Merge branch 'upstream-merge'
[qemu-kvm/markmc.git] / target-i386 / machine.c
blob2b88fea63db5c78186d72cbde67dc957bf2ee577
1 #include "hw/hw.h"
2 #include "hw/boards.h"
3 #include "hw/pc.h"
4 #include "hw/isa.h"
5 #include "host-utils.h"
7 #include "exec-all.h"
8 #include "kvm.h"
9 #include "qemu-kvm.h"
11 static const VMStateDescription vmstate_segment = {
12 .name = "segment",
13 .version_id = 1,
14 .minimum_version_id = 1,
15 .minimum_version_id_old = 1,
16 .fields = (VMStateField []) {
17 VMSTATE_UINT32(selector, SegmentCache),
18 VMSTATE_UINTTL(base, SegmentCache),
19 VMSTATE_UINT32(limit, SegmentCache),
20 VMSTATE_UINT32(flags, SegmentCache),
21 VMSTATE_END_OF_LIST()
25 #define VMSTATE_SEGMENT(_field, _state) { \
26 .name = (stringify(_field)), \
27 .size = sizeof(SegmentCache), \
28 .vmsd = &vmstate_segment, \
29 .flags = VMS_STRUCT, \
30 .offset = offsetof(_state, _field) \
31 + type_check(SegmentCache,typeof_field(_state, _field)) \
34 #define VMSTATE_SEGMENT_ARRAY(_field, _state, _n) \
35 VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_segment, SegmentCache)
37 static const VMStateDescription vmstate_xmm_reg = {
38 .name = "xmm_reg",
39 .version_id = 1,
40 .minimum_version_id = 1,
41 .minimum_version_id_old = 1,
42 .fields = (VMStateField []) {
43 VMSTATE_UINT64(XMM_Q(0), XMMReg),
44 VMSTATE_UINT64(XMM_Q(1), XMMReg),
45 VMSTATE_END_OF_LIST()
49 #define VMSTATE_XMM_REGS(_field, _state, _n) \
50 VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_xmm_reg, XMMReg)
52 static const VMStateDescription vmstate_mtrr_var = {
53 .name = "mtrr_var",
54 .version_id = 1,
55 .minimum_version_id = 1,
56 .minimum_version_id_old = 1,
57 .fields = (VMStateField []) {
58 VMSTATE_UINT64(base, MTRRVar),
59 VMSTATE_UINT64(mask, MTRRVar),
60 VMSTATE_END_OF_LIST()
64 #define VMSTATE_MTRR_VARS(_field, _state, _n, _v) \
65 VMSTATE_STRUCT_ARRAY(_field, _state, _n, _v, vmstate_mtrr_var, MTRRVar)
67 static void put_fpreg_error(QEMUFile *f, void *opaque, size_t size)
69 fprintf(stderr, "call put_fpreg() with invalid arguments\n");
70 exit(0);
73 #ifdef USE_X86LDOUBLE
74 /* XXX: add that in a FPU generic layer */
75 union x86_longdouble {
76 uint64_t mant;
77 uint16_t exp;
80 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
81 #define EXPBIAS1 1023
82 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
83 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
85 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
87 int e;
88 /* mantissa */
89 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
90 /* exponent + sign */
91 e = EXPD1(temp) - EXPBIAS1 + 16383;
92 e |= SIGND1(temp) >> 16;
93 p->exp = e;
96 static int get_fpreg(QEMUFile *f, void *opaque, size_t size)
98 FPReg *fp_reg = opaque;
99 uint64_t mant;
100 uint16_t exp;
102 qemu_get_be64s(f, &mant);
103 qemu_get_be16s(f, &exp);
104 fp_reg->d = cpu_set_fp80(mant, exp);
105 return 0;
108 static void put_fpreg(QEMUFile *f, void *opaque, size_t size)
110 FPReg *fp_reg = opaque;
111 uint64_t mant;
112 uint16_t exp;
113 /* we save the real CPU data (in case of MMX usage only 'mant'
114 contains the MMX register */
115 cpu_get_fp80(&mant, &exp, fp_reg->d);
116 qemu_put_be64s(f, &mant);
117 qemu_put_be16s(f, &exp);
120 static const VMStateInfo vmstate_fpreg = {
121 .name = "fpreg",
122 .get = get_fpreg,
123 .put = put_fpreg,
126 static int get_fpreg_1_mmx(QEMUFile *f, void *opaque, size_t size)
128 union x86_longdouble *p = opaque;
129 uint64_t mant;
131 qemu_get_be64s(f, &mant);
132 p->mant = mant;
133 p->exp = 0xffff;
134 return 0;
137 static const VMStateInfo vmstate_fpreg_1_mmx = {
138 .name = "fpreg_1_mmx",
139 .get = get_fpreg_1_mmx,
140 .put = put_fpreg_error,
143 static int get_fpreg_1_no_mmx(QEMUFile *f, void *opaque, size_t size)
145 union x86_longdouble *p = opaque;
146 uint64_t mant;
148 qemu_get_be64s(f, &mant);
149 fp64_to_fp80(p, mant);
150 return 0;
153 static const VMStateInfo vmstate_fpreg_1_no_mmx = {
154 .name = "fpreg_1_no_mmx",
155 .get = get_fpreg_1_no_mmx,
156 .put = put_fpreg_error,
159 static bool fpregs_is_0(void *opaque, int version_id)
161 CPUState *env = opaque;
163 return (env->fpregs_format_vmstate == 0);
166 static bool fpregs_is_1_mmx(void *opaque, int version_id)
168 CPUState *env = opaque;
169 int guess_mmx;
171 guess_mmx = ((env->fptag_vmstate == 0xff) &&
172 (env->fpus_vmstate & 0x3800) == 0);
173 return (guess_mmx && (env->fpregs_format_vmstate == 1));
176 static bool fpregs_is_1_no_mmx(void *opaque, int version_id)
178 CPUState *env = opaque;
179 int guess_mmx;
181 guess_mmx = ((env->fptag_vmstate == 0xff) &&
182 (env->fpus_vmstate & 0x3800) == 0);
183 return (!guess_mmx && (env->fpregs_format_vmstate == 1));
186 #define VMSTATE_FP_REGS(_field, _state, _n) \
187 VMSTATE_ARRAY_TEST(_field, _state, _n, fpregs_is_0, vmstate_fpreg, FPReg), \
188 VMSTATE_ARRAY_TEST(_field, _state, _n, fpregs_is_1_mmx, vmstate_fpreg_1_mmx, FPReg), \
189 VMSTATE_ARRAY_TEST(_field, _state, _n, fpregs_is_1_no_mmx, vmstate_fpreg_1_no_mmx, FPReg)
191 #else
192 static int get_fpreg(QEMUFile *f, void *opaque, size_t size)
194 FPReg *fp_reg = opaque;
196 qemu_get_be64s(f, &fp_reg->mmx.MMX_Q(0));
197 return 0;
200 static void put_fpreg(QEMUFile *f, void *opaque, size_t size)
202 FPReg *fp_reg = opaque;
203 /* if we use doubles for float emulation, we save the doubles to
204 avoid losing information in case of MMX usage. It can give
205 problems if the image is restored on a CPU where long
206 doubles are used instead. */
207 qemu_put_be64s(f, &fp_reg->mmx.MMX_Q(0));
210 const VMStateInfo vmstate_fpreg = {
211 .name = "fpreg",
212 .get = get_fpreg,
213 .put = put_fpreg,
216 static int get_fpreg_0_mmx(QEMUFile *f, void *opaque, size_t size)
218 FPReg *fp_reg = opaque;
219 uint64_t mant;
220 uint16_t exp;
222 qemu_get_be64s(f, &mant);
223 qemu_get_be16s(f, &exp);
224 fp_reg->mmx.MMX_Q(0) = mant;
225 return 0;
228 const VMStateInfo vmstate_fpreg_0_mmx = {
229 .name = "fpreg_0_mmx",
230 .get = get_fpreg_0_mmx,
231 .put = put_fpreg_error,
234 static int get_fpreg_0_no_mmx(QEMUFile *f, void *opaque, size_t size)
236 FPReg *fp_reg = opaque;
237 uint64_t mant;
238 uint16_t exp;
240 qemu_get_be64s(f, &mant);
241 qemu_get_be16s(f, &exp);
243 fp_reg->d = cpu_set_fp80(mant, exp);
244 return 0;
247 const VMStateInfo vmstate_fpreg_0_no_mmx = {
248 .name = "fpreg_0_no_mmx",
249 .get = get_fpreg_0_no_mmx,
250 .put = put_fpreg_error,
253 static bool fpregs_is_1(void *opaque, int version_id)
255 CPUState *env = opaque;
257 return env->fpregs_format_vmstate == 1;
260 static bool fpregs_is_0_mmx(void *opaque, int version_id)
262 CPUState *env = opaque;
263 int guess_mmx;
265 guess_mmx = ((env->fptag_vmstate == 0xff) &&
266 (env->fpus_vmstate & 0x3800) == 0);
267 return guess_mmx && env->fpregs_format_vmstate == 0;
270 static bool fpregs_is_0_no_mmx(void *opaque, int version_id)
272 CPUState *env = opaque;
273 int guess_mmx;
275 guess_mmx = ((env->fptag_vmstate == 0xff) &&
276 (env->fpus_vmstate & 0x3800) == 0);
277 return !guess_mmx && env->fpregs_format_vmstate == 0;
280 #define VMSTATE_FP_REGS(_field, _state, _n) \
281 VMSTATE_ARRAY_TEST(_field, _state, _n, fpregs_is_1, vmstate_fpreg, FPReg), \
282 VMSTATE_ARRAY_TEST(_field, _state, _n, fpregs_is_0_mmx, vmstate_fpreg_0_mmx, FPReg), \
283 VMSTATE_ARRAY_TEST(_field, _state, _n, fpregs_is_0_no_mmx, vmstate_fpreg_0_no_mmx, FPReg)
285 #endif /* USE_X86LDOUBLE */
287 static bool version_is_5(void *opaque, int version_id)
289 return version_id == 5;
292 #ifdef TARGET_X86_64
293 static bool less_than_7(void *opaque, int version_id)
295 return version_id < 7;
298 static int get_uint64_as_uint32(QEMUFile *f, void *pv, size_t size)
300 uint64_t *v = pv;
301 *v = qemu_get_be32(f);
302 return 0;
305 static void put_uint64_as_uint32(QEMUFile *f, void *pv, size_t size)
307 uint64_t *v = pv;
308 qemu_put_be32(f, *v);
311 static const VMStateInfo vmstate_hack_uint64_as_uint32 = {
312 .name = "uint64_as_uint32",
313 .get = get_uint64_as_uint32,
314 .put = put_uint64_as_uint32,
317 #define VMSTATE_HACK_UINT32(_f, _s, _t) \
318 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint64_as_uint32, uint64_t)
319 #endif
321 static void cpu_pre_save(void *opaque)
323 CPUState *env = opaque;
324 int i, bit;
326 cpu_synchronize_state(env);
327 kvm_save_mpstate(env);
329 /* FPU */
330 env->fpus_vmstate = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
331 env->fptag_vmstate = 0;
332 for(i = 0; i < 8; i++) {
333 env->fptag_vmstate |= ((!env->fptags[i]) << i);
336 #ifdef USE_X86LDOUBLE
337 env->fpregs_format_vmstate = 0;
338 #else
339 env->fpregs_format_vmstate = 1;
340 #endif
342 /* There can only be one pending IRQ set in the bitmap at a time, so try
343 to find it and save its number instead (-1 for none). */
344 env->pending_irq_vmstate = -1;
345 for (i = 0; i < ARRAY_SIZE(env->interrupt_bitmap); i++) {
346 if (env->interrupt_bitmap[i]) {
347 bit = ctz64(env->interrupt_bitmap[i]);
348 env->pending_irq_vmstate = i * 64 + bit;
349 break;
354 static int cpu_pre_load(void *opaque)
356 CPUState *env = opaque;
358 cpu_synchronize_state(env);
359 return 0;
362 static int cpu_post_load(void *opaque, int version_id)
364 CPUState *env = opaque;
365 int i;
367 /* XXX: restore FPU round state */
368 env->fpstt = (env->fpus_vmstate >> 11) & 7;
369 env->fpus = env->fpus_vmstate & ~0x3800;
370 env->fptag_vmstate ^= 0xff;
371 for(i = 0; i < 8; i++) {
372 env->fptags[i] = (env->fptag_vmstate >> i) & 1;
375 cpu_breakpoint_remove_all(env, BP_CPU);
376 cpu_watchpoint_remove_all(env, BP_CPU);
377 for (i = 0; i < 4; i++)
378 hw_breakpoint_insert(env, i);
380 if (version_id >= 9) {
381 memset(&env->interrupt_bitmap, 0, sizeof(env->interrupt_bitmap));
382 if (env->pending_irq_vmstate >= 0) {
383 env->interrupt_bitmap[env->pending_irq_vmstate / 64] |=
384 (uint64_t)1 << (env->pending_irq_vmstate % 64);
388 tlb_flush(env, 1);
389 kvm_load_mpstate(env);
391 return 0;
394 static const VMStateDescription vmstate_cpu = {
395 .name = "cpu",
396 .version_id = CPU_SAVE_VERSION,
397 .minimum_version_id = 3,
398 .minimum_version_id_old = 3,
399 .pre_save = cpu_pre_save,
400 .pre_load = cpu_pre_load,
401 .post_load = cpu_post_load,
402 .fields = (VMStateField []) {
403 VMSTATE_UINTTL_ARRAY(regs, CPUState, CPU_NB_REGS),
404 VMSTATE_UINTTL(eip, CPUState),
405 VMSTATE_UINTTL(eflags, CPUState),
406 VMSTATE_UINT32(hflags, CPUState),
407 /* FPU */
408 VMSTATE_UINT16(fpuc, CPUState),
409 VMSTATE_UINT16(fpus_vmstate, CPUState),
410 VMSTATE_UINT16(fptag_vmstate, CPUState),
411 VMSTATE_UINT16(fpregs_format_vmstate, CPUState),
412 VMSTATE_FP_REGS(fpregs, CPUState, 8),
414 VMSTATE_SEGMENT_ARRAY(segs, CPUState, 6),
415 VMSTATE_SEGMENT(ldt, CPUState),
416 VMSTATE_SEGMENT(tr, CPUState),
417 VMSTATE_SEGMENT(gdt, CPUState),
418 VMSTATE_SEGMENT(idt, CPUState),
420 VMSTATE_UINT32(sysenter_cs, CPUState),
421 #ifdef TARGET_X86_64
422 /* Hack: In v7 size changed from 32 to 64 bits on x86_64 */
423 VMSTATE_HACK_UINT32(sysenter_esp, CPUState, less_than_7),
424 VMSTATE_HACK_UINT32(sysenter_eip, CPUState, less_than_7),
425 VMSTATE_UINTTL_V(sysenter_esp, CPUState, 7),
426 VMSTATE_UINTTL_V(sysenter_eip, CPUState, 7),
427 #else
428 VMSTATE_UINTTL(sysenter_esp, CPUState),
429 VMSTATE_UINTTL(sysenter_eip, CPUState),
430 #endif
432 VMSTATE_UINTTL(cr[0], CPUState),
433 VMSTATE_UINTTL(cr[2], CPUState),
434 VMSTATE_UINTTL(cr[3], CPUState),
435 VMSTATE_UINTTL(cr[4], CPUState),
436 VMSTATE_UINTTL_ARRAY(dr, CPUState, 8),
437 /* MMU */
438 VMSTATE_INT32(a20_mask, CPUState),
439 /* XMM */
440 VMSTATE_UINT32(mxcsr, CPUState),
441 VMSTATE_XMM_REGS(xmm_regs, CPUState, CPU_NB_REGS),
443 #ifdef TARGET_X86_64
444 VMSTATE_UINT64(efer, CPUState),
445 VMSTATE_UINT64(star, CPUState),
446 VMSTATE_UINT64(lstar, CPUState),
447 VMSTATE_UINT64(cstar, CPUState),
448 VMSTATE_UINT64(fmask, CPUState),
449 VMSTATE_UINT64(kernelgsbase, CPUState),
450 #endif
451 VMSTATE_UINT32_V(smbase, CPUState, 4),
453 VMSTATE_UINT64_V(pat, CPUState, 5),
454 VMSTATE_UINT32_V(hflags2, CPUState, 5),
456 VMSTATE_UINT32_TEST(halted, CPUState, version_is_5),
457 VMSTATE_UINT64_V(vm_hsave, CPUState, 5),
458 VMSTATE_UINT64_V(vm_vmcb, CPUState, 5),
459 VMSTATE_UINT64_V(tsc_offset, CPUState, 5),
460 VMSTATE_UINT64_V(intercept, CPUState, 5),
461 VMSTATE_UINT16_V(intercept_cr_read, CPUState, 5),
462 VMSTATE_UINT16_V(intercept_cr_write, CPUState, 5),
463 VMSTATE_UINT16_V(intercept_dr_read, CPUState, 5),
464 VMSTATE_UINT16_V(intercept_dr_write, CPUState, 5),
465 VMSTATE_UINT32_V(intercept_exceptions, CPUState, 5),
466 VMSTATE_UINT8_V(v_tpr, CPUState, 5),
467 /* MTRRs */
468 VMSTATE_UINT64_ARRAY_V(mtrr_fixed, CPUState, 11, 8),
469 VMSTATE_UINT64_V(mtrr_deftype, CPUState, 8),
470 VMSTATE_MTRR_VARS(mtrr_var, CPUState, 8, 8),
471 /* KVM-related states */
472 VMSTATE_INT32_V(pending_irq_vmstate, CPUState, 9),
473 VMSTATE_UINT32_V(mp_state, CPUState, 9),
474 VMSTATE_UINT64_V(tsc, CPUState, 9),
475 /* MCE */
476 VMSTATE_UINT64_V(mcg_cap, CPUState, 10),
477 VMSTATE_UINT64_V(mcg_status, CPUState, 10),
478 VMSTATE_UINT64_V(mcg_ctl, CPUState, 10),
479 VMSTATE_UINT64_ARRAY_V(mce_banks, CPUState, MCE_BANKS_DEF *4, 10),
480 /* rdtscp */
481 VMSTATE_UINT64_V(tsc_aux, CPUState, 11),
482 /* KVM pvclock msr */
483 VMSTATE_UINT64_V(system_time_msr, CPUState, 12),
484 VMSTATE_UINT64_V(wall_clock_msr, CPUState, 12),
485 VMSTATE_END_OF_LIST()
489 void cpu_save(QEMUFile *f, void *opaque)
491 vmstate_save_state(f, &vmstate_cpu, opaque);
494 int cpu_load(QEMUFile *f, void *opaque, int version_id)
496 return vmstate_load_state(f, &vmstate_cpu, opaque, version_id);