Merge branch 'upstream-merge'
[qemu-kvm/markmc.git] / hw / i8254.c
blobbe49f768ca4cfdc112be4965cc9039b8aa801da1
1 /*
2 * QEMU 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pc.h"
26 #include "isa.h"
27 #include "qemu-timer.h"
28 #include "qemu-kvm.h"
29 #include "i8254.h"
31 //#define DEBUG_PIT
33 static PITState pit_state;
35 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
37 static int pit_get_count(PITChannelState *s)
39 uint64_t d;
40 int counter;
42 d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ,
43 get_ticks_per_sec());
44 switch(s->mode) {
45 case 0:
46 case 1:
47 case 4:
48 case 5:
49 counter = (s->count - d) & 0xffff;
50 break;
51 case 3:
52 /* XXX: may be incorrect for odd counts */
53 counter = s->count - ((2 * d) % s->count);
54 break;
55 default:
56 counter = s->count - (d % s->count);
57 break;
59 return counter;
62 /* get pit output bit */
63 static int pit_get_out1(PITChannelState *s, int64_t current_time)
65 uint64_t d;
66 int out;
68 d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
69 get_ticks_per_sec());
70 switch(s->mode) {
71 default:
72 case 0:
73 out = (d >= s->count);
74 break;
75 case 1:
76 out = (d < s->count);
77 break;
78 case 2:
79 if ((d % s->count) == 0 && d != 0)
80 out = 1;
81 else
82 out = 0;
83 break;
84 case 3:
85 out = (d % s->count) < ((s->count + 1) >> 1);
86 break;
87 case 4:
88 case 5:
89 out = (d == s->count);
90 break;
92 return out;
95 int pit_get_out(PITState *pit, int channel, int64_t current_time)
97 PITChannelState *s = &pit->channels[channel];
98 return pit_get_out1(s, current_time);
101 /* return -1 if no transition will occur. */
102 static int64_t pit_get_next_transition_time(PITChannelState *s,
103 int64_t current_time)
105 uint64_t d, next_time, base;
106 int period2;
108 d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
109 get_ticks_per_sec());
110 switch(s->mode) {
111 default:
112 case 0:
113 case 1:
114 if (d < s->count)
115 next_time = s->count;
116 else
117 return -1;
118 break;
119 case 2:
120 base = (d / s->count) * s->count;
121 if ((d - base) == 0 && d != 0)
122 next_time = base + s->count;
123 else
124 next_time = base + s->count + 1;
125 break;
126 case 3:
127 base = (d / s->count) * s->count;
128 period2 = ((s->count + 1) >> 1);
129 if ((d - base) < period2)
130 next_time = base + period2;
131 else
132 next_time = base + s->count;
133 break;
134 case 4:
135 case 5:
136 if (d < s->count)
137 next_time = s->count;
138 else if (d == s->count)
139 next_time = s->count + 1;
140 else
141 return -1;
142 break;
144 /* convert to timer units */
145 next_time = s->count_load_time + muldiv64(next_time, get_ticks_per_sec(),
146 PIT_FREQ);
147 /* fix potential rounding problems */
148 /* XXX: better solution: use a clock at PIT_FREQ Hz */
149 if (next_time <= current_time)
150 next_time = current_time + 1;
151 return next_time;
154 /* val must be 0 or 1 */
155 void pit_set_gate(PITState *pit, int channel, int val)
157 PITChannelState *s = &pit->channels[channel];
159 switch(s->mode) {
160 default:
161 case 0:
162 case 4:
163 /* XXX: just disable/enable counting */
164 break;
165 case 1:
166 case 5:
167 if (s->gate < val) {
168 /* restart counting on rising edge */
169 s->count_load_time = qemu_get_clock(vm_clock);
170 pit_irq_timer_update(s, s->count_load_time);
172 break;
173 case 2:
174 case 3:
175 if (s->gate < val) {
176 /* restart counting on rising edge */
177 s->count_load_time = qemu_get_clock(vm_clock);
178 pit_irq_timer_update(s, s->count_load_time);
180 /* XXX: disable/enable counting */
181 break;
183 s->gate = val;
186 int pit_get_gate(PITState *pit, int channel)
188 PITChannelState *s = &pit->channels[channel];
189 return s->gate;
192 int pit_get_initial_count(PITState *pit, int channel)
194 PITChannelState *s = &pit->channels[channel];
195 return s->count;
198 int pit_get_mode(PITState *pit, int channel)
200 PITChannelState *s = &pit->channels[channel];
201 return s->mode;
204 static inline void pit_load_count(PITState *s, int val, int chan)
206 if (val == 0)
207 val = 0x10000;
208 s->channels[chan].count_load_time = qemu_get_clock(vm_clock);
209 s->channels[chan].count = val;
210 #ifdef TARGET_I386
211 if (chan == 0 && pit_state.flags & PIT_FLAGS_HPET_LEGACY) {
212 return;
214 #endif
215 pit_irq_timer_update(&s->channels[chan], s->channels[chan].count_load_time);
218 /* if already latched, do not latch again */
219 static void pit_latch_count(PITChannelState *s)
221 if (!s->count_latched) {
222 s->latched_count = pit_get_count(s);
223 s->count_latched = s->rw_mode;
227 static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
229 PITState *pit = opaque;
230 int channel, access;
231 PITChannelState *s;
233 addr &= 3;
234 if (addr == 3) {
235 channel = val >> 6;
236 if (channel == 3) {
237 /* read back command */
238 for(channel = 0; channel < 3; channel++) {
239 s = &pit->channels[channel];
240 if (val & (2 << channel)) {
241 if (!(val & 0x20)) {
242 pit_latch_count(s);
244 if (!(val & 0x10) && !s->status_latched) {
245 /* status latch */
246 /* XXX: add BCD and null count */
247 s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
248 (s->rw_mode << 4) |
249 (s->mode << 1) |
250 s->bcd;
251 s->status_latched = 1;
255 } else {
256 s = &pit->channels[channel];
257 access = (val >> 4) & 3;
258 if (access == 0) {
259 pit_latch_count(s);
260 } else {
261 s->rw_mode = access;
262 s->read_state = access;
263 s->write_state = access;
265 s->mode = (val >> 1) & 7;
266 s->bcd = val & 1;
267 /* XXX: update irq timer ? */
270 } else {
271 s = &pit->channels[addr];
272 switch(s->write_state) {
273 default:
274 case RW_STATE_LSB:
275 pit_load_count(pit, val, addr);
276 break;
277 case RW_STATE_MSB:
278 pit_load_count(pit, val << 8, addr);
279 break;
280 case RW_STATE_WORD0:
281 s->write_latch = val;
282 s->write_state = RW_STATE_WORD1;
283 break;
284 case RW_STATE_WORD1:
285 pit_load_count(pit, s->write_latch | (val << 8), addr);
286 s->write_state = RW_STATE_WORD0;
287 break;
292 static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
294 PITState *pit = opaque;
295 int ret, count;
296 PITChannelState *s;
298 addr &= 3;
299 s = &pit->channels[addr];
300 if (s->status_latched) {
301 s->status_latched = 0;
302 ret = s->status;
303 } else if (s->count_latched) {
304 switch(s->count_latched) {
305 default:
306 case RW_STATE_LSB:
307 ret = s->latched_count & 0xff;
308 s->count_latched = 0;
309 break;
310 case RW_STATE_MSB:
311 ret = s->latched_count >> 8;
312 s->count_latched = 0;
313 break;
314 case RW_STATE_WORD0:
315 ret = s->latched_count & 0xff;
316 s->count_latched = RW_STATE_MSB;
317 break;
319 } else {
320 switch(s->read_state) {
321 default:
322 case RW_STATE_LSB:
323 count = pit_get_count(s);
324 ret = count & 0xff;
325 break;
326 case RW_STATE_MSB:
327 count = pit_get_count(s);
328 ret = (count >> 8) & 0xff;
329 break;
330 case RW_STATE_WORD0:
331 count = pit_get_count(s);
332 ret = count & 0xff;
333 s->read_state = RW_STATE_WORD1;
334 break;
335 case RW_STATE_WORD1:
336 count = pit_get_count(s);
337 ret = (count >> 8) & 0xff;
338 s->read_state = RW_STATE_WORD0;
339 break;
342 return ret;
345 /* global counters for time-drift fix */
346 int64_t timer_acks=0, timer_interrupts=0, timer_ints_to_push=0;
348 extern int time_drift_fix;
350 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
352 int64_t expire_time;
353 int irq_level;
355 if (!s->irq_timer)
356 return;
357 expire_time = pit_get_next_transition_time(s, current_time);
358 irq_level = pit_get_out1(s, current_time);
359 qemu_set_irq(s->irq, irq_level);
360 if (time_drift_fix && irq_level==1) {
361 /* FIXME: fine tune timer_max_fix (max fix per tick).
362 * Should it be 1 (double time), 2 , 4, 10 ?
363 * Currently setting it to 5% of PIT-ticks-per-second (per PIT-tick)
365 const long pit_ticks_per_sec = (s->count>0) ? (PIT_FREQ/s->count) : 0;
366 const long timer_max_fix = pit_ticks_per_sec/20;
367 const long delta = timer_interrupts - timer_acks;
368 const long max_delta = pit_ticks_per_sec * 60; /* one minute */
369 if ((delta > max_delta) && (pit_ticks_per_sec > 0)) {
370 printf("time drift is too long, %ld seconds were lost\n", delta/pit_ticks_per_sec);
371 timer_acks = timer_interrupts;
372 timer_ints_to_push = 0;
373 } else if (delta > 0) {
374 timer_ints_to_push = MIN(delta, timer_max_fix);
376 timer_interrupts++;
378 #ifdef DEBUG_PIT
379 printf("irq_level=%d next_delay=%f\n",
380 irq_level,
381 (double)(expire_time - current_time) / get_ticks_per_sec());
382 #endif
383 s->next_transition_time = expire_time;
384 if (expire_time != -1) {
385 qemu_mod_timer(s->irq_timer, expire_time);
386 } else {
387 qemu_del_timer(s->irq_timer);
391 static void pit_irq_timer(void *opaque)
393 PITChannelState *s = opaque;
395 pit_irq_timer_update(s, s->next_transition_time);
398 static const VMStateDescription vmstate_pit_channel = {
399 .name = "pit channel",
400 .version_id = 2,
401 .minimum_version_id = 2,
402 .minimum_version_id_old = 2,
403 .fields = (VMStateField []) {
404 VMSTATE_INT32(count, PITChannelState),
405 VMSTATE_UINT16(latched_count, PITChannelState),
406 VMSTATE_UINT8(count_latched, PITChannelState),
407 VMSTATE_UINT8(status_latched, PITChannelState),
408 VMSTATE_UINT8(status, PITChannelState),
409 VMSTATE_UINT8(read_state, PITChannelState),
410 VMSTATE_UINT8(write_state, PITChannelState),
411 VMSTATE_UINT8(write_latch, PITChannelState),
412 VMSTATE_UINT8(rw_mode, PITChannelState),
413 VMSTATE_UINT8(mode, PITChannelState),
414 VMSTATE_UINT8(bcd, PITChannelState),
415 VMSTATE_UINT8(gate, PITChannelState),
416 VMSTATE_INT64(count_load_time, PITChannelState),
417 VMSTATE_INT64(next_transition_time, PITChannelState),
418 VMSTATE_END_OF_LIST()
422 static int pit_load_old(QEMUFile *f, void *opaque, int version_id)
424 PITState *pit = opaque;
425 PITChannelState *s;
426 int i;
428 if (version_id != PIT_SAVEVM_VERSION)
429 return -EINVAL;
431 pit->flags = qemu_get_be32(f);
432 for(i = 0; i < 3; i++) {
433 s = &pit->channels[i];
434 s->count=qemu_get_be32(f);
435 qemu_get_be16s(f, &s->latched_count);
436 qemu_get_8s(f, &s->count_latched);
437 qemu_get_8s(f, &s->status_latched);
438 qemu_get_8s(f, &s->status);
439 qemu_get_8s(f, &s->read_state);
440 qemu_get_8s(f, &s->write_state);
441 qemu_get_8s(f, &s->write_latch);
442 qemu_get_8s(f, &s->rw_mode);
443 qemu_get_8s(f, &s->mode);
444 qemu_get_8s(f, &s->bcd);
445 qemu_get_8s(f, &s->gate);
446 s->count_load_time=qemu_get_be64(f);
447 if (s->irq_timer) {
448 s->next_transition_time=qemu_get_be64(f);
449 qemu_get_timer(f, s->irq_timer);
453 return 0;
456 VMStateDescription vmstate_pit = {
457 .name = "i8254",
458 .version_id = 2,
459 .minimum_version_id = 2,
460 .minimum_version_id_old = 1,
461 .load_state_old = pit_load_old,
462 .fields = (VMStateField []) {
463 VMSTATE_UINT32(flags, PITState),
464 VMSTATE_STRUCT_ARRAY(channels, PITState, 3, 2, vmstate_pit_channel, PITChannelState),
465 VMSTATE_TIMER(channels[0].irq_timer, PITState),
466 VMSTATE_END_OF_LIST()
470 void pit_reset(void *opaque)
472 PITState *pit = opaque;
473 PITChannelState *s;
474 int i;
476 #ifdef TARGET_I386
477 pit->flags &= ~PIT_FLAGS_HPET_LEGACY;
478 #endif
479 for(i = 0;i < 3; i++) {
480 s = &pit->channels[i];
481 s->mode = 3;
482 s->gate = (i != 2);
483 pit_load_count(pit, 0, i);
487 #ifdef TARGET_I386
488 /* When HPET is operating in legacy mode, i8254 timer0 is disabled */
490 void hpet_disable_pit(void)
492 PITChannelState *s = &pit_state.channels[0];
494 if (kvm_enabled() && qemu_kvm_pit_in_kernel()) {
495 if (qemu_kvm_has_pit_state2()) {
496 kvm_hpet_disable_kpit();
497 } else {
498 fprintf(stderr, "%s: kvm does not support pit_state2!\n", __FUNCTION__);
499 exit(1);
501 } else {
502 pit_state.flags |= PIT_FLAGS_HPET_LEGACY;
503 if (s->irq_timer) {
504 qemu_del_timer(s->irq_timer);
509 /* When HPET is reset or leaving legacy mode, it must reenable i8254
510 * timer 0
513 void hpet_enable_pit(void)
515 PITState *pit = &pit_state;
516 PITChannelState *s = &pit->channels[0];
518 if (kvm_enabled() && qemu_kvm_pit_in_kernel()) {
519 if (qemu_kvm_has_pit_state2()) {
520 kvm_hpet_enable_kpit();
521 } else {
522 fprintf(stderr, "%s: kvm does not support pit_state2!\n", __FUNCTION__);
523 exit(1);
525 } else {
526 pit_state.flags &= ~PIT_FLAGS_HPET_LEGACY;
527 pit_load_count(pit, s->count, 0);
530 #endif
532 PITState *pit_init(int base, qemu_irq irq)
534 PITState *pit = &pit_state;
535 PITChannelState *s;
537 s = &pit->channels[0];
538 /* the timer 0 is connected to an IRQ */
539 s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
540 s->irq = irq;
542 vmstate_register(base, &vmstate_pit, pit);
543 qemu_register_reset(pit_reset, pit);
544 register_ioport_write(base, 4, 1, pit_ioport_write, pit);
545 register_ioport_read(base, 3, 1, pit_ioport_read, pit);
547 pit_reset(pit);
549 return pit;