942 sizeof env->ymmh_regs);
943 qemu_free(xsave);
944 return 0;
945 #else
946 return kvm_get_fpu(env);
947 #endif
950 static int kvm_get_xcrs(CPUState *env)
952 #ifdef KVM_CAP_XCRS
953 int i, ret;
954 struct kvm_xcrs xcrs;
956 if (!kvm_has_xcrs())
957 return 0;
959 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
960 if (ret < 0)
961 return ret;
963 for (i = 0; i < xcrs.nr_xcrs; i++)
964 /* Only support xcr0 now */
965 if (xcrs.xcrs[0].xcr == 0) {
966 env->xcr0 = xcrs.xcrs[0].value;
967 break;
969 return 0;
970 #else
971 return 0;
972 #endif
975 static int kvm_get_sregs(CPUState *env)
977 struct kvm_sregs sregs;
978 uint32_t hflags;
979 int bit, i, ret;
981 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
982 if (ret < 0)
983 return ret;
985 /* There can only be one pending IRQ set in the bitmap at a time, so try
986 to find it and save its number instead (-1 for none). */
987 env->interrupt_injected = -1;
988 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
989 if (sregs.interrupt_bitmap[i]) {
990 bit = ctz64(sregs.interrupt_bitmap[i]);
991 env->interrupt_injected = i * 64 + bit;
992 break;
996 get_seg(&env->segs[R_CS], &sregs.cs);
997 get_seg(&env->segs[R_DS], &sregs.ds);
998 get_seg(&env->segs[R_ES], &sregs.es);
999 get_seg(&env->segs[R_FS], &sregs.fs);
1000 get_seg(&env->segs[R_GS], &sregs.gs);
1001 get_seg(&env->segs[R_SS], &sregs.ss);
1003 get_seg(&env->tr, &sregs.tr);
1004 get_seg(&env->ldt, &sregs.ldt);
1006 env->idt.limit = sregs.idt.limit;
1007 env->idt.base = sregs.idt.base;
1008 env->gdt.limit = sregs.gdt.limit;
1009 env->gdt.base = sregs.gdt.base;
1011 env->cr[0] = sregs.cr0;
1012 env->cr[2] = sregs.cr2;
1013 env->cr[3] = sregs.cr3;
1014 env->cr[4] = sregs.cr4;
1016 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1018 env->efer = sregs.efer;
1019 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1021 #define HFLAG_COPY_MASK ~( \
1022 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1023 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1024 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1025 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1029 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1030 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1031 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1032 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1033 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1034 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1035 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1037 if (env->efer & MSR_EFER_LMA) {
1038 hflags |= HF_LMA_MASK;
1041 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1042 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1043 } else {
1044 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1045 (DESC_B_SHIFT - HF_CS32_SHIFT);
1046 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1047 (DESC_B_SHIFT - HF_SS32_SHIFT);
1048 if (!(env->cr[0] & CR0_PE_MASK) ||
1049 (env->eflags & VM_MASK) ||
1050 !(hflags & HF_CS32_MASK)) {
1051 hflags |= HF_ADDSEG_MASK;
1052 } else {
1053 hflags |= ((env->segs[R_DS].base |
1054 env->segs[R_ES].base |
1055 env->segs[R_SS].base) != 0) <<
1056 HF_ADDSEG_SHIFT;
1059 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1061 return 0;
1064 #ifdef OBSOLETE_KVM_IMPL
1066 static int kvm_get_msrs(CPUState *env)
1068 struct {
1069 struct kvm_msrs info;
1070 struct kvm_msr_entry entries[100];
1071 } msr_data;
1072 struct kvm_msr_entry *msrs = msr_data.entries;
1073 int ret, i, n;
1075 n = 0;
1076 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1077 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1078 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1079 if (kvm_has_msr_star(env))
1080 msrs[n++].index = MSR_STAR;
1081 if (kvm_has_msr_hsave_pa(env))
1082 msrs[n++].index = MSR_VM_HSAVE_PA;
1083 msrs[n++].index = MSR_IA32_TSC;
1084 msrs[n++].index = MSR_VM_HSAVE_PA;
1085 #ifdef TARGET_X86_64
1086 if (lm_capable_kernel) {
1087 msrs[n++].index = MSR_CSTAR;
1088 msrs[n++].index = MSR_KERNELGSBASE;
1089 msrs[n++].index = MSR_FMASK;
1090 msrs[n++].index = MSR_LSTAR;
1092 #endif
1093 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1094 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1096 #ifdef KVM_CAP_MCE
1097 if (env->mcg_cap) {
1098 msrs[n++].index = MSR_MCG_STATUS;
1099 msrs[n++].index = MSR_MCG_CTL;
1100 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1101 msrs[n++].index = MSR_MC0_CTL + i;
1103 #endif
1105 msr_data.info.nmsrs = n;
1106 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1107 if (ret < 0)
1108 return ret;
1110 for (i = 0; i < ret; i++) {
1111 switch (msrs[i].index) {
1112 case MSR_IA32_SYSENTER_CS:
1113 env->sysenter_cs = msrs[i].data;
1114 break;
1115 case MSR_IA32_SYSENTER_ESP:
1116 env->sysenter_esp = msrs[i].data;
1117 break;
1118 case MSR_IA32_SYSENTER_EIP:
1119 env->sysenter_eip = msrs[i].data;
1120 break;
1121 case MSR_STAR:
1122 env->star = msrs[i].data;
1123 break;
1124 #ifdef TARGET_X86_64
1125 case MSR_CSTAR:
1126 env->cstar = msrs[i].data;
1127 break;
1128 case MSR_KERNELGSBASE:
1129 env->kernelgsbase = msrs[i].data;
1130 break;
1131 case MSR_FMASK:
1132 env->fmask = msrs[i].data;
1133 break;
1134 case MSR_LSTAR:
1135 env->lstar = msrs[i].data;
1136 break;
1137 #endif
1138 case MSR_IA32_TSC:
1139 env->tsc = msrs[i].data;
1140 break;
1141 case MSR_VM_HSAVE_PA:
1142 env->vm_hsave = msrs[i].data;
1143 break;
1144 case MSR_KVM_SYSTEM_TIME:
1145 env->system_time_msr = msrs[i].data;
1146 break;
1147 case MSR_KVM_WALL_CLOCK:
1148 env->wall_clock_msr = msrs[i].data;
1149 break;
1150 case MSR_VM_HSAVE_PA:
1151 env->vm_hsave = msrs[i].data;
1152 break;
1153 #ifdef KVM_CAP_MCE
1154 case MSR_MCG_STATUS:
1155 env->mcg_status = msrs[i].data;
1156 break;
1157 case MSR_MCG_CTL:
1158 env->mcg_ctl = msrs[i].data;
1159 break;
1160 #endif
1161 default:
1162 #ifdef KVM_CAP_MCE
1163 if (msrs[i].index >= MSR_MC0_CTL &&
1164 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1165 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1167 #endif
1168 break;
1172 return 0;
1175 static int kvm_put_mp_state(CPUState *env)
1177 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1179 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1182 static int kvm_get_mp_state(CPUState *env)
1184 struct kvm_mp_state mp_state;
1185 int ret;
1187 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1188 if (ret < 0) {
1189 return ret;
1191 env->mp_state = mp_state.mp_state;
1192 return 0;
1194 #endif
1196 static int kvm_put_vcpu_events(CPUState *env, int level)
1198 #ifdef KVM_CAP_VCPU_EVENTS
1199 struct kvm_vcpu_events events;
1201 if (!kvm_has_vcpu_events()) {
1202 return 0;
1205 events.exception.injected = (env->exception_injected >= 0);
1206 events.exception.nr = env->exception_injected;
1207 events.exception.has_error_code = env->has_error_code;
1208 events.exception.error_code = env->error_code;
1210 events.interrupt.injected = (env->interrupt_injected >= 0);
1211 events.interrupt.nr = env->interrupt_injected;
1212 events.interrupt.soft = env->soft_interrupt;
1214 events.nmi.injected = env->nmi_injected;
1215 events.nmi.pending = env->nmi_pending;
1216 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1218 events.sipi_vector = env->sipi_vector;
1220 events.flags = 0;
1221 if (level >= KVM_PUT_RESET_STATE) {
1222 events.flags |=
1223 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1226 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1227 #else
1228 return 0;
1229 #endif
1232 static int kvm_get_vcpu_events(CPUState *env)
1234 #ifdef KVM_CAP_VCPU_EVENTS
1235 struct kvm_vcpu_events events;
1236 int ret;
1238 if (!kvm_has_vcpu_events()) {
1239 return 0;
1242 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1243 if (ret < 0) {
1244 return ret;
1246 env->exception_injected =
1247 events.exception.injected ? events.exception.nr : -1;
1248 env->has_error_code = events.exception.has_error_code;
1249 env->error_code = events.exception.error_code;
1251 env->interrupt_injected =
1252 events.interrupt.injected ? events.interrupt.nr : -1;
1253 env->soft_interrupt = events.interrupt.soft;
1255 env->nmi_injected = events.nmi.injected;
1256 env->nmi_pending = events.nmi.pending;
1257 if (events.nmi.masked) {
1258 env->hflags2 |= HF2_NMI_MASK;
1259 } else {
1260 env->hflags2 &= ~HF2_NMI_MASK;
1263 env->sipi_vector = events.sipi_vector;
1264 #endif
1266 return 0;
1269 static int kvm_guest_debug_workarounds(CPUState *env)
1271 int ret = 0;
1272 #ifdef KVM_CAP_SET_GUEST_DEBUG
1273 unsigned long reinject_trap = 0;
1275 if (!kvm_has_vcpu_events()) {
1276 if (env->exception_injected == 1) {
1277 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1278 } else if (env->exception_injected == 3) {
1279 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1281 env->exception_injected = -1;
1285 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1286 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1287 * by updating the debug state once again if single-stepping is on.
1288 * Another reason to call kvm_update_guest_debug here is a pending debug
1289 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1290 * reinject them via SET_GUEST_DEBUG.
1292 if (reinject_trap ||
1293 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1294 ret = kvm_update_guest_debug(env, reinject_trap);
1296 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1297 return ret;
1300 static int kvm_put_debugregs(CPUState *env)
1302 #ifdef KVM_CAP_DEBUGREGS
1303 struct kvm_debugregs dbgregs;
1304 int i;
1306 if (!kvm_has_debugregs()) {
1307 return 0;
1310 for (i = 0; i < 4; i++) {
1311 dbgregs.db[i] = env->dr[i];
1313 dbgregs.dr6 = env->dr[6];
1314 dbgregs.dr7 = env->dr[7];
1315 dbgregs.flags = 0;
1317 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1318 #else
1319 return 0;
1320 #endif
1323 static int kvm_get_debugregs(CPUState *env)
1325 #ifdef KVM_CAP_DEBUGREGS
1326 struct kvm_debugregs dbgregs;
1327 int i, ret;
1329 if (!kvm_has_debugregs()) {
1330 return 0;
1333 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1334 if (ret < 0) {
1335 return ret;
1337 for (i = 0; i < 4; i++) {
1338 env->dr[i] = dbgregs.db[i];
1340 env->dr[4] = env->dr[6] = dbgregs.dr6;
1341 env->dr[5] = env->dr[7] = dbgregs.dr7;
1342 #endif
1344 return 0;
1347 #ifdef OBSOLETE_KVM_IMPL
1348 int kvm_arch_put_registers(CPUState *env, int level)
1350 int ret;
1352 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1354 ret = kvm_getput_regs(env, 1);
1355 if (ret < 0)
1356 return ret;
1358 ret = kvm_put_xsave(env);
1359 if (ret < 0)
1360 return ret;
1362 ret = kvm_put_xcrs(env);
1363 if (ret < 0)
1364 return ret;
1366 ret = kvm_put_sregs(env);
1367 if (ret < 0)
1368 return ret;
1370 ret = kvm_put_msrs(env, level);
1371 if (ret < 0)
1372 return ret;
1374 if (level >= KVM_PUT_RESET_STATE) {
1375 ret = kvm_put_mp_state(env);
1376 if (ret < 0)
1377 return ret;
1380 ret = kvm_put_vcpu_events(env, level);
1381 if (ret < 0)
1382 return ret;
1384 /* must be last */
1385 ret = kvm_guest_debug_workarounds(env);
1386 if (ret < 0)
1387 return ret;
1389 ret = kvm_put_debugregs(env);
1390 if (ret < 0)
1391 return ret;
1393 return 0;
1396 int kvm_arch_get_registers(CPUState *env)
1398 int ret;
1400 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1402 ret = kvm_getput_regs(env, 0);
1403 if (ret < 0)
1404 return ret;
1406 ret = kvm_get_xsave(env);
1407 if (ret < 0)
1408 return ret;
1410 ret = kvm_get_xcrs(env);
1411 if (ret < 0)
1412 return ret;
1414 ret = kvm_get_sregs(env);
1415 if (ret < 0)
1416 return ret;
1418 ret = kvm_get_msrs(env);
1419 if (ret < 0)
1420 return ret;
1422 ret = kvm_get_mp_state(env);
1423 if (ret < 0)
1424 return ret;
1426 ret = kvm_get_vcpu_events(env);
1427 if (ret < 0)
1428 return ret;
1430 ret = kvm_get_debugregs(env);
1431 if (ret < 0)
1432 return ret;
1434 return 0;
1437 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1439 /* Try to inject an interrupt if the guest can accept it */
1440 if (run->ready_for_interrupt_injection &&
1441 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1442 (env->eflags & IF_MASK)) {
1443 int irq;
1445 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1446 irq = cpu_get_pic_interrupt(env);
1447 if (irq >= 0) {
1448 struct kvm_interrupt intr;
1449 intr.irq = irq;
1450 /* FIXME: errors */
1451 DPRINTF("injected interrupt %d\n", irq);
1452 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1456 /* If we have an interrupt but the guest is not ready to receive an
1457 * interrupt, request an interrupt window exit. This will
1458 * cause a return to userspace as soon as the guest is ready to
1459 * receive interrupts. */
1460 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1461 run->request_interrupt_window = 1;
1462 else
1463 run->request_interrupt_window = 0;
1465 DPRINTF("setting tpr\n");
1466 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1468 return 0;
1470 #endif
1472 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1474 if (run->if_flag)
1475 env->eflags |= IF_MASK;
1476 else
1477 env->eflags &= ~IF_MASK;
1479 cpu_set_apic_tpr(env->apic_state, run->cr8);
1480 cpu_set_apic_base(env->apic_state, run->apic_base);
1482 return 0;
1485 #ifdef OBSOLETE_KVM_IMPL
1487 int kvm_arch_process_irqchip_events(CPUState *env)
1489 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1490 kvm_cpu_synchronize_state(env);
1491 do_cpu_init(env);
1492 env->exception_index = EXCP_HALTED;
1495 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1496 kvm_cpu_synchronize_state(env);
1497 do_cpu_sipi(env);
1500 return env->halted;
1503 static int kvm_handle_halt(CPUState *env)
1505 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1506 (env->eflags & IF_MASK)) &&
1507 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1508 env->halted = 1;
1509 env->exception_index = EXCP_HLT;
1510 return 0;
1513 return 1;
1516 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1518 int ret = 0;
1520 switch (run->exit_reason) {
1521 case KVM_EXIT_HLT:
1522 DPRINTF("handle_hlt\n");
1523 ret = kvm_handle_halt(env);
1524 break;
1527 return ret;
1529 #endif
1531 #ifdef KVM_CAP_SET_GUEST_DEBUG
1532 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1534 static const uint8_t int3 = 0xcc;
1536 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1537 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1538 return -EINVAL;
1539 return 0;
1542 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1544 uint8_t int3;
1546 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1547 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1548 return -EINVAL;
1549 return 0;
1552 static struct {
1553 target_ulong addr;
1554 int len;
1555 int type;
1556 } hw_breakpoint[4];
1558 static int nb_hw_breakpoint;
1560 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1562 int n;
1564 for (n = 0; n < nb_hw_breakpoint; n++)
1565 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1566 (hw_breakpoint[n].len == len || len == -1))
1567 return n;
1568 return -1;
1571 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1572 target_ulong len, int type)
1574 switch (type) {
1575 case GDB_BREAKPOINT_HW:
1576 len = 1;
1577 break;
1578 case GDB_WATCHPOINT_WRITE:
1579 case GDB_WATCHPOINT_ACCESS:
1580 switch (len) {
1581 case 1:
1582 break;
1583 case 2:
1584 case 4:
1585 case 8:
1586 if (addr & (len - 1))
1587 return -EINVAL;
1588 break;
1589 default:
1590 return -EINVAL;
1592 break;
1593 default:
1594 return -ENOSYS;
1597 if (nb_hw_breakpoint == 4)
1598 return -ENOBUFS;
1600 if (find_hw_breakpoint(addr, len, type) >= 0)
1601 return -EEXIST;
1603 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1604 hw_breakpoint[nb_hw_breakpoint].len = len;
1605 hw_breakpoint[nb_hw_breakpoint].type = type;
1606 nb_hw_breakpoint++;
1608 return 0;
1611 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1612 target_ulong len, int type)
1614 int n;
1616 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1617 if (n < 0)
1618 return -ENOENT;
1620 nb_hw_breakpoint--;
1621 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1623 return 0;
1626 void kvm_arch_remove_all_hw_breakpoints(void)
1628 nb_hw_breakpoint = 0;
1631 static CPUWatchpoint hw_watchpoint;
1633 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1635 int handle = 0;
1636 int n;
1638 if (arch_info->exception == 1) {
1639 if (arch_info->dr6 & (1 << 14)) {
1640 if (cpu_single_env->singlestep_enabled)
1641 handle = 1;
1642 } else {
1643 for (n = 0; n < 4; n++)
1644 if (arch_info->dr6 & (1 << n))
1645 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1646 case 0x0:
1647 handle = 1;
1648 break;
1649 case 0x1:
1650 handle = 1;
1651 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1652 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1653 hw_watchpoint.flags = BP_MEM_WRITE;
1654 break;
1655 case 0x3:
1656 handle = 1;
1657 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1658 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1659 hw_watchpoint.flags = BP_MEM_ACCESS;
1660 break;
1663 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1664 handle = 1;
1666 if (!handle) {
1667 cpu_synchronize_state(cpu_single_env);
1668 assert(cpu_single_env->exception_injected == -1);
1670 cpu_single_env->exception_injected = arch_info->exception;
1671 cpu_single_env->has_error_code = 0;
1674 return handle;
1677 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1679 const uint8_t type_code[] = {
1680 [GDB_BREAKPOINT_HW] = 0x0,
1681 [GDB_WATCHPOINT_WRITE] = 0x1,
1682 [GDB_WATCHPOINT_ACCESS] = 0x3
1684 const uint8_t len_code[] = {
1685 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1687 int n;
1689 if (kvm_sw_breakpoints_active(env))
1690 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1692 if (nb_hw_breakpoint > 0) {
1693 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1694 dbg->arch.debugreg[7] = 0x0600;
1695 for (n = 0; n < nb_hw_breakpoint; n++) {
1696 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1697 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1698 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1699 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1702 /* Legal xcr0 for loading */
1703 env->xcr0 = 1;
1705 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1707 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1709 return !(env->cr[0] & CR0_PE_MASK) ||
1710 ((env->segs[R_CS].selector & 3) != 3);
1713 static void hardware_memory_error(void)
1715 fprintf(stderr, "Hardware memory error!\n");
1716 exit(1);
1719 #ifdef KVM_CAP_MCE
1720 static void kvm_mce_broadcast_rest(CPUState *env)
1722 CPUState *cenv;
1723 int family, model, cpuver = env->cpuid_version;
1725 family = (cpuver >> 8) & 0xf;
1726 model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1728 /* Broadcast MCA signal for processor version 06H_EH and above */
1729 if ((family == 6 && model >= 14) || family > 6) {
1730 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1731 if (cenv == env) {
1732 continue;
1734 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1735 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1739 #endif
1741 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1743 #if defined(KVM_CAP_MCE)
1744 struct kvm_x86_mce mce = {
1745 .bank = 9,
1747 void *vaddr;
1748 ram_addr_t ram_addr;
1749 target_phys_addr_t paddr;
1750 int r;
1752 if ((env->mcg_cap & MCG_SER_P) && addr
1753 && (code == BUS_MCEERR_AR
1754 || code == BUS_MCEERR_AO)) {
1755 if (code == BUS_MCEERR_AR) {
1756 /* Fake an Intel architectural Data Load SRAR UCR */
1757 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1758 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1759 | MCI_STATUS_AR | 0x134;
1760 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1761 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1762 } else {
1764 * If there is an MCE excpetion being processed, ignore
1765 * this SRAO MCE
1767 r = kvm_mce_in_exception(env);
1768 if (r == -1) {
1769 fprintf(stderr, "Failed to get MCE status\n");
1770 } else if (r) {
1771 return 0;
1773 /* Fake an Intel architectural Memory scrubbing UCR */
1774 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1775 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1776 | 0xc0;
1777 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1778 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1780 vaddr = (void *)addr;
1781 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1782 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1783 fprintf(stderr, "Hardware memory error for memory used by "
1784 "QEMU itself instead of guest system!\n");
1785 /* Hope we are lucky for AO MCE */
1786 if (code == BUS_MCEERR_AO) {
1787 return 0;
1788 } else {
1789 hardware_memory_error();
1792 mce.addr = paddr;
1793 r = kvm_set_mce(env, &mce);
1794 if (r < 0) {
1795 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1796 abort();
1798 kvm_mce_broadcast_rest(env);
1799 } else
1800 #endif
1802 if (code == BUS_MCEERR_AO) {
1803 return 0;
1804 } else if (code == BUS_MCEERR_AR) {
1805 hardware_memory_error();
1806 } else {
1807 return 1;
1810 return 0;
1813 int kvm_on_sigbus(int code, void *addr)
1815 #if defined(KVM_CAP_MCE)
1816 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1817 uint64_t status;
1818 void *vaddr;
1819 ram_addr_t ram_addr;
1820 target_phys_addr_t paddr;
1822 /* Hope we are lucky for AO MCE */
1823 vaddr = addr;
1824 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1825 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1826 fprintf(stderr, "Hardware memory error for memory used by "
1827 "QEMU itself instead of guest system!: %p\n", addr);
1828 return 0;
1830 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1831 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1832 | 0xc0;
1833 kvm_inject_x86_mce(first_cpu, 9, status,
1834 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1835 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1836 kvm_mce_broadcast_rest(first_cpu);
1837 } else
1838 #endif
1840 if (code == BUS_MCEERR_AO) {
1841 return 0;
1842 } else if (code == BUS_MCEERR_AR) {
1843 hardware_memory_error();
1844 } else {
1845 return 1;
1848 return 0;
1851 #include "qemu-kvm-x86.c"