4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
27 #include "qemu-common.h"
32 #define SIGNBIT (1u << 31)
41 typedef struct m68k_def_t m68k_def_t
;
48 static m68k_def_t m68k_cpu_defs
[] = {
49 {"m5206", M68K_CPUID_M5206
},
50 {"m5208", M68K_CPUID_M5208
},
51 {"cfv4e", M68K_CPUID_CFV4E
},
52 {"any", M68K_CPUID_ANY
},
56 void m68k_cpu_list(FILE *f
, int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
60 for (i
= 0; m68k_cpu_defs
[i
].name
; i
++) {
61 (*cpu_fprintf
)(f
, "%s\n", m68k_cpu_defs
[i
].name
);
65 static int fpu_gdb_get_reg(CPUState
*env
, uint8_t *mem_buf
, int n
)
68 stfq_p(mem_buf
, env
->fregs
[n
]);
72 /* FP control registers (not implemented) */
73 memset(mem_buf
, 0, 4);
79 static int fpu_gdb_set_reg(CPUState
*env
, uint8_t *mem_buf
, int n
)
82 env
->fregs
[n
] = ldfq_p(mem_buf
);
86 /* FP control registers (not implemented) */
92 static void m68k_set_feature(CPUM68KState
*env
, int feature
)
94 env
->features
|= (1u << feature
);
97 static int cpu_m68k_set_model(CPUM68KState
*env
, const char *name
)
101 for (def
= m68k_cpu_defs
; def
->name
; def
++) {
102 if (strcmp(def
->name
, name
) == 0)
109 case M68K_CPUID_M5206
:
110 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_A
);
112 case M68K_CPUID_M5208
:
113 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_A
);
114 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_APLUSC
);
115 m68k_set_feature(env
, M68K_FEATURE_BRAL
);
116 m68k_set_feature(env
, M68K_FEATURE_CF_EMAC
);
117 m68k_set_feature(env
, M68K_FEATURE_USP
);
119 case M68K_CPUID_CFV4E
:
120 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_A
);
121 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_B
);
122 m68k_set_feature(env
, M68K_FEATURE_BRAL
);
123 m68k_set_feature(env
, M68K_FEATURE_CF_FPU
);
124 m68k_set_feature(env
, M68K_FEATURE_CF_EMAC
);
125 m68k_set_feature(env
, M68K_FEATURE_USP
);
128 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_A
);
129 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_B
);
130 m68k_set_feature(env
, M68K_FEATURE_CF_ISA_APLUSC
);
131 m68k_set_feature(env
, M68K_FEATURE_BRAL
);
132 m68k_set_feature(env
, M68K_FEATURE_CF_FPU
);
133 /* MAC and EMAC are mututally exclusive, so pick EMAC.
134 It's mostly backwards compatible. */
135 m68k_set_feature(env
, M68K_FEATURE_CF_EMAC
);
136 m68k_set_feature(env
, M68K_FEATURE_CF_EMAC_B
);
137 m68k_set_feature(env
, M68K_FEATURE_USP
);
138 m68k_set_feature(env
, M68K_FEATURE_EXT_FULL
);
139 m68k_set_feature(env
, M68K_FEATURE_WORD_INDEX
);
143 register_m68k_insns(env
);
144 if (m68k_feature (env
, M68K_FEATURE_CF_FPU
)) {
145 gdb_register_coprocessor(env
, fpu_gdb_get_reg
, fpu_gdb_set_reg
,
146 11, "cf-fp.xml", 18);
148 /* TODO: Add [E]MAC registers. */
152 void cpu_reset(CPUM68KState
*env
)
154 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
155 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
156 log_cpu_state(env
, 0);
159 memset(env
, 0, offsetof(CPUM68KState
, breakpoints
));
160 #if !defined (CONFIG_USER_ONLY)
164 /* ??? FP regs should be initialized to NaN. */
165 env
->cc_op
= CC_OP_FLAGS
;
166 /* TODO: We should set PC from the interrupt vector. */
171 CPUM68KState
*cpu_m68k_init(const char *cpu_model
)
176 env
= qemu_mallocz(sizeof(CPUM68KState
));
183 env
->cpu_model_str
= cpu_model
;
185 if (cpu_m68k_set_model(env
, cpu_model
) < 0) {
195 void cpu_m68k_close(CPUM68KState
*env
)
200 void cpu_m68k_flush_flags(CPUM68KState
*env
, int cc_op
)
207 #define HIGHBIT 0x80000000u
209 #define SET_NZ(x) do { \
212 else if ((int32_t)(x) < 0) \
216 #define SET_FLAGS_SUB(type, utype) do { \
217 SET_NZ((type)dest); \
219 if ((utype) tmp < (utype) src) \
221 if ((1u << (sizeof(type) * 8 - 1)) & (tmp ^ dest) & (tmp ^ src)) \
240 if (HIGHBIT
& (src
^ dest
) & ~(tmp
^ src
))
244 SET_FLAGS_SUB(int32_t, uint32_t);
247 SET_FLAGS_SUB(int8_t, uint8_t);
250 SET_FLAGS_SUB(int16_t, uint16_t);
256 tmp
= dest
- src
- 1;
257 if (HIGHBIT
& (src
^ dest
) & ~(tmp
^ src
))
262 tmp
= dest
+ src
+ 1;
265 if (HIGHBIT
& (tmp
^ dest
) & (tmp
^ src
))
274 cpu_abort(env
, "Bad CC_OP %d", cc_op
);
276 env
->cc_op
= CC_OP_FLAGS
;
277 env
->cc_dest
= flags
;
280 void HELPER(movec
)(CPUM68KState
*env
, uint32_t reg
, uint32_t val
)
283 case 0x02: /* CACR */
287 case 0x04: case 0x05: case 0x06: case 0x07: /* ACR[0-3] */
288 /* TODO: Implement Access Control Registers. */
290 case 0x801: /* VBR */
293 /* TODO: Implement control registers. */
295 cpu_abort(env
, "Unimplemented control register write 0x%x = 0x%x\n",
300 void HELPER(set_macsr
)(CPUM68KState
*env
, uint32_t val
)
307 if ((env
->macsr
^ val
) & (MACSR_FI
| MACSR_SU
)) {
308 for (i
= 0; i
< 4; i
++) {
309 regval
= env
->macc
[i
];
310 exthigh
= regval
>> 40;
311 if (env
->macsr
& MACSR_FI
) {
316 extlow
= regval
>> 32;
318 if (env
->macsr
& MACSR_FI
) {
319 regval
= (((uint64_t)acc
) << 8) | extlow
;
320 regval
|= ((int64_t)exthigh
) << 40;
321 } else if (env
->macsr
& MACSR_SU
) {
322 regval
= acc
| (((int64_t)extlow
) << 32);
323 regval
|= ((int64_t)exthigh
) << 40;
325 regval
= acc
| (((uint64_t)extlow
) << 32);
326 regval
|= ((uint64_t)(uint8_t)exthigh
) << 40;
328 env
->macc
[i
] = regval
;
334 void m68k_switch_sp(CPUM68KState
*env
)
338 env
->sp
[env
->current_sp
] = env
->aregs
[7];
339 new_sp
= (env
->sr
& SR_S
&& env
->cacr
& M68K_CACR_EUSP
)
340 ? M68K_SSP
: M68K_USP
;
341 env
->aregs
[7] = env
->sp
[new_sp
];
342 env
->current_sp
= new_sp
;
347 /* TODO: This will need fixing once the MMU is implemented. */
348 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
353 #if defined(CONFIG_USER_ONLY)
355 int cpu_m68k_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
356 int mmu_idx
, int is_softmmu
)
358 env
->exception_index
= EXCP_ACCESS
;
359 env
->mmu
.ar
= address
;
365 int cpu_m68k_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
366 int mmu_idx
, int is_softmmu
)
370 address
&= TARGET_PAGE_MASK
;
371 prot
= PAGE_READ
| PAGE_WRITE
;
372 return tlb_set_page(env
, address
, address
, prot
, mmu_idx
, is_softmmu
);
375 /* Notify CPU of a pending interrupt. Prioritization and vectoring should
376 be handled by the interrupt controller. Real hardware only requests
377 the vector when the interrupt is acknowledged by the CPU. For
378 simplicitly we calculate it when the interrupt is signalled. */
379 void m68k_set_irq_level(CPUM68KState
*env
, int level
, uint8_t vector
)
381 env
->pending_level
= level
;
382 env
->pending_vector
= vector
;
384 cpu_interrupt(env
, CPU_INTERRUPT_HARD
);
386 cpu_reset_interrupt(env
, CPU_INTERRUPT_HARD
);
391 uint32_t HELPER(bitrev
)(uint32_t x
)
393 x
= ((x
>> 1) & 0x55555555u
) | ((x
<< 1) & 0xaaaaaaaau
);
394 x
= ((x
>> 2) & 0x33333333u
) | ((x
<< 2) & 0xccccccccu
);
395 x
= ((x
>> 4) & 0x0f0f0f0fu
) | ((x
<< 4) & 0xf0f0f0f0u
);
399 uint32_t HELPER(ff1
)(uint32_t x
)
407 uint32_t HELPER(sats
)(uint32_t val
, uint32_t ccr
)
409 /* The result has the opposite sign to the original value. */
411 val
= (((int32_t)val
) >> 31) ^ SIGNBIT
;
415 uint32_t HELPER(subx_cc
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
420 old_flags
= env
->cc_dest
;
422 env
->cc_x
= (op1
<= op2
);
423 env
->cc_op
= CC_OP_SUBX
;
424 res
= op1
- (op2
+ 1);
426 env
->cc_x
= (op1
< op2
);
427 env
->cc_op
= CC_OP_SUB
;
432 cpu_m68k_flush_flags(env
, env
->cc_op
);
434 env
->cc_dest
&= (old_flags
| ~CCF_Z
);
438 uint32_t HELPER(addx_cc
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
443 old_flags
= env
->cc_dest
;
446 env
->cc_x
= (res
<= op2
);
447 env
->cc_op
= CC_OP_ADDX
;
450 env
->cc_x
= (res
< op2
);
451 env
->cc_op
= CC_OP_ADD
;
455 cpu_m68k_flush_flags(env
, env
->cc_op
);
457 env
->cc_dest
&= (old_flags
| ~CCF_Z
);
461 uint32_t HELPER(xflag_lt
)(uint32_t a
, uint32_t b
)
466 void HELPER(set_sr
)(CPUState
*env
, uint32_t val
)
468 env
->sr
= val
& 0xffff;
472 uint32_t HELPER(shl_cc
)(CPUState
*env
, uint32_t val
, uint32_t shift
)
480 cf
= env
->cc_src
& CCF_C
;
481 } else if (shift
< 32) {
482 result
= val
<< shift
;
483 cf
= (val
>> (32 - shift
)) & 1;
484 } else if (shift
== 32) {
487 } else /* shift > 32 */ {
492 env
->cc_x
= (cf
!= 0);
493 env
->cc_dest
= result
;
497 uint32_t HELPER(shr_cc
)(CPUState
*env
, uint32_t val
, uint32_t shift
)
505 cf
= env
->cc_src
& CCF_C
;
506 } else if (shift
< 32) {
507 result
= val
>> shift
;
508 cf
= (val
>> (shift
- 1)) & 1;
509 } else if (shift
== 32) {
512 } else /* shift > 32 */ {
517 env
->cc_x
= (cf
!= 0);
518 env
->cc_dest
= result
;
522 uint32_t HELPER(sar_cc
)(CPUState
*env
, uint32_t val
, uint32_t shift
)
530 cf
= (env
->cc_src
& CCF_C
) != 0;
531 } else if (shift
< 32) {
532 result
= (int32_t)val
>> shift
;
533 cf
= (val
>> (shift
- 1)) & 1;
534 } else /* shift >= 32 */ {
535 result
= (int32_t)val
>> 31;
540 env
->cc_dest
= result
;
545 uint32_t HELPER(f64_to_i32
)(CPUState
*env
, float64 val
)
547 return float64_to_int32(val
, &env
->fp_status
);
550 float32
HELPER(f64_to_f32
)(CPUState
*env
, float64 val
)
552 return float64_to_float32(val
, &env
->fp_status
);
555 float64
HELPER(i32_to_f64
)(CPUState
*env
, uint32_t val
)
557 return int32_to_float64(val
, &env
->fp_status
);
560 float64
HELPER(f32_to_f64
)(CPUState
*env
, float32 val
)
562 return float32_to_float64(val
, &env
->fp_status
);
565 float64
HELPER(iround_f64
)(CPUState
*env
, float64 val
)
567 return float64_round_to_int(val
, &env
->fp_status
);
570 float64
HELPER(itrunc_f64
)(CPUState
*env
, float64 val
)
572 return float64_trunc_to_int(val
, &env
->fp_status
);
575 float64
HELPER(sqrt_f64
)(CPUState
*env
, float64 val
)
577 return float64_sqrt(val
, &env
->fp_status
);
580 float64
HELPER(abs_f64
)(float64 val
)
582 return float64_abs(val
);
585 float64
HELPER(chs_f64
)(float64 val
)
587 return float64_chs(val
);
590 float64
HELPER(add_f64
)(CPUState
*env
, float64 a
, float64 b
)
592 return float64_add(a
, b
, &env
->fp_status
);
595 float64
HELPER(sub_f64
)(CPUState
*env
, float64 a
, float64 b
)
597 return float64_sub(a
, b
, &env
->fp_status
);
600 float64
HELPER(mul_f64
)(CPUState
*env
, float64 a
, float64 b
)
602 return float64_mul(a
, b
, &env
->fp_status
);
605 float64
HELPER(div_f64
)(CPUState
*env
, float64 a
, float64 b
)
607 return float64_div(a
, b
, &env
->fp_status
);
610 float64
HELPER(sub_cmp_f64
)(CPUState
*env
, float64 a
, float64 b
)
612 /* ??? This may incorrectly raise exceptions. */
613 /* ??? Should flush denormals to zero. */
615 res
= float64_sub(a
, b
, &env
->fp_status
);
616 if (float64_is_nan(res
)) {
617 /* +/-inf compares equal against itself, but sub returns nan. */
618 if (!float64_is_nan(a
)
619 && !float64_is_nan(b
)) {
621 if (float64_lt_quiet(a
, res
, &env
->fp_status
))
622 res
= float64_chs(res
);
628 uint32_t HELPER(compare_f64
)(CPUState
*env
, float64 val
)
630 return float64_compare_quiet(val
, float64_zero
, &env
->fp_status
);
634 /* FIXME: The MAC unit implementation is a bit of a mess. Some helpers
635 take values, others take register numbers and manipulate the contents
637 void HELPER(mac_move
)(CPUState
*env
, uint32_t dest
, uint32_t src
)
640 env
->macc
[dest
] = env
->macc
[src
];
641 mask
= MACSR_PAV0
<< dest
;
642 if (env
->macsr
& (MACSR_PAV0
<< src
))
648 uint64_t HELPER(macmuls
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
653 product
= (uint64_t)op1
* op2
;
654 res
= (product
<< 24) >> 24;
655 if (res
!= product
) {
656 env
->macsr
|= MACSR_V
;
657 if (env
->macsr
& MACSR_OMC
) {
658 /* Make sure the accumulate operation overflows. */
668 uint64_t HELPER(macmulu
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
672 product
= (uint64_t)op1
* op2
;
673 if (product
& (0xffffffull
<< 40)) {
674 env
->macsr
|= MACSR_V
;
675 if (env
->macsr
& MACSR_OMC
) {
676 /* Make sure the accumulate operation overflows. */
679 product
&= ((1ull << 40) - 1);
685 uint64_t HELPER(macmulf
)(CPUState
*env
, uint32_t op1
, uint32_t op2
)
690 product
= (uint64_t)op1
* op2
;
691 if (env
->macsr
& MACSR_RT
) {
692 remainder
= product
& 0xffffff;
694 if (remainder
> 0x800000)
696 else if (remainder
== 0x800000)
697 product
+= (product
& 1);
704 void HELPER(macsats
)(CPUState
*env
, uint32_t acc
)
708 tmp
= env
->macc
[acc
];
709 result
= ((tmp
<< 16) >> 16);
711 env
->macsr
|= MACSR_V
;
713 if (env
->macsr
& MACSR_V
) {
714 env
->macsr
|= MACSR_PAV0
<< acc
;
715 if (env
->macsr
& MACSR_OMC
) {
716 /* The result is saturated to 32 bits, despite overflow occuring
717 at 48 bits. Seems weird, but that's what the hardware docs
719 result
= (result
>> 63) ^ 0x7fffffff;
722 env
->macc
[acc
] = result
;
725 void HELPER(macsatu
)(CPUState
*env
, uint32_t acc
)
729 val
= env
->macc
[acc
];
730 if (val
& (0xffffull
<< 48)) {
731 env
->macsr
|= MACSR_V
;
733 if (env
->macsr
& MACSR_V
) {
734 env
->macsr
|= MACSR_PAV0
<< acc
;
735 if (env
->macsr
& MACSR_OMC
) {
736 if (val
> (1ull << 53))
739 val
= (1ull << 48) - 1;
741 val
&= ((1ull << 48) - 1);
744 env
->macc
[acc
] = val
;
747 void HELPER(macsatf
)(CPUState
*env
, uint32_t acc
)
752 sum
= env
->macc
[acc
];
753 result
= (sum
<< 16) >> 16;
755 env
->macsr
|= MACSR_V
;
757 if (env
->macsr
& MACSR_V
) {
758 env
->macsr
|= MACSR_PAV0
<< acc
;
759 if (env
->macsr
& MACSR_OMC
) {
760 result
= (result
>> 63) ^ 0x7fffffffffffll
;
763 env
->macc
[acc
] = result
;
766 void HELPER(mac_set_flags
)(CPUState
*env
, uint32_t acc
)
769 val
= env
->macc
[acc
];
771 env
->macsr
|= MACSR_Z
;
772 else if (val
& (1ull << 47));
773 env
->macsr
|= MACSR_N
;
774 if (env
->macsr
& (MACSR_PAV0
<< acc
)) {
775 env
->macsr
|= MACSR_V
;
777 if (env
->macsr
& MACSR_FI
) {
778 val
= ((int64_t)val
) >> 40;
779 if (val
!= 0 && val
!= -1)
780 env
->macsr
|= MACSR_EV
;
781 } else if (env
->macsr
& MACSR_SU
) {
782 val
= ((int64_t)val
) >> 32;
783 if (val
!= 0 && val
!= -1)
784 env
->macsr
|= MACSR_EV
;
786 if ((val
>> 32) != 0)
787 env
->macsr
|= MACSR_EV
;
791 void HELPER(flush_flags
)(CPUState
*env
, uint32_t cc_op
)
793 cpu_m68k_flush_flags(env
, cc_op
);
796 uint32_t HELPER(get_macf
)(CPUState
*env
, uint64_t val
)
801 if (env
->macsr
& MACSR_SU
) {
802 /* 16-bit rounding. */
803 rem
= val
& 0xffffff;
804 val
= (val
>> 24) & 0xffffu
;
807 else if (rem
== 0x800000)
809 } else if (env
->macsr
& MACSR_RT
) {
810 /* 32-bit rounding. */
815 else if (rem
== 0x80)
821 if (env
->macsr
& MACSR_OMC
) {
823 if (env
->macsr
& MACSR_SU
) {
824 if (val
!= (uint16_t) val
) {
825 result
= ((val
>> 63) ^ 0x7fff) & 0xffff;
827 result
= val
& 0xffff;
830 if (val
!= (uint32_t)val
) {
831 result
= ((uint32_t)(val
>> 63) & 0x7fffffff);
833 result
= (uint32_t)val
;
838 if (env
->macsr
& MACSR_SU
) {
839 result
= val
& 0xffff;
841 result
= (uint32_t)val
;
847 uint32_t HELPER(get_macs
)(uint64_t val
)
849 if (val
== (int32_t)val
) {
852 return (val
>> 61) ^ ~SIGNBIT
;
856 uint32_t HELPER(get_macu
)(uint64_t val
)
858 if ((val
>> 32) == 0) {
859 return (uint32_t)val
;
865 uint32_t HELPER(get_mac_extf
)(CPUState
*env
, uint32_t acc
)
868 val
= env
->macc
[acc
] & 0x00ff;
869 val
= (env
->macc
[acc
] >> 32) & 0xff00;
870 val
|= (env
->macc
[acc
+ 1] << 16) & 0x00ff0000;
871 val
|= (env
->macc
[acc
+ 1] >> 16) & 0xff000000;
875 uint32_t HELPER(get_mac_exti
)(CPUState
*env
, uint32_t acc
)
878 val
= (env
->macc
[acc
] >> 32) & 0xffff;
879 val
|= (env
->macc
[acc
+ 1] >> 16) & 0xffff0000;
883 void HELPER(set_mac_extf
)(CPUState
*env
, uint32_t val
, uint32_t acc
)
887 res
= env
->macc
[acc
] & 0xffffffff00ull
;
888 tmp
= (int16_t)(val
& 0xff00);
889 res
|= ((int64_t)tmp
) << 32;
891 env
->macc
[acc
] = res
;
892 res
= env
->macc
[acc
+ 1] & 0xffffffff00ull
;
893 tmp
= (val
& 0xff000000);
894 res
|= ((int64_t)tmp
) << 16;
895 res
|= (val
>> 16) & 0xff;
896 env
->macc
[acc
+ 1] = res
;
899 void HELPER(set_mac_exts
)(CPUState
*env
, uint32_t val
, uint32_t acc
)
903 res
= (uint32_t)env
->macc
[acc
];
905 res
|= ((int64_t)tmp
) << 32;
906 env
->macc
[acc
] = res
;
907 res
= (uint32_t)env
->macc
[acc
+ 1];
908 tmp
= val
& 0xffff0000;
909 res
|= (int64_t)tmp
<< 16;
910 env
->macc
[acc
+ 1] = res
;
913 void HELPER(set_mac_extu
)(CPUState
*env
, uint32_t val
, uint32_t acc
)
916 res
= (uint32_t)env
->macc
[acc
];
917 res
|= ((uint64_t)(val
& 0xffff)) << 32;
918 env
->macc
[acc
] = res
;
919 res
= (uint32_t)env
->macc
[acc
+ 1];
920 res
|= (uint64_t)(val
& 0xffff0000) << 16;
921 env
->macc
[acc
+ 1] = res
;