4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
61 int broken_set_mem_region
;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
66 int irqchip_in_kernel
;
70 static KVMState
*kvm_state
;
72 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
76 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
77 /* KVM private memory slots */
80 if (s
->slots
[i
].memory_size
== 0)
84 fprintf(stderr
, "%s: no free slot available\n", __func__
);
88 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
89 target_phys_addr_t start_addr
,
90 target_phys_addr_t end_addr
)
94 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
95 KVMSlot
*mem
= &s
->slots
[i
];
97 if (start_addr
== mem
->start_addr
&&
98 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
107 * Find overlapping slot with lowest start address
109 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
110 target_phys_addr_t start_addr
,
111 target_phys_addr_t end_addr
)
113 KVMSlot
*found
= NULL
;
116 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
117 KVMSlot
*mem
= &s
->slots
[i
];
119 if (mem
->memory_size
== 0 ||
120 (found
&& found
->start_addr
< mem
->start_addr
)) {
124 if (end_addr
> mem
->start_addr
&&
125 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
133 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
135 struct kvm_userspace_memory_region mem
;
137 mem
.slot
= slot
->slot
;
138 mem
.guest_phys_addr
= slot
->start_addr
;
139 mem
.memory_size
= slot
->memory_size
;
140 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
141 mem
.flags
= slot
->flags
;
142 if (s
->migration_log
) {
143 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
145 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
148 static void kvm_reset_vcpu(void *opaque
)
150 CPUState
*env
= opaque
;
152 if (kvm_arch_put_registers(env
)) {
153 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
158 int kvm_irqchip_in_kernel(void)
160 return kvm_state
->irqchip_in_kernel
;
163 int kvm_pit_in_kernel(void)
165 return kvm_state
->pit_in_kernel
;
169 int kvm_init_vcpu(CPUState
*env
)
171 KVMState
*s
= kvm_state
;
175 dprintf("kvm_init_vcpu\n");
177 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
179 dprintf("kvm_create_vcpu failed\n");
186 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
188 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
192 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
194 if (env
->kvm_run
== MAP_FAILED
) {
196 dprintf("mmap'ing vcpu state failed\n");
200 ret
= kvm_arch_init_vcpu(env
);
202 qemu_register_reset(kvm_reset_vcpu
, env
);
203 ret
= kvm_arch_put_registers(env
);
209 int kvm_put_mp_state(CPUState
*env
)
211 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
213 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
216 int kvm_get_mp_state(CPUState
*env
)
218 struct kvm_mp_state mp_state
;
221 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
225 env
->mp_state
= mp_state
.mp_state
;
230 * dirty pages logging control
232 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
233 ram_addr_t size
, int flags
, int mask
)
235 KVMState
*s
= kvm_state
;
236 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
240 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
241 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
242 (target_phys_addr_t
)(phys_addr
+ size
- 1));
246 old_flags
= mem
->flags
;
248 flags
= (mem
->flags
& ~mask
) | flags
;
251 /* If nothing changed effectively, no need to issue ioctl */
252 if (s
->migration_log
) {
253 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
255 if (flags
== old_flags
) {
259 return kvm_set_user_memory_region(s
, mem
);
262 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
264 return kvm_dirty_pages_log_change(phys_addr
, size
,
265 KVM_MEM_LOG_DIRTY_PAGES
,
266 KVM_MEM_LOG_DIRTY_PAGES
);
269 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
271 return kvm_dirty_pages_log_change(phys_addr
, size
,
273 KVM_MEM_LOG_DIRTY_PAGES
);
276 int kvm_set_migration_log(int enable
)
278 KVMState
*s
= kvm_state
;
282 s
->migration_log
= enable
;
284 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
287 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
290 err
= kvm_set_user_memory_region(s
, mem
);
298 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
300 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
304 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
305 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
306 * This means all bits are set to dirty.
308 * @start_add: start of logged region.
309 * @end_addr: end of logged region.
311 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
312 target_phys_addr_t end_addr
)
314 KVMState
*s
= kvm_state
;
315 unsigned long size
, allocated_size
= 0;
316 target_phys_addr_t phys_addr
;
322 d
.dirty_bitmap
= NULL
;
323 while (start_addr
< end_addr
) {
324 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
329 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
330 if (!d
.dirty_bitmap
) {
331 d
.dirty_bitmap
= qemu_malloc(size
);
332 } else if (size
> allocated_size
) {
333 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
335 allocated_size
= size
;
336 memset(d
.dirty_bitmap
, 0, allocated_size
);
340 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
341 dprintf("ioctl failed %d\n", errno
);
346 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
347 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
348 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
349 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
350 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
352 if (test_le_bit(nr
, bitmap
)) {
353 cpu_physical_memory_set_dirty(addr
);
356 start_addr
= phys_addr
;
358 qemu_free(d
.dirty_bitmap
);
363 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
366 #ifdef KVM_CAP_COALESCED_MMIO
367 KVMState
*s
= kvm_state
;
369 if (s
->coalesced_mmio
) {
370 struct kvm_coalesced_mmio_zone zone
;
375 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
382 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
385 #ifdef KVM_CAP_COALESCED_MMIO
386 KVMState
*s
= kvm_state
;
388 if (s
->coalesced_mmio
) {
389 struct kvm_coalesced_mmio_zone zone
;
394 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
401 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
405 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
413 int kvm_init(int smp_cpus
)
415 static const char upgrade_note
[] =
416 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
417 "(see http://sourceforge.net/projects/kvm).\n";
423 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
427 s
= qemu_mallocz(sizeof(KVMState
));
429 #ifdef KVM_CAP_SET_GUEST_DEBUG
430 TAILQ_INIT(&s
->kvm_sw_breakpoints
);
432 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
433 s
->slots
[i
].slot
= i
;
436 s
->fd
= open("/dev/kvm", O_RDWR
);
438 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
443 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
444 if (ret
< KVM_API_VERSION
) {
447 fprintf(stderr
, "kvm version too old\n");
451 if (ret
> KVM_API_VERSION
) {
453 fprintf(stderr
, "kvm version not supported\n");
457 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
461 /* initially, KVM allocated its own memory and we had to jump through
462 * hooks to make phys_ram_base point to this. Modern versions of KVM
463 * just use a user allocated buffer so we can use regular pages
464 * unmodified. Make sure we have a sufficiently modern version of KVM.
466 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
468 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
473 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
474 * destroyed properly. Since we rely on this capability, refuse to work
475 * with any kernel without this capability. */
476 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
480 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
485 #ifdef KVM_CAP_COALESCED_MMIO
486 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
488 s
->coalesced_mmio
= 0;
491 s
->broken_set_mem_region
= 1;
492 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
493 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
495 s
->broken_set_mem_region
= 0;
499 ret
= kvm_arch_init(s
, smp_cpus
);
519 static int kvm_handle_io(CPUState
*env
, uint16_t port
, void *data
,
520 int direction
, int size
, uint32_t count
)
525 for (i
= 0; i
< count
; i
++) {
526 if (direction
== KVM_EXIT_IO_IN
) {
529 stb_p(ptr
, cpu_inb(env
, port
));
532 stw_p(ptr
, cpu_inw(env
, port
));
535 stl_p(ptr
, cpu_inl(env
, port
));
541 cpu_outb(env
, port
, ldub_p(ptr
));
544 cpu_outw(env
, port
, lduw_p(ptr
));
547 cpu_outl(env
, port
, ldl_p(ptr
));
558 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
560 #ifdef KVM_CAP_COALESCED_MMIO
561 KVMState
*s
= kvm_state
;
562 if (s
->coalesced_mmio
) {
563 struct kvm_coalesced_mmio_ring
*ring
;
565 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
566 while (ring
->first
!= ring
->last
) {
567 struct kvm_coalesced_mmio
*ent
;
569 ent
= &ring
->coalesced_mmio
[ring
->first
];
571 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
572 /* FIXME smp_wmb() */
573 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
579 int kvm_cpu_exec(CPUState
*env
)
581 struct kvm_run
*run
= env
->kvm_run
;
584 dprintf("kvm_cpu_exec()\n");
587 if (env
->exit_request
) {
588 dprintf("interrupt exit requested\n");
593 kvm_arch_pre_run(env
, run
);
594 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
595 kvm_arch_post_run(env
, run
);
597 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
598 dprintf("io window exit\n");
604 dprintf("kvm run failed %s\n", strerror(-ret
));
608 kvm_run_coalesced_mmio(env
, run
);
610 ret
= 0; /* exit loop */
611 switch (run
->exit_reason
) {
613 dprintf("handle_io\n");
614 ret
= kvm_handle_io(env
, run
->io
.port
,
615 (uint8_t *)run
+ run
->io
.data_offset
,
621 dprintf("handle_mmio\n");
622 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
628 case KVM_EXIT_IRQ_WINDOW_OPEN
:
629 dprintf("irq_window_open\n");
631 case KVM_EXIT_SHUTDOWN
:
632 dprintf("shutdown\n");
633 qemu_system_reset_request();
636 case KVM_EXIT_UNKNOWN
:
637 dprintf("kvm_exit_unknown\n");
639 case KVM_EXIT_FAIL_ENTRY
:
640 dprintf("kvm_exit_fail_entry\n");
642 case KVM_EXIT_EXCEPTION
:
643 dprintf("kvm_exit_exception\n");
646 dprintf("kvm_exit_debug\n");
647 #ifdef KVM_CAP_SET_GUEST_DEBUG
648 if (kvm_arch_debug(&run
->debug
.arch
)) {
649 gdb_set_stop_cpu(env
);
651 env
->exception_index
= EXCP_DEBUG
;
654 /* re-enter, this exception was guest-internal */
656 #endif /* KVM_CAP_SET_GUEST_DEBUG */
659 dprintf("kvm_arch_handle_exit\n");
660 ret
= kvm_arch_handle_exit(env
, run
);
665 if (env
->exit_request
) {
666 env
->exit_request
= 0;
667 env
->exception_index
= EXCP_INTERRUPT
;
673 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
675 ram_addr_t phys_offset
)
677 KVMState
*s
= kvm_state
;
678 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
682 if (start_addr
& ~TARGET_PAGE_MASK
) {
683 if (flags
>= IO_MEM_UNASSIGNED
) {
684 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
685 start_addr
+ size
)) {
688 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
690 fprintf(stderr
, "Only page-aligned memory slots supported\n");
695 /* KVM does not support read-only slots */
696 phys_offset
&= ~IO_MEM_ROM
;
699 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
704 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
705 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
706 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
707 /* The new slot fits into the existing one and comes with
708 * identical parameters - nothing to be done. */
714 /* unregister the overlapping slot */
715 mem
->memory_size
= 0;
716 err
= kvm_set_user_memory_region(s
, mem
);
718 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
719 __func__
, strerror(-err
));
723 /* Workaround for older KVM versions: we can't join slots, even not by
724 * unregistering the previous ones and then registering the larger
725 * slot. We have to maintain the existing fragmentation. Sigh.
727 * This workaround assumes that the new slot starts at the same
728 * address as the first existing one. If not or if some overlapping
729 * slot comes around later, we will fail (not seen in practice so far)
730 * - and actually require a recent KVM version. */
731 if (s
->broken_set_mem_region
&&
732 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
733 flags
< IO_MEM_UNASSIGNED
) {
734 mem
= kvm_alloc_slot(s
);
735 mem
->memory_size
= old
.memory_size
;
736 mem
->start_addr
= old
.start_addr
;
737 mem
->phys_offset
= old
.phys_offset
;
740 err
= kvm_set_user_memory_region(s
, mem
);
742 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
747 start_addr
+= old
.memory_size
;
748 phys_offset
+= old
.memory_size
;
749 size
-= old
.memory_size
;
753 /* register prefix slot */
754 if (old
.start_addr
< start_addr
) {
755 mem
= kvm_alloc_slot(s
);
756 mem
->memory_size
= start_addr
- old
.start_addr
;
757 mem
->start_addr
= old
.start_addr
;
758 mem
->phys_offset
= old
.phys_offset
;
761 err
= kvm_set_user_memory_region(s
, mem
);
763 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
764 __func__
, strerror(-err
));
769 /* register suffix slot */
770 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
771 ram_addr_t size_delta
;
773 mem
= kvm_alloc_slot(s
);
774 mem
->start_addr
= start_addr
+ size
;
775 size_delta
= mem
->start_addr
- old
.start_addr
;
776 mem
->memory_size
= old
.memory_size
- size_delta
;
777 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
780 err
= kvm_set_user_memory_region(s
, mem
);
782 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
783 __func__
, strerror(-err
));
789 /* in case the KVM bug workaround already "consumed" the new slot */
793 /* KVM does not need to know about this memory */
794 if (flags
>= IO_MEM_UNASSIGNED
)
797 mem
= kvm_alloc_slot(s
);
798 mem
->memory_size
= size
;
799 mem
->start_addr
= start_addr
;
800 mem
->phys_offset
= phys_offset
;
803 err
= kvm_set_user_memory_region(s
, mem
);
805 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
811 int kvm_ioctl(KVMState
*s
, int type
, ...)
818 arg
= va_arg(ap
, void *);
821 ret
= ioctl(s
->fd
, type
, arg
);
828 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
835 arg
= va_arg(ap
, void *);
838 ret
= ioctl(s
->vmfd
, type
, arg
);
845 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
852 arg
= va_arg(ap
, void *);
855 ret
= ioctl(env
->kvm_fd
, type
, arg
);
862 int kvm_has_sync_mmu(void)
864 #ifdef KVM_CAP_SYNC_MMU
865 KVMState
*s
= kvm_state
;
867 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
873 void kvm_setup_guest_memory(void *start
, size_t size
)
875 if (!kvm_has_sync_mmu()) {
877 int ret
= madvise(start
, size
, MADV_DONTFORK
);
885 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
891 #ifdef KVM_CAP_SET_GUEST_DEBUG
892 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
894 if (env
== cpu_single_env
) {
901 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
904 struct kvm_sw_breakpoint
*bp
;
906 TAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
913 int kvm_sw_breakpoints_active(CPUState
*env
)
915 return !TAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
918 struct kvm_set_guest_debug_data
{
919 struct kvm_guest_debug dbg
;
924 static void kvm_invoke_set_guest_debug(void *data
)
926 struct kvm_set_guest_debug_data
*dbg_data
= data
;
927 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
930 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
932 struct kvm_set_guest_debug_data data
;
934 data
.dbg
.control
= 0;
935 if (env
->singlestep_enabled
)
936 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
938 kvm_arch_update_guest_debug(env
, &data
.dbg
);
939 data
.dbg
.control
|= reinject_trap
;
942 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
946 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
947 target_ulong len
, int type
)
949 struct kvm_sw_breakpoint
*bp
;
953 if (type
== GDB_BREAKPOINT_SW
) {
954 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
960 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
966 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
972 TAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
975 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
980 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
981 err
= kvm_update_guest_debug(env
, 0);
988 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
989 target_ulong len
, int type
)
991 struct kvm_sw_breakpoint
*bp
;
995 if (type
== GDB_BREAKPOINT_SW
) {
996 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1000 if (bp
->use_count
> 1) {
1005 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1009 TAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1012 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1017 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1018 err
= kvm_update_guest_debug(env
, 0);
1025 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1027 struct kvm_sw_breakpoint
*bp
, *next
;
1028 KVMState
*s
= current_env
->kvm_state
;
1031 TAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1032 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1033 /* Try harder to find a CPU that currently sees the breakpoint. */
1034 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1035 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1040 kvm_arch_remove_all_hw_breakpoints();
1042 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1043 kvm_update_guest_debug(env
, 0);
1046 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1048 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1053 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1054 target_ulong len
, int type
)
1059 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1060 target_ulong len
, int type
)
1065 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1068 #endif /* !KVM_CAP_SET_GUEST_DEBUG */