Unbreak large mem support by removing kqemu
[qemu-kvm/markmc.git] / hw / ppc4xx_devs.c
blob0b1c93b8021cb47432e556875506f46658758089
1 /*
2 * QEMU PowerPC 4xx embedded processors shared devices emulation
4 * Copyright (c) 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "ppc.h"
26 #include "ppc4xx.h"
27 #include "sysemu.h"
28 #include "qemu-log.h"
30 //#define DEBUG_MMIO
31 //#define DEBUG_UNASSIGNED
32 #define DEBUG_UIC
35 #ifdef DEBUG_UIC
36 # define LOG_UIC(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
37 #else
38 # define LOG_UIC(...) do { } while (0)
39 #endif
41 /*****************************************************************************/
42 /* Generic PowerPC 4xx processor instanciation */
43 CPUState *ppc4xx_init (const char *cpu_model,
44 clk_setup_t *cpu_clk, clk_setup_t *tb_clk,
45 uint32_t sysclk)
47 CPUState *env;
49 /* init CPUs */
50 env = cpu_init(cpu_model);
51 if (!env) {
52 fprintf(stderr, "Unable to find PowerPC %s CPU definition\n",
53 cpu_model);
54 exit(1);
56 cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */
57 cpu_clk->opaque = env;
58 /* Set time-base frequency to sysclk */
59 tb_clk->cb = ppc_emb_timers_init(env, sysclk);
60 tb_clk->opaque = env;
61 ppc_dcr_init(env, NULL, NULL);
62 /* Register qemu callbacks */
63 qemu_register_reset(&cpu_ppc_reset, env);
65 return env;
68 /*****************************************************************************/
69 /* "Universal" Interrupt controller */
70 enum {
71 DCR_UICSR = 0x000,
72 DCR_UICSRS = 0x001,
73 DCR_UICER = 0x002,
74 DCR_UICCR = 0x003,
75 DCR_UICPR = 0x004,
76 DCR_UICTR = 0x005,
77 DCR_UICMSR = 0x006,
78 DCR_UICVR = 0x007,
79 DCR_UICVCR = 0x008,
80 DCR_UICMAX = 0x009,
83 #define UIC_MAX_IRQ 32
84 typedef struct ppcuic_t ppcuic_t;
85 struct ppcuic_t {
86 uint32_t dcr_base;
87 int use_vectors;
88 uint32_t level; /* Remembers the state of level-triggered interrupts. */
89 uint32_t uicsr; /* Status register */
90 uint32_t uicer; /* Enable register */
91 uint32_t uiccr; /* Critical register */
92 uint32_t uicpr; /* Polarity register */
93 uint32_t uictr; /* Triggering register */
94 uint32_t uicvcr; /* Vector configuration register */
95 uint32_t uicvr;
96 qemu_irq *irqs;
99 static void ppcuic_trigger_irq (ppcuic_t *uic)
101 uint32_t ir, cr;
102 int start, end, inc, i;
104 /* Trigger interrupt if any is pending */
105 ir = uic->uicsr & uic->uicer & (~uic->uiccr);
106 cr = uic->uicsr & uic->uicer & uic->uiccr;
107 LOG_UIC("%s: uicsr %08" PRIx32 " uicer %08" PRIx32
108 " uiccr %08" PRIx32 "\n"
109 " %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n",
110 __func__, uic->uicsr, uic->uicer, uic->uiccr,
111 uic->uicsr & uic->uicer, ir, cr);
112 if (ir != 0x0000000) {
113 LOG_UIC("Raise UIC interrupt\n");
114 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]);
115 } else {
116 LOG_UIC("Lower UIC interrupt\n");
117 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]);
119 /* Trigger critical interrupt if any is pending and update vector */
120 if (cr != 0x0000000) {
121 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]);
122 if (uic->use_vectors) {
123 /* Compute critical IRQ vector */
124 if (uic->uicvcr & 1) {
125 start = 31;
126 end = 0;
127 inc = -1;
128 } else {
129 start = 0;
130 end = 31;
131 inc = 1;
133 uic->uicvr = uic->uicvcr & 0xFFFFFFFC;
134 for (i = start; i <= end; i += inc) {
135 if (cr & (1 << i)) {
136 uic->uicvr += (i - start) * 512 * inc;
137 break;
141 LOG_UIC("Raise UIC critical interrupt - "
142 "vector %08" PRIx32 "\n", uic->uicvr);
143 } else {
144 LOG_UIC("Lower UIC critical interrupt\n");
145 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]);
146 uic->uicvr = 0x00000000;
150 static void ppcuic_set_irq (void *opaque, int irq_num, int level)
152 ppcuic_t *uic;
153 uint32_t mask, sr;
155 uic = opaque;
156 mask = 1 << (31-irq_num);
157 LOG_UIC("%s: irq %d level %d uicsr %08" PRIx32
158 " mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n",
159 __func__, irq_num, level,
160 uic->uicsr, mask, uic->uicsr & mask, level << irq_num);
161 if (irq_num < 0 || irq_num > 31)
162 return;
163 sr = uic->uicsr;
165 /* Update status register */
166 if (uic->uictr & mask) {
167 /* Edge sensitive interrupt */
168 if (level == 1)
169 uic->uicsr |= mask;
170 } else {
171 /* Level sensitive interrupt */
172 if (level == 1) {
173 uic->uicsr |= mask;
174 uic->level |= mask;
175 } else {
176 uic->uicsr &= ~mask;
177 uic->level &= ~mask;
180 LOG_UIC("%s: irq %d level %d sr %" PRIx32 " => "
181 "%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr);
182 if (sr != uic->uicsr)
183 ppcuic_trigger_irq(uic);
186 static target_ulong dcr_read_uic (void *opaque, int dcrn)
188 ppcuic_t *uic;
189 target_ulong ret;
191 uic = opaque;
192 dcrn -= uic->dcr_base;
193 switch (dcrn) {
194 case DCR_UICSR:
195 case DCR_UICSRS:
196 ret = uic->uicsr;
197 break;
198 case DCR_UICER:
199 ret = uic->uicer;
200 break;
201 case DCR_UICCR:
202 ret = uic->uiccr;
203 break;
204 case DCR_UICPR:
205 ret = uic->uicpr;
206 break;
207 case DCR_UICTR:
208 ret = uic->uictr;
209 break;
210 case DCR_UICMSR:
211 ret = uic->uicsr & uic->uicer;
212 break;
213 case DCR_UICVR:
214 if (!uic->use_vectors)
215 goto no_read;
216 ret = uic->uicvr;
217 break;
218 case DCR_UICVCR:
219 if (!uic->use_vectors)
220 goto no_read;
221 ret = uic->uicvcr;
222 break;
223 default:
224 no_read:
225 ret = 0x00000000;
226 break;
229 return ret;
232 static void dcr_write_uic (void *opaque, int dcrn, target_ulong val)
234 ppcuic_t *uic;
236 uic = opaque;
237 dcrn -= uic->dcr_base;
238 LOG_UIC("%s: dcr %d val " TARGET_FMT_lx "\n", __func__, dcrn, val);
239 switch (dcrn) {
240 case DCR_UICSR:
241 uic->uicsr &= ~val;
242 uic->uicsr |= uic->level;
243 ppcuic_trigger_irq(uic);
244 break;
245 case DCR_UICSRS:
246 uic->uicsr |= val;
247 ppcuic_trigger_irq(uic);
248 break;
249 case DCR_UICER:
250 uic->uicer = val;
251 ppcuic_trigger_irq(uic);
252 break;
253 case DCR_UICCR:
254 uic->uiccr = val;
255 ppcuic_trigger_irq(uic);
256 break;
257 case DCR_UICPR:
258 uic->uicpr = val;
259 break;
260 case DCR_UICTR:
261 uic->uictr = val;
262 ppcuic_trigger_irq(uic);
263 break;
264 case DCR_UICMSR:
265 break;
266 case DCR_UICVR:
267 break;
268 case DCR_UICVCR:
269 uic->uicvcr = val & 0xFFFFFFFD;
270 ppcuic_trigger_irq(uic);
271 break;
275 static void ppcuic_reset (void *opaque)
277 ppcuic_t *uic;
279 uic = opaque;
280 uic->uiccr = 0x00000000;
281 uic->uicer = 0x00000000;
282 uic->uicpr = 0x00000000;
283 uic->uicsr = 0x00000000;
284 uic->uictr = 0x00000000;
285 if (uic->use_vectors) {
286 uic->uicvcr = 0x00000000;
287 uic->uicvr = 0x0000000;
291 qemu_irq *ppcuic_init (CPUState *env, qemu_irq *irqs,
292 uint32_t dcr_base, int has_ssr, int has_vr)
294 ppcuic_t *uic;
295 int i;
297 uic = qemu_mallocz(sizeof(ppcuic_t));
298 uic->dcr_base = dcr_base;
299 uic->irqs = irqs;
300 if (has_vr)
301 uic->use_vectors = 1;
302 for (i = 0; i < DCR_UICMAX; i++) {
303 ppc_dcr_register(env, dcr_base + i, uic,
304 &dcr_read_uic, &dcr_write_uic);
306 qemu_register_reset(ppcuic_reset, uic);
307 ppcuic_reset(uic);
309 return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ);
312 /*****************************************************************************/
313 /* SDRAM controller */
314 typedef struct ppc4xx_sdram_t ppc4xx_sdram_t;
315 struct ppc4xx_sdram_t {
316 uint32_t addr;
317 int nbanks;
318 target_phys_addr_t ram_bases[4];
319 target_phys_addr_t ram_sizes[4];
320 uint32_t besr0;
321 uint32_t besr1;
322 uint32_t bear;
323 uint32_t cfg;
324 uint32_t status;
325 uint32_t rtr;
326 uint32_t pmit;
327 uint32_t bcr[4];
328 uint32_t tr;
329 uint32_t ecccfg;
330 uint32_t eccesr;
331 qemu_irq irq;
334 enum {
335 SDRAM0_CFGADDR = 0x010,
336 SDRAM0_CFGDATA = 0x011,
339 /* XXX: TOFIX: some patches have made this code become inconsistent:
340 * there are type inconsistencies, mixing target_phys_addr_t, target_ulong
341 * and uint32_t
343 static uint32_t sdram_bcr (target_phys_addr_t ram_base,
344 target_phys_addr_t ram_size)
346 uint32_t bcr;
348 switch (ram_size) {
349 case (4 * 1024 * 1024):
350 bcr = 0x00000000;
351 break;
352 case (8 * 1024 * 1024):
353 bcr = 0x00020000;
354 break;
355 case (16 * 1024 * 1024):
356 bcr = 0x00040000;
357 break;
358 case (32 * 1024 * 1024):
359 bcr = 0x00060000;
360 break;
361 case (64 * 1024 * 1024):
362 bcr = 0x00080000;
363 break;
364 case (128 * 1024 * 1024):
365 bcr = 0x000A0000;
366 break;
367 case (256 * 1024 * 1024):
368 bcr = 0x000C0000;
369 break;
370 default:
371 printf("%s: invalid RAM size " TARGET_FMT_plx "\n", __func__,
372 ram_size);
373 return 0x00000000;
375 bcr |= ram_base & 0xFF800000;
376 bcr |= 1;
378 return bcr;
381 static inline target_phys_addr_t sdram_base(uint32_t bcr)
383 return bcr & 0xFF800000;
386 static target_ulong sdram_size (uint32_t bcr)
388 target_ulong size;
389 int sh;
391 sh = (bcr >> 17) & 0x7;
392 if (sh == 7)
393 size = -1;
394 else
395 size = (4 * 1024 * 1024) << sh;
397 return size;
400 static void sdram_set_bcr (uint32_t *bcrp, uint32_t bcr, int enabled)
402 if (*bcrp & 0x00000001) {
403 /* Unmap RAM */
404 #ifdef DEBUG_SDRAM
405 printf("%s: unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n",
406 __func__, sdram_base(*bcrp), sdram_size(*bcrp));
407 #endif
408 cpu_register_physical_memory(sdram_base(*bcrp), sdram_size(*bcrp),
409 IO_MEM_UNASSIGNED);
411 *bcrp = bcr & 0xFFDEE001;
412 if (enabled && (bcr & 0x00000001)) {
413 #ifdef DEBUG_SDRAM
414 printf("%s: Map RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n",
415 __func__, sdram_base(bcr), sdram_size(bcr));
416 #endif
417 cpu_register_physical_memory(sdram_base(bcr), sdram_size(bcr),
418 sdram_base(bcr) | IO_MEM_RAM);
422 static void sdram_map_bcr (ppc4xx_sdram_t *sdram)
424 int i;
426 for (i = 0; i < sdram->nbanks; i++) {
427 if (sdram->ram_sizes[i] != 0) {
428 sdram_set_bcr(&sdram->bcr[i],
429 sdram_bcr(sdram->ram_bases[i], sdram->ram_sizes[i]),
431 } else {
432 sdram_set_bcr(&sdram->bcr[i], 0x00000000, 0);
437 static void sdram_unmap_bcr (ppc4xx_sdram_t *sdram)
439 int i;
441 for (i = 0; i < sdram->nbanks; i++) {
442 #ifdef DEBUG_SDRAM
443 printf("%s: Unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n",
444 __func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i]));
445 #endif
446 cpu_register_physical_memory(sdram_base(sdram->bcr[i]),
447 sdram_size(sdram->bcr[i]),
448 IO_MEM_UNASSIGNED);
452 static target_ulong dcr_read_sdram (void *opaque, int dcrn)
454 ppc4xx_sdram_t *sdram;
455 target_ulong ret;
457 sdram = opaque;
458 switch (dcrn) {
459 case SDRAM0_CFGADDR:
460 ret = sdram->addr;
461 break;
462 case SDRAM0_CFGDATA:
463 switch (sdram->addr) {
464 case 0x00: /* SDRAM_BESR0 */
465 ret = sdram->besr0;
466 break;
467 case 0x08: /* SDRAM_BESR1 */
468 ret = sdram->besr1;
469 break;
470 case 0x10: /* SDRAM_BEAR */
471 ret = sdram->bear;
472 break;
473 case 0x20: /* SDRAM_CFG */
474 ret = sdram->cfg;
475 break;
476 case 0x24: /* SDRAM_STATUS */
477 ret = sdram->status;
478 break;
479 case 0x30: /* SDRAM_RTR */
480 ret = sdram->rtr;
481 break;
482 case 0x34: /* SDRAM_PMIT */
483 ret = sdram->pmit;
484 break;
485 case 0x40: /* SDRAM_B0CR */
486 ret = sdram->bcr[0];
487 break;
488 case 0x44: /* SDRAM_B1CR */
489 ret = sdram->bcr[1];
490 break;
491 case 0x48: /* SDRAM_B2CR */
492 ret = sdram->bcr[2];
493 break;
494 case 0x4C: /* SDRAM_B3CR */
495 ret = sdram->bcr[3];
496 break;
497 case 0x80: /* SDRAM_TR */
498 ret = -1; /* ? */
499 break;
500 case 0x94: /* SDRAM_ECCCFG */
501 ret = sdram->ecccfg;
502 break;
503 case 0x98: /* SDRAM_ECCESR */
504 ret = sdram->eccesr;
505 break;
506 default: /* Error */
507 ret = -1;
508 break;
510 break;
511 default:
512 /* Avoid gcc warning */
513 ret = 0x00000000;
514 break;
517 return ret;
520 static void dcr_write_sdram (void *opaque, int dcrn, target_ulong val)
522 ppc4xx_sdram_t *sdram;
524 sdram = opaque;
525 switch (dcrn) {
526 case SDRAM0_CFGADDR:
527 sdram->addr = val;
528 break;
529 case SDRAM0_CFGDATA:
530 switch (sdram->addr) {
531 case 0x00: /* SDRAM_BESR0 */
532 sdram->besr0 &= ~val;
533 break;
534 case 0x08: /* SDRAM_BESR1 */
535 sdram->besr1 &= ~val;
536 break;
537 case 0x10: /* SDRAM_BEAR */
538 sdram->bear = val;
539 break;
540 case 0x20: /* SDRAM_CFG */
541 val &= 0xFFE00000;
542 if (!(sdram->cfg & 0x80000000) && (val & 0x80000000)) {
543 #ifdef DEBUG_SDRAM
544 printf("%s: enable SDRAM controller\n", __func__);
545 #endif
546 /* validate all RAM mappings */
547 sdram_map_bcr(sdram);
548 sdram->status &= ~0x80000000;
549 } else if ((sdram->cfg & 0x80000000) && !(val & 0x80000000)) {
550 #ifdef DEBUG_SDRAM
551 printf("%s: disable SDRAM controller\n", __func__);
552 #endif
553 /* invalidate all RAM mappings */
554 sdram_unmap_bcr(sdram);
555 sdram->status |= 0x80000000;
557 if (!(sdram->cfg & 0x40000000) && (val & 0x40000000))
558 sdram->status |= 0x40000000;
559 else if ((sdram->cfg & 0x40000000) && !(val & 0x40000000))
560 sdram->status &= ~0x40000000;
561 sdram->cfg = val;
562 break;
563 case 0x24: /* SDRAM_STATUS */
564 /* Read-only register */
565 break;
566 case 0x30: /* SDRAM_RTR */
567 sdram->rtr = val & 0x3FF80000;
568 break;
569 case 0x34: /* SDRAM_PMIT */
570 sdram->pmit = (val & 0xF8000000) | 0x07C00000;
571 break;
572 case 0x40: /* SDRAM_B0CR */
573 sdram_set_bcr(&sdram->bcr[0], val, sdram->cfg & 0x80000000);
574 break;
575 case 0x44: /* SDRAM_B1CR */
576 sdram_set_bcr(&sdram->bcr[1], val, sdram->cfg & 0x80000000);
577 break;
578 case 0x48: /* SDRAM_B2CR */
579 sdram_set_bcr(&sdram->bcr[2], val, sdram->cfg & 0x80000000);
580 break;
581 case 0x4C: /* SDRAM_B3CR */
582 sdram_set_bcr(&sdram->bcr[3], val, sdram->cfg & 0x80000000);
583 break;
584 case 0x80: /* SDRAM_TR */
585 sdram->tr = val & 0x018FC01F;
586 break;
587 case 0x94: /* SDRAM_ECCCFG */
588 sdram->ecccfg = val & 0x00F00000;
589 break;
590 case 0x98: /* SDRAM_ECCESR */
591 val &= 0xFFF0F000;
592 if (sdram->eccesr == 0 && val != 0)
593 qemu_irq_raise(sdram->irq);
594 else if (sdram->eccesr != 0 && val == 0)
595 qemu_irq_lower(sdram->irq);
596 sdram->eccesr = val;
597 break;
598 default: /* Error */
599 break;
601 break;
605 static void sdram_reset (void *opaque)
607 ppc4xx_sdram_t *sdram;
609 sdram = opaque;
610 sdram->addr = 0x00000000;
611 sdram->bear = 0x00000000;
612 sdram->besr0 = 0x00000000; /* No error */
613 sdram->besr1 = 0x00000000; /* No error */
614 sdram->cfg = 0x00000000;
615 sdram->ecccfg = 0x00000000; /* No ECC */
616 sdram->eccesr = 0x00000000; /* No error */
617 sdram->pmit = 0x07C00000;
618 sdram->rtr = 0x05F00000;
619 sdram->tr = 0x00854009;
620 /* We pre-initialize RAM banks */
621 sdram->status = 0x00000000;
622 sdram->cfg = 0x00800000;
623 sdram_unmap_bcr(sdram);
626 void ppc4xx_sdram_init (CPUState *env, qemu_irq irq, int nbanks,
627 target_phys_addr_t *ram_bases,
628 target_phys_addr_t *ram_sizes,
629 int do_init)
631 ppc4xx_sdram_t *sdram;
633 sdram = qemu_mallocz(sizeof(ppc4xx_sdram_t));
634 sdram->irq = irq;
635 sdram->nbanks = nbanks;
636 memset(sdram->ram_bases, 0, 4 * sizeof(target_phys_addr_t));
637 memcpy(sdram->ram_bases, ram_bases,
638 nbanks * sizeof(target_phys_addr_t));
639 memset(sdram->ram_sizes, 0, 4 * sizeof(target_phys_addr_t));
640 memcpy(sdram->ram_sizes, ram_sizes,
641 nbanks * sizeof(target_phys_addr_t));
642 sdram_reset(sdram);
643 qemu_register_reset(&sdram_reset, sdram);
644 ppc_dcr_register(env, SDRAM0_CFGADDR,
645 sdram, &dcr_read_sdram, &dcr_write_sdram);
646 ppc_dcr_register(env, SDRAM0_CFGDATA,
647 sdram, &dcr_read_sdram, &dcr_write_sdram);
648 if (do_init)
649 sdram_map_bcr(sdram);
652 /* Fill in consecutive SDRAM banks with 'ram_size' bytes of memory.
654 * sdram_bank_sizes[] must be 0-terminated.
656 * The 4xx SDRAM controller supports a small number of banks, and each bank
657 * must be one of a small set of sizes. The number of banks and the supported
658 * sizes varies by SoC. */
659 ram_addr_t ppc4xx_sdram_adjust(ram_addr_t ram_size, int nr_banks,
660 target_phys_addr_t ram_bases[],
661 target_phys_addr_t ram_sizes[],
662 const unsigned int sdram_bank_sizes[])
664 ram_addr_t size_left = ram_size;
665 int i;
666 int j;
668 for (i = 0; i < nr_banks; i++) {
669 for (j = 0; sdram_bank_sizes[j] != 0; j++) {
670 unsigned int bank_size = sdram_bank_sizes[j];
672 if (bank_size <= size_left) {
673 ram_bases[i] = qemu_ram_alloc(bank_size);
674 ram_sizes[i] = bank_size;
675 size_left -= bank_size;
676 break;
680 if (!size_left) {
681 /* No need to use the remaining banks. */
682 break;
686 ram_size -= size_left;
687 if (ram_size)
688 printf("Truncating memory to %d MiB to fit SDRAM controller limits.\n",
689 (int)(ram_size >> 20));
691 return ram_size;