4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
28 #include "qemu-common.h"
33 #define SIGNBIT (1u << 31)
42 typedef struct m68k_def_t m68k_def_t
;
49 static m68k_def_t m68k_cpu_defs
[] = {
50 {"m5206", M68K_CPUID_M5206
},
51 {"m5208", M68K_CPUID_M5208
},
52 {"cfv4e", M68K_CPUID_CFV4E
},
53 {"any", M68K_CPUID_ANY
},
57 void m68k_cpu_list(FILE *f
, int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
61 for (i
= 0; m68k_cpu_defs
[i
].name
; i
++) {
62 (*cpu_fprintf
)(f
, "%s\n", m68k_cpu_defs
[i
].name
);
66 static int fpu_gdb_get_reg(CPUState
*env
, uint8_t *mem_buf
, int n
)
69 stfq_p(mem_buf
, env
->fregs
[n
]);
73 /* FP control registers (not implemented) */
74 memset(mem_buf
, 0, 4);
80 static int fpu_gdb_set_reg(CPUState
*env
, uint8_t *mem_buf
, int n
)
83 env
->fregs
[n
] = ldfq_p(mem_buf
);
87 /* FP control registers (not implemented) */
93 static void m68k_set_feature(CPUM68KState
*env
, int feature
)
95 env
->features
|= (1u << feature
);
98 static int cpu_m68k_set_model(CPUM68KState
*env
, const char *name
)
102 for (def
= m68k_cpu_defs
; def
->name
; def
++) {
103 if (strcmp(def
->name
, name
) == 0)
110 case M68K_CPUID_M5206
:
111 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_A
);
113 case M68K_CPUID_M5208
:
114 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_A
);
115 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_APLUSC
);
116 m68k_set_feature(env
, M68K_FEATURE_BRAL
);
117 m68k_set_feature(env
, M68K_FEATURE_CF_EMAC
);
118 m68k_set_feature(env
, M68K_FEATURE_USP
);
120 case M68K_CPUID_CFV4E
:
121 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_A
);
122 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_B
);
123 m68k_set_feature(env
, M68K_FEATURE_BRAL
);
124 m68k_set_feature(env
, M68K_FEATURE_CF_FPU
);
125 m68k_set_feature(env
, M68K_FEATURE_CF_EMAC
);
126 m68k_set_feature(env
, M68K_FEATURE_USP
);
129 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_A
);
130 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_B
);
131 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_APLUSC
);
132 m68k_set_feature(env
, M68K_FEATURE_BRAL
);
133 m68k_set_feature(env
, M68K_FEATURE_CF_FPU
);
134 /* MAC and EMAC are mututally exclusive, so pick EMAC.
135 It's mostly backwards compatible. */
136 m68k_set_feature(env
, M68K_FEATURE_CF_EMAC
);
137 m68k_set_feature(env
, M68K_FEATURE_CF_EMAC_B
);
138 m68k_set_feature(env
, M68K_FEATURE_USP
);
139 m68k_set_feature(env
, M68K_FEATURE_EXT_FULL
);
140 m68k_set_feature(env
, M68K_FEATURE_WORD_INDEX
);
144 register_m68k_insns(env
);
145 if (m68k_feature (env
, M68K_FEATURE_CF_FPU
)) {
146 gdb_register_coprocessor(env
, fpu_gdb_get_reg
, fpu_gdb_set_reg
,
147 11, "cf-fp.xml", 18);
149 /* TODO: Add [E]MAC registers. */
153 void cpu_reset(CPUM68KState
*env
)
155 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
156 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
157 log_cpu_state(env
, 0);
160 memset(env
, 0, offsetof(CPUM68KState
, breakpoints
));
161 #if !defined (CONFIG_USER_ONLY)
165 /* ??? FP regs should be initialized to NaN. */
166 env
->cc_op
= CC_OP_FLAGS
;
167 /* TODO: We should set PC from the interrupt vector. */
172 CPUM68KState
*cpu_m68k_init(const char *cpu_model
)
177 env
= qemu_mallocz(sizeof(CPUM68KState
));
184 env
->cpu_model_str
= cpu_model
;
186 if (cpu_m68k_set_model(env
, cpu_model
) < 0) {
196 void cpu_m68k_close(CPUM68KState
*env
)
201 void cpu_m68k_flush_flags(CPUM68KState
*env
, int cc_op
)
208 #define HIGHBIT 0x80000000u
210 #define SET_NZ(x) do { \
213 else if ((int32_t)(x) < 0) \
217 #define SET_FLAGS_SUB(type, utype) do { \
218 SET_NZ((type)dest); \
220 if ((utype) tmp < (utype) src) \
222 if ((1u << (sizeof(type) * 8 - 1)) & (tmp ^ dest) & (tmp ^ src)) \
241 if (HIGHBIT
& (src
^ dest
) & ~(tmp
^ src
))
245 SET_FLAGS_SUB(int32_t, uint32_t);
248 SET_FLAGS_SUB(int8_t, uint8_t);
251 SET_FLAGS_SUB(int16_t, uint16_t);
257 tmp
= dest
- src
- 1;
258 if (HIGHBIT
& (src
^ dest
) & ~(tmp
^ src
))
263 tmp
= dest
+ src
+ 1;
266 if (HIGHBIT
& (tmp
^ dest
) & (tmp
^ src
))
275 cpu_abort(env
, "Bad CC_OP %d", cc_op
);
277 env
->cc_op
= CC_OP_FLAGS
;
278 env
->cc_dest
= flags
;
281 void HELPER(movec
)(CPUM68KState
*env
, uint32_t reg
, uint32_t val
)
284 case 0x02: /* CACR */
288 case 0x04: case 0x05: case 0x06: case 0x07: /* ACR[0-3] */
289 /* TODO: Implement Access Control Registers. */
291 case 0x801: /* VBR */
294 /* TODO: Implement control registers. */
296 cpu_abort(env
, "Unimplemented control register write 0x%x = 0x%x\n",
301 void HELPER(set_macsr
)(CPUM68KState
*env
, uint32_t val
)
308 if ((env
->macsr
^ val
) & (MACSR_FI
| MACSR_SU
)) {
309 for (i
= 0; i
< 4; i
++) {
310 regval
= env
->macc
[i
];
311 exthigh
= regval
>> 40;
312 if (env
->macsr
& MACSR_FI
) {
317 extlow
= regval
>> 32;
319 if (env
->macsr
& MACSR_FI
) {
320 regval
= (((uint64_t)acc
) << 8) | extlow
;
321 regval
|= ((int64_t)exthigh
) << 40;
322 } else if (env
->macsr
& MACSR_SU
) {
323 regval
= acc
| (((int64_t)extlow
) << 32);
324 regval
|= ((int64_t)exthigh
) << 40;
326 regval
= acc
| (((uint64_t)extlow
) << 32);
327 regval
|= ((uint64_t)(uint8_t)exthigh
) << 40;
329 env
->macc
[i
] = regval
;
335 void m68k_switch_sp(CPUM68KState
*env
)
339 env
->sp
[env
->current_sp
] = env
->aregs
[7];
340 new_sp
= (env
->sr
& SR_S
&& env
->cacr
& M68K_CACR_EUSP
)
341 ? M68K_SSP
: M68K_USP
;
342 env
->aregs
[7] = env
->sp
[new_sp
];
343 env
->current_sp
= new_sp
;
348 /* TODO: This will need fixing once the MMU is implemented. */
349 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
354 #if defined(CONFIG_USER_ONLY)
356 int cpu_m68k_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
357 int mmu_idx
, int is_softmmu
)
359 env
->exception_index
= EXCP_ACCESS
;
360 env
->mmu
.ar
= address
;
366 int cpu_m68k_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
367 int mmu_idx
, int is_softmmu
)
371 address
&= TARGET_PAGE_MASK
;
372 prot
= PAGE_READ
| PAGE_WRITE
;
373 return tlb_set_page(env
, address
, address
, prot
, mmu_idx
, is_softmmu
);
376 /* Notify CPU of a pending interrupt. Prioritization and vectoring should
377 be handled by the interrupt controller. Real hardware only requests
378 the vector when the interrupt is acknowledged by the CPU. For
379 simplicitly we calculate it when the interrupt is signalled. */
380 void m68k_set_irq_level(CPUM68KState
*env
, int level
, uint8_t vector
)
382 env
->pending_level
= level
;
383 env
->pending_vector
= vector
;
385 cpu_interrupt(env
, CPU_INTERRUPT_HARD
);
387 cpu_reset_interrupt(env
, CPU_INTERRUPT_HARD
);
392 uint32_t HELPER(bitrev
)(uint32_t x
)
394 x
= ((x
>> 1) & 0x55555555u
) | ((x
<< 1) & 0xaaaaaaaau
);
395 x
= ((x
>> 2) & 0x33333333u
) | ((x
<< 2) & 0xccccccccu
);
396 x
= ((x
>> 4) & 0x0f0f0f0fu
) | ((x
<< 4) & 0xf0f0f0f0u
);
400 uint32_t HELPER(ff1
)(uint32_t x
)
408 uint32_t HELPER(sats
)(uint32_t val
, uint32_t ccr
)
410 /* The result has the opposite sign to the original value. */
412 val
= (((int32_t)val
) >> 31) ^ SIGNBIT
;
416 uint32_t HELPER(subx_cc
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
421 old_flags
= env
->cc_dest
;
423 env
->cc_x
= (op1
<= op2
);
424 env
->cc_op
= CC_OP_SUBX
;
425 res
= op1
- (op2
+ 1);
427 env
->cc_x
= (op1
< op2
);
428 env
->cc_op
= CC_OP_SUB
;
433 cpu_m68k_flush_flags(env
, env
->cc_op
);
435 env
->cc_dest
&= (old_flags
| ~CCF_Z
);
439 uint32_t HELPER(addx_cc
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
444 old_flags
= env
->cc_dest
;
447 env
->cc_x
= (res
<= op2
);
448 env
->cc_op
= CC_OP_ADDX
;
451 env
->cc_x
= (res
< op2
);
452 env
->cc_op
= CC_OP_ADD
;
456 cpu_m68k_flush_flags(env
, env
->cc_op
);
458 env
->cc_dest
&= (old_flags
| ~CCF_Z
);
462 uint32_t HELPER(xflag_lt
)(uint32_t a
, uint32_t b
)
467 void HELPER(set_sr
)(CPUState
*env
, uint32_t val
)
469 env
->sr
= val
& 0xffff;
473 uint32_t HELPER(shl_cc
)(CPUState
*env
, uint32_t val
, uint32_t shift
)
481 cf
= env
->cc_src
& CCF_C
;
482 } else if (shift
< 32) {
483 result
= val
<< shift
;
484 cf
= (val
>> (32 - shift
)) & 1;
485 } else if (shift
== 32) {
488 } else /* shift > 32 */ {
493 env
->cc_x
= (cf
!= 0);
494 env
->cc_dest
= result
;
498 uint32_t HELPER(shr_cc
)(CPUState
*env
, uint32_t val
, uint32_t shift
)
506 cf
= env
->cc_src
& CCF_C
;
507 } else if (shift
< 32) {
508 result
= val
>> shift
;
509 cf
= (val
>> (shift
- 1)) & 1;
510 } else if (shift
== 32) {
513 } else /* shift > 32 */ {
518 env
->cc_x
= (cf
!= 0);
519 env
->cc_dest
= result
;
523 uint32_t HELPER(sar_cc
)(CPUState
*env
, uint32_t val
, uint32_t shift
)
531 cf
= (env
->cc_src
& CCF_C
) != 0;
532 } else if (shift
< 32) {
533 result
= (int32_t)val
>> shift
;
534 cf
= (val
>> (shift
- 1)) & 1;
535 } else /* shift >= 32 */ {
536 result
= (int32_t)val
>> 31;
541 env
->cc_dest
= result
;
546 uint32_t HELPER(f64_to_i32
)(CPUState
*env
, float64 val
)
548 return float64_to_int32(val
, &env
->fp_status
);
551 float32
HELPER(f64_to_f32
)(CPUState
*env
, float64 val
)
553 return float64_to_float32(val
, &env
->fp_status
);
556 float64
HELPER(i32_to_f64
)(CPUState
*env
, uint32_t val
)
558 return int32_to_float64(val
, &env
->fp_status
);
561 float64
HELPER(f32_to_f64
)(CPUState
*env
, float32 val
)
563 return float32_to_float64(val
, &env
->fp_status
);
566 float64
HELPER(iround_f64
)(CPUState
*env
, float64 val
)
568 return float64_round_to_int(val
, &env
->fp_status
);
571 float64
HELPER(itrunc_f64
)(CPUState
*env
, float64 val
)
573 return float64_trunc_to_int(val
, &env
->fp_status
);
576 float64
HELPER(sqrt_f64
)(CPUState
*env
, float64 val
)
578 return float64_sqrt(val
, &env
->fp_status
);
581 float64
HELPER(abs_f64
)(float64 val
)
583 return float64_abs(val
);
586 float64
HELPER(chs_f64
)(float64 val
)
588 return float64_chs(val
);
591 float64
HELPER(add_f64
)(CPUState
*env
, float64 a
, float64 b
)
593 return float64_add(a
, b
, &env
->fp_status
);
596 float64
HELPER(sub_f64
)(CPUState
*env
, float64 a
, float64 b
)
598 return float64_sub(a
, b
, &env
->fp_status
);
601 float64
HELPER(mul_f64
)(CPUState
*env
, float64 a
, float64 b
)
603 return float64_mul(a
, b
, &env
->fp_status
);
606 float64
HELPER(div_f64
)(CPUState
*env
, float64 a
, float64 b
)
608 return float64_div(a
, b
, &env
->fp_status
);
611 float64
HELPER(sub_cmp_f64
)(CPUState
*env
, float64 a
, float64 b
)
613 /* ??? This may incorrectly raise exceptions. */
614 /* ??? Should flush denormals to zero. */
616 res
= float64_sub(a
, b
, &env
->fp_status
);
617 if (float64_is_nan(res
)) {
618 /* +/-inf compares equal against itself, but sub returns nan. */
619 if (!float64_is_nan(a
)
620 && !float64_is_nan(b
)) {
622 if (float64_lt_quiet(a
, res
, &env
->fp_status
))
623 res
= float64_chs(res
);
629 uint32_t HELPER(compare_f64
)(CPUState
*env
, float64 val
)
631 return float64_compare_quiet(val
, float64_zero
, &env
->fp_status
);
635 /* FIXME: The MAC unit implementation is a bit of a mess. Some helpers
636 take values, others take register numbers and manipulate the contents
638 void HELPER(mac_move
)(CPUState
*env
, uint32_t dest
, uint32_t src
)
641 env
->macc
[dest
] = env
->macc
[src
];
642 mask
= MACSR_PAV0
<< dest
;
643 if (env
->macsr
& (MACSR_PAV0
<< src
))
649 uint64_t HELPER(macmuls
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
654 product
= (uint64_t)op1
* op2
;
655 res
= (product
<< 24) >> 24;
656 if (res
!= product
) {
657 env
->macsr
|= MACSR_V
;
658 if (env
->macsr
& MACSR_OMC
) {
659 /* Make sure the accumulate operation overflows. */
669 uint64_t HELPER(macmulu
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
673 product
= (uint64_t)op1
* op2
;
674 if (product
& (0xffffffull
<< 40)) {
675 env
->macsr
|= MACSR_V
;
676 if (env
->macsr
& MACSR_OMC
) {
677 /* Make sure the accumulate operation overflows. */
680 product
&= ((1ull << 40) - 1);
686 uint64_t HELPER(macmulf
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
691 product
= (uint64_t)op1
* op2
;
692 if (env
->macsr
& MACSR_RT
) {
693 remainder
= product
& 0xffffff;
695 if (remainder
> 0x800000)
697 else if (remainder
== 0x800000)
698 product
+= (product
& 1);
705 void HELPER(macsats
)(CPUState
*env
, uint32_t acc
)
709 tmp
= env
->macc
[acc
];
710 result
= ((tmp
<< 16) >> 16);
712 env
->macsr
|= MACSR_V
;
714 if (env
->macsr
& MACSR_V
) {
715 env
->macsr
|= MACSR_PAV0
<< acc
;
716 if (env
->macsr
& MACSR_OMC
) {
717 /* The result is saturated to 32 bits, despite overflow occuring
718 at 48 bits. Seems weird, but that's what the hardware docs
720 result
= (result
>> 63) ^ 0x7fffffff;
723 env
->macc
[acc
] = result
;
726 void HELPER(macsatu
)(CPUState
*env
, uint32_t acc
)
730 val
= env
->macc
[acc
];
731 if (val
& (0xffffull
<< 48)) {
732 env
->macsr
|= MACSR_V
;
734 if (env
->macsr
& MACSR_V
) {
735 env
->macsr
|= MACSR_PAV0
<< acc
;
736 if (env
->macsr
& MACSR_OMC
) {
737 if (val
> (1ull << 53))
740 val
= (1ull << 48) - 1;
742 val
&= ((1ull << 48) - 1);
745 env
->macc
[acc
] = val
;
748 void HELPER(macsatf
)(CPUState
*env
, uint32_t acc
)
753 sum
= env
->macc
[acc
];
754 result
= (sum
<< 16) >> 16;
756 env
->macsr
|= MACSR_V
;
758 if (env
->macsr
& MACSR_V
) {
759 env
->macsr
|= MACSR_PAV0
<< acc
;
760 if (env
->macsr
& MACSR_OMC
) {
761 result
= (result
>> 63) ^ 0x7fffffffffffll
;
764 env
->macc
[acc
] = result
;
767 void HELPER(mac_set_flags
)(CPUState
*env
, uint32_t acc
)
770 val
= env
->macc
[acc
];
772 env
->macsr
|= MACSR_Z
;
773 else if (val
& (1ull << 47));
774 env
->macsr
|= MACSR_N
;
775 if (env
->macsr
& (MACSR_PAV0
<< acc
)) {
776 env
->macsr
|= MACSR_V
;
778 if (env
->macsr
& MACSR_FI
) {
779 val
= ((int64_t)val
) >> 40;
780 if (val
!= 0 && val
!= -1)
781 env
->macsr
|= MACSR_EV
;
782 } else if (env
->macsr
& MACSR_SU
) {
783 val
= ((int64_t)val
) >> 32;
784 if (val
!= 0 && val
!= -1)
785 env
->macsr
|= MACSR_EV
;
787 if ((val
>> 32) != 0)
788 env
->macsr
|= MACSR_EV
;
792 void HELPER(flush_flags
)(CPUState
*env
, uint32_t cc_op
)
794 cpu_m68k_flush_flags(env
, cc_op
);
797 uint32_t HELPER(get_macf
)(CPUState
*env
, uint64_t val
)
802 if (env
->macsr
& MACSR_SU
) {
803 /* 16-bit rounding. */
804 rem
= val
& 0xffffff;
805 val
= (val
>> 24) & 0xffffu
;
808 else if (rem
== 0x800000)
810 } else if (env
->macsr
& MACSR_RT
) {
811 /* 32-bit rounding. */
816 else if (rem
== 0x80)
822 if (env
->macsr
& MACSR_OMC
) {
824 if (env
->macsr
& MACSR_SU
) {
825 if (val
!= (uint16_t) val
) {
826 result
= ((val
>> 63) ^ 0x7fff) & 0xffff;
828 result
= val
& 0xffff;
831 if (val
!= (uint32_t)val
) {
832 result
= ((uint32_t)(val
>> 63) & 0x7fffffff);
834 result
= (uint32_t)val
;
839 if (env
->macsr
& MACSR_SU
) {
840 result
= val
& 0xffff;
842 result
= (uint32_t)val
;
848 uint32_t HELPER(get_macs
)(uint64_t val
)
850 if (val
== (int32_t)val
) {
853 return (val
>> 61) ^ ~SIGNBIT
;
857 uint32_t HELPER(get_macu
)(uint64_t val
)
859 if ((val
>> 32) == 0) {
860 return (uint32_t)val
;
866 uint32_t HELPER(get_mac_extf
)(CPUState
*env
, uint32_t acc
)
869 val
= env
->macc
[acc
] & 0x00ff;
870 val
= (env
->macc
[acc
] >> 32) & 0xff00;
871 val
|= (env
->macc
[acc
+ 1] << 16) & 0x00ff0000;
872 val
|= (env
->macc
[acc
+ 1] >> 16) & 0xff000000;
876 uint32_t HELPER(get_mac_exti
)(CPUState
*env
, uint32_t acc
)
879 val
= (env
->macc
[acc
] >> 32) & 0xffff;
880 val
|= (env
->macc
[acc
+ 1] >> 16) & 0xffff0000;
884 void HELPER(set_mac_extf
)(CPUState
*env
, uint32_t val
, uint32_t acc
)
888 res
= env
->macc
[acc
] & 0xffffffff00ull
;
889 tmp
= (int16_t)(val
& 0xff00);
890 res
|= ((int64_t)tmp
) << 32;
892 env
->macc
[acc
] = res
;
893 res
= env
->macc
[acc
+ 1] & 0xffffffff00ull
;
894 tmp
= (val
& 0xff000000);
895 res
|= ((int64_t)tmp
) << 16;
896 res
|= (val
>> 16) & 0xff;
897 env
->macc
[acc
+ 1] = res
;
900 void HELPER(set_mac_exts
)(CPUState
*env
, uint32_t val
, uint32_t acc
)
904 res
= (uint32_t)env
->macc
[acc
];
906 res
|= ((int64_t)tmp
) << 32;
907 env
->macc
[acc
] = res
;
908 res
= (uint32_t)env
->macc
[acc
+ 1];
909 tmp
= val
& 0xffff0000;
910 res
|= (int64_t)tmp
<< 16;
911 env
->macc
[acc
+ 1] = res
;
914 void HELPER(set_mac_extu
)(CPUState
*env
, uint32_t val
, uint32_t acc
)
917 res
= (uint32_t)env
->macc
[acc
];
918 res
|= ((uint64_t)(val
& 0xffff)) << 32;
919 env
->macc
[acc
] = res
;
920 res
= (uint32_t)env
->macc
[acc
+ 1];
921 res
|= (uint64_t)(val
& 0xffff0000) << 16;
922 env
->macc
[acc
+ 1] = res
;