4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
9 #include "config-host.h"
15 #include "qemu-common.h"
22 #include "libkvm-all.h"
24 #include <sys/utsname.h>
25 #include <sys/syscall.h>
34 int kvm_pit_reinject
= 1;
36 kvm_context_t kvm_context
;
38 pthread_mutex_t qemu_mutex
= PTHREAD_MUTEX_INITIALIZER
;
39 pthread_cond_t qemu_vcpu_cond
= PTHREAD_COND_INITIALIZER
;
40 pthread_cond_t qemu_system_cond
= PTHREAD_COND_INITIALIZER
;
41 pthread_cond_t qemu_pause_cond
= PTHREAD_COND_INITIALIZER
;
42 pthread_cond_t qemu_work_cond
= PTHREAD_COND_INITIALIZER
;
43 __thread CPUState
*current_env
;
45 static int qemu_system_ready
;
47 #define SIG_IPI (SIGRTMIN+4)
50 static int io_thread_fd
= -1;
51 static int io_thread_sigfd
= -1;
53 static CPUState
*kvm_debug_cpu_requested
;
55 static uint64_t phys_ram_size
;
57 /* The list of ioperm_data */
58 static LIST_HEAD(, ioperm_data
) ioperm_head
;
60 static inline unsigned long kvm_get_thread_id(void)
62 return syscall(SYS_gettid
);
65 static void qemu_cond_wait(pthread_cond_t
*cond
)
67 CPUState
*env
= cpu_single_env
;
68 static const struct timespec ts
= {
73 pthread_cond_timedwait(cond
, &qemu_mutex
, &ts
);
77 static void sig_ipi_handler(int n
)
81 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
83 struct qemu_work_item wi
;
85 if (env
== current_env
) {
92 if (!env
->kvm_cpu_state
.queued_work_first
)
93 env
->kvm_cpu_state
.queued_work_first
= &wi
;
95 env
->kvm_cpu_state
.queued_work_last
->next
= &wi
;
96 env
->kvm_cpu_state
.queued_work_last
= &wi
;
100 pthread_kill(env
->kvm_cpu_state
.thread
, SIG_IPI
);
102 qemu_cond_wait(&qemu_work_cond
);
105 static void inject_interrupt(void *data
)
107 cpu_interrupt(current_env
, (long)data
);
110 void kvm_inject_interrupt(CPUState
*env
, int mask
)
112 on_vcpu(env
, inject_interrupt
, (void *)(long)mask
);
115 void kvm_update_interrupt_request(CPUState
*env
)
120 if (!current_env
|| !current_env
->kvm_cpu_state
.created
)
123 * Testing for created here is really redundant
125 if (current_env
&& current_env
->kvm_cpu_state
.created
&&
126 env
!= current_env
&& !env
->kvm_cpu_state
.signalled
)
130 env
->kvm_cpu_state
.signalled
= 1;
131 if (env
->kvm_cpu_state
.thread
)
132 pthread_kill(env
->kvm_cpu_state
.thread
, SIG_IPI
);
137 void kvm_update_after_sipi(CPUState
*env
)
139 env
->kvm_cpu_state
.sipi_needed
= 1;
140 kvm_update_interrupt_request(env
);
143 void kvm_apic_init(CPUState
*env
)
145 if (env
->cpu_index
!= 0)
146 env
->kvm_cpu_state
.init
= 1;
147 kvm_update_interrupt_request(env
);
152 static int try_push_interrupts(void *opaque
)
154 return kvm_arch_try_push_interrupts(opaque
);
157 static void post_kvm_run(void *opaque
, void *data
)
159 CPUState
*env
= (CPUState
*)data
;
161 pthread_mutex_lock(&qemu_mutex
);
162 kvm_arch_post_kvm_run(opaque
, env
);
165 static int pre_kvm_run(void *opaque
, void *data
)
167 CPUState
*env
= (CPUState
*)data
;
169 kvm_arch_pre_kvm_run(opaque
, env
);
171 if (env
->exit_request
)
173 pthread_mutex_unlock(&qemu_mutex
);
177 static void kvm_do_load_registers(void *_env
)
179 CPUState
*env
= _env
;
181 kvm_arch_load_regs(env
);
184 void kvm_load_registers(CPUState
*env
)
186 if (kvm_enabled() && qemu_system_ready
)
187 on_vcpu(env
, kvm_do_load_registers
, env
);
190 static void kvm_do_save_registers(void *_env
)
192 CPUState
*env
= _env
;
194 kvm_arch_save_regs(env
);
197 void kvm_save_registers(CPUState
*env
)
200 on_vcpu(env
, kvm_do_save_registers
, env
);
203 int kvm_cpu_exec(CPUState
*env
)
207 r
= kvm_run(env
->kvm_cpu_state
.vcpu_ctx
, env
);
209 printf("kvm_run returned %d\n", r
);
216 static int has_work(CPUState
*env
)
218 if (!vm_running
|| (env
&& env
->kvm_cpu_state
.stopped
))
222 return kvm_arch_has_work(env
);
225 static void flush_queued_work(CPUState
*env
)
227 struct qemu_work_item
*wi
;
229 if (!env
->kvm_cpu_state
.queued_work_first
)
232 while ((wi
= env
->kvm_cpu_state
.queued_work_first
)) {
233 env
->kvm_cpu_state
.queued_work_first
= wi
->next
;
237 env
->kvm_cpu_state
.queued_work_last
= NULL
;
238 pthread_cond_broadcast(&qemu_work_cond
);
241 static void kvm_main_loop_wait(CPUState
*env
, int timeout
)
248 pthread_mutex_unlock(&qemu_mutex
);
250 ts
.tv_sec
= timeout
/ 1000;
251 ts
.tv_nsec
= (timeout
% 1000) * 1000000;
252 sigemptyset(&waitset
);
253 sigaddset(&waitset
, SIG_IPI
);
255 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
258 pthread_mutex_lock(&qemu_mutex
);
260 if (r
== -1 && !(e
== EAGAIN
|| e
== EINTR
)) {
261 printf("sigtimedwait: %s\n", strerror(e
));
265 cpu_single_env
= env
;
266 flush_queued_work(env
);
268 if (env
->kvm_cpu_state
.stop
) {
269 env
->kvm_cpu_state
.stop
= 0;
270 env
->kvm_cpu_state
.stopped
= 1;
271 pthread_cond_signal(&qemu_pause_cond
);
274 env
->kvm_cpu_state
.signalled
= 0;
277 static int all_threads_paused(void)
279 CPUState
*penv
= first_cpu
;
282 if (penv
->kvm_cpu_state
.stop
)
284 penv
= (CPUState
*)penv
->next_cpu
;
290 static void pause_all_threads(void)
292 CPUState
*penv
= first_cpu
;
295 if (penv
!= cpu_single_env
) {
296 penv
->kvm_cpu_state
.stop
= 1;
297 pthread_kill(penv
->kvm_cpu_state
.thread
, SIG_IPI
);
299 penv
->kvm_cpu_state
.stop
= 0;
300 penv
->kvm_cpu_state
.stopped
= 1;
303 penv
= (CPUState
*)penv
->next_cpu
;
306 while (!all_threads_paused())
307 qemu_cond_wait(&qemu_pause_cond
);
310 static void resume_all_threads(void)
312 CPUState
*penv
= first_cpu
;
314 assert(!cpu_single_env
);
317 penv
->kvm_cpu_state
.stop
= 0;
318 penv
->kvm_cpu_state
.stopped
= 0;
319 pthread_kill(penv
->kvm_cpu_state
.thread
, SIG_IPI
);
320 penv
= (CPUState
*)penv
->next_cpu
;
324 static void kvm_vm_state_change_handler(void *context
, int running
, int reason
)
327 resume_all_threads();
332 static void update_regs_for_sipi(CPUState
*env
)
334 kvm_arch_update_regs_for_sipi(env
);
335 env
->kvm_cpu_state
.sipi_needed
= 0;
338 static void update_regs_for_init(CPUState
*env
)
341 SegmentCache cs
= env
->segs
[R_CS
];
347 /* restore SIPI vector */
348 if(env
->kvm_cpu_state
.sipi_needed
)
349 env
->segs
[R_CS
] = cs
;
352 env
->kvm_cpu_state
.init
= 0;
353 kvm_arch_load_regs(env
);
356 static void setup_kernel_sigmask(CPUState
*env
)
361 sigaddset(&set
, SIGUSR2
);
362 sigaddset(&set
, SIGIO
);
363 sigaddset(&set
, SIGALRM
);
364 sigprocmask(SIG_BLOCK
, &set
, NULL
);
366 sigprocmask(SIG_BLOCK
, NULL
, &set
);
367 sigdelset(&set
, SIG_IPI
);
369 kvm_set_signal_mask(env
->kvm_cpu_state
.vcpu_ctx
, &set
);
372 static void qemu_kvm_system_reset(void)
374 CPUState
*penv
= first_cpu
;
381 kvm_arch_cpu_reset(penv
);
382 penv
= (CPUState
*)penv
->next_cpu
;
385 resume_all_threads();
388 static int kvm_main_loop_cpu(CPUState
*env
)
390 setup_kernel_sigmask(env
);
392 pthread_mutex_lock(&qemu_mutex
);
393 if (kvm_irqchip_in_kernel(kvm_context
))
396 kvm_qemu_init_env(env
);
398 kvm_tpr_vcpu_start(env
);
401 cpu_single_env
= env
;
402 kvm_load_registers(env
);
405 while (!has_work(env
))
406 kvm_main_loop_wait(env
, 1000);
407 if (env
->interrupt_request
& (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_NMI
))
409 if (!kvm_irqchip_in_kernel(kvm_context
)) {
410 if (env
->kvm_cpu_state
.init
)
411 update_regs_for_init(env
);
412 if (env
->kvm_cpu_state
.sipi_needed
)
413 update_regs_for_sipi(env
);
415 if (!env
->halted
&& !env
->kvm_cpu_state
.init
)
417 env
->exit_request
= 0;
418 env
->exception_index
= EXCP_INTERRUPT
;
419 kvm_main_loop_wait(env
, 0);
421 pthread_mutex_unlock(&qemu_mutex
);
425 static void *ap_main_loop(void *_env
)
427 CPUState
*env
= _env
;
429 struct ioperm_data
*data
= NULL
;
432 env
->thread_id
= kvm_get_thread_id();
433 sigfillset(&signals
);
434 sigprocmask(SIG_BLOCK
, &signals
, NULL
);
435 env
->kvm_cpu_state
.vcpu_ctx
= kvm_create_vcpu(kvm_context
, env
->cpu_index
);
437 #ifdef USE_KVM_DEVICE_ASSIGNMENT
438 /* do ioperm for io ports of assigned devices */
439 LIST_FOREACH(data
, &ioperm_head
, entries
)
440 on_vcpu(env
, kvm_arch_do_ioperm
, data
);
443 /* signal VCPU creation */
444 pthread_mutex_lock(&qemu_mutex
);
445 current_env
->kvm_cpu_state
.created
= 1;
446 pthread_cond_signal(&qemu_vcpu_cond
);
448 /* and wait for machine initialization */
449 while (!qemu_system_ready
)
450 qemu_cond_wait(&qemu_system_cond
);
451 pthread_mutex_unlock(&qemu_mutex
);
453 kvm_main_loop_cpu(env
);
457 void kvm_init_vcpu(CPUState
*env
)
459 pthread_create(&env
->kvm_cpu_state
.thread
, NULL
, ap_main_loop
, env
);
461 while (env
->kvm_cpu_state
.created
== 0)
462 qemu_cond_wait(&qemu_vcpu_cond
);
465 int kvm_vcpu_inited(CPUState
*env
)
467 return env
->kvm_cpu_state
.created
;
470 int kvm_init_ap(void)
475 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler
, NULL
);
477 signal(SIG_IPI
, sig_ipi_handler
);
481 void qemu_kvm_notify_work(void)
487 if (io_thread_fd
== -1)
490 memcpy(buffer
, &value
, sizeof(value
));
495 len
= write(io_thread_fd
, buffer
+ offset
, 8 - offset
);
496 if (len
== -1 && errno
== EINTR
)
506 fprintf(stderr
, "failed to notify io thread\n");
509 /* If we have signalfd, we mask out the signals we want to handle and then
510 * use signalfd to listen for them. We rely on whatever the current signal
511 * handler is to dispatch the signals when we receive them.
514 static void sigfd_handler(void *opaque
)
516 int fd
= (unsigned long)opaque
;
517 struct qemu_signalfd_siginfo info
;
518 struct sigaction action
;
523 len
= read(fd
, &info
, sizeof(info
));
524 } while (len
== -1 && errno
== EINTR
);
526 if (len
== -1 && errno
== EAGAIN
)
529 if (len
!= sizeof(info
)) {
530 printf("read from sigfd returned %zd: %m\n", len
);
534 sigaction(info
.ssi_signo
, NULL
, &action
);
535 if (action
.sa_handler
)
536 action
.sa_handler(info
.ssi_signo
);
541 /* Used to break IO thread out of select */
542 static void io_thread_wakeup(void *opaque
)
544 int fd
= (unsigned long)opaque
;
551 len
= read(fd
, buffer
+ offset
, 8 - offset
);
552 if (len
== -1 && errno
== EINTR
)
562 int kvm_main_loop(void)
568 io_thread
= pthread_self();
569 qemu_system_ready
= 1;
571 if (qemu_eventfd(fds
) == -1) {
572 fprintf(stderr
, "failed to create eventfd\n");
576 qemu_set_fd_handler2(fds
[0], NULL
, io_thread_wakeup
, NULL
,
577 (void *)(unsigned long)fds
[0]);
579 io_thread_fd
= fds
[1];
582 sigaddset(&mask
, SIGIO
);
583 sigaddset(&mask
, SIGALRM
);
584 sigprocmask(SIG_BLOCK
, &mask
, NULL
);
586 sigfd
= qemu_signalfd(&mask
);
588 fprintf(stderr
, "failed to create signalfd\n");
592 fcntl(sigfd
, F_SETFL
, O_NONBLOCK
);
594 qemu_set_fd_handler2(sigfd
, NULL
, sigfd_handler
, NULL
,
595 (void *)(unsigned long)sigfd
);
597 pthread_cond_broadcast(&qemu_system_cond
);
599 io_thread_sigfd
= sigfd
;
600 cpu_single_env
= NULL
;
603 main_loop_wait(1000);
604 if (qemu_shutdown_requested()) {
605 if (qemu_no_shutdown()) {
609 } else if (qemu_powerdown_requested())
610 qemu_system_powerdown();
611 else if (qemu_reset_requested())
612 qemu_kvm_system_reset();
613 else if (kvm_debug_cpu_requested
) {
614 gdb_set_stop_cpu(kvm_debug_cpu_requested
);
616 kvm_debug_cpu_requested
= NULL
;
621 pthread_mutex_unlock(&qemu_mutex
);
626 #ifdef KVM_CAP_SET_GUEST_DEBUG
627 static int kvm_debug(void *opaque
, void *data
,
628 struct kvm_debug_exit_arch
*arch_info
)
630 int handle
= kvm_arch_debug(arch_info
);
631 CPUState
*env
= data
;
634 kvm_debug_cpu_requested
= env
;
635 env
->kvm_cpu_state
.stopped
= 1;
641 static int kvm_inb(void *opaque
, uint16_t addr
, uint8_t *data
)
643 *data
= cpu_inb(0, addr
);
647 static int kvm_inw(void *opaque
, uint16_t addr
, uint16_t *data
)
649 *data
= cpu_inw(0, addr
);
653 static int kvm_inl(void *opaque
, uint16_t addr
, uint32_t *data
)
655 *data
= cpu_inl(0, addr
);
659 #define PM_IO_BASE 0xb000
661 static int kvm_outb(void *opaque
, uint16_t addr
, uint8_t data
)
666 cpu_outb(0, 0xb3, 0);
673 x
= cpu_inw(0, PM_IO_BASE
+ 4);
675 cpu_outw(0, PM_IO_BASE
+ 4, x
);
682 x
= cpu_inw(0, PM_IO_BASE
+ 4);
684 cpu_outw(0, PM_IO_BASE
+ 4, x
);
692 cpu_outb(0, addr
, data
);
696 static int kvm_outw(void *opaque
, uint16_t addr
, uint16_t data
)
698 cpu_outw(0, addr
, data
);
702 static int kvm_outl(void *opaque
, uint16_t addr
, uint32_t data
)
704 cpu_outl(0, addr
, data
);
708 static int kvm_mmio_read(void *opaque
, uint64_t addr
, uint8_t *data
, int len
)
710 cpu_physical_memory_rw(addr
, data
, len
, 0);
714 static int kvm_mmio_write(void *opaque
, uint64_t addr
, uint8_t *data
, int len
)
716 cpu_physical_memory_rw(addr
, data
, len
, 1);
720 static int kvm_io_window(void *opaque
)
726 static int kvm_halt(void *opaque
, kvm_vcpu_context_t vcpu
)
728 return kvm_arch_halt(opaque
, vcpu
);
731 static int kvm_shutdown(void *opaque
, void *data
)
733 CPUState
*env
= (CPUState
*)data
;
735 /* stop the current vcpu from going back to guest mode */
736 env
->kvm_cpu_state
.stopped
= 1;
738 qemu_system_reset_request();
742 static int handle_unhandled(kvm_context_t kvm
, kvm_vcpu_context_t vcpu
,
745 fprintf(stderr
, "kvm: unhandled exit %"PRIx64
"\n", reason
);
749 static struct kvm_callbacks qemu_kvm_ops
= {
750 #ifdef KVM_CAP_SET_GUEST_DEBUG
759 .mmio_read
= kvm_mmio_read
,
760 .mmio_write
= kvm_mmio_write
,
762 .shutdown
= kvm_shutdown
,
763 .io_window
= kvm_io_window
,
764 .try_push_interrupts
= try_push_interrupts
,
765 #ifdef KVM_CAP_USER_NMI
766 .push_nmi
= kvm_arch_push_nmi
,
768 .post_kvm_run
= post_kvm_run
,
769 .pre_kvm_run
= pre_kvm_run
,
771 .tpr_access
= handle_tpr_access
,
774 .powerpc_dcr_read
= handle_powerpc_dcr_read
,
775 .powerpc_dcr_write
= handle_powerpc_dcr_write
,
777 .unhandled
= handle_unhandled
,
782 /* Try to initialize kvm */
783 kvm_context
= kvm_init(&qemu_kvm_ops
, cpu_single_env
);
787 pthread_mutex_lock(&qemu_mutex
);
793 static int destroy_region_works
= 0;
797 #if !defined(TARGET_I386)
798 int kvm_arch_init_irq_routing(void)
804 int kvm_qemu_create_context(void)
809 kvm_disable_irqchip_creation(kvm_context
);
812 kvm_disable_pit_creation(kvm_context
);
814 if (kvm_create(kvm_context
, 0, NULL
) < 0) {
818 r
= kvm_arch_qemu_create_context();
821 if (kvm_pit
&& !kvm_pit_reinject
) {
822 if (kvm_reinject_control(kvm_context
, 0)) {
823 fprintf(stderr
, "failure to disable in-kernel PIT reinjection\n");
828 destroy_region_works
= kvm_destroy_memory_region_works(kvm_context
);
831 r
= kvm_arch_init_irq_routing();
839 void kvm_qemu_destroy(void)
841 kvm_finalize(kvm_context
);
845 static int must_use_aliases_source(target_phys_addr_t addr
)
847 if (destroy_region_works
)
849 if (addr
== 0xa0000 || addr
== 0xa8000)
854 static int must_use_aliases_target(target_phys_addr_t addr
)
856 if (destroy_region_works
)
858 if (addr
>= 0xe0000000 && addr
< 0x100000000ull
)
863 static struct mapping
{
864 target_phys_addr_t phys
;
868 static int nr_mappings
;
870 static struct mapping
*find_ram_mapping(ram_addr_t ram_addr
)
874 for (p
= mappings
; p
< mappings
+ nr_mappings
; ++p
) {
875 if (p
->ram
<= ram_addr
&& ram_addr
< p
->ram
+ p
->len
) {
882 static struct mapping
*find_mapping(target_phys_addr_t start_addr
)
886 for (p
= mappings
; p
< mappings
+ nr_mappings
; ++p
) {
887 if (p
->phys
<= start_addr
&& start_addr
< p
->phys
+ p
->len
) {
894 static void drop_mapping(target_phys_addr_t start_addr
)
896 struct mapping
*p
= find_mapping(start_addr
);
899 *p
= mappings
[--nr_mappings
];
903 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr
,
905 unsigned long phys_offset
)
908 unsigned long area_flags
;
913 if (start_addr
+ size
> phys_ram_size
) {
914 phys_ram_size
= start_addr
+ size
;
917 phys_offset
&= ~IO_MEM_ROM
;
918 area_flags
= phys_offset
& ~TARGET_PAGE_MASK
;
920 if (area_flags
!= IO_MEM_RAM
) {
922 if (must_use_aliases_source(start_addr
)) {
923 kvm_destroy_memory_alias(kvm_context
, start_addr
);
926 if (must_use_aliases_target(start_addr
))
930 p
= find_mapping(start_addr
);
932 kvm_unregister_memory_area(kvm_context
, p
->phys
, p
->len
);
933 drop_mapping(p
->phys
);
935 start_addr
+= TARGET_PAGE_SIZE
;
936 if (size
> TARGET_PAGE_SIZE
) {
937 size
-= TARGET_PAGE_SIZE
;
945 r
= kvm_is_containing_region(kvm_context
, start_addr
, size
);
949 if (area_flags
>= TLB_MMIO
)
953 if (must_use_aliases_source(start_addr
)) {
954 p
= find_ram_mapping(phys_offset
);
956 kvm_create_memory_alias(kvm_context
, start_addr
, size
,
957 p
->phys
+ (phys_offset
- p
->ram
));
963 r
= kvm_register_phys_mem(kvm_context
, start_addr
,
964 qemu_get_ram_ptr(phys_offset
),
967 printf("kvm_cpu_register_physical_memory: failed\n");
972 drop_mapping(start_addr
);
973 p
= &mappings
[nr_mappings
++];
974 p
->phys
= start_addr
;
975 p
->ram
= phys_offset
;
982 void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr
,
983 target_phys_addr_t size
,
984 unsigned long phys_offset
)
986 kvm_unregister_memory_area(kvm_context
, start_addr
, size
);
989 int kvm_setup_guest_memory(void *area
, unsigned long size
)
994 if (kvm_enabled() && !kvm_has_sync_mmu())
995 ret
= madvise(area
, size
, MADV_DONTFORK
);
1004 int kvm_qemu_check_extension(int ext
)
1006 return kvm_check_extension(kvm_context
, ext
);
1009 int kvm_qemu_init_env(CPUState
*cenv
)
1011 return kvm_arch_qemu_init_env(cenv
);
1014 #ifdef KVM_CAP_SET_GUEST_DEBUG
1015 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
=
1016 TAILQ_HEAD_INITIALIZER(kvm_sw_breakpoints
);
1018 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(target_ulong pc
)
1020 struct kvm_sw_breakpoint
*bp
;
1022 TAILQ_FOREACH(bp
, &kvm_sw_breakpoints
, entry
) {
1029 struct kvm_set_guest_debug_data
{
1030 struct kvm_guest_debug dbg
;
1034 static void kvm_invoke_set_guest_debug(void *data
)
1036 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1038 dbg_data
->err
= kvm_set_guest_debug(cpu_single_env
->kvm_cpu_state
.vcpu_ctx
,
1042 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1044 struct kvm_set_guest_debug_data data
;
1046 data
.dbg
.control
= 0;
1047 if (env
->singlestep_enabled
)
1048 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1050 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1051 data
.dbg
.control
|= reinject_trap
;
1053 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
1057 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1058 target_ulong len
, int type
)
1060 struct kvm_sw_breakpoint
*bp
;
1064 if (type
== GDB_BREAKPOINT_SW
) {
1065 bp
= kvm_find_sw_breakpoint(addr
);
1071 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1077 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1083 TAILQ_INSERT_HEAD(&kvm_sw_breakpoints
, bp
, entry
);
1085 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1090 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1091 err
= kvm_update_guest_debug(env
, 0);
1098 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1099 target_ulong len
, int type
)
1101 struct kvm_sw_breakpoint
*bp
;
1105 if (type
== GDB_BREAKPOINT_SW
) {
1106 bp
= kvm_find_sw_breakpoint(addr
);
1110 if (bp
->use_count
> 1) {
1115 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1119 TAILQ_REMOVE(&kvm_sw_breakpoints
, bp
, entry
);
1122 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1127 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1128 err
= kvm_update_guest_debug(env
, 0);
1135 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1137 struct kvm_sw_breakpoint
*bp
, *next
;
1140 TAILQ_FOREACH_SAFE(bp
, &kvm_sw_breakpoints
, entry
, next
) {
1141 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1142 /* Try harder to find a CPU that currently sees the breakpoint. */
1143 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1144 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1149 kvm_arch_remove_all_hw_breakpoints();
1151 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1152 kvm_update_guest_debug(env
, 0);
1155 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1157 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1162 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1163 target_ulong len
, int type
)
1168 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1169 target_ulong len
, int type
)
1174 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1177 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1180 * dirty pages logging
1182 /* FIXME: use unsigned long pointer instead of unsigned char */
1183 unsigned char *kvm_dirty_bitmap
= NULL
;
1184 int kvm_physical_memory_set_dirty_tracking(int enable
)
1192 if (!kvm_dirty_bitmap
) {
1193 unsigned bitmap_size
= BITMAP_SIZE(phys_ram_size
);
1194 kvm_dirty_bitmap
= qemu_malloc(bitmap_size
);
1195 if (kvm_dirty_bitmap
== NULL
) {
1196 perror("Failed to allocate dirty pages bitmap");
1200 r
= kvm_dirty_pages_log_enable_all(kvm_context
);
1205 if (kvm_dirty_bitmap
) {
1206 r
= kvm_dirty_pages_log_reset(kvm_context
);
1207 qemu_free(kvm_dirty_bitmap
);
1208 kvm_dirty_bitmap
= NULL
;
1214 /* get kvm's dirty pages bitmap and update qemu's */
1215 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
1216 unsigned char *bitmap
,
1217 unsigned long offset
,
1218 unsigned long mem_size
)
1220 unsigned int i
, j
, n
=0;
1222 unsigned long page_number
, addr
, addr1
;
1223 ram_addr_t ram_addr
;
1224 unsigned int len
= ((mem_size
/TARGET_PAGE_SIZE
) + 7) / 8;
1227 * bitmap-traveling is faster than memory-traveling (for addr...)
1228 * especially when most of the memory is not dirty.
1230 for (i
=0; i
<len
; i
++) {
1235 page_number
= i
* 8 + j
;
1236 addr1
= page_number
* TARGET_PAGE_SIZE
;
1237 addr
= offset
+ addr1
;
1238 ram_addr
= cpu_get_physical_page_desc(addr
);
1239 cpu_physical_memory_set_dirty(ram_addr
);
1245 static int kvm_get_dirty_bitmap_cb(unsigned long start
, unsigned long len
,
1246 void *bitmap
, void *opaque
)
1248 return kvm_get_dirty_pages_log_range(start
, bitmap
, start
, len
);
1252 * get kvm's dirty pages bitmap and update qemu's
1253 * we only care about physical ram, which resides in slots 0 and 3
1255 int kvm_update_dirty_pages_log(void)
1260 r
= kvm_get_dirty_pages_range(kvm_context
, 0, -1UL,
1261 kvm_dirty_bitmap
, NULL
,
1262 kvm_get_dirty_bitmap_cb
);
1266 void kvm_qemu_log_memory(target_phys_addr_t start
, target_phys_addr_t size
,
1270 kvm_dirty_pages_log_enable_slot(kvm_context
, start
, size
);
1273 if (must_use_aliases_target(start
))
1276 kvm_dirty_pages_log_disable_slot(kvm_context
, start
, size
);
1280 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap
)
1282 unsigned int bsize
= BITMAP_SIZE(phys_ram_size
);
1283 unsigned int brsize
= BITMAP_SIZE(ram_size
);
1284 unsigned int extra_pages
= (phys_ram_size
- ram_size
) / TARGET_PAGE_SIZE
;
1285 unsigned int extra_bytes
= (extra_pages
+7)/8;
1286 unsigned int hole_start
= BITMAP_SIZE(0xa0000);
1287 unsigned int hole_end
= BITMAP_SIZE(0xc0000);
1289 memset(bitmap
, 0xFF, brsize
+ extra_bytes
);
1290 memset(bitmap
+ hole_start
, 0, hole_end
- hole_start
);
1291 memset(bitmap
+ brsize
+ extra_bytes
, 0, bsize
- brsize
- extra_bytes
);
1296 #ifdef KVM_CAP_IRQCHIP
1298 int kvm_set_irq(int irq
, int level
, int *status
)
1300 return kvm_set_irq_level(kvm_context
, irq
, level
, status
);
1305 int qemu_kvm_get_dirty_pages(unsigned long phys_addr
, void *buf
)
1307 return kvm_get_dirty_pages(kvm_context
, phys_addr
, buf
);
1310 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr
,
1311 unsigned long size
, int log
, int writable
)
1313 return kvm_create_phys_mem(kvm_context
, start_addr
, size
, log
, writable
);
1316 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr
,
1319 kvm_destroy_phys_mem(kvm_context
, start_addr
, size
);
1322 void kvm_mutex_unlock(void)
1324 assert(!cpu_single_env
);
1325 pthread_mutex_unlock(&qemu_mutex
);
1328 void kvm_mutex_lock(void)
1330 pthread_mutex_lock(&qemu_mutex
);
1331 cpu_single_env
= NULL
;
1334 int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr
, unsigned int size
)
1336 return kvm_register_coalesced_mmio(kvm_context
, addr
, size
);
1339 int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr
,
1342 return kvm_unregister_coalesced_mmio(kvm_context
, addr
, size
);
1345 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
1347 return kvm_register_coalesced_mmio(kvm_context
, start
, size
);
1350 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
1352 return kvm_unregister_coalesced_mmio(kvm_context
, start
, size
);
1355 #ifdef USE_KVM_DEVICE_ASSIGNMENT
1356 void kvm_add_ioperm_data(struct ioperm_data
*data
)
1358 LIST_INSERT_HEAD(&ioperm_head
, data
, entries
);
1361 void kvm_remove_ioperm_data(unsigned long start_port
, unsigned long num
)
1363 struct ioperm_data
*data
;
1365 data
= LIST_FIRST(&ioperm_head
);
1367 struct ioperm_data
*next
= LIST_NEXT(data
, entries
);
1369 if (data
->start_port
== start_port
&& data
->num
== num
) {
1370 LIST_REMOVE(data
, entries
);
1378 void kvm_ioperm(CPUState
*env
, void *data
)
1380 if (kvm_enabled() && qemu_system_ready
)
1381 on_vcpu(env
, kvm_arch_do_ioperm
, data
);
1386 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
)
1392 if (must_use_aliases_source(start_addr
))
1396 buf
= qemu_malloc((end_addr
- start_addr
) / 8 + 2);
1397 kvm_get_dirty_pages_range(kvm_context
, start_addr
, end_addr
- start_addr
,
1398 buf
, NULL
, kvm_get_dirty_bitmap_cb
);
1404 int kvm_log_start(target_phys_addr_t phys_addr
, target_phys_addr_t len
)
1407 if (must_use_aliases_source(phys_addr
))
1412 kvm_qemu_log_memory(phys_addr
, len
, 1);
1417 int kvm_log_stop(target_phys_addr_t phys_addr
, target_phys_addr_t len
)
1420 if (must_use_aliases_source(phys_addr
))
1425 kvm_qemu_log_memory(phys_addr
, len
, 0);
1430 /* hack: both libkvm and upstream qemu define kvm_has_sync_mmu(), differently */
1431 #undef kvm_has_sync_mmu
1432 int qemu_kvm_has_sync_mmu(void)
1434 return kvm_has_sync_mmu(kvm_context
);
1437 void qemu_kvm_cpu_stop(CPUState
*env
)
1440 env
->kvm_cpu_state
.stopped
= 1;