2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #define CPU_NO_GLOBAL_REGS
24 #if !defined(TARGET_IA64)
29 #if !defined(CONFIG_SOFTMMU)
41 #include <sys/ucontext.h>
47 #if defined(__sparc__) && !defined(HOST_SOLARIS)
48 // Work around ugly bugs in glibc that mangle global register contents
50 #define env cpu_single_env
53 int tb_invalidated_flag
;
56 //#define DEBUG_SIGNAL
58 void cpu_loop_exit(void)
60 /* NOTE: the register at this point must be saved by hand because
61 longjmp restore them */
63 longjmp(env
->jmp_env
, 1);
66 /* exit the current TB from a signal handler. The host registers are
67 restored in a state compatible with the CPU emulator
69 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
71 #if !defined(CONFIG_SOFTMMU)
73 struct ucontext
*uc
= puc
;
74 #elif defined(__OpenBSD__)
75 struct sigcontext
*uc
= puc
;
81 /* XXX: restore cpu registers saved in host registers */
83 #if !defined(CONFIG_SOFTMMU)
85 /* XXX: use siglongjmp ? */
87 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
88 #elif defined(__OpenBSD__)
89 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
93 longjmp(env
->jmp_env
, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
100 unsigned long next_tb
;
101 TranslationBlock
*tb
;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles
> CF_COUNT_MASK
)
106 max_cycles
= CF_COUNT_MASK
;
108 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
110 env
->current_tb
= tb
;
111 /* execute the generated code */
112 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
114 if ((next_tb
& 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env
, tb
);
119 tb_phys_invalidate(tb
, -1);
123 static TranslationBlock
*tb_find_slow(target_ulong pc
,
124 target_ulong cs_base
,
127 TranslationBlock
*tb
, **ptb1
;
129 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
131 tb_invalidated_flag
= 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc
= get_phys_addr_code(env
, pc
);
137 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
139 h
= tb_phys_hash_func(phys_pc
);
140 ptb1
= &tb_phys_hash
[h
];
146 tb
->page_addr
[0] == phys_page1
&&
147 tb
->cs_base
== cs_base
&&
148 tb
->flags
== flags
) {
149 /* check next page if needed */
150 if (tb
->page_addr
[1] != -1) {
151 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
153 phys_page2
= get_phys_addr_code(env
, virt_page2
);
154 if (tb
->page_addr
[1] == phys_page2
)
160 ptb1
= &tb
->phys_hash_next
;
163 /* if no translated code available, then translate it now */
164 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
167 /* we add the TB in the virtual pc hash table */
168 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
172 static inline TranslationBlock
*tb_find_fast(void)
174 TranslationBlock
*tb
;
175 target_ulong cs_base
, pc
;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
181 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
182 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
183 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
184 tb
->flags
!= flags
)) {
185 tb
= tb_find_slow(pc
, cs_base
, flags
);
190 static CPUDebugExcpHandler
*debug_excp_handler
;
192 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
194 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
196 debug_excp_handler
= handler
;
200 static void cpu_handle_debug_exception(CPUState
*env
)
204 if (!env
->watchpoint_hit
)
205 for (wp
= env
->watchpoints
; wp
!= NULL
; wp
= wp
->next
)
206 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
208 if (debug_excp_handler
)
209 debug_excp_handler(env
);
212 /* main execution loop */
214 int cpu_exec(CPUState
*env1
)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret
, interrupt_request
;
219 TranslationBlock
*tb
;
221 unsigned long next_tb
;
223 if (cpu_halted(env1
) == EXCP_HALTED
)
226 cpu_single_env
= env1
;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
237 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
238 CC_OP
= CC_OP_EFLAGS
;
239 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env
->cc_op
= CC_OP_FLAGS
;
243 env
->cc_dest
= env
->sr
& 0xf;
244 env
->cc_x
= (env
->sr
>> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MIPS)
249 #elif defined(TARGET_SH4)
250 #elif defined(TARGET_CRIS)
251 #elif defined(TARGET_IA64)
254 #error unsupported target CPU
256 env
->exception_index
= -1;
258 /* prepare setjmp context for exception handling */
260 if (setjmp(env
->jmp_env
) == 0) {
261 env
->current_tb
= NULL
;
262 /* if an exception is pending, we execute it here */
263 if (env
->exception_index
>= 0) {
264 if (env
->exception_index
>= EXCP_INTERRUPT
) {
265 /* exit request from the cpu execution loop */
266 ret
= env
->exception_index
;
267 if (ret
== EXCP_DEBUG
)
268 cpu_handle_debug_exception(env
);
270 } else if (env
->user_mode_only
) {
271 /* if user mode only, we simulate a fake exception
272 which will be handled outside the cpu execution
274 #if defined(TARGET_I386)
275 do_interrupt_user(env
->exception_index
,
276 env
->exception_is_int
,
278 env
->exception_next_eip
);
279 /* successfully delivered */
280 env
->old_exception
= -1;
282 ret
= env
->exception_index
;
285 #if defined(TARGET_I386)
286 /* simulate a real cpu exception. On i386, it can
287 trigger new exceptions, but we do not handle
288 double or triple faults yet. */
289 do_interrupt(env
->exception_index
,
290 env
->exception_is_int
,
292 env
->exception_next_eip
, 0);
293 /* successfully delivered */
294 env
->old_exception
= -1;
295 #elif defined(TARGET_PPC)
297 #elif defined(TARGET_MIPS)
299 #elif defined(TARGET_SPARC)
301 #elif defined(TARGET_ARM)
303 #elif defined(TARGET_SH4)
305 #elif defined(TARGET_ALPHA)
307 #elif defined(TARGET_CRIS)
309 #elif defined(TARGET_M68K)
311 #elif defined(TARGET_IA64)
315 env
->exception_index
= -1;
318 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0) {
320 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
321 ret
= kqemu_cpu_exec(env
);
322 /* put eflags in CPU temporary format */
323 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
324 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
325 CC_OP
= CC_OP_EFLAGS
;
326 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
329 longjmp(env
->jmp_env
, 1);
330 } else if (ret
== 2) {
331 /* softmmu execution needed */
333 if (env
->interrupt_request
!= 0) {
334 /* hardware interrupt will be executed just after */
336 /* otherwise, we restart */
337 longjmp(env
->jmp_env
, 1);
343 /* kvm vcpu threads */
346 longjmp(env
->jmp_env
, 1);
351 longjmp(env
->jmp_env
, 1);
354 next_tb
= 0; /* force lookup of first TB */
356 interrupt_request
= env
->interrupt_request
;
357 if (unlikely(interrupt_request
)) {
358 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
359 /* Mask out external interrupts for this step. */
360 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
365 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
366 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
367 env
->exception_index
= EXCP_DEBUG
;
370 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
371 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
372 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
373 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
375 env
->exception_index
= EXCP_HLT
;
379 #if defined(TARGET_I386)
380 if (env
->hflags2
& HF2_GIF_MASK
) {
381 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
382 !(env
->hflags
& HF_SMM_MASK
)) {
383 svm_check_intercept(SVM_EXIT_SMI
);
384 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
387 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
388 !(env
->hflags2
& HF2_NMI_MASK
)) {
389 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
390 env
->hflags2
|= HF2_NMI_MASK
;
391 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
393 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
394 (((env
->hflags2
& HF2_VINTR_MASK
) &&
395 (env
->hflags2
& HF2_HIF_MASK
)) ||
396 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
397 (env
->eflags
& IF_MASK
&&
398 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
400 svm_check_intercept(SVM_EXIT_INTR
);
401 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
402 intno
= cpu_get_pic_interrupt(env
);
403 if (loglevel
& CPU_LOG_TB_IN_ASM
) {
404 fprintf(logfile
, "Servicing hardware INT=0x%02x\n", intno
);
406 do_interrupt(intno
, 0, 0, 0, 1);
407 /* ensure that no TB jump will be modified as
408 the program flow was changed */
410 #if !defined(CONFIG_USER_ONLY)
411 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
412 (env
->eflags
& IF_MASK
) &&
413 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
415 /* FIXME: this should respect TPR */
416 svm_check_intercept(SVM_EXIT_VINTR
);
417 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
418 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
419 if (loglevel
& CPU_LOG_TB_IN_ASM
)
420 fprintf(logfile
, "Servicing virtual hardware INT=0x%02x\n", intno
);
421 do_interrupt(intno
, 0, 0, 0, 1);
426 #elif defined(TARGET_PPC)
428 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
432 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
433 ppc_hw_interrupt(env
);
434 if (env
->pending_interrupts
== 0)
435 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
438 #elif defined(TARGET_MIPS)
439 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
440 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
441 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
442 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
443 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
444 !(env
->hflags
& MIPS_HFLAG_DM
)) {
446 env
->exception_index
= EXCP_EXT_INTERRUPT
;
451 #elif defined(TARGET_SPARC)
452 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
454 int pil
= env
->interrupt_index
& 15;
455 int type
= env
->interrupt_index
& 0xf0;
457 if (((type
== TT_EXTINT
) &&
458 (pil
== 15 || pil
> env
->psrpil
)) ||
460 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
461 env
->exception_index
= env
->interrupt_index
;
463 env
->interrupt_index
= 0;
464 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
469 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
470 //do_interrupt(0, 0, 0, 0, 0);
471 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
473 #elif defined(TARGET_ARM)
474 if (interrupt_request
& CPU_INTERRUPT_FIQ
475 && !(env
->uncached_cpsr
& CPSR_F
)) {
476 env
->exception_index
= EXCP_FIQ
;
480 /* ARMv7-M interrupt return works by loading a magic value
481 into the PC. On real hardware the load causes the
482 return to occur. The qemu implementation performs the
483 jump normally, then does the exception return when the
484 CPU tries to execute code at the magic address.
485 This will cause the magic PC value to be pushed to
486 the stack if an interrupt occured at the wrong time.
487 We avoid this by disabling interrupts when
488 pc contains a magic address. */
489 if (interrupt_request
& CPU_INTERRUPT_HARD
490 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
491 || !(env
->uncached_cpsr
& CPSR_I
))) {
492 env
->exception_index
= EXCP_IRQ
;
496 #elif defined(TARGET_SH4)
497 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
501 #elif defined(TARGET_ALPHA)
502 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
506 #elif defined(TARGET_CRIS)
507 if (interrupt_request
& CPU_INTERRUPT_HARD
508 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
509 env
->exception_index
= EXCP_IRQ
;
513 if (interrupt_request
& CPU_INTERRUPT_NMI
514 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
515 env
->exception_index
= EXCP_NMI
;
519 #elif defined(TARGET_M68K)
520 if (interrupt_request
& CPU_INTERRUPT_HARD
521 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
522 < env
->pending_level
) {
523 /* Real hardware gets the interrupt vector via an
524 IACK cycle at this point. Current emulated
525 hardware doesn't rely on this, so we
526 provide/save the vector when the interrupt is
528 env
->exception_index
= env
->pending_vector
;
533 /* Don't use the cached interupt_request value,
534 do_interrupt may have updated the EXITTB flag. */
535 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
536 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
537 /* ensure that no TB jump will be modified as
538 the program flow was changed */
541 if (interrupt_request
& CPU_INTERRUPT_EXIT
) {
542 env
->interrupt_request
&= ~CPU_INTERRUPT_EXIT
;
543 env
->exception_index
= EXCP_INTERRUPT
;
548 if ((loglevel
& CPU_LOG_TB_CPU
)) {
549 /* restore flags in standard format */
551 #if defined(TARGET_I386)
552 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
553 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_CCOP
);
554 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
555 #elif defined(TARGET_ARM)
556 cpu_dump_state(env
, logfile
, fprintf
, 0);
557 #elif defined(TARGET_SPARC)
558 cpu_dump_state(env
, logfile
, fprintf
, 0);
559 #elif defined(TARGET_PPC)
560 cpu_dump_state(env
, logfile
, fprintf
, 0);
561 #elif defined(TARGET_M68K)
562 cpu_m68k_flush_flags(env
, env
->cc_op
);
563 env
->cc_op
= CC_OP_FLAGS
;
564 env
->sr
= (env
->sr
& 0xffe0)
565 | env
->cc_dest
| (env
->cc_x
<< 4);
566 cpu_dump_state(env
, logfile
, fprintf
, 0);
567 #elif defined(TARGET_MIPS)
568 cpu_dump_state(env
, logfile
, fprintf
, 0);
569 #elif defined(TARGET_SH4)
570 cpu_dump_state(env
, logfile
, fprintf
, 0);
571 #elif defined(TARGET_ALPHA)
572 cpu_dump_state(env
, logfile
, fprintf
, 0);
573 #elif defined(TARGET_CRIS)
574 cpu_dump_state(env
, logfile
, fprintf
, 0);
576 #error unsupported target CPU
582 /* Note: we do it here to avoid a gcc bug on Mac OS X when
583 doing it in tb_find_slow */
584 if (tb_invalidated_flag
) {
585 /* as some TB could have been invalidated because
586 of memory exceptions while generating the code, we
587 must recompute the hash index here */
589 tb_invalidated_flag
= 0;
592 if ((loglevel
& CPU_LOG_EXEC
)) {
593 fprintf(logfile
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
594 (long)tb
->tc_ptr
, tb
->pc
,
595 lookup_symbol(tb
->pc
));
598 /* see if we can patch the calling TB. When the TB
599 spans two pages, we cannot safely do a direct
604 (env
->kqemu_enabled
!= 2) &&
606 tb
->page_addr
[1] == -1) {
607 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
610 spin_unlock(&tb_lock
);
611 env
->current_tb
= tb
;
613 /* cpu_interrupt might be called while translating the
614 TB, but before it is linked into a potentially
615 infinite loop and becomes env->current_tb. Avoid
616 starting execution if there is a pending interrupt. */
617 if (unlikely (env
->interrupt_request
& CPU_INTERRUPT_EXIT
))
618 env
->current_tb
= NULL
;
620 while (env
->current_tb
) {
622 /* execute the generated code */
623 #if defined(__sparc__) && !defined(HOST_SOLARIS)
625 env
= cpu_single_env
;
626 #define env cpu_single_env
628 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
629 env
->current_tb
= NULL
;
630 if ((next_tb
& 3) == 2) {
631 /* Instruction counter expired. */
633 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
635 cpu_pc_from_tb(env
, tb
);
636 insns_left
= env
->icount_decr
.u32
;
637 if (env
->icount_extra
&& insns_left
>= 0) {
638 /* Refill decrementer and continue execution. */
639 env
->icount_extra
+= insns_left
;
640 if (env
->icount_extra
> 0xffff) {
643 insns_left
= env
->icount_extra
;
645 env
->icount_extra
-= insns_left
;
646 env
->icount_decr
.u16
.low
= insns_left
;
648 if (insns_left
> 0) {
649 /* Execute remaining instructions. */
650 cpu_exec_nocache(insns_left
, tb
);
652 env
->exception_index
= EXCP_INTERRUPT
;
658 /* reset soft MMU for next block (it can currently
659 only be set by a memory fault) */
660 #if defined(USE_KQEMU)
661 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
662 if (kqemu_is_ok(env
) &&
663 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
674 #if defined(TARGET_I386)
675 /* restore flags in standard format */
676 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
677 #elif defined(TARGET_ARM)
678 /* XXX: Save/restore host fpu exception state?. */
679 #elif defined(TARGET_SPARC)
680 #elif defined(TARGET_PPC)
681 #elif defined(TARGET_M68K)
682 cpu_m68k_flush_flags(env
, env
->cc_op
);
683 env
->cc_op
= CC_OP_FLAGS
;
684 env
->sr
= (env
->sr
& 0xffe0)
685 | env
->cc_dest
| (env
->cc_x
<< 4);
686 #elif defined(TARGET_MIPS)
687 #elif defined(TARGET_SH4)
688 #elif defined(TARGET_IA64)
689 #elif defined(TARGET_ALPHA)
690 #elif defined(TARGET_CRIS)
693 #error unsupported target CPU
696 /* restore global registers */
697 #include "hostregs_helper.h"
699 /* fail safe : never use cpu_single_env outside cpu_exec() */
700 cpu_single_env
= NULL
;
704 /* must only be called from the generated code as an exception can be
706 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
708 /* XXX: cannot enable it yet because it yields to MMU exception
709 where NIP != read address on PowerPC */
711 target_ulong phys_addr
;
712 phys_addr
= get_phys_addr_code(env
, start
);
713 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
717 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
719 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
721 CPUX86State
*saved_env
;
725 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
727 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
728 (selector
<< 4), 0xffff, 0);
730 helper_load_seg(seg_reg
, selector
);
735 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
737 CPUX86State
*saved_env
;
742 helper_fsave(ptr
, data32
);
747 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
749 CPUX86State
*saved_env
;
754 helper_frstor(ptr
, data32
);
759 #endif /* TARGET_I386 */
761 #if !defined(CONFIG_SOFTMMU)
763 #if defined(TARGET_I386)
765 /* 'pc' is the host PC at which the exception was raised. 'address' is
766 the effective address of the memory exception. 'is_write' is 1 if a
767 write caused the exception and otherwise 0'. 'old_set' is the
768 signal set which should be restored */
769 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
770 int is_write
, sigset_t
*old_set
,
773 TranslationBlock
*tb
;
777 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
778 #if defined(DEBUG_SIGNAL)
779 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
780 pc
, address
, is_write
, *(unsigned long *)old_set
);
782 /* XXX: locking issue */
783 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
787 /* see if it is an MMU fault */
788 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
790 return 0; /* not an MMU fault */
792 return 1; /* the MMU fault was handled without causing real CPU fault */
793 /* now we have a real cpu fault */
796 /* the PC is inside the translated code. It means that we have
797 a virtual CPU fault */
798 cpu_restore_state(tb
, env
, pc
, puc
);
802 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
803 env
->eip
, env
->cr
[2], env
->error_code
);
805 /* we restore the process signal mask as the sigreturn should
806 do it (XXX: use sigsetjmp) */
807 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
808 raise_exception_err(env
->exception_index
, env
->error_code
);
810 /* activate soft MMU for this block */
811 env
->hflags
|= HF_SOFTMMU_MASK
;
812 cpu_resume_from_signal(env
, puc
);
814 /* never comes here */
818 #elif defined(TARGET_ARM)
819 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
820 int is_write
, sigset_t
*old_set
,
823 TranslationBlock
*tb
;
827 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
828 #if defined(DEBUG_SIGNAL)
829 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
830 pc
, address
, is_write
, *(unsigned long *)old_set
);
832 /* XXX: locking issue */
833 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
836 /* see if it is an MMU fault */
837 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
839 return 0; /* not an MMU fault */
841 return 1; /* the MMU fault was handled without causing real CPU fault */
842 /* now we have a real cpu fault */
845 /* the PC is inside the translated code. It means that we have
846 a virtual CPU fault */
847 cpu_restore_state(tb
, env
, pc
, puc
);
849 /* we restore the process signal mask as the sigreturn should
850 do it (XXX: use sigsetjmp) */
851 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
853 /* never comes here */
856 #elif defined(TARGET_SPARC)
857 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
858 int is_write
, sigset_t
*old_set
,
861 TranslationBlock
*tb
;
865 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
866 #if defined(DEBUG_SIGNAL)
867 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
868 pc
, address
, is_write
, *(unsigned long *)old_set
);
870 /* XXX: locking issue */
871 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
874 /* see if it is an MMU fault */
875 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
877 return 0; /* not an MMU fault */
879 return 1; /* the MMU fault was handled without causing real CPU fault */
880 /* now we have a real cpu fault */
883 /* the PC is inside the translated code. It means that we have
884 a virtual CPU fault */
885 cpu_restore_state(tb
, env
, pc
, puc
);
887 /* we restore the process signal mask as the sigreturn should
888 do it (XXX: use sigsetjmp) */
889 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
891 /* never comes here */
894 #elif defined (TARGET_PPC)
895 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
896 int is_write
, sigset_t
*old_set
,
899 TranslationBlock
*tb
;
903 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
904 #if defined(DEBUG_SIGNAL)
905 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
906 pc
, address
, is_write
, *(unsigned long *)old_set
);
908 /* XXX: locking issue */
909 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
913 /* see if it is an MMU fault */
914 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
916 return 0; /* not an MMU fault */
918 return 1; /* the MMU fault was handled without causing real CPU fault */
920 /* now we have a real cpu fault */
923 /* the PC is inside the translated code. It means that we have
924 a virtual CPU fault */
925 cpu_restore_state(tb
, env
, pc
, puc
);
929 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
930 env
->nip
, env
->error_code
, tb
);
932 /* we restore the process signal mask as the sigreturn should
933 do it (XXX: use sigsetjmp) */
934 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
935 raise_exception_err(env
, env
->exception_index
, env
->error_code
);
937 /* activate soft MMU for this block */
938 cpu_resume_from_signal(env
, puc
);
940 /* never comes here */
944 #elif defined(TARGET_M68K)
945 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
946 int is_write
, sigset_t
*old_set
,
949 TranslationBlock
*tb
;
953 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
954 #if defined(DEBUG_SIGNAL)
955 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
956 pc
, address
, is_write
, *(unsigned long *)old_set
);
958 /* XXX: locking issue */
959 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
962 /* see if it is an MMU fault */
963 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
965 return 0; /* not an MMU fault */
967 return 1; /* the MMU fault was handled without causing real CPU fault */
968 /* now we have a real cpu fault */
971 /* the PC is inside the translated code. It means that we have
972 a virtual CPU fault */
973 cpu_restore_state(tb
, env
, pc
, puc
);
975 /* we restore the process signal mask as the sigreturn should
976 do it (XXX: use sigsetjmp) */
977 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
979 /* never comes here */
983 #elif defined (TARGET_MIPS)
984 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
985 int is_write
, sigset_t
*old_set
,
988 TranslationBlock
*tb
;
992 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
993 #if defined(DEBUG_SIGNAL)
994 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
995 pc
, address
, is_write
, *(unsigned long *)old_set
);
997 /* XXX: locking issue */
998 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1002 /* see if it is an MMU fault */
1003 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1005 return 0; /* not an MMU fault */
1007 return 1; /* the MMU fault was handled without causing real CPU fault */
1009 /* now we have a real cpu fault */
1010 tb
= tb_find_pc(pc
);
1012 /* the PC is inside the translated code. It means that we have
1013 a virtual CPU fault */
1014 cpu_restore_state(tb
, env
, pc
, puc
);
1018 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1019 env
->PC
, env
->error_code
, tb
);
1021 /* we restore the process signal mask as the sigreturn should
1022 do it (XXX: use sigsetjmp) */
1023 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1024 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1026 /* activate soft MMU for this block */
1027 cpu_resume_from_signal(env
, puc
);
1029 /* never comes here */
1033 #elif defined (TARGET_SH4)
1034 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1035 int is_write
, sigset_t
*old_set
,
1038 TranslationBlock
*tb
;
1042 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1043 #if defined(DEBUG_SIGNAL)
1044 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1045 pc
, address
, is_write
, *(unsigned long *)old_set
);
1047 /* XXX: locking issue */
1048 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1052 /* see if it is an MMU fault */
1053 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1055 return 0; /* not an MMU fault */
1057 return 1; /* the MMU fault was handled without causing real CPU fault */
1059 /* now we have a real cpu fault */
1060 tb
= tb_find_pc(pc
);
1062 /* the PC is inside the translated code. It means that we have
1063 a virtual CPU fault */
1064 cpu_restore_state(tb
, env
, pc
, puc
);
1067 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1068 env
->nip
, env
->error_code
, tb
);
1070 /* we restore the process signal mask as the sigreturn should
1071 do it (XXX: use sigsetjmp) */
1072 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1074 /* never comes here */
1078 #elif defined (TARGET_ALPHA)
1079 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1080 int is_write
, sigset_t
*old_set
,
1083 TranslationBlock
*tb
;
1087 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1088 #if defined(DEBUG_SIGNAL)
1089 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1090 pc
, address
, is_write
, *(unsigned long *)old_set
);
1092 /* XXX: locking issue */
1093 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1097 /* see if it is an MMU fault */
1098 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1100 return 0; /* not an MMU fault */
1102 return 1; /* the MMU fault was handled without causing real CPU fault */
1104 /* now we have a real cpu fault */
1105 tb
= tb_find_pc(pc
);
1107 /* the PC is inside the translated code. It means that we have
1108 a virtual CPU fault */
1109 cpu_restore_state(tb
, env
, pc
, puc
);
1112 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1113 env
->nip
, env
->error_code
, tb
);
1115 /* we restore the process signal mask as the sigreturn should
1116 do it (XXX: use sigsetjmp) */
1117 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1119 /* never comes here */
1122 #elif defined (TARGET_CRIS)
1123 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1124 int is_write
, sigset_t
*old_set
,
1127 TranslationBlock
*tb
;
1131 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1132 #if defined(DEBUG_SIGNAL)
1133 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1134 pc
, address
, is_write
, *(unsigned long *)old_set
);
1136 /* XXX: locking issue */
1137 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1141 /* see if it is an MMU fault */
1142 ret
= cpu_cris_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1144 return 0; /* not an MMU fault */
1146 return 1; /* the MMU fault was handled without causing real CPU fault */
1148 /* now we have a real cpu fault */
1149 tb
= tb_find_pc(pc
);
1151 /* the PC is inside the translated code. It means that we have
1152 a virtual CPU fault */
1153 cpu_restore_state(tb
, env
, pc
, puc
);
1155 /* we restore the process signal mask as the sigreturn should
1156 do it (XXX: use sigsetjmp) */
1157 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1159 /* never comes here */
1164 #error unsupported target CPU
1167 #if defined(__i386__)
1169 #if defined(__APPLE__)
1170 # include <sys/ucontext.h>
1172 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1173 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1174 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1176 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1177 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1178 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1181 int cpu_signal_handler(int host_signum
, void *pinfo
,
1184 siginfo_t
*info
= pinfo
;
1185 struct ucontext
*uc
= puc
;
1193 #define REG_TRAPNO TRAPNO
1196 trapno
= TRAP_sig(uc
);
1197 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1199 (ERROR_sig(uc
) >> 1) & 1 : 0,
1200 &uc
->uc_sigmask
, puc
);
1203 #elif defined(__x86_64__)
1205 int cpu_signal_handler(int host_signum
, void *pinfo
,
1208 siginfo_t
*info
= pinfo
;
1209 struct ucontext
*uc
= puc
;
1212 pc
= uc
->uc_mcontext
.gregs
[REG_RIP
];
1213 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1214 uc
->uc_mcontext
.gregs
[REG_TRAPNO
] == 0xe ?
1215 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1216 &uc
->uc_sigmask
, puc
);
1219 #elif defined(__powerpc__)
1221 /***********************************************************************
1222 * signal context platform-specific definitions
1226 /* All Registers access - only for local access */
1227 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1228 /* Gpr Registers access */
1229 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1230 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1231 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1232 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1233 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1234 # define LR_sig(context) REG_sig(link, context) /* Link register */
1235 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1236 /* Float Registers access */
1237 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1238 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1239 /* Exception Registers access */
1240 # define DAR_sig(context) REG_sig(dar, context)
1241 # define DSISR_sig(context) REG_sig(dsisr, context)
1242 # define TRAP_sig(context) REG_sig(trap, context)
1246 # include <sys/ucontext.h>
1247 typedef struct ucontext SIGCONTEXT
;
1248 /* All Registers access - only for local access */
1249 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1250 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1251 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1252 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1253 /* Gpr Registers access */
1254 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1255 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1256 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1257 # define CTR_sig(context) REG_sig(ctr, context)
1258 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1259 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1260 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1261 /* Float Registers access */
1262 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1263 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1264 /* Exception Registers access */
1265 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1266 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1267 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1268 #endif /* __APPLE__ */
1270 int cpu_signal_handler(int host_signum
, void *pinfo
,
1273 siginfo_t
*info
= pinfo
;
1274 struct ucontext
*uc
= puc
;
1282 if (DSISR_sig(uc
) & 0x00800000)
1285 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1288 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1289 is_write
, &uc
->uc_sigmask
, puc
);
1292 #elif defined(__alpha__)
1294 int cpu_signal_handler(int host_signum
, void *pinfo
,
1297 siginfo_t
*info
= pinfo
;
1298 struct ucontext
*uc
= puc
;
1299 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1300 uint32_t insn
= *pc
;
1303 /* XXX: need kernel patch to get write flag faster */
1304 switch (insn
>> 26) {
1319 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1320 is_write
, &uc
->uc_sigmask
, puc
);
1322 #elif defined(__sparc__)
1324 int cpu_signal_handler(int host_signum
, void *pinfo
,
1327 siginfo_t
*info
= pinfo
;
1330 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1331 uint32_t *regs
= (uint32_t *)(info
+ 1);
1332 void *sigmask
= (regs
+ 20);
1333 /* XXX: is there a standard glibc define ? */
1334 unsigned long pc
= regs
[1];
1337 struct sigcontext
*sc
= puc
;
1338 unsigned long pc
= sc
->sigc_regs
.tpc
;
1339 void *sigmask
= (void *)sc
->sigc_mask
;
1340 #elif defined(__OpenBSD__)
1341 struct sigcontext
*uc
= puc
;
1342 unsigned long pc
= uc
->sc_pc
;
1343 void *sigmask
= (void *)(long)uc
->sc_mask
;
1347 /* XXX: need kernel patch to get write flag faster */
1349 insn
= *(uint32_t *)pc
;
1350 if ((insn
>> 30) == 3) {
1351 switch((insn
>> 19) & 0x3f) {
1363 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1364 is_write
, sigmask
, NULL
);
1367 #elif defined(__arm__)
1369 int cpu_signal_handler(int host_signum
, void *pinfo
,
1372 siginfo_t
*info
= pinfo
;
1373 struct ucontext
*uc
= puc
;
1377 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1378 pc
= uc
->uc_mcontext
.gregs
[R15
];
1380 pc
= uc
->uc_mcontext
.arm_pc
;
1382 /* XXX: compute is_write */
1384 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1386 &uc
->uc_sigmask
, puc
);
1389 #elif defined(__mc68000)
1391 int cpu_signal_handler(int host_signum
, void *pinfo
,
1394 siginfo_t
*info
= pinfo
;
1395 struct ucontext
*uc
= puc
;
1399 pc
= uc
->uc_mcontext
.gregs
[16];
1400 /* XXX: compute is_write */
1402 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1404 &uc
->uc_sigmask
, puc
);
1407 #elif defined(__ia64)
1410 /* This ought to be in <bits/siginfo.h>... */
1411 # define __ISR_VALID 1
1414 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1416 siginfo_t
*info
= pinfo
;
1417 struct ucontext
*uc
= puc
;
1421 ip
= uc
->uc_mcontext
.sc_ip
;
1422 switch (host_signum
) {
1428 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1429 /* ISR.W (write-access) is bit 33: */
1430 is_write
= (info
->si_isr
>> 33) & 1;
1436 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1438 &uc
->uc_sigmask
, puc
);
1441 #elif defined(__s390__)
1443 int cpu_signal_handler(int host_signum
, void *pinfo
,
1446 siginfo_t
*info
= pinfo
;
1447 struct ucontext
*uc
= puc
;
1451 pc
= uc
->uc_mcontext
.psw
.addr
;
1452 /* XXX: compute is_write */
1454 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1455 is_write
, &uc
->uc_sigmask
, puc
);
1458 #elif defined(__mips__)
1460 int cpu_signal_handler(int host_signum
, void *pinfo
,
1463 siginfo_t
*info
= pinfo
;
1464 struct ucontext
*uc
= puc
;
1465 greg_t pc
= uc
->uc_mcontext
.pc
;
1468 /* XXX: compute is_write */
1470 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1471 is_write
, &uc
->uc_sigmask
, puc
);
1474 #elif defined(__hppa__)
1476 int cpu_signal_handler(int host_signum
, void *pinfo
,
1479 struct siginfo
*info
= pinfo
;
1480 struct ucontext
*uc
= puc
;
1484 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1485 /* FIXME: compute is_write */
1487 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1489 &uc
->uc_sigmask
, puc
);
1494 #error host CPU specific signal handler needed
1498 #endif /* !defined(CONFIG_SOFTMMU) */