Merge branch 'master' of git://git.sv.gnu.org/qemu
[qemu-kvm/markmc.git] / gdbstub.c
blob834e39cdbb804176140c0263babd5237dd383397
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "monitor.h"
34 #include "qemu-char.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #endif
38 #include "qemu-kvm.h"
40 #define MAX_PACKET_LENGTH 4096
42 #include "qemu_socket.h"
43 #include "kvm.h"
46 enum {
47 GDB_SIGNAL_0 = 0,
48 GDB_SIGNAL_INT = 2,
49 GDB_SIGNAL_TRAP = 5,
50 GDB_SIGNAL_UNKNOWN = 143
53 #ifdef CONFIG_USER_ONLY
55 /* Map target signal numbers to GDB protocol signal numbers and vice
56 * versa. For user emulation's currently supported systems, we can
57 * assume most signals are defined.
60 static int gdb_signal_table[] = {
62 TARGET_SIGHUP,
63 TARGET_SIGINT,
64 TARGET_SIGQUIT,
65 TARGET_SIGILL,
66 TARGET_SIGTRAP,
67 TARGET_SIGABRT,
68 -1, /* SIGEMT */
69 TARGET_SIGFPE,
70 TARGET_SIGKILL,
71 TARGET_SIGBUS,
72 TARGET_SIGSEGV,
73 TARGET_SIGSYS,
74 TARGET_SIGPIPE,
75 TARGET_SIGALRM,
76 TARGET_SIGTERM,
77 TARGET_SIGURG,
78 TARGET_SIGSTOP,
79 TARGET_SIGTSTP,
80 TARGET_SIGCONT,
81 TARGET_SIGCHLD,
82 TARGET_SIGTTIN,
83 TARGET_SIGTTOU,
84 TARGET_SIGIO,
85 TARGET_SIGXCPU,
86 TARGET_SIGXFSZ,
87 TARGET_SIGVTALRM,
88 TARGET_SIGPROF,
89 TARGET_SIGWINCH,
90 -1, /* SIGLOST */
91 TARGET_SIGUSR1,
92 TARGET_SIGUSR2,
93 #ifdef TARGET_SIGPWR
94 TARGET_SIGPWR,
95 #else
96 -1,
97 #endif
98 -1, /* SIGPOLL */
99 -1,
110 #ifdef __SIGRTMIN
111 __SIGRTMIN + 1,
112 __SIGRTMIN + 2,
113 __SIGRTMIN + 3,
114 __SIGRTMIN + 4,
115 __SIGRTMIN + 5,
116 __SIGRTMIN + 6,
117 __SIGRTMIN + 7,
118 __SIGRTMIN + 8,
119 __SIGRTMIN + 9,
120 __SIGRTMIN + 10,
121 __SIGRTMIN + 11,
122 __SIGRTMIN + 12,
123 __SIGRTMIN + 13,
124 __SIGRTMIN + 14,
125 __SIGRTMIN + 15,
126 __SIGRTMIN + 16,
127 __SIGRTMIN + 17,
128 __SIGRTMIN + 18,
129 __SIGRTMIN + 19,
130 __SIGRTMIN + 20,
131 __SIGRTMIN + 21,
132 __SIGRTMIN + 22,
133 __SIGRTMIN + 23,
134 __SIGRTMIN + 24,
135 __SIGRTMIN + 25,
136 __SIGRTMIN + 26,
137 __SIGRTMIN + 27,
138 __SIGRTMIN + 28,
139 __SIGRTMIN + 29,
140 __SIGRTMIN + 30,
141 __SIGRTMIN + 31,
142 -1, /* SIGCANCEL */
143 __SIGRTMIN,
144 __SIGRTMIN + 32,
145 __SIGRTMIN + 33,
146 __SIGRTMIN + 34,
147 __SIGRTMIN + 35,
148 __SIGRTMIN + 36,
149 __SIGRTMIN + 37,
150 __SIGRTMIN + 38,
151 __SIGRTMIN + 39,
152 __SIGRTMIN + 40,
153 __SIGRTMIN + 41,
154 __SIGRTMIN + 42,
155 __SIGRTMIN + 43,
156 __SIGRTMIN + 44,
157 __SIGRTMIN + 45,
158 __SIGRTMIN + 46,
159 __SIGRTMIN + 47,
160 __SIGRTMIN + 48,
161 __SIGRTMIN + 49,
162 __SIGRTMIN + 50,
163 __SIGRTMIN + 51,
164 __SIGRTMIN + 52,
165 __SIGRTMIN + 53,
166 __SIGRTMIN + 54,
167 __SIGRTMIN + 55,
168 __SIGRTMIN + 56,
169 __SIGRTMIN + 57,
170 __SIGRTMIN + 58,
171 __SIGRTMIN + 59,
172 __SIGRTMIN + 60,
173 __SIGRTMIN + 61,
174 __SIGRTMIN + 62,
175 __SIGRTMIN + 63,
176 __SIGRTMIN + 64,
177 __SIGRTMIN + 65,
178 __SIGRTMIN + 66,
179 __SIGRTMIN + 67,
180 __SIGRTMIN + 68,
181 __SIGRTMIN + 69,
182 __SIGRTMIN + 70,
183 __SIGRTMIN + 71,
184 __SIGRTMIN + 72,
185 __SIGRTMIN + 73,
186 __SIGRTMIN + 74,
187 __SIGRTMIN + 75,
188 __SIGRTMIN + 76,
189 __SIGRTMIN + 77,
190 __SIGRTMIN + 78,
191 __SIGRTMIN + 79,
192 __SIGRTMIN + 80,
193 __SIGRTMIN + 81,
194 __SIGRTMIN + 82,
195 __SIGRTMIN + 83,
196 __SIGRTMIN + 84,
197 __SIGRTMIN + 85,
198 __SIGRTMIN + 86,
199 __SIGRTMIN + 87,
200 __SIGRTMIN + 88,
201 __SIGRTMIN + 89,
202 __SIGRTMIN + 90,
203 __SIGRTMIN + 91,
204 __SIGRTMIN + 92,
205 __SIGRTMIN + 93,
206 __SIGRTMIN + 94,
207 __SIGRTMIN + 95,
208 -1, /* SIGINFO */
209 -1, /* UNKNOWN */
210 -1, /* DEFAULT */
217 #endif
219 #else
220 /* In system mode we only need SIGINT and SIGTRAP; other signals
221 are not yet supported. */
223 enum {
224 TARGET_SIGINT = 2,
225 TARGET_SIGTRAP = 5
228 static int gdb_signal_table[] = {
231 TARGET_SIGINT,
234 TARGET_SIGTRAP
236 #endif
238 #ifdef CONFIG_USER_ONLY
239 static int target_signal_to_gdb (int sig)
241 int i;
242 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
243 if (gdb_signal_table[i] == sig)
244 return i;
245 return GDB_SIGNAL_UNKNOWN;
247 #endif
249 static int gdb_signal_to_target (int sig)
251 if (sig < ARRAY_SIZE (gdb_signal_table))
252 return gdb_signal_table[sig];
253 else
254 return -1;
257 //#define DEBUG_GDB
259 typedef struct GDBRegisterState {
260 int base_reg;
261 int num_regs;
262 gdb_reg_cb get_reg;
263 gdb_reg_cb set_reg;
264 const char *xml;
265 struct GDBRegisterState *next;
266 } GDBRegisterState;
268 enum RSState {
269 RS_INACTIVE,
270 RS_IDLE,
271 RS_GETLINE,
272 RS_CHKSUM1,
273 RS_CHKSUM2,
274 RS_SYSCALL,
276 typedef struct GDBState {
277 CPUState *c_cpu; /* current CPU for step/continue ops */
278 CPUState *g_cpu; /* current CPU for other ops */
279 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
280 enum RSState state; /* parsing state */
281 char line_buf[MAX_PACKET_LENGTH];
282 int line_buf_index;
283 int line_csum;
284 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
285 int last_packet_len;
286 int signal;
287 #ifdef CONFIG_USER_ONLY
288 int fd;
289 int running_state;
290 #else
291 CharDriverState *chr;
292 CharDriverState *mon_chr;
293 #endif
294 } GDBState;
296 /* By default use no IRQs and no timers while single stepping so as to
297 * make single stepping like an ICE HW step.
299 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
301 static GDBState *gdbserver_state;
303 /* This is an ugly hack to cope with both new and old gdb.
304 If gdb sends qXfer:features:read then assume we're talking to a newish
305 gdb that understands target descriptions. */
306 static int gdb_has_xml;
308 #ifdef CONFIG_USER_ONLY
309 /* XXX: This is not thread safe. Do we care? */
310 static int gdbserver_fd = -1;
312 static int get_char(GDBState *s)
314 uint8_t ch;
315 int ret;
317 for(;;) {
318 ret = recv(s->fd, &ch, 1, 0);
319 if (ret < 0) {
320 if (errno == ECONNRESET)
321 s->fd = -1;
322 if (errno != EINTR && errno != EAGAIN)
323 return -1;
324 } else if (ret == 0) {
325 close(s->fd);
326 s->fd = -1;
327 return -1;
328 } else {
329 break;
332 return ch;
334 #endif
336 static gdb_syscall_complete_cb gdb_current_syscall_cb;
338 static enum {
339 GDB_SYS_UNKNOWN,
340 GDB_SYS_ENABLED,
341 GDB_SYS_DISABLED,
342 } gdb_syscall_mode;
344 /* If gdb is connected when the first semihosting syscall occurs then use
345 remote gdb syscalls. Otherwise use native file IO. */
346 int use_gdb_syscalls(void)
348 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
349 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
350 : GDB_SYS_DISABLED);
352 return gdb_syscall_mode == GDB_SYS_ENABLED;
355 /* Resume execution. */
356 static inline void gdb_continue(GDBState *s)
358 #ifdef CONFIG_USER_ONLY
359 s->running_state = 1;
360 #else
361 vm_start();
362 #endif
365 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
367 #ifdef CONFIG_USER_ONLY
368 int ret;
370 while (len > 0) {
371 ret = send(s->fd, buf, len, 0);
372 if (ret < 0) {
373 if (errno != EINTR && errno != EAGAIN)
374 return;
375 } else {
376 buf += ret;
377 len -= ret;
380 #else
381 qemu_chr_write(s->chr, buf, len);
382 #endif
385 static inline int fromhex(int v)
387 if (v >= '0' && v <= '9')
388 return v - '0';
389 else if (v >= 'A' && v <= 'F')
390 return v - 'A' + 10;
391 else if (v >= 'a' && v <= 'f')
392 return v - 'a' + 10;
393 else
394 return 0;
397 static inline int tohex(int v)
399 if (v < 10)
400 return v + '0';
401 else
402 return v - 10 + 'a';
405 static void memtohex(char *buf, const uint8_t *mem, int len)
407 int i, c;
408 char *q;
409 q = buf;
410 for(i = 0; i < len; i++) {
411 c = mem[i];
412 *q++ = tohex(c >> 4);
413 *q++ = tohex(c & 0xf);
415 *q = '\0';
418 static void hextomem(uint8_t *mem, const char *buf, int len)
420 int i;
422 for(i = 0; i < len; i++) {
423 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
424 buf += 2;
428 /* return -1 if error, 0 if OK */
429 static int put_packet_binary(GDBState *s, const char *buf, int len)
431 int csum, i;
432 uint8_t *p;
434 for(;;) {
435 p = s->last_packet;
436 *(p++) = '$';
437 memcpy(p, buf, len);
438 p += len;
439 csum = 0;
440 for(i = 0; i < len; i++) {
441 csum += buf[i];
443 *(p++) = '#';
444 *(p++) = tohex((csum >> 4) & 0xf);
445 *(p++) = tohex((csum) & 0xf);
447 s->last_packet_len = p - s->last_packet;
448 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
450 #ifdef CONFIG_USER_ONLY
451 i = get_char(s);
452 if (i < 0)
453 return -1;
454 if (i == '+')
455 break;
456 #else
457 break;
458 #endif
460 return 0;
463 /* return -1 if error, 0 if OK */
464 static int put_packet(GDBState *s, const char *buf)
466 #ifdef DEBUG_GDB
467 printf("reply='%s'\n", buf);
468 #endif
470 return put_packet_binary(s, buf, strlen(buf));
473 /* The GDB remote protocol transfers values in target byte order. This means
474 we can use the raw memory access routines to access the value buffer.
475 Conveniently, these also handle the case where the buffer is mis-aligned.
477 #define GET_REG8(val) do { \
478 stb_p(mem_buf, val); \
479 return 1; \
480 } while(0)
481 #define GET_REG16(val) do { \
482 stw_p(mem_buf, val); \
483 return 2; \
484 } while(0)
485 #define GET_REG32(val) do { \
486 stl_p(mem_buf, val); \
487 return 4; \
488 } while(0)
489 #define GET_REG64(val) do { \
490 stq_p(mem_buf, val); \
491 return 8; \
492 } while(0)
494 #if TARGET_LONG_BITS == 64
495 #define GET_REGL(val) GET_REG64(val)
496 #define ldtul_p(addr) ldq_p(addr)
497 #else
498 #define GET_REGL(val) GET_REG32(val)
499 #define ldtul_p(addr) ldl_p(addr)
500 #endif
502 #if defined(TARGET_I386)
504 #ifdef TARGET_X86_64
505 static const int gpr_map[16] = {
506 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
507 8, 9, 10, 11, 12, 13, 14, 15
509 #else
510 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
511 #endif
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
517 if (n < CPU_NB_REGS) {
518 GET_REGL(env->regs[gpr_map[n]]);
519 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
520 /* FIXME: byteswap float values. */
521 #ifdef USE_X86LDOUBLE
522 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
523 #else
524 memset(mem_buf, 0, 10);
525 #endif
526 return 10;
527 } else if (n >= CPU_NB_REGS + 24) {
528 n -= CPU_NB_REGS + 24;
529 if (n < CPU_NB_REGS) {
530 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
531 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
532 return 16;
533 } else if (n == CPU_NB_REGS) {
534 GET_REG32(env->mxcsr);
536 } else {
537 n -= CPU_NB_REGS;
538 switch (n) {
539 case 0: GET_REGL(env->eip);
540 case 1: GET_REG32(env->eflags);
541 case 2: GET_REG32(env->segs[R_CS].selector);
542 case 3: GET_REG32(env->segs[R_SS].selector);
543 case 4: GET_REG32(env->segs[R_DS].selector);
544 case 5: GET_REG32(env->segs[R_ES].selector);
545 case 6: GET_REG32(env->segs[R_FS].selector);
546 case 7: GET_REG32(env->segs[R_GS].selector);
547 /* 8...15 x87 regs. */
548 case 16: GET_REG32(env->fpuc);
549 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
550 case 18: GET_REG32(0); /* ftag */
551 case 19: GET_REG32(0); /* fiseg */
552 case 20: GET_REG32(0); /* fioff */
553 case 21: GET_REG32(0); /* foseg */
554 case 22: GET_REG32(0); /* fooff */
555 case 23: GET_REG32(0); /* fop */
556 /* 24+ xmm regs. */
559 return 0;
562 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
564 uint32_t tmp;
566 if (i < CPU_NB_REGS) {
567 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
568 return sizeof(target_ulong);
569 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
570 i -= CPU_NB_REGS + 8;
571 #ifdef USE_X86LDOUBLE
572 memcpy(&env->fpregs[i], mem_buf, 10);
573 #endif
574 return 10;
575 } else if (i >= CPU_NB_REGS + 24) {
576 i -= CPU_NB_REGS + 24;
577 if (i < CPU_NB_REGS) {
578 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
579 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
580 return 16;
581 } else if (i == CPU_NB_REGS) {
582 env->mxcsr = ldl_p(mem_buf);
583 return 4;
585 } else {
586 i -= CPU_NB_REGS;
587 switch (i) {
588 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
589 case 1: env->eflags = ldl_p(mem_buf); return 4;
590 #if defined(CONFIG_USER_ONLY)
591 #define LOAD_SEG(index, sreg)\
592 tmp = ldl_p(mem_buf);\
593 if (tmp != env->segs[sreg].selector)\
594 cpu_x86_load_seg(env, sreg, tmp);
595 #else
596 /* FIXME: Honor segment registers. Needs to avoid raising an exception
597 when the selector is invalid. */
598 #define LOAD_SEG(index, sreg) do {} while(0)
599 #endif
600 case 2: LOAD_SEG(10, R_CS); return 4;
601 case 3: LOAD_SEG(11, R_SS); return 4;
602 case 4: LOAD_SEG(12, R_DS); return 4;
603 case 5: LOAD_SEG(13, R_ES); return 4;
604 case 6: LOAD_SEG(14, R_FS); return 4;
605 case 7: LOAD_SEG(15, R_GS); return 4;
606 /* 8...15 x87 regs. */
607 case 16: env->fpuc = ldl_p(mem_buf); return 4;
608 case 17:
609 tmp = ldl_p(mem_buf);
610 env->fpstt = (tmp >> 11) & 7;
611 env->fpus = tmp & ~0x3800;
612 return 4;
613 case 18: /* ftag */ return 4;
614 case 19: /* fiseg */ return 4;
615 case 20: /* fioff */ return 4;
616 case 21: /* foseg */ return 4;
617 case 22: /* fooff */ return 4;
618 case 23: /* fop */ return 4;
619 /* 24+ xmm regs. */
622 /* Unrecognised register. */
623 return 0;
626 #elif defined (TARGET_PPC)
628 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
629 expects whatever the target description contains. Due to a
630 historical mishap the FP registers appear in between core integer
631 regs and PC, MSR, CR, and so forth. We hack round this by giving the
632 FP regs zero size when talking to a newer gdb. */
633 #define NUM_CORE_REGS 71
634 #if defined (TARGET_PPC64)
635 #define GDB_CORE_XML "power64-core.xml"
636 #else
637 #define GDB_CORE_XML "power-core.xml"
638 #endif
640 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
642 if (n < 32) {
643 /* gprs */
644 GET_REGL(env->gpr[n]);
645 } else if (n < 64) {
646 /* fprs */
647 if (gdb_has_xml)
648 return 0;
649 stfq_p(mem_buf, env->fpr[n-32]);
650 return 8;
651 } else {
652 switch (n) {
653 case 64: GET_REGL(env->nip);
654 case 65: GET_REGL(env->msr);
655 case 66:
657 uint32_t cr = 0;
658 int i;
659 for (i = 0; i < 8; i++)
660 cr |= env->crf[i] << (32 - ((i + 1) * 4));
661 GET_REG32(cr);
663 case 67: GET_REGL(env->lr);
664 case 68: GET_REGL(env->ctr);
665 case 69: GET_REGL(env->xer);
666 case 70:
668 if (gdb_has_xml)
669 return 0;
670 GET_REG32(0); /* fpscr */
674 return 0;
677 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
679 if (n < 32) {
680 /* gprs */
681 env->gpr[n] = ldtul_p(mem_buf);
682 return sizeof(target_ulong);
683 } else if (n < 64) {
684 /* fprs */
685 if (gdb_has_xml)
686 return 0;
687 env->fpr[n-32] = ldfq_p(mem_buf);
688 return 8;
689 } else {
690 switch (n) {
691 case 64:
692 env->nip = ldtul_p(mem_buf);
693 return sizeof(target_ulong);
694 case 65:
695 ppc_store_msr(env, ldtul_p(mem_buf));
696 return sizeof(target_ulong);
697 case 66:
699 uint32_t cr = ldl_p(mem_buf);
700 int i;
701 for (i = 0; i < 8; i++)
702 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
703 return 4;
705 case 67:
706 env->lr = ldtul_p(mem_buf);
707 return sizeof(target_ulong);
708 case 68:
709 env->ctr = ldtul_p(mem_buf);
710 return sizeof(target_ulong);
711 case 69:
712 env->xer = ldtul_p(mem_buf);
713 return sizeof(target_ulong);
714 case 70:
715 /* fpscr */
716 if (gdb_has_xml)
717 return 0;
718 return 4;
721 return 0;
724 #elif defined (TARGET_SPARC)
726 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
727 #define NUM_CORE_REGS 86
728 #else
729 #define NUM_CORE_REGS 72
730 #endif
732 #ifdef TARGET_ABI32
733 #define GET_REGA(val) GET_REG32(val)
734 #else
735 #define GET_REGA(val) GET_REGL(val)
736 #endif
738 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
740 if (n < 8) {
741 /* g0..g7 */
742 GET_REGA(env->gregs[n]);
744 if (n < 32) {
745 /* register window */
746 GET_REGA(env->regwptr[n - 8]);
748 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
749 if (n < 64) {
750 /* fprs */
751 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
753 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
754 switch (n) {
755 case 64: GET_REGA(env->y);
756 case 65: GET_REGA(GET_PSR(env));
757 case 66: GET_REGA(env->wim);
758 case 67: GET_REGA(env->tbr);
759 case 68: GET_REGA(env->pc);
760 case 69: GET_REGA(env->npc);
761 case 70: GET_REGA(env->fsr);
762 case 71: GET_REGA(0); /* csr */
763 default: GET_REGA(0);
765 #else
766 if (n < 64) {
767 /* f0-f31 */
768 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
770 if (n < 80) {
771 /* f32-f62 (double width, even numbers only) */
772 uint64_t val;
774 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
775 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
776 GET_REG64(val);
778 switch (n) {
779 case 80: GET_REGL(env->pc);
780 case 81: GET_REGL(env->npc);
781 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
782 ((env->asi & 0xff) << 24) |
783 ((env->pstate & 0xfff) << 8) |
784 GET_CWP64(env));
785 case 83: GET_REGL(env->fsr);
786 case 84: GET_REGL(env->fprs);
787 case 85: GET_REGL(env->y);
789 #endif
790 return 0;
793 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
795 #if defined(TARGET_ABI32)
796 abi_ulong tmp;
798 tmp = ldl_p(mem_buf);
799 #else
800 target_ulong tmp;
802 tmp = ldtul_p(mem_buf);
803 #endif
805 if (n < 8) {
806 /* g0..g7 */
807 env->gregs[n] = tmp;
808 } else if (n < 32) {
809 /* register window */
810 env->regwptr[n - 8] = tmp;
812 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
813 else if (n < 64) {
814 /* fprs */
815 *((uint32_t *)&env->fpr[n - 32]) = tmp;
816 } else {
817 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
818 switch (n) {
819 case 64: env->y = tmp; break;
820 case 65: PUT_PSR(env, tmp); break;
821 case 66: env->wim = tmp; break;
822 case 67: env->tbr = tmp; break;
823 case 68: env->pc = tmp; break;
824 case 69: env->npc = tmp; break;
825 case 70: env->fsr = tmp; break;
826 default: return 0;
829 return 4;
830 #else
831 else if (n < 64) {
832 /* f0-f31 */
833 env->fpr[n] = ldfl_p(mem_buf);
834 return 4;
835 } else if (n < 80) {
836 /* f32-f62 (double width, even numbers only) */
837 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
838 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
839 } else {
840 switch (n) {
841 case 80: env->pc = tmp; break;
842 case 81: env->npc = tmp; break;
843 case 82:
844 PUT_CCR(env, tmp >> 32);
845 env->asi = (tmp >> 24) & 0xff;
846 env->pstate = (tmp >> 8) & 0xfff;
847 PUT_CWP64(env, tmp & 0xff);
848 break;
849 case 83: env->fsr = tmp; break;
850 case 84: env->fprs = tmp; break;
851 case 85: env->y = tmp; break;
852 default: return 0;
855 return 8;
856 #endif
858 #elif defined (TARGET_ARM)
860 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
861 whatever the target description contains. Due to a historical mishap
862 the FPA registers appear in between core integer regs and the CPSR.
863 We hack round this by giving the FPA regs zero size when talking to a
864 newer gdb. */
865 #define NUM_CORE_REGS 26
866 #define GDB_CORE_XML "arm-core.xml"
868 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
870 if (n < 16) {
871 /* Core integer register. */
872 GET_REG32(env->regs[n]);
874 if (n < 24) {
875 /* FPA registers. */
876 if (gdb_has_xml)
877 return 0;
878 memset(mem_buf, 0, 12);
879 return 12;
881 switch (n) {
882 case 24:
883 /* FPA status register. */
884 if (gdb_has_xml)
885 return 0;
886 GET_REG32(0);
887 case 25:
888 /* CPSR */
889 GET_REG32(cpsr_read(env));
891 /* Unknown register. */
892 return 0;
895 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
897 uint32_t tmp;
899 tmp = ldl_p(mem_buf);
901 /* Mask out low bit of PC to workaround gdb bugs. This will probably
902 cause problems if we ever implement the Jazelle DBX extensions. */
903 if (n == 15)
904 tmp &= ~1;
906 if (n < 16) {
907 /* Core integer register. */
908 env->regs[n] = tmp;
909 return 4;
911 if (n < 24) { /* 16-23 */
912 /* FPA registers (ignored). */
913 if (gdb_has_xml)
914 return 0;
915 return 12;
917 switch (n) {
918 case 24:
919 /* FPA status register (ignored). */
920 if (gdb_has_xml)
921 return 0;
922 return 4;
923 case 25:
924 /* CPSR */
925 cpsr_write (env, tmp, 0xffffffff);
926 return 4;
928 /* Unknown register. */
929 return 0;
932 #elif defined (TARGET_M68K)
934 #define NUM_CORE_REGS 18
936 #define GDB_CORE_XML "cf-core.xml"
938 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
940 if (n < 8) {
941 /* D0-D7 */
942 GET_REG32(env->dregs[n]);
943 } else if (n < 16) {
944 /* A0-A7 */
945 GET_REG32(env->aregs[n - 8]);
946 } else {
947 switch (n) {
948 case 16: GET_REG32(env->sr);
949 case 17: GET_REG32(env->pc);
952 /* FP registers not included here because they vary between
953 ColdFire and m68k. Use XML bits for these. */
954 return 0;
957 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
959 uint32_t tmp;
961 tmp = ldl_p(mem_buf);
963 if (n < 8) {
964 /* D0-D7 */
965 env->dregs[n] = tmp;
966 } else if (n < 8) {
967 /* A0-A7 */
968 env->aregs[n - 8] = tmp;
969 } else {
970 switch (n) {
971 case 16: env->sr = tmp; break;
972 case 17: env->pc = tmp; break;
973 default: return 0;
976 return 4;
978 #elif defined (TARGET_MIPS)
980 #define NUM_CORE_REGS 73
982 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
984 if (n < 32) {
985 GET_REGL(env->active_tc.gpr[n]);
987 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
988 if (n >= 38 && n < 70) {
989 if (env->CP0_Status & (1 << CP0St_FR))
990 GET_REGL(env->active_fpu.fpr[n - 38].d);
991 else
992 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
994 switch (n) {
995 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
996 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
999 switch (n) {
1000 case 32: GET_REGL((int32_t)env->CP0_Status);
1001 case 33: GET_REGL(env->active_tc.LO[0]);
1002 case 34: GET_REGL(env->active_tc.HI[0]);
1003 case 35: GET_REGL(env->CP0_BadVAddr);
1004 case 36: GET_REGL((int32_t)env->CP0_Cause);
1005 case 37: GET_REGL(env->active_tc.PC);
1006 case 72: GET_REGL(0); /* fp */
1007 case 89: GET_REGL((int32_t)env->CP0_PRid);
1009 if (n >= 73 && n <= 88) {
1010 /* 16 embedded regs. */
1011 GET_REGL(0);
1014 return 0;
1017 /* convert MIPS rounding mode in FCR31 to IEEE library */
1018 static unsigned int ieee_rm[] =
1020 float_round_nearest_even,
1021 float_round_to_zero,
1022 float_round_up,
1023 float_round_down
1025 #define RESTORE_ROUNDING_MODE \
1026 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1028 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1030 target_ulong tmp;
1032 tmp = ldtul_p(mem_buf);
1034 if (n < 32) {
1035 env->active_tc.gpr[n] = tmp;
1036 return sizeof(target_ulong);
1038 if (env->CP0_Config1 & (1 << CP0C1_FP)
1039 && n >= 38 && n < 73) {
1040 if (n < 70) {
1041 if (env->CP0_Status & (1 << CP0St_FR))
1042 env->active_fpu.fpr[n - 38].d = tmp;
1043 else
1044 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1046 switch (n) {
1047 case 70:
1048 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1049 /* set rounding mode */
1050 RESTORE_ROUNDING_MODE;
1051 #ifndef CONFIG_SOFTFLOAT
1052 /* no floating point exception for native float */
1053 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1054 #endif
1055 break;
1056 case 71: env->active_fpu.fcr0 = tmp; break;
1058 return sizeof(target_ulong);
1060 switch (n) {
1061 case 32: env->CP0_Status = tmp; break;
1062 case 33: env->active_tc.LO[0] = tmp; break;
1063 case 34: env->active_tc.HI[0] = tmp; break;
1064 case 35: env->CP0_BadVAddr = tmp; break;
1065 case 36: env->CP0_Cause = tmp; break;
1066 case 37: env->active_tc.PC = tmp; break;
1067 case 72: /* fp, ignored */ break;
1068 default:
1069 if (n > 89)
1070 return 0;
1071 /* Other registers are readonly. Ignore writes. */
1072 break;
1075 return sizeof(target_ulong);
1077 #elif defined (TARGET_SH4)
1079 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1080 /* FIXME: We should use XML for this. */
1082 #define NUM_CORE_REGS 59
1084 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1086 if (n < 8) {
1087 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1088 GET_REGL(env->gregs[n + 16]);
1089 } else {
1090 GET_REGL(env->gregs[n]);
1092 } else if (n < 16) {
1093 GET_REGL(env->gregs[n - 8]);
1094 } else if (n >= 25 && n < 41) {
1095 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1096 } else if (n >= 43 && n < 51) {
1097 GET_REGL(env->gregs[n - 43]);
1098 } else if (n >= 51 && n < 59) {
1099 GET_REGL(env->gregs[n - (51 - 16)]);
1101 switch (n) {
1102 case 16: GET_REGL(env->pc);
1103 case 17: GET_REGL(env->pr);
1104 case 18: GET_REGL(env->gbr);
1105 case 19: GET_REGL(env->vbr);
1106 case 20: GET_REGL(env->mach);
1107 case 21: GET_REGL(env->macl);
1108 case 22: GET_REGL(env->sr);
1109 case 23: GET_REGL(env->fpul);
1110 case 24: GET_REGL(env->fpscr);
1111 case 41: GET_REGL(env->ssr);
1112 case 42: GET_REGL(env->spc);
1115 return 0;
1118 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1120 uint32_t tmp;
1122 tmp = ldl_p(mem_buf);
1124 if (n < 8) {
1125 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1126 env->gregs[n + 16] = tmp;
1127 } else {
1128 env->gregs[n] = tmp;
1130 return 4;
1131 } else if (n < 16) {
1132 env->gregs[n - 8] = tmp;
1133 return 4;
1134 } else if (n >= 25 && n < 41) {
1135 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1136 } else if (n >= 43 && n < 51) {
1137 env->gregs[n - 43] = tmp;
1138 return 4;
1139 } else if (n >= 51 && n < 59) {
1140 env->gregs[n - (51 - 16)] = tmp;
1141 return 4;
1143 switch (n) {
1144 case 16: env->pc = tmp;
1145 case 17: env->pr = tmp;
1146 case 18: env->gbr = tmp;
1147 case 19: env->vbr = tmp;
1148 case 20: env->mach = tmp;
1149 case 21: env->macl = tmp;
1150 case 22: env->sr = tmp;
1151 case 23: env->fpul = tmp;
1152 case 24: env->fpscr = tmp;
1153 case 41: env->ssr = tmp;
1154 case 42: env->spc = tmp;
1155 default: return 0;
1158 return 4;
1160 #elif defined (TARGET_MICROBLAZE)
1162 #define NUM_CORE_REGS (32 + 5)
1164 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1166 if (n < 32) {
1167 GET_REG32(env->regs[n]);
1168 } else {
1169 GET_REG32(env->sregs[n - 32]);
1171 return 0;
1174 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1176 uint32_t tmp;
1178 if (n > NUM_CORE_REGS)
1179 return 0;
1181 tmp = ldl_p(mem_buf);
1183 if (n < 32) {
1184 env->regs[n] = tmp;
1185 } else {
1186 env->sregs[n - 32] = tmp;
1188 return 4;
1190 #elif defined (TARGET_CRIS)
1192 #define NUM_CORE_REGS 49
1194 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1196 uint8_t srs;
1198 srs = env->pregs[PR_SRS];
1199 if (n < 16) {
1200 GET_REG32(env->regs[n]);
1203 if (n >= 21 && n < 32) {
1204 GET_REG32(env->pregs[n - 16]);
1206 if (n >= 33 && n < 49) {
1207 GET_REG32(env->sregs[srs][n - 33]);
1209 switch (n) {
1210 case 16: GET_REG8(env->pregs[0]);
1211 case 17: GET_REG8(env->pregs[1]);
1212 case 18: GET_REG32(env->pregs[2]);
1213 case 19: GET_REG8(srs);
1214 case 20: GET_REG16(env->pregs[4]);
1215 case 32: GET_REG32(env->pc);
1218 return 0;
1221 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1223 uint32_t tmp;
1225 if (n > 49)
1226 return 0;
1228 tmp = ldl_p(mem_buf);
1230 if (n < 16) {
1231 env->regs[n] = tmp;
1234 if (n >= 21 && n < 32) {
1235 env->pregs[n - 16] = tmp;
1238 /* FIXME: Should support function regs be writable? */
1239 switch (n) {
1240 case 16: return 1;
1241 case 17: return 1;
1242 case 18: env->pregs[PR_PID] = tmp; break;
1243 case 19: return 1;
1244 case 20: return 2;
1245 case 32: env->pc = tmp; break;
1248 return 4;
1250 #elif defined (TARGET_ALPHA)
1252 #define NUM_CORE_REGS 65
1254 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1256 if (n < 31) {
1257 GET_REGL(env->ir[n]);
1259 else if (n == 31) {
1260 GET_REGL(0);
1262 else if (n<63) {
1263 uint64_t val;
1265 val=*((uint64_t *)&env->fir[n-32]);
1266 GET_REGL(val);
1268 else if (n==63) {
1269 GET_REGL(env->fpcr);
1271 else if (n==64) {
1272 GET_REGL(env->pc);
1274 else {
1275 GET_REGL(0);
1278 return 0;
1281 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1283 target_ulong tmp;
1284 tmp = ldtul_p(mem_buf);
1286 if (n < 31) {
1287 env->ir[n] = tmp;
1290 if (n > 31 && n < 63) {
1291 env->fir[n - 32] = ldfl_p(mem_buf);
1294 if (n == 64 ) {
1295 env->pc=tmp;
1298 return 8;
1300 #else
1302 #define NUM_CORE_REGS 0
1304 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1306 return 0;
1309 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1311 return 0;
1314 #endif
1316 static int num_g_regs = NUM_CORE_REGS;
1318 #ifdef GDB_CORE_XML
1319 /* Encode data using the encoding for 'x' packets. */
1320 static int memtox(char *buf, const char *mem, int len)
1322 char *p = buf;
1323 char c;
1325 while (len--) {
1326 c = *(mem++);
1327 switch (c) {
1328 case '#': case '$': case '*': case '}':
1329 *(p++) = '}';
1330 *(p++) = c ^ 0x20;
1331 break;
1332 default:
1333 *(p++) = c;
1334 break;
1337 return p - buf;
1340 static const char *get_feature_xml(const char *p, const char **newp)
1342 extern const char *const xml_builtin[][2];
1343 size_t len;
1344 int i;
1345 const char *name;
1346 static char target_xml[1024];
1348 len = 0;
1349 while (p[len] && p[len] != ':')
1350 len++;
1351 *newp = p + len;
1353 name = NULL;
1354 if (strncmp(p, "target.xml", len) == 0) {
1355 /* Generate the XML description for this CPU. */
1356 if (!target_xml[0]) {
1357 GDBRegisterState *r;
1359 snprintf(target_xml, sizeof(target_xml),
1360 "<?xml version=\"1.0\"?>"
1361 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1362 "<target>"
1363 "<xi:include href=\"%s\"/>",
1364 GDB_CORE_XML);
1366 for (r = first_cpu->gdb_regs; r; r = r->next) {
1367 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1368 pstrcat(target_xml, sizeof(target_xml), r->xml);
1369 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1371 pstrcat(target_xml, sizeof(target_xml), "</target>");
1373 return target_xml;
1375 for (i = 0; ; i++) {
1376 name = xml_builtin[i][0];
1377 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1378 break;
1380 return name ? xml_builtin[i][1] : NULL;
1382 #endif
1384 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1386 GDBRegisterState *r;
1388 if (reg < NUM_CORE_REGS)
1389 return cpu_gdb_read_register(env, mem_buf, reg);
1391 for (r = env->gdb_regs; r; r = r->next) {
1392 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1393 return r->get_reg(env, mem_buf, reg - r->base_reg);
1396 return 0;
1399 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1401 GDBRegisterState *r;
1403 if (reg < NUM_CORE_REGS)
1404 return cpu_gdb_write_register(env, mem_buf, reg);
1406 for (r = env->gdb_regs; r; r = r->next) {
1407 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1408 return r->set_reg(env, mem_buf, reg - r->base_reg);
1411 return 0;
1414 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1415 specifies the first register number and these registers are included in
1416 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1417 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1420 void gdb_register_coprocessor(CPUState * env,
1421 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1422 int num_regs, const char *xml, int g_pos)
1424 GDBRegisterState *s;
1425 GDBRegisterState **p;
1426 static int last_reg = NUM_CORE_REGS;
1428 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1429 s->base_reg = last_reg;
1430 s->num_regs = num_regs;
1431 s->get_reg = get_reg;
1432 s->set_reg = set_reg;
1433 s->xml = xml;
1434 p = &env->gdb_regs;
1435 while (*p) {
1436 /* Check for duplicates. */
1437 if (strcmp((*p)->xml, xml) == 0)
1438 return;
1439 p = &(*p)->next;
1441 /* Add to end of list. */
1442 last_reg += num_regs;
1443 *p = s;
1444 if (g_pos) {
1445 if (g_pos != s->base_reg) {
1446 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1447 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1448 } else {
1449 num_g_regs = last_reg;
1454 #ifndef CONFIG_USER_ONLY
1455 static const int xlat_gdb_type[] = {
1456 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1457 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1458 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1460 #endif
1462 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1464 CPUState *env;
1465 int err = 0;
1467 if (kvm_enabled())
1468 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1470 switch (type) {
1471 case GDB_BREAKPOINT_SW:
1472 case GDB_BREAKPOINT_HW:
1473 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1474 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1475 if (err)
1476 break;
1478 return err;
1479 #ifndef CONFIG_USER_ONLY
1480 case GDB_WATCHPOINT_WRITE:
1481 case GDB_WATCHPOINT_READ:
1482 case GDB_WATCHPOINT_ACCESS:
1483 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1484 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1485 NULL);
1486 if (err)
1487 break;
1489 return err;
1490 #endif
1491 default:
1492 return -ENOSYS;
1496 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1498 CPUState *env;
1499 int err = 0;
1501 if (kvm_enabled())
1502 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1504 switch (type) {
1505 case GDB_BREAKPOINT_SW:
1506 case GDB_BREAKPOINT_HW:
1507 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1508 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1509 if (err)
1510 break;
1512 return err;
1513 #ifndef CONFIG_USER_ONLY
1514 case GDB_WATCHPOINT_WRITE:
1515 case GDB_WATCHPOINT_READ:
1516 case GDB_WATCHPOINT_ACCESS:
1517 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1518 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1519 if (err)
1520 break;
1522 return err;
1523 #endif
1524 default:
1525 return -ENOSYS;
1529 static void gdb_breakpoint_remove_all(void)
1531 CPUState *env;
1533 if (kvm_enabled()) {
1534 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1535 return;
1538 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1539 cpu_breakpoint_remove_all(env, BP_GDB);
1540 #ifndef CONFIG_USER_ONLY
1541 cpu_watchpoint_remove_all(env, BP_GDB);
1542 #endif
1546 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1548 #if defined(TARGET_I386)
1549 s->c_cpu->eip = pc;
1550 cpu_synchronize_state(s->c_cpu, 1);
1551 #elif defined (TARGET_PPC)
1552 s->c_cpu->nip = pc;
1553 #elif defined (TARGET_SPARC)
1554 s->c_cpu->pc = pc;
1555 s->c_cpu->npc = pc + 4;
1556 #elif defined (TARGET_ARM)
1557 s->c_cpu->regs[15] = pc;
1558 #elif defined (TARGET_SH4)
1559 s->c_cpu->pc = pc;
1560 #elif defined (TARGET_MIPS)
1561 s->c_cpu->active_tc.PC = pc;
1562 #elif defined (TARGET_MICROBLAZE)
1563 s->c_cpu->sregs[SR_PC] = pc;
1564 #elif defined (TARGET_CRIS)
1565 s->c_cpu->pc = pc;
1566 #elif defined (TARGET_ALPHA)
1567 s->c_cpu->pc = pc;
1568 #endif
1571 static inline int gdb_id(CPUState *env)
1573 #if defined(CONFIG_USER_ONLY) && defined(USE_NPTL)
1574 return env->host_tid;
1575 #else
1576 return env->cpu_index + 1;
1577 #endif
1580 static CPUState *find_cpu(uint32_t thread_id)
1582 CPUState *env;
1584 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1585 if (gdb_id(env) == thread_id) {
1586 return env;
1590 return NULL;
1593 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1595 CPUState *env;
1596 const char *p;
1597 uint32_t thread;
1598 int ch, reg_size, type, res;
1599 char buf[MAX_PACKET_LENGTH];
1600 uint8_t mem_buf[MAX_PACKET_LENGTH];
1601 uint8_t *registers;
1602 target_ulong addr, len;
1604 #ifdef DEBUG_GDB
1605 printf("command='%s'\n", line_buf);
1606 #endif
1607 p = line_buf;
1608 ch = *p++;
1609 switch(ch) {
1610 case '?':
1611 /* TODO: Make this return the correct value for user-mode. */
1612 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1613 gdb_id(s->c_cpu));
1614 put_packet(s, buf);
1615 /* Remove all the breakpoints when this query is issued,
1616 * because gdb is doing and initial connect and the state
1617 * should be cleaned up.
1619 gdb_breakpoint_remove_all();
1620 break;
1621 case 'c':
1622 if (*p != '\0') {
1623 addr = strtoull(p, (char **)&p, 16);
1624 gdb_set_cpu_pc(s, addr);
1626 s->signal = 0;
1627 gdb_continue(s);
1628 return RS_IDLE;
1629 case 'C':
1630 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1631 if (s->signal == -1)
1632 s->signal = 0;
1633 gdb_continue(s);
1634 return RS_IDLE;
1635 case 'k':
1636 /* Kill the target */
1637 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1638 exit(0);
1639 case 'D':
1640 /* Detach packet */
1641 gdb_breakpoint_remove_all();
1642 gdb_continue(s);
1643 put_packet(s, "OK");
1644 break;
1645 case 's':
1646 if (*p != '\0') {
1647 addr = strtoull(p, (char **)&p, 16);
1648 gdb_set_cpu_pc(s, addr);
1650 cpu_single_step(s->c_cpu, sstep_flags);
1651 gdb_continue(s);
1652 return RS_IDLE;
1653 case 'F':
1655 target_ulong ret;
1656 target_ulong err;
1658 ret = strtoull(p, (char **)&p, 16);
1659 if (*p == ',') {
1660 p++;
1661 err = strtoull(p, (char **)&p, 16);
1662 } else {
1663 err = 0;
1665 if (*p == ',')
1666 p++;
1667 type = *p;
1668 if (gdb_current_syscall_cb)
1669 gdb_current_syscall_cb(s->c_cpu, ret, err);
1670 if (type == 'C') {
1671 put_packet(s, "T02");
1672 } else {
1673 gdb_continue(s);
1676 break;
1677 case 'g':
1678 cpu_synchronize_state(s->g_cpu, 0);
1679 len = 0;
1680 for (addr = 0; addr < num_g_regs; addr++) {
1681 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1682 len += reg_size;
1684 memtohex(buf, mem_buf, len);
1685 put_packet(s, buf);
1686 break;
1687 case 'G':
1688 registers = mem_buf;
1689 len = strlen(p) / 2;
1690 hextomem((uint8_t *)registers, p, len);
1691 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1692 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1693 len -= reg_size;
1694 registers += reg_size;
1696 cpu_synchronize_state(s->g_cpu, 1);
1697 put_packet(s, "OK");
1698 break;
1699 case 'm':
1700 addr = strtoull(p, (char **)&p, 16);
1701 if (*p == ',')
1702 p++;
1703 len = strtoull(p, NULL, 16);
1704 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1705 put_packet (s, "E14");
1706 } else {
1707 memtohex(buf, mem_buf, len);
1708 put_packet(s, buf);
1710 break;
1711 case 'M':
1712 addr = strtoull(p, (char **)&p, 16);
1713 if (*p == ',')
1714 p++;
1715 len = strtoull(p, (char **)&p, 16);
1716 if (*p == ':')
1717 p++;
1718 hextomem(mem_buf, p, len);
1719 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1720 put_packet(s, "E14");
1721 else
1722 put_packet(s, "OK");
1723 break;
1724 case 'p':
1725 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1726 This works, but can be very slow. Anything new enough to
1727 understand XML also knows how to use this properly. */
1728 if (!gdb_has_xml)
1729 goto unknown_command;
1730 addr = strtoull(p, (char **)&p, 16);
1731 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1732 if (reg_size) {
1733 memtohex(buf, mem_buf, reg_size);
1734 put_packet(s, buf);
1735 } else {
1736 put_packet(s, "E14");
1738 break;
1739 case 'P':
1740 if (!gdb_has_xml)
1741 goto unknown_command;
1742 addr = strtoull(p, (char **)&p, 16);
1743 if (*p == '=')
1744 p++;
1745 reg_size = strlen(p) / 2;
1746 hextomem(mem_buf, p, reg_size);
1747 gdb_write_register(s->g_cpu, mem_buf, addr);
1748 put_packet(s, "OK");
1749 break;
1750 case 'Z':
1751 case 'z':
1752 type = strtoul(p, (char **)&p, 16);
1753 if (*p == ',')
1754 p++;
1755 addr = strtoull(p, (char **)&p, 16);
1756 if (*p == ',')
1757 p++;
1758 len = strtoull(p, (char **)&p, 16);
1759 if (ch == 'Z')
1760 res = gdb_breakpoint_insert(addr, len, type);
1761 else
1762 res = gdb_breakpoint_remove(addr, len, type);
1763 if (res >= 0)
1764 put_packet(s, "OK");
1765 else if (res == -ENOSYS)
1766 put_packet(s, "");
1767 else
1768 put_packet(s, "E22");
1769 break;
1770 case 'H':
1771 type = *p++;
1772 thread = strtoull(p, (char **)&p, 16);
1773 if (thread == -1 || thread == 0) {
1774 put_packet(s, "OK");
1775 break;
1777 env = find_cpu(thread);
1778 if (env == NULL) {
1779 put_packet(s, "E22");
1780 break;
1782 switch (type) {
1783 case 'c':
1784 s->c_cpu = env;
1785 put_packet(s, "OK");
1786 break;
1787 case 'g':
1788 s->g_cpu = env;
1789 put_packet(s, "OK");
1790 break;
1791 default:
1792 put_packet(s, "E22");
1793 break;
1795 break;
1796 case 'T':
1797 thread = strtoull(p, (char **)&p, 16);
1798 env = find_cpu(thread);
1800 if (env != NULL) {
1801 put_packet(s, "OK");
1802 } else {
1803 put_packet(s, "E22");
1805 break;
1806 case 'q':
1807 case 'Q':
1808 /* parse any 'q' packets here */
1809 if (!strcmp(p,"qemu.sstepbits")) {
1810 /* Query Breakpoint bit definitions */
1811 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1812 SSTEP_ENABLE,
1813 SSTEP_NOIRQ,
1814 SSTEP_NOTIMER);
1815 put_packet(s, buf);
1816 break;
1817 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1818 /* Display or change the sstep_flags */
1819 p += 10;
1820 if (*p != '=') {
1821 /* Display current setting */
1822 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1823 put_packet(s, buf);
1824 break;
1826 p++;
1827 type = strtoul(p, (char **)&p, 16);
1828 sstep_flags = type;
1829 put_packet(s, "OK");
1830 break;
1831 } else if (strcmp(p,"C") == 0) {
1832 /* "Current thread" remains vague in the spec, so always return
1833 * the first CPU (gdb returns the first thread). */
1834 put_packet(s, "QC1");
1835 break;
1836 } else if (strcmp(p,"fThreadInfo") == 0) {
1837 s->query_cpu = first_cpu;
1838 goto report_cpuinfo;
1839 } else if (strcmp(p,"sThreadInfo") == 0) {
1840 report_cpuinfo:
1841 if (s->query_cpu) {
1842 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
1843 put_packet(s, buf);
1844 s->query_cpu = s->query_cpu->next_cpu;
1845 } else
1846 put_packet(s, "l");
1847 break;
1848 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1849 thread = strtoull(p+16, (char **)&p, 16);
1850 env = find_cpu(thread);
1851 if (env != NULL) {
1852 cpu_synchronize_state(env, 0);
1853 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1854 "CPU#%d [%s]", env->cpu_index,
1855 env->halted ? "halted " : "running");
1856 memtohex(buf, mem_buf, len);
1857 put_packet(s, buf);
1859 break;
1861 #ifdef CONFIG_USER_ONLY
1862 else if (strncmp(p, "Offsets", 7) == 0) {
1863 TaskState *ts = s->c_cpu->opaque;
1865 snprintf(buf, sizeof(buf),
1866 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1867 ";Bss=" TARGET_ABI_FMT_lx,
1868 ts->info->code_offset,
1869 ts->info->data_offset,
1870 ts->info->data_offset);
1871 put_packet(s, buf);
1872 break;
1874 #else /* !CONFIG_USER_ONLY */
1875 else if (strncmp(p, "Rcmd,", 5) == 0) {
1876 int len = strlen(p + 5);
1878 if ((len % 2) != 0) {
1879 put_packet(s, "E01");
1880 break;
1882 hextomem(mem_buf, p + 5, len);
1883 len = len / 2;
1884 mem_buf[len++] = 0;
1885 qemu_chr_read(s->mon_chr, mem_buf, len);
1886 put_packet(s, "OK");
1887 break;
1889 #endif /* !CONFIG_USER_ONLY */
1890 if (strncmp(p, "Supported", 9) == 0) {
1891 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1892 #ifdef GDB_CORE_XML
1893 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1894 #endif
1895 put_packet(s, buf);
1896 break;
1898 #ifdef GDB_CORE_XML
1899 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1900 const char *xml;
1901 target_ulong total_len;
1903 gdb_has_xml = 1;
1904 p += 19;
1905 xml = get_feature_xml(p, &p);
1906 if (!xml) {
1907 snprintf(buf, sizeof(buf), "E00");
1908 put_packet(s, buf);
1909 break;
1912 if (*p == ':')
1913 p++;
1914 addr = strtoul(p, (char **)&p, 16);
1915 if (*p == ',')
1916 p++;
1917 len = strtoul(p, (char **)&p, 16);
1919 total_len = strlen(xml);
1920 if (addr > total_len) {
1921 snprintf(buf, sizeof(buf), "E00");
1922 put_packet(s, buf);
1923 break;
1925 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1926 len = (MAX_PACKET_LENGTH - 5) / 2;
1927 if (len < total_len - addr) {
1928 buf[0] = 'm';
1929 len = memtox(buf + 1, xml + addr, len);
1930 } else {
1931 buf[0] = 'l';
1932 len = memtox(buf + 1, xml + addr, total_len - addr);
1934 put_packet_binary(s, buf, len + 1);
1935 break;
1937 #endif
1938 /* Unrecognised 'q' command. */
1939 goto unknown_command;
1941 default:
1942 unknown_command:
1943 /* put empty packet */
1944 buf[0] = '\0';
1945 put_packet(s, buf);
1946 break;
1948 return RS_IDLE;
1951 void gdb_set_stop_cpu(CPUState *env)
1953 gdbserver_state->c_cpu = env;
1954 gdbserver_state->g_cpu = env;
1957 #ifndef CONFIG_USER_ONLY
1958 static void gdb_vm_state_change(void *opaque, int running, int reason)
1960 GDBState *s = gdbserver_state;
1961 CPUState *env = s->c_cpu;
1962 char buf[256];
1963 const char *type;
1964 int ret;
1966 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1967 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
1968 return;
1970 /* disable single step if it was enable */
1971 cpu_single_step(env, 0);
1973 if (reason == EXCP_DEBUG) {
1974 if (env->watchpoint_hit) {
1975 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1976 case BP_MEM_READ:
1977 type = "r";
1978 break;
1979 case BP_MEM_ACCESS:
1980 type = "a";
1981 break;
1982 default:
1983 type = "";
1984 break;
1986 snprintf(buf, sizeof(buf),
1987 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1988 GDB_SIGNAL_TRAP, gdb_id(env), type,
1989 env->watchpoint_hit->vaddr);
1990 put_packet(s, buf);
1991 env->watchpoint_hit = NULL;
1992 return;
1994 tb_flush(env);
1995 ret = GDB_SIGNAL_TRAP;
1996 } else {
1997 ret = GDB_SIGNAL_INT;
1999 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2000 put_packet(s, buf);
2002 #endif
2004 /* Send a gdb syscall request.
2005 This accepts limited printf-style format specifiers, specifically:
2006 %x - target_ulong argument printed in hex.
2007 %lx - 64-bit argument printed in hex.
2008 %s - string pointer (target_ulong) and length (int) pair. */
2009 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2011 va_list va;
2012 char buf[256];
2013 char *p;
2014 target_ulong addr;
2015 uint64_t i64;
2016 GDBState *s;
2018 s = gdbserver_state;
2019 if (!s)
2020 return;
2021 gdb_current_syscall_cb = cb;
2022 s->state = RS_SYSCALL;
2023 #ifndef CONFIG_USER_ONLY
2024 vm_stop(EXCP_DEBUG);
2025 #endif
2026 s->state = RS_IDLE;
2027 va_start(va, fmt);
2028 p = buf;
2029 *(p++) = 'F';
2030 while (*fmt) {
2031 if (*fmt == '%') {
2032 fmt++;
2033 switch (*fmt++) {
2034 case 'x':
2035 addr = va_arg(va, target_ulong);
2036 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2037 break;
2038 case 'l':
2039 if (*(fmt++) != 'x')
2040 goto bad_format;
2041 i64 = va_arg(va, uint64_t);
2042 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2043 break;
2044 case 's':
2045 addr = va_arg(va, target_ulong);
2046 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2047 addr, va_arg(va, int));
2048 break;
2049 default:
2050 bad_format:
2051 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2052 fmt - 1);
2053 break;
2055 } else {
2056 *(p++) = *(fmt++);
2059 *p = 0;
2060 va_end(va);
2061 put_packet(s, buf);
2062 #ifdef CONFIG_USER_ONLY
2063 gdb_handlesig(s->c_cpu, 0);
2064 #else
2065 cpu_exit(s->c_cpu);
2066 #endif
2069 static void gdb_read_byte(GDBState *s, int ch)
2071 int i, csum;
2072 uint8_t reply;
2074 #ifndef CONFIG_USER_ONLY
2075 if (s->last_packet_len) {
2076 /* Waiting for a response to the last packet. If we see the start
2077 of a new command then abandon the previous response. */
2078 if (ch == '-') {
2079 #ifdef DEBUG_GDB
2080 printf("Got NACK, retransmitting\n");
2081 #endif
2082 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2084 #ifdef DEBUG_GDB
2085 else if (ch == '+')
2086 printf("Got ACK\n");
2087 else
2088 printf("Got '%c' when expecting ACK/NACK\n", ch);
2089 #endif
2090 if (ch == '+' || ch == '$')
2091 s->last_packet_len = 0;
2092 if (ch != '$')
2093 return;
2095 if (vm_running) {
2096 /* when the CPU is running, we cannot do anything except stop
2097 it when receiving a char */
2098 vm_stop(EXCP_INTERRUPT);
2099 } else
2100 #endif
2102 switch(s->state) {
2103 case RS_IDLE:
2104 if (ch == '$') {
2105 s->line_buf_index = 0;
2106 s->state = RS_GETLINE;
2108 break;
2109 case RS_GETLINE:
2110 if (ch == '#') {
2111 s->state = RS_CHKSUM1;
2112 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2113 s->state = RS_IDLE;
2114 } else {
2115 s->line_buf[s->line_buf_index++] = ch;
2117 break;
2118 case RS_CHKSUM1:
2119 s->line_buf[s->line_buf_index] = '\0';
2120 s->line_csum = fromhex(ch) << 4;
2121 s->state = RS_CHKSUM2;
2122 break;
2123 case RS_CHKSUM2:
2124 s->line_csum |= fromhex(ch);
2125 csum = 0;
2126 for(i = 0; i < s->line_buf_index; i++) {
2127 csum += s->line_buf[i];
2129 if (s->line_csum != (csum & 0xff)) {
2130 reply = '-';
2131 put_buffer(s, &reply, 1);
2132 s->state = RS_IDLE;
2133 } else {
2134 reply = '+';
2135 put_buffer(s, &reply, 1);
2136 s->state = gdb_handle_packet(s, s->line_buf);
2138 break;
2139 default:
2140 abort();
2145 #ifdef CONFIG_USER_ONLY
2147 gdb_queuesig (void)
2149 GDBState *s;
2151 s = gdbserver_state;
2153 if (gdbserver_fd < 0 || s->fd < 0)
2154 return 0;
2155 else
2156 return 1;
2160 gdb_handlesig (CPUState *env, int sig)
2162 GDBState *s;
2163 char buf[256];
2164 int n;
2166 s = gdbserver_state;
2167 if (gdbserver_fd < 0 || s->fd < 0)
2168 return sig;
2170 /* disable single step if it was enabled */
2171 cpu_single_step(env, 0);
2172 tb_flush(env);
2174 if (sig != 0)
2176 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2177 put_packet(s, buf);
2179 /* put_packet() might have detected that the peer terminated the
2180 connection. */
2181 if (s->fd < 0)
2182 return sig;
2184 sig = 0;
2185 s->state = RS_IDLE;
2186 s->running_state = 0;
2187 while (s->running_state == 0) {
2188 n = read (s->fd, buf, 256);
2189 if (n > 0)
2191 int i;
2193 for (i = 0; i < n; i++)
2194 gdb_read_byte (s, buf[i]);
2196 else if (n == 0 || errno != EAGAIN)
2198 /* XXX: Connection closed. Should probably wait for annother
2199 connection before continuing. */
2200 return sig;
2203 sig = s->signal;
2204 s->signal = 0;
2205 return sig;
2208 /* Tell the remote gdb that the process has exited. */
2209 void gdb_exit(CPUState *env, int code)
2211 GDBState *s;
2212 char buf[4];
2214 s = gdbserver_state;
2215 if (gdbserver_fd < 0 || s->fd < 0)
2216 return;
2218 snprintf(buf, sizeof(buf), "W%02x", code);
2219 put_packet(s, buf);
2222 /* Tell the remote gdb that the process has exited due to SIG. */
2223 void gdb_signalled(CPUState *env, int sig)
2225 GDBState *s;
2226 char buf[4];
2228 s = gdbserver_state;
2229 if (gdbserver_fd < 0 || s->fd < 0)
2230 return;
2232 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2233 put_packet(s, buf);
2236 static void gdb_accept(void)
2238 GDBState *s;
2239 struct sockaddr_in sockaddr;
2240 socklen_t len;
2241 int val, fd;
2243 for(;;) {
2244 len = sizeof(sockaddr);
2245 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2246 if (fd < 0 && errno != EINTR) {
2247 perror("accept");
2248 return;
2249 } else if (fd >= 0) {
2250 break;
2254 /* set short latency */
2255 val = 1;
2256 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2258 s = qemu_mallocz(sizeof(GDBState));
2259 s->c_cpu = first_cpu;
2260 s->g_cpu = first_cpu;
2261 s->fd = fd;
2262 gdb_has_xml = 0;
2264 gdbserver_state = s;
2266 fcntl(fd, F_SETFL, O_NONBLOCK);
2269 static int gdbserver_open(int port)
2271 struct sockaddr_in sockaddr;
2272 int fd, val, ret;
2274 fd = socket(PF_INET, SOCK_STREAM, 0);
2275 if (fd < 0) {
2276 perror("socket");
2277 return -1;
2280 /* allow fast reuse */
2281 val = 1;
2282 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2284 sockaddr.sin_family = AF_INET;
2285 sockaddr.sin_port = htons(port);
2286 sockaddr.sin_addr.s_addr = 0;
2287 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2288 if (ret < 0) {
2289 perror("bind");
2290 return -1;
2292 ret = listen(fd, 0);
2293 if (ret < 0) {
2294 perror("listen");
2295 return -1;
2297 return fd;
2300 int gdbserver_start(int port)
2302 gdbserver_fd = gdbserver_open(port);
2303 if (gdbserver_fd < 0)
2304 return -1;
2305 /* accept connections */
2306 gdb_accept();
2307 return 0;
2310 /* Disable gdb stub for child processes. */
2311 void gdbserver_fork(CPUState *env)
2313 GDBState *s = gdbserver_state;
2314 if (gdbserver_fd < 0 || s->fd < 0)
2315 return;
2316 close(s->fd);
2317 s->fd = -1;
2318 cpu_breakpoint_remove_all(env, BP_GDB);
2319 cpu_watchpoint_remove_all(env, BP_GDB);
2321 #else
2322 static int gdb_chr_can_receive(void *opaque)
2324 /* We can handle an arbitrarily large amount of data.
2325 Pick the maximum packet size, which is as good as anything. */
2326 return MAX_PACKET_LENGTH;
2329 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2331 int i;
2333 for (i = 0; i < size; i++) {
2334 gdb_read_byte(gdbserver_state, buf[i]);
2338 static void gdb_chr_event(void *opaque, int event)
2340 switch (event) {
2341 case CHR_EVENT_RESET:
2342 vm_stop(EXCP_INTERRUPT);
2343 gdb_has_xml = 0;
2344 break;
2345 default:
2346 break;
2350 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2352 char buf[MAX_PACKET_LENGTH];
2354 buf[0] = 'O';
2355 if (len > (MAX_PACKET_LENGTH/2) - 1)
2356 len = (MAX_PACKET_LENGTH/2) - 1;
2357 memtohex(buf + 1, (uint8_t *)msg, len);
2358 put_packet(s, buf);
2361 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2363 const char *p = (const char *)buf;
2364 int max_sz;
2366 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2367 for (;;) {
2368 if (len <= max_sz) {
2369 gdb_monitor_output(gdbserver_state, p, len);
2370 break;
2372 gdb_monitor_output(gdbserver_state, p, max_sz);
2373 p += max_sz;
2374 len -= max_sz;
2376 return len;
2379 #ifndef _WIN32
2380 static void gdb_sigterm_handler(int signal)
2382 if (vm_running)
2383 vm_stop(EXCP_INTERRUPT);
2385 #endif
2387 int gdbserver_start(const char *device)
2389 GDBState *s;
2390 char gdbstub_device_name[128];
2391 CharDriverState *chr = NULL;
2392 CharDriverState *mon_chr;
2394 if (!device)
2395 return -1;
2396 if (strcmp(device, "none") != 0) {
2397 if (strstart(device, "tcp:", NULL)) {
2398 /* enforce required TCP attributes */
2399 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2400 "%s,nowait,nodelay,server", device);
2401 device = gdbstub_device_name;
2403 #ifndef _WIN32
2404 else if (strcmp(device, "stdio") == 0) {
2405 struct sigaction act;
2407 memset(&act, 0, sizeof(act));
2408 act.sa_handler = gdb_sigterm_handler;
2409 sigaction(SIGINT, &act, NULL);
2411 #endif
2412 chr = qemu_chr_open("gdb", device, NULL);
2413 if (!chr)
2414 return -1;
2416 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2417 gdb_chr_event, NULL);
2420 s = gdbserver_state;
2421 if (!s) {
2422 s = qemu_mallocz(sizeof(GDBState));
2423 gdbserver_state = s;
2425 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2427 /* Initialize a monitor terminal for gdb */
2428 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2429 mon_chr->chr_write = gdb_monitor_write;
2430 monitor_init(mon_chr, 0);
2431 } else {
2432 if (s->chr)
2433 qemu_chr_close(s->chr);
2434 mon_chr = s->mon_chr;
2435 memset(s, 0, sizeof(GDBState));
2437 s->c_cpu = first_cpu;
2438 s->g_cpu = first_cpu;
2439 s->chr = chr;
2440 s->state = chr ? RS_IDLE : RS_INACTIVE;
2441 s->mon_chr = mon_chr;
2443 return 0;
2445 #endif